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Abstract 
# 

Existing attempts to estimate the survival rate of tsetse flies frompjvaxian age 
distributions generally assume that the population is stationary. The fact that the 
survival rate cannot be dissociated from the growth rate by these methods poses a 
problem. Under the assumption of a stable age distribution, we propose a 
maximum likelihood method to estimate the 'apparent survival rate' for three 
categories of females: nulliparous (pol, young parous (pl) and old parous flies (pJ. 
The rate depends both on 'real survival rates' a,, a, and a2, and a growth rate X: ßo = 
a,/& ßl = a,/A, and ß2 = a2/A. We used a matrix model, which can be 
parameterized if the pupal survival rate and the pupal period are known. 
Replacing a,, a ,  and a2 by Po,& ß,A, and ß2h in the projection matrix, the problem 
amounts to calculating its dominant eigen-value A, and hence ao, al and a y  The 

' application to a field population of Glossina palpalis ganibiensis Vanderplank in 
Burkina Faso showed there was a marked difference in survival rate according to 
age category. The average survival rate increased with age with decreasing 
variability. The results suggested that sampling (by trapping) may have had an 
effect on the dynamics of this tsetse population by ageiiïg it artificially. This 
method may be a useful tool for monitoring tsetse control. 

Introduction 

Tsetse flies Glossiiza spp. (Diptera: Glossinidae), the 
vectors of sleeping sickness, are insects with the unusual 
characteristics of being viviparous, and having a low 
reproduction rate (about one larva every 10 days). The 
ovarian (or physiological) age of the female flies can be 
determined by examining the dissected ovaries under a 
microscope (Saunders, 1960). Several attempts have been 
made to estimate the survival rates of females from their 
ovarian age distribution (Saunders, 1962; Goutewc, 1982; 
Gouteux & Kiénou, 1982; Rogers & Randolph, 1984; Rogers 
et al., 1984; Challier & Turner, 1985). 

However, as pointed out by Van Sickle (1988), these 
authors assume, more or less explicitly, that the population 
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is stationary (asymptotic-growth rate h = 1, or intrinsic rate 
of increase r = O). In fact, without additional information 
adult survival (or mortality) cannot be dissociated from the 
growth rate. Hargrove (1993) consequently estimated, by a 
maximum likelihood method, a parameter depending on the 
mortality and the growth rate. To solve this problem, Van 
Sickle (1988), proposed an alternative method using the 
Euler-Lotka equation. It was necessary to assume only the 
population had a stable age distribution, and that an 
independent estimate of the survival rate could be obtained 
for one age class. Unfortunately, this author also showed 
that this method was very sensitive ;o sampling error and he 
recommended that the growth rate should be estimated 
independently from, for instance, data based on regular 
captures (Van Sickle & Phelps, 1988). 

Here we propose a method similar to that of Van Sickle 
(1988), but derived using a matrix model adapted for 
studying Glossina populations (Jarry et al., 1996a). The model 
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assumes that data are available on pupal survival rate, mean 
pupal period and ovarian age distribution. 

Materials and methods 
Life cycle of flze fanale tsetse fly 

The regular ovulation alternating between two ovaries, 
each of which contains two ovarioles, enables eight age- 
groups to be determined in tsetse flies. The first four 
age-groups correspond to the first ovarian cycle and can be 

.ry el :al .  

distinguished precisely. Subsequent cycles cannot be 
distinguished from one another and the four older age- 
groups therefore correspond only to age within a cycle 
(Challier, 1965; Jarry et al., 199Ga) (fig. 1). Each stage 
corresponding to the mean duration between two ovulations 
lasts for h days (generally h = 10). Since the duration of the 
pupal stage varies between 20 and 50 days according to the 
temperature (cyclical seasonal variation, Jackson, 1949; 
Harley, 1968), it was subdivided into five hypothetical stages 
(Po, Pl, P ,  Piand P,) to maintain a homogenous discrete 
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Fig. 1. Graph of the life cycle of female Glossinn and associated transition matrix. 
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likelihood. For each sample of size n, with no, 711, ... )I7 in each 
of the physiological age-groups A,, Al, ... A7 I ß may be 
estimated by solving numerically the equation: 

representation. The coefficient p ,  represents the survival rate 
of the pupa in stage Pi over a period of h days and ei the 
emergence rate of pupae in stage P,. The path from 4 to A4 
represents the indeterminacy associated with the four older 

days is noted by ni and her fecundity by f,. (3) -wl n 4w2ß3 - a w p )  +--o 
age-groups. The survival rate of a female in stage Ai over h 

ap p i -p  1-04 

7 7 
Mntrix modelling with w1= ci ni,  w2 = ni and ß # 1 (see above). 

i=l i=4 The matrix model is derived from the life cycle and 

(1) 

Knowing the age structure of the adults is not in itself 
sufficient to estimate directly the survival rate n of the adults 
unless A = 1, in which case a = ß. This n priori very strong 

involves only the female population: 

N (t + 1) = M N ( t )  

where the components of the vector N(t )  represent the 
number of females in a given stage at date t and M is the 
transition matrix associated with the life cycle graph. 

The matrix M is non-negative, irreducibIe and primitive. 
Under these conditions, it possesses a strictly positive and 
strictly dominant real eigen-value A (Peron-Frobenius in 
Caswell, 1989) which can be interpreted as the asymptotic 
growth rate of the population. The right eigen-vector 
associated with this eigen-value gives the stable distribution 
of the stages. 

If we assume that the survival rate is constant about the 
pupal period life, the values of the coefficients ei and pi can 
be derived from pupal survival rate (i3 and mean pupal 
period 6) (Jarry et al., 1996a, see Appendix 1). The values f, 
are calculated from the potential fecundity of the females 
(fpmax = 0.5 if we assume a balanced sex ratio) by applying a 
contlnuity correction (Caswell, 19891, since, for this species, 
there is no specific reproduction period during the year. 

In the first instance, we will assume a constant survival 
rate among the adult females (n, = n). The model now 
depends on only three parameters (3, f a n d  a)  if we consider 
fpma to be constant and if the inter-larval period h is constant 
at 10 days, the mean value estimated by Challier (1973) for 
the example treated. 

condition of numerical equilibrium of the population is not 
necessary if information is available concerning the pupal 
stages, namely the pupal period and the survival rate. 
Replacing u by ßh in matrix M ,  all other elements being 
defined, M - AI is a matrix with only one unknown A. The 
problem is to solve an equation of degree p (the dimension 
of the matrix M) and the Pe‘rron Fronenius theorem 
guarantees that one real solution exists. In practice, we used 
Mathematics@ software for solving the equation: 

det(M - = O  (4) 

Results 

Estimation of n constnnt stirvivnl rate of the feninleflies 
The complete development of the estimation process is 

given in Jarry et nl. (1996b). In this section, we simply 
produce the principal results necessary to understand the 
extension to the case of age-dependent survival rates. We 
consider only the adult population of tsetse flies and we 
modify slightly the notation of the indices of the vector N(t)  
so that it is coherent with the notation adopted for the 
physiological age-groups. Let No (t) ,  NI ( t )  ,..., Ni (t) ,..., N7 (t)  
be the number of adults in age-groups A,, Al,. . .I 4,. . ., A,. 

Assuming that the age structure of the population is 
stable, the numbers Ni in each stage at any time t can be 
expressed in terms of No as: 

Extension to the case of nge-dependent szirvivnl rotes 
Female tsetse flies may bé classified into three broad 

categories: nulliparous (Ao), young parous (Al, A, and A,) 
and old parous flies (A4, A,, A, and A$. Let no, a, and n2 be 
the survival rates in these three categories, and ßo, ßl and ß2 

the corresponding apparent survival rates (ßi = n,/A). 
Equations (2) then become: 

and the probabilities of belonging to each age-group 
become: 

P(X = o> = u p  I 
&i-2!8’-’ 

, for i = 1, ... 3 
V 

where u = 1 -ß2 ; z, = (1 - p2) (I+ po( l+  ßl +P: +fi:)) 

+pop: and z=l+ß2 -tß: +p,”. 
The likelihood function L(ß,,, ß,, ß2) is then given by: 

. .  

I . ,  

! 

I I  
Ni=[ (a/’)’ k0, fori=4, ...y 7 7 ! I 
Ni =(./A)”;, for i = O ,  ... 3 ln L(ß,, ßIr ßJ = wo In ßo + w1 In ßl + w2 ln ß2 + w3 

In (1 - ß2) - nlnv - (n - w,)lnz 

with zuo = C n i  ; zu1 = n 2  4-12, + 3 x n n i  ; w2 =n5 +2n6 +3n7 

and w3 = z n i .  

(7) 
(2) 

l-(L?/iF 
i d  i=4 
3 

i=l 

The estimates of Po, ßl et ß2 are solutions of the system: 

i 
with n / A  # 1, which corresponds to a non-zero population 
size (Jany et al., 1996b). 

The ‘apparent survival rate‘ ß = n / A  which appears 
clearly in equations (2) can be estimated by maximum 
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t !  ! ! I ! : !  ! ! ! I I  ! : ! ! ! !  ! ! ! ! !  ! ! ! ! ! : : :  

Month(September 1964 -April 1967) 

Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dcc Feb Apr 

Fig. 2. Variation in the estimated growth rate A of a population of GIossina palpnlis gambiensis in 
the Burkina-Faso forest, assuming age-dependent survival rates of female. B, acceptable fit to 
observed data (xz test, (Y = 0.05); O, fit rejected; 1', fit not tested, sample too small. 

and may be obtained numerically. 
The coefficients pi and ei of the matrix M being known, it 

is sufficient to replace ao, al and a2 by ßoA, ßlh and ß2h to 
solve, as before, the equation: 

det(M - ?JI = O (9) 

Numerical solution of this equation gives X, and hence a,,, 
a, and az 

Applications to G. palpalis gambiensis in the Burkina-Faso 
forest 

The data used were obtained from a population of 
Glossina palpalis gainbiensis Vanderplank (Diptera: 
Glossinidae) studied in the forest of Kou, Burkina-Faso, from 
1964 to 1967 (Challier, 1973 and personal communication). 
The survival rates of the pupae 6) and the pupal period (?) 
were determined by monitoring the emergence of the adults 
from batches of young larvae distributed in small metal 
cages buried in the ground. When the normal emergence 
period was considered to have elapsed, the cages were 
unearthed and the dead (parasitized) or hatched pupae were 
counted (Challier, 1973). The physiological age-group 
distributions were obtained from flies caught by hand nets. 
Since this method overestimates the nulliparous flies (A,,), 
the numbers were adjusted using results from a study 
comparing the efficacy of trapping in nets and in biconical 
traps (Gouteux & Dagnogo, 1986). Such data were obtained 
from September 1964 to April 1967 with approximately one 
sampling per month (for details, see Jarry et al., 199613). 

Under the hypothesis of constant adult survival rate, the 

f 

fit of the model to the data, as tested by x2, is acceptable only 
for 12 samples out of 29 (two samples were too small for this 
type of test). The growth rate h is obviously closely related to 
the survival of the adults. The growth rate fluctuated around 
1 over the study period, varying between 0.84 and 1.1. An 
unfavourable period for population growth was observed 
every year between January and March (April in 1967), 
which corresponds to the end of the dry season and 
beginning of the rainy season, when the maximum 
temperature range is recorded. In the following period (the 
rainy season), the'growth rate was less homogenous, with 
relatively strong fluctuations depending on the year. The 
growth rate increased at the end of the rainy season and at 
the beginning of the dry season, in particular in 1965 and 
1966. Thus, although subject to seasonal fluctuations, the 
overall dynamics of the growth rate were considered to be 
stable (Jarry ef al., 199613). 

The introduction of age-dependent survival rates 
modifies markedly the interpretation of these data (fig. 2). 
There is a clear improvement in the model fit (x2 acceptable 
for 24 samples out of 291, but there are only four values of ,i 
over 1 and overall there is a decreasing trend in the growth 
rate. The trend in the different survival rates (fig. 3) shows 
marked differences according to the age of the flies. The 
average survival rate increases with age (0.456, 0.649 and 
0.715 for nulliparous, young parous and old parous flies 
respectively), but the variability decreases (the variances are 
respectively 0.051, 0.040 and 0.016). In fact, for the old 
parous flies, the survival rate increased from around 0.60 at 
the beginning of the study to fluctuate around 0.70 at the 
end of the study period. 

These results suggest that sampling by trapping may 
have had an effect on the dynamics of this population. The 
decreasing trend in population size did not clearly appear 
on the trap data, because it was masked by seasonal 
fluctuations (Challier, 1973). However, this decrease can be 
observed during unfavourable periods. The catches in 
December 1964 and January 1965 were higher than in 
December 1965 and January 1966 (too small for x2 test, see 
fig. 2). In December 1966 the catches were about zero. 
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(a few hundreds of square metres) and the local removal 
might be compensated by the displacement of parous 
females, especially the old ones, emigrating from 
surrounding areas. This addition of old parous flies was 
insufficient to keep the population at an equilibrium, but 
explains the ageing of the population. The application of our 
method to other data sets (in preparation) will enable this 
point to be examined in more detail. 

Certain aspects related to the use of numerical methods 
for solving equations should be noted. The stability of 
numerical estimates of the apparent survival rates depends 
on the structure of the samples. In some cases, values of p> 1 
were obtained, which is probably impossible in the context 
of the proposed matrix model. Indeed, graphs of the 
relationships between h and a (Jarry et al., 1996b) suggest 
that the condition h > a is always fulfilled. 

It should also be noted that although a poor model fit 
may indicate that the population is in a transitory stage, a 
good fit does not necessarily imply that the population is 
stationary. The relatively large fluctuations in the estimated 
growth rate between two successive months (e.g. 
April-May 1965 or July-August 19661, when the fit to the 
data was correct, pose a problem. In the future, a method of 
calculating the confidence intervals of the growth rate could 
be developed, but it seems quite clear, from a biological 
point of view, that these strong variations in growth rate are 
due to the migration of young parous flies. Thus, taking 
into account spatial aspects in this model of population 
dynamics would be an important subject for future 
research. 

This contribution is an optimist’s reply to the pessimist 
conclusion of yan Sickle (1988). This optimism is due to the 
good fit obtained with Challier’s data, allowing a very 
consistent interpretation of these data. It will be necessary 
to test our method with other data sets. We will have also 
to demonstrate its robustness against sampling errors, but, 
in conclusion, the present approach offers many 
possibilities for future development both in terms of 
analysing demographic data on tsetse flies and, more 
generally, with respect to the properties of matrix 
population models. 
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