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Abstract 

The approach of using remote sensing of surface temperature to estimate spatially distributed 
surface energy balance components is very attractive. This approach has been applied successfully 
over surfaces with near full vegetation cover. However, large discrepancies between measured and 
simulated surface fluxes have been observed over surfaces with sparse vegetation cover. The reason 
for these discrepancies is that the assumption that radiative surface temperature can be equated to 
aerodynamic surface temperature is not correct over sparsely vegetated surfaces. In this study an 
empirical model, relating radiative-aerodynamic surface temperature difference to radiative-air 
temperature gradient and leaf area index, was used to estimate sensible heat flux over sparse 
shrub in the Central East supersite during the Hydrologic and Atmospheric Pilot Experiment in 
the Sahel (HAF’EX-Sahel) measurement campaign. The result shows that this parameterization leads 
to reasonable estimates of sensible heat flux; the root mean square error (RMSE) was about 50 W mY2. 
A second data set over sparse cotton in Arizona had a RMSE of about 20 W m-*. Although the results 
of this study are encouraging, one should be cautious, however, because there is a need for additional 
investigation of this procedure. 

1. Introduction 

Recently, increased emphasis has been placed on understanding the interaction between 
regional climate and the hydrological cycle in arid and semi-asid regions (Goutorbe et al., 
1993; Kustas et al., 1994). Accurate partitioning of the available energy into sensible and 
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latent heat flux is crucial to the understanding of the integrated land-surface processes and 
the atmospheric boundary layer (ABL) processes. This is very difficult in arid and semi- 
arid regions because neither the soil nor the vegetation totally dominates the exchange of 
water and heat with the atmosphere. The relative contributions to total sensible and latent 
heat flux from the soil and plant components may vary throughout the day and season 
(Massman, 1992). Consequently, several models, based on the generalization of the 
single-source approach, have been developed that attempt to estimate surface fluxes 
from sparsely vegetated areas (Shuttleworth and Wallace, 1985; Choudhury and Monteith, 
1988; Van De Griend and Boxel, 1989; Shuttleworth and Gurney, 1990). These models 
rely on measurements of the surface components temperature, which are not routinely 
available from remote sensing (Nichols, 1992). The lack of these temperature data may be 
a major handicap in the application of these models for operational purposes. 

Remote sensing of surface temperature (i.e. radiative surface temperature) together with 
some ground-based data has been widely used in conjunction with simple one-dimensional 
models to estimate components of the energy balance equation from field to regional scales 
(Jackson, 1985). This approach has been applied successfully over surfaces with near full 
vegetation cover. However, large discrepancies between measured and simulated latent and 
sensible heat flux have been observed over sparsely vegetated surfaces (Kustas, 1990) 
because radiative surface temperature (T,) is not equal to aerodynamic surface temperature 
(To). Generally speaking, T,  is a function of the radiative and kinetic temperature of the 
surface, sensor view angle and surface morphology, while To is a mathematical construct 
which depends upon the surface radiative and kinetic temperature, and on the thermodynamic 
properties of the air in contact with the surface (Hall et al., 1992). 

Using data taken during the First Internation Satellite Land Surface Climatology Project 
(ISLSCP) Field Experiment (FIFE), Vinning and Blad (1992) investigated whether a 
particular ‘optimal’ off-nadir measurement of radiative temperature can allow accurate 
estimation of aerodynamic temperature. They found that such an optimal angle is 
unpredictable. This can be expected since changing the sensor view angle will vary the 
proportion of shaded and illuminated soil and vegetation seen by the sensor (Chehbouni et 
al., 1994). Consequently, the relationship between the aerodynamic temperature and off- 
nadir radiative temperature varies with solar and view geometry, soil moisture, wind speed 
and direction and particularly vegetation cover and structure. This lack of a consistent 
relationship between aerodynamic temperature and remotely sensed radiative temperature 
led Hall et al. (1992) to conclude that deriving accurate surface fluxes from thermal 
infrared data is not feasible. Seguin (1993) suggested that the large discrepancy between 
observed and simulated surface fluxes could be corrected by a proper assessment of the 
different exchange mechanisms. A distinction needs to be made between the roughness 
lengths for heat and momentum. Heat transfer near a surface is controlled primarily by 
molecular diffusion, whereas momentum transfer takes place as result of both viscous 
shear and a local pressure gradient (Brutsaert, 1982). This difference results in an 
additional resistance to heat transfer called excess resistance (or its equivalent form, 
B-I). Kustas et al. (1989) express empirically the excess resistance ( r , )  in terms of air- 
surface temperature gradient as: 

r, = bua(Tr - Ta) 
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where u, is the wind speed, and b is an empirical parameter that was originally set to 0.17 
(Kustas et al., 1989) and later on to 0.11 (Kustas et al., 1994; Moran et al., 1994). Using 
data taken over different sites, Stewart et al. (1994) suggested that it may be possible to 
define an optimal value of the kB-' that may be valid for all arid and semi-arid regions. 
Recently Troufleau et al. (1996) investigated this same issue using Hydrologic and 
Atmospheric Pilot Experiment in the Sahel (HAPEX-Sahel) data. They reported that for 
even a given site, the kB-' coefficient can vary during the course of a single day. In a recent 
theoretical investigation, Lhomme et al. (1996) reported that the excess resistance 
approach does not appear to be an appropriate tool to estimate sensible heat flux from 
radiative surface temperature over sparse vegetation. 

Recently Chehbouni et al. (1996) investigated numerically the differences between 
aerodynamic and radiative temperatures for changing surface conditions. This was 
performed using coupled Soil-Vegetation-Atmosphere-Transfer (SVAT) (multi-layer 
model) and a vegetation functioning model. The numerical result showed that the ratio 
of radiative-aerodynamic temperature difference to the radiative-air gradient can be 
considered as a constant for a given day. However, the seasonal trend of this ratio changes 
with respect to the leaf area index (LAI). An empirical parameterization was then 
developed to derive aerodynamic surface temperature from radiative surface temperature, 
air temperature and the LAI. The objective of this study is to apply this parameterization to 
real data taken over a fallow savannah site during the HAPEX-Sahel experiment. 
Additional data taken over a second sparse surface in Arizona will also be used to verify 
the performance of the approach. 

2. Sensible heat flux formulation 

Over sparsely vegetated surfaces, sensible heat flux can be formulated in terms of 
aerodynamic surface temperature as: 

Using a two-layer scheme, sensible heat flux H can be formulated as the sum of the 
contributions emanating from each layer, i.e. from the foliage ( H f )  and from the substrate 
(H,) as: 

where p is the air density (kg m-2), C, the specific heat of air at constant pressure 
(J kg-' K-'). T, (OC) is the air temperature at a reference height (z) above the surface; To 
(OC) is the aerodynamic surface temperature defined at the mean canopy source height. T, 
(OC) is the temperature of the substrate (here grass + soil); Tf ( O C )  is the temperature of the 
shrub canopy. Y, (s m-I) is the aerodynamic resistance, calculated between the level of the 
apparent sink for momentum and the reference height; Y,, (s m-') is the substrate resistance 
and r,f (s m-') is the bulk boundary layer resistance of the shrub canopy per unit ground 
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area. Aerodynamic surface temperature can be expressed by combining Eqs. (1) and (2) as: 

The component surface temperatures needed to estimate aerodynamic surface temperature 
are not available from remote sensing. The measured quantity from a thermal infrared 
sensor is the radiative surface temperature which represents some kind of weighted 
average of the temperatures of surface elements. The problem, however, is that over 
sparsely vegetated surfaces, remotely sensed surface temperature cannot be equated to 
aerodynamic surface temperature. As reported by Kustas et al. (1989) and Prévot et al. 
(1994), the difference between the two quantities can reach 10 (OC). Beside the concept of 
excess resistance which was found to be unreliable, at least for HAPEX-Sahel data 
(Lhomme et al., 1996; Troufleau et al., 1996), the only possible way to estimate sensible 
heat flux from radiative surface temperature is to establish a relationship that links 
aerodynamic and radiative surface temperatures. In this context, sensible heat flux can 
be written as: 

where ß is defined as the ratio between the aerodynamic-air temperature and radiative-air 
temperature gradients: 

For values of LAI raging from 0.05 to 1, which is often the case for natural sparse 
vegetation in arid and semi-arid regions, Chehbouni et al. (1996) have shown that ß is 
constant for a given day but it decreases in a consistent manner with increasing LAI. They 
developed the following formula between ß with LAI 

where L is an empirical factor which may depend on vegetation type and structure. It was 
set by least squares regression to a value of 1.5 (Chehbouni et al., 1996). It should 
emphasized, however, that if a difference in sign between Tr  - To and Tr  - Ta exists, 
this parameterization will not remove it on its own. 

2.1. Resistance formulations 

The formulations developed by Choudhury and Monteith (1988) have been used to 
compute canopy and substrate resistances. The bulk boundary-layer resistance for the 
shrub canopy was defined as: 

a, Jm 
{ 4 LAIoro( 1 - exp( - a,/2))} raf = (7) 
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where u(h) is the wind speed (m s-’) at the shrub canopy height li, obtained from the 
classical log-profile relationship, w is the shrub mean leaf width (0.02 m), a, and a, are 
two constant coefficients, respectively equal to 2.5 (dimensionless) and 0.005 m s-’. The 
resistance of the substrate (grass here), which represents the aerodynamic resistance 
between the source height of the substrate cover ( d ,  4- zos) and the source height of the 
entire canopy (canopy + substrate) (d t zo), was defined from the standard relation between 
the turbulent transfer coefficient, friction velocity and height as: 

d and zo being, respectively, the zero plane displacement height and roughness length of 
the shrub canopy (defined in relation to the shrub height), and d ,  and zos being the same 
parameters for the grass cover. K(h) is the value of the eddy diffusivity (m2 s-’) at the 
shrub canopy height, obtained from its value at the reference height by assuming an 
exponential extinction with respect to the height (Brutsaert, 1982). 

In neutral conditions the aerodynamic resistance above the surface can be formulated 
as: 

where u,  is the wind speed at the reference height z, k is the Von Karman’s constant (0.4); 
d is the displacement height and zo is the roughness length for momentum transfer, both 
defined as a standard function of the canopy height h (d = 0.56 li, zo = 0.1 / i ) .  One should 
note that there is no need to include the dimensionless bulk parameter kB-‘ for the rao 
expression since a two-layer approach is used to express sensible heat flux and this is 
assumed to account for the bluff-body effect (Lhomme et al., 1994b). The formulation 
developed by Choudhury et al. (1986) has been used to perform stability correction as: 

where p = 0.75 in unstable conditions (i.e. To - Ta > O), and p = 2 in stable conditions. 7 is 
a stability factor defined as: 

By combining Eqs. (6), () and (9), the factor r]  can be expressed in terms of radiative 
surface temperature and ß as: 

3. Data used 

The international Hydrologic and Atmospheric Pilot Experiment in the Sahel (HAPEX- 
Sahel) was held during the rainy season of 1992 in the southwest of Niger (see Goutorbe et 
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al., 1993 for more details). One of the scientific objectives of the experiment was to 
investigate the effect of changing soil moisture and vegetation conditions on the surface 
radiation balance, the hydrological cycle and the feedback to the atmosphere. 

Data from the fallow savanna sub-site of the Central East supersite were used in this 
study. The shrubs have a crown height of about 3.5 m and cover about 17% of the surface, 
the rest of the surface is covered by a sparse herbaceous canopy made up of a mixture of 
different grass species. The mean grass height varied from about 0.2 m at the beginning of 
September to about 0.6 in mid-October. The leaf area index of the shrubs was about 0.5 
during the entire study period (J.M. d'Herbès, personal communication, 1992). 

From September to October 1992, a Bowen ratio-energy balance system, containing 
one net radiometer (REBS Q6) located at 12 m above the surface and four heat flux plates 
buried at 3 cm depth were used. Vapor pressure gradients were measuxed using a Vaisala 
Hygrometer. The measuring heights were 4.5 and 9 m. Air was drawn by aspirating pumps 
alternately through intakes at each height and routed to the Vaisala sensor. Air temperature 
was measured at the same two heights using shielded copper-constantan thermocouples. 
The temperature of the shrubs was measured using an infrared thermometer (model 4000, 
Everest Interscience Inc, Tucson, USA) with 15" field of view mounted at 1 m above 
the shrub so that the surface seen by the sensor was about 0.3 m2. A similar radiometer 
was mounted at 9 m above the grass, so that the area of grass and soil seen by the 
sensor was about 4.4 m'. All the instruments were sampled at 10-s intervals and logged 
as 20-min values on a Campbell data acquisition system (see Monteny et al., 1996 for 
more details). Hourly values of the data taken from 8 a.m. to 6 p.m. were used in the 
present study. 

4. Results 

Radiative surface temperature, T,, was assumed to be represented as an area weighted 
mean of shrub and grass-soil temperatures (Choudhury et al., 1986; Kalma and Jupp, 
1990; Lhomme et al., 1994a-b). For the 7 weeks of the experiment, aerodynamic surface 
temperature was determined using two different methods: (i) using component surface 
temperatures and resistances (Eq. (3)), and will be called the computed aerodynamic 
temperature; (ii) through Eq. (2), using measured sensible heat flux, air temperature and 
estimating aerodynamic resistance from Eqs. (10) and (1 1); an iteration is needed since the 
stability factor (q) depends also on aerodynamic temperature. This temperature will be 
called the inverted aerodynamic temperature. Fig. 1, presents a comparison between the 
inverted and the computed aerodynamic surface temperature for the 7 weeks of the field 
campaign. One can see that aerodynamic surface temperature obtained using Eq. (3) 
compares fairly well with that obtained by inversion of sensible heat flux measurements. 
This indicates that sensible heat flux over sparse shrub can be estimated using a two-layer 
model, which confirms the results obtained by Lhomme et al. (1994b). In Fig. 2 the 
differences between radiative and inverted aerodynamic temperature are compared with 
the differences between radiative and air temperature. The difference can exceed lO"C, 
and the deviation of T,, from T,  increased linearly as the magnitude of T ,  - Ta increased. In 
spite of some scatter due to the noise associated with the Bowen ratio measurements, there 
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Fig. 1. Cross plot between aerodynamic surface temperature inverted from sensible heat flux measurements and 
that computed using components surface temperature (Eq. (3)) over sparse shrub in the Central East supersite, 
during the 7 weeks of the measurements campaign. 
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Fig. 2. Comparison between radiative-air temperature differences and radiative-inverted aerodynamic tempera- 
ture differences over sparse shrub in the Central East supersite, during the 7 weeks of the measurements 
campaign. 
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is a clear evidence of the existence of a functional relationship between T, - To and TI - Ta. 
Kustas (1990) reported that the magnitude of T ,  - To is directly related to the amount of 
radiation received by the surface, which mainly depends on solar angles and vegetation 
characteristics, especially on the LAI of the canopy. The fact that TI - To varies linearly 
with T, - Ta throughout the season, may be explained by two considerations: first, the 
dependence on solar position may be included in the surface-air temperature gradient; 
second, the LAI of the shrub remained constant during the 7 weeks of the measurement. 

The parameterization described in Eq. (6)  is used in conjunction with Eq. (5) to estimate 
aerodynamic temperature during the 7 weeks of the measurements. This temperature will 
be called the parameterized aerodynamic temperature. The difference between the 
parameterized and the inverted aerodynamic temperature is presented in Fig. 3. The 
root mean square error (RMSE) between the two temperatures was about 1.5"C, which 
can be considered as acceptable considering the range of the errors associated with remote 
sensing measurement of surface temperature ( 4 2°C). The parameterized aerodynamic 
temperature, in conjunction with aerodynamic resistance derived from Eq. (lo), was used 
to compute sensible heat flux. In Fig. 4, the sensible heat flux is compared with that 
obtained from Bowen ratio measurements, during the entire campaign period. The overall 
agreement between the model simulations and the field data was generally satisfactory. 
The average RMSE for the 7 weeks of data was about 50 W m-2, which is very close to the 
RMSE obtained using the computed aerodynamic temperature (Eq. (3)), i.e. using a two- 
layer model (Lhomme et al., 1994b). 

Y - - /  2.00 

I 
-3.00 I I I I I I 

O 200 400 600 800 1000 1200 1400 
Measurements number 

Fig. 3. Difference between the parameterized aerodynamic temperature (Eqs. (5) and (6)) and that inverted from 
sensible heat flux measurements, during the 7 weeks of the measurements campaign. 
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Fig. 4. Comparison between Bowen ratio based sensible heat flux with that simulated using Eq. (4), over sparse 
shrub in the Central East supersite, during the 7 weeks of the measurements campaign. 
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Fig. 5. Differences between radiative and air temperatures compared against the differences between radiative 
and inverted aerodynamic surface temperature, over sparse cotton in Arizona. 
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4.1. Application to ß expression over agricultural jield 

To test the applicability of this parameterization to other sparse vegetated surfaces, a 
data set for a cotton field was used (Kustas, 1990). Cotton covered about 20% of the 
surface, the leaf area index was about 0.4 and the cotton was 0.3 m height, plants were 
spaced 1 m apart and the furrow depth was about 0.2 m. A large difference between the 
temperatures of transpiring cotton and illuminated soil was observed. Surface temperature 
was measured using an infrared radiometer onboard an aircraft flying at an altitude of 
150 m, which corresponds to a pixel size of about 40 m. Profiles of wind speed and 
temperature were determined at five levels above the surface (i.e. 1.2 m, 1.4 m, 1.8 m, 
2.4 m and 3 m). An eddy correlation method was used to obtain latent and sensible heat 
flux. 

Measured sensible heat with air temperature and aerodynamic resistance is used to 
invert for aerodynamic surface temperature. In Fig. 5, the differences between radiative 
and inverted aerodynamic temperature are compared with the differences between 
radiative and air temperature which shows that for this data set also, T ,  - To varied linearly 
with respect to T ,  - Ta. A cross plot between inverted aerodynamic temperature and that 
obtained by combining Eqs. (5) and (6) is presented in Fig. 6. The RMSE between the two 
temperatures was about 0.65 ( O C ) .  Fig. 7 presents a comparison between measured 
sensible heat flux and that estimated using Eq. (4) combined with Eqs. (6), () and (10). 
The average RMSE for the estimated sensible heat flux values was about 18 W m-* for 
measured values ranging from about 50 to 250 W m-2. These results indicate that the 
approach developed here may be applicable to other arid and semi-arid surfaces. 

Inverted To (“C) 

Fig. 6. Cross plot between parameterized aerodynamic surface temperature and inverted aerodynamic surface 
temperature over sparse cotton in Arizona. 
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Fig. 7. Comparison between simulated and eddy correlation based sensible heat flux over sparse cotton in 
Arizona. 

5. Discussion and conclusion 

The use of remote sensing surface temperature to evaluate the energy balance 
components over sparsely vegetated surfaces is bound to fail if the difference between 
radiative and aerodynamic surface temperature is ignored. This difference is due in part to 
the fact that the resistance to momentum flux is different from that of heat flux. Momentum 
transfer is by viscous forces as well as pressure forces, while heat transfer is by diffusion 
only. The analysis performed by Prévot et al. (1994) and Lhomme et al. (1996) showed 
that the kB-I factor depends on different surface pikameters as well as on atmospheric 
parameters. 

Recent studies have shown that the accuracy of using radiative surface temperature to 
estimate surface energy flux can be greatly improved if an excess resistance is added to the 
aerodynamic resistance. This resistance was generally expressed in terms of the kB-' 
factor. The method generally used consists of substituting radiative surface temperature 
for aerodynamic surface temperature, and adjusting the expression of kB-I to fit sensible 
heat flux measurements. Beside the fact that such expressions tend to be restricted to the 
type of conditions for which they were obtained, the problem is that the kB-' factor was 
never meant to allow the substitution of aerodynamic temperature by radiative surface 
temperature in sensible heat flux formulation. As pointed out by Troufleau et al. (1996), 
this parameter was suggested originally to take into account only the fact that the rough- 
ness length for heat is lower than that of momentum. In this regard, Norman and Becker 
(1995) reported that the difficulties encountered with the parameterization of the excess 
resistance result from the confusion between radiative and convective processes. 
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In the present study, a parameterization involving the LAI has been used to derive 
radiative-aerodynamic temperature difference from radiative-air temperature gradient. 
This approach was motivated by the fact that LAI is a pertinent parameter that plays a key 
role in the two-layer based scheme, whereas it is not used in one-layer based one. Thus, 
LAI should be included in any attempt to estimate aerodynamic surface temperature from 
radiative surface temperature over sparsely vegetated surfaces (Prévot et al., 1994). As 
reported by Kalma and Jupp (19901, the difference between radiative and aerodynamic 
surface temperature depends also on atmospheric stability/instability and on solar zenith 
angle. Since temperature gradient contains information about atmospheric stability and 
solar angle, the dependence to both factors may be taken into account by considering a 
relationship between radiative-aerodynamic temperature difference and radiative-air 
temperature gradient. 

At first glance, an equation between T,, To, T,  and LAI seems to have limited application 
outside the conditions under which it was derived. Nevertheless, this parameterization 
which was originally developed using only simulated data (Chehbouni et al., 1996), 
performed correctly in both the HAPEX and Arizona sites. However, additional studies 
are needed to test the universality of Eq. (6), and to investigate how the L parameter 
changes with vegetation type and conditions. Finally, the simplicity of this approach 
combined with the possibilities of using remote sensing to estimate surface temperature 
and LAI (Asrar et al., 1984) makes it very attractive for operational monitoring of surface 
fluxes in arid and semi-arid areas. 
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