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Abstract. We introduce a skeletization method based on the 
Voronoi diagram to determine local pore sizes in any porous 
medium. Using the skeleton of the pore space in a 3D im- 
age of the porous medium, a pore size value is assigned to 
each voxel and a reconstructed image of a spatialized local 
pore size distribution is created. The reconstructed image 
provides a means for calculating the global volume versus 
size pore distribution. It is also used to carry out fluid in- 
vasion simulation which take into account the connectivity 
of and constrictions in the pore network. As an example we 
simulate mercury intrusion in a 3D soil image. 
O 1,999 Elsevier Science Ltd. All rights reserved 

1 Introduction 

The concept of Rore size distribution is widely used in soil 
science to characterize different types of soils or to char- 
acterize dynamic evplution within a given soil (e.g. Velde 
et al., 1996). It is also widely used iwtheoretical modeling or 
specific applications to infer soil hydraulic and other proper- 
ties of soil behavior (e.g. Dullien, 1992; Perrier et al., 1996, 
1998). Specific devices (mercury porosimeters) have been 
developed to provide indirect measurements of the pore size 
distributions in small soil cores and numerous specific ex- 
periments arë canied out to estimate pore size distributions 
either in the field or in the laboratory (e.g. Fies, 1992; Zida 
et al., 1996). h a g e  analysis has also been used to measure 
pore size distributions directly on soil images, extensively 
in 3D (Hallaire and Curmi, 1994), using available computer 
softwares, and more recently from 3D soil4mages using spe- 
cific algorithms based on morphological analysis (Moreau 
et al., 1999). 

3D soil images alone can give us an insight ábout the con- 
nectivity of the pore space, which have proved to be the key 
factor as regards soil hydraulic properties. Theoretical stud- 
ies of pore networks modeling soils (Perrier etCali, 1995) (or 
any kind of porous media (Lenormand et al., 1988)) show 
that a pore size distribution cannot completely explain fluid 
flow if we negleq the spatial distribution of the different pore 
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sizes: given the same distribution of pore sizes (% of the,total 
pore volume in different classes of sizes) and local flow prop- 
erties, the macroscopic behavior may vary strongly accord- 
ing to connectivity, i.e., the way these sizes are distributed 
in space and how they are related to each neighbor, which 
determine fluid paths. 

Our goal in this paper is to go beyond the mere measure- 
ment of pore size distributions and to obtain a reconstructed 
image of the spatialized pore size distribution, i.e. a map of 
pore sizes, that may be useful to carry on numerical experi- 
ments of fluid flow on improved pore network models. 

Section 2 presents our theoretical approach and the algo- 
rithms that have been developed in this framework. Section 3 
exhibits an example of application on real data where a vir- 
tual experiment of mercury invasion is performed. Section 4 
summarizes our preliminary conclusions about this on-going 
research. 

2 Theory and methods 

2.1 Local pore size and spatialized pore size distribution 
definitions. 

The pore concept refers generally to models representing the 
voids in a porous medium as a set of elementary units with 
simple geometrical shapes, e.g. a bundle of cylindrical tubes 
of various apertures. Here the pore size is simply the radius 
of the cylinder. This size r is then linked to the capillary 
pressure h necessary to displace a fluid through this tube, ac- 
cordin5 to the Young-Laplace Law (e.g. de Marsily, 1986; 
Washburn, 1921): 

k 
r 

h N - -  

where k is a numerical constant depending on the fluids, the 
medium, the experimental conditions etc., with details going 
beyond the scope of the present paper. 

In a real pore space, the complex oontinuous geomeby 
does . .  
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Flg. 1. a) The local pore size T(P) for any point P in the pore space F' is 
defìned as the radius of the largest ball (circle on the picture) including P 
and included in F'. b) r ( P )  is calculated as the radius of the maximal ball 
(black circle) centered on a point S of the skeleton S. 

region of the pore space: there are few well specified objects 
with specific sizes, We pill define locally a pore size as the 
local distance between the solid parts surrounding a point lo- 
cated in the pore space. From considerations related to om 
vision of the link-between this local size and the local prop- 

, erties of fluid flow, we will use here the following definition: 
for any point P located in the pore space ?, let us define the 
local pore size r (P) as the radius of the greatest ball (circle 

2D, sphere in 3D) included in the pore space and including 

) = max{r I 'B(C, r) c ?, P E 'B(C, r)} (2) 

spatialized pore size distribution M is then defined as 
owing set of geometrical information (points+associated 

= {P,r(P) I P E  ?} (3) 

i.e. a set of (x,y,z,r(x,y,z)). 
First M includes all the necessary information to calculate 

the global pore size distribution that may be defined as a con- 
tinuous density function of the pore volume with respect to 
the size T. 

Second M includes a map of local pore sizes that will be 
useful to characterize $e connectivity of the pore space. 

2.2 From a real soil image tpwards'a reconstructed image 
of its spatialized pore size distribution M 

In order to determine the local size r (P)  in M defined by 
Eq. (2), it is necessary to define specific algorithms using ex- 
plorations around P : Calculations of successive balls cen- 
tered upon any point in the pore space could be used but the 
tests are long and complicated. Our method uses a skeleti- 
zation of the pore space. This reduces the number of points 
investigated in the image. One morphological definition of 
the skeleton S of the object $' is useful. S is the se; of points 
made of all the centers S of all the maximal balls B(S, r) in- 
cluded in ? (Schmitt and Mattioli, 1994; Xia, 1989) (A maxi- 
mal ball means that we cannot find a bigger sphere including 
IB and included in ?), Tbis means that we can reduce our 

search of the maximal balls in Eq. (2) by considering only 
the maximal balls whose centers are defined by the skele- 
ton. Instead of considering each point P in ? and calculating 
r(P) ,  we will scan all the maximum balls centered upon a 
point S of the skeleton to assign a value r (P) to the points P 
covered by this ball. In this iterative process, a point P may 
be first assigned a r (P)  value by a ball covering it, then if a 
larger ball can occur, still including P,  the value r (P) will 

.be increased accordingly (cf. Fig. lb). 
More precisely, the algorithm to determine r(P)  proceeds 

with the following steps: 

1 The skeleton S of ? is extracted and then the 
maximum balls are calculated. 

2 An initialisation of the r (P)  values is made: 
VP E T,r (P)  = o  

3 Skeleton points are scanned for each point S 
of S, a sub-set of point P, of the pore space ? 
is covered by the associated maximal ball 
%(S, r): if T > r(Pi), then r(PJ = T. 

I 

(4) 
?I 

At the end of the process, each point P of ? is thus assigned 
a given local pore size r (P) ,  which defines the spatialized 
pore size distribution M. 

2.3 Computation of the skeleton of an heterogeneous 2D or 
3D object 

The skeleton S of the pore space P is rather classically com- 
puted from the Voronoi diagram P for the boundary of the 
object P. ? is a finite set of points (voxels) in a binary (solids 
/voids) image of a porous medium. The Voronqi diagram is 
determined using a new method by taking advantage of this 
discrete configuration of points. A very fast algorithm has 
been implemented in 3D by our team (Yu et al., 1998) us- 
ing an extension of the method proposed in 2D by (Guan and 
Ma, 1998). The seeds or points investigated are all the voxels 
located on the boundary ofthe object P. The Voronoi process 
partitions the pore space in polyhedric areas of greatest prox- 
imity to these seeds (Fig. 2a and b). The Voronoi diagram P 
is made of all the edges of these areas. By construction, all 
the points V in P are located equidistant from the two near- 
est seeds A and B (Fig. 2a and b) on the boundary of P. 
Theoretically, the skeleton S of P can be also defined as the 
median line (e.g. Pieritz and Philippi, 1995) between oppo- 
site boundaries of P, thus S is a sub-set of Y. 

The next step deals with the calculation of S (Fig. 2d) by 
finding the appropriate subset of O. For each point V of P, 
we have to decide if it belongs to S. Our method consists of 
calculating the angle A= between V and the nearest seeds 
A and B used in defining the Voronoi'diagram: if A and 
B are located on thqsame side of the boundary ofthe pore 
space, this angle will be small (Fig. 2c), if A and B are lo- 
cated on opposite sides of the boundary, the angle AFB will 
be large (Fig. 2b). A point V belongs to the median line if 
the angle A= is large enough (Fig. 2d). We use this empir- 
ical method (tuning) to extract the median line by selecting 

i 
b 
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Fig. 2. a, b) Thin lines show Voronoi diagram V, made of points equidistant 
to 2 see&(dots) on the pore boundary. a) A point V on V forms a large 
angle AVB with its n z s t  seeds A and B on the pore boundary. b) As 
in Fig. z u t  where AVB is a small angle. c) A map of thevalues of the 
angle AVE for each point of the Voronoi diagram V , Lightest shading 
shows smallest angles. d) Derived skeleton of pore. 

the points V associated to AFB > K, where the constant if 
is chosen to reduce 'disconnected areas in the median line as 
well as small appendicies ("barbules") or noisy areas around 
the median line. 

where K is an empirical tuning constant, and A, B are the 
nearest seeds of V in P. 

Moreover, the distance d = VA(= V B )  gives the radius 
of the maximal ball centered upon V needed to complete the 
algorithm described in Sect. 2.2 Eq. (4). The pore sizes are 
thus defined as measurable Euclidean distances. 

2.4 Examples on synthetic media. 

Our method was first tested on simple assemblages of cylin- 
ders (Fig. 3a and b) and the radius given by construction were 
correctly computed in the reconstructed image of 3M showing 
visually the different pore sizes (Fig. 3e and 4. 

2.5 . First results and sensitivity analysis 

a b 

C d 

e F 

Fig. 3: Examples of the extraction of M from a shple  assemblage of vol- 
umes. a, b) Simple volume assemblage P. c, d) Skeleton of pore space S. e, 
f) Representation of M with different colors associated to 3 classes of local 
size: red is the smallest size, green the intermediate size and blue the largest 
size. 

If the skeleton was perfect, all the points P of the pore space 
would be covered by a maximal ball centered on the skeleton 
and the renconstructed image 3M would concem all the points 
of the pore space '9 associated with exact pore sizes. If we 
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keep too many points in the skeleton (the theoretical skele- 
ton Sth included in our numerical estimation S e s i ,  i.e K too 
low in Eq. (5)) our method is not optimal, but the result is 
the same. If some points are missing in the skeleton (Ses* 
included in &h, K too high in Eq. (5), two sorts of errors 
can occur. On the one hand, since a maximal ball may be 
missing, the local pore size in M may be somewhat under- 
estimated. On the other hand, some points P of the pore 
space may be covered by no balls, and these points will not 
appear in the reconstructed image M. The best results were 
obtained fixing the K parameter in Eq. (5) at 70". Our al- 
gorithm to extract the skeleton was found to be good enough 
for our present purpose. The algorithm runs very rapidly and 
its runtime is simply proportional to the size of the object. 

The sensitivity analysis is used to compare the amount of 
discrepency between M and P, both on synthetic case studies 
and on real images. 

1. 

2. 

A visual comparison is made with well-known syn- 
thetic images (Fig. 3) 
Computation of the relative error of the total volume 
(number of voxels) in the original image P and in the 
reconstructed image M (Fig. 4) is made. 
The process is repeated with different orientations of 
the image 

Our first tests exhibited very encouraging results. Moreover, 
on all our examples, the connectivity of M is analogous with 
the initial connectivity of P, despite a somewhat imperfect 
skeleton. Further work will be done to establish general ac- 
curacy of our reconstructed map. 

3. 

3 Applications 

We applied our method to a portion of a binary 3D image of 
pore sflace in a Vertisol block (Moreau et al., 1999). This 3D 
image was obtained from an assemblage of sequential 2D 
images of a fluorescent-dye resin-impregnated block. The 
initial grey-level 2D images were binarized and then assem- 
bled. For the sake of better visualization, only a thin portion 
of the total pore space of the initial block is shown in Fig. 4a. 
Each voxel in the initial image represents a cube of 100 mi- 
cron edge length. The 3D skeleton S extracted from the ini- 
tial image is shown in Fig. 4b. The reconstructed image 3vI: 
using the routines given above is shown in Fig. 4c. It indi- 
cates the spatial relations to pore size. Figure 4c shows only 
three groups of pore sizes for visual clarity. This representa- 
tion forms a sort of 3D map of the pores as a function of their 
size. 

3.1 Pore size distribution 

Pore volume by size distribution can be represented in mak- 
ing a histogram of the size values in nlr: for individual voxels. 
Since we work on discrete images, each point P is a voxel 
representing an elementary pore volume of value 1 in voxels 
units (or 10-3mm3 according to the resolution of the image). 

a b C 

Fig. 4. Vizualizations of a portion of 3D pore image of a Vertis,ol (Moreau 
et al., 1999). a) Original image 'I' (100*200*20 voxels representing 
4Oomm3). b) Extracted skeleton S. c) Reconstructed image M. 

Each voxel P has been assigned a local pore size r (P)  in M. 
We define any finite number of size classes, and the pore size 
distribution is described by the histogram of cumulated ele- 
mentary volumes within each size class (Fig. Sa). 

3.2 Simulation ofmercury intrusion 

The reconstructed pore image or map M is in fact a cubic net- 
work of voxels, where each voxel is associated with a local 
pore size. Classical methods to simulate a non wetting fluid 
percolation invasion process (Perrier et al., 1995) in pore net- 
works are adapted to our data to reproduce mercury intru- 
sion in the soil sample : the simulation here processes from 
voxel to neighboring voxels. Let us consider that mercury ' 
enters in a specific area of the soil core, for example from 
the bottom area shown in grey in Fig. 6a. Then adjacent vox- 
els are filled with mercury if their local pore size is large 
enough for a given mercury pressure according to Eq. (1). 
Increasing pressure will allow the fluid to enter subsequently 
voxels with smaller aqd smaller local pore sizes, but only if 
these voxels are connected to the initial area of mercury en- 
try through a continuous path of mercury. Extension of the 
grey zone in (Fig 6b,c,d) indicates that increased pressure has 
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Fig. 5. a) Histogram of the percent pore space volume ve r s i  local pore 
sizes from the reconstructed image of Fig. 4c. b) Same histogram estimated 
from the mercury injection simulation shown in Fig. 6. 
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-- --, 
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Fig. 6. Representation of mercury intrusion simulation a, b, c, d) show the 
initial area of injection and successive invasions using greater and greater 
“pressures” to invade space limited by increasingly smaller local pore sizes. 

allowed mercury to invade smaller and smaller pores. This 
type of experiment is used to count the volume of pores in- 
vaded by mercury at each pressure step and to associate this 
volume to a given class of pore size. However, connecting 
pores of small size can lead to filling of larger pores initially 
unconnected with the point of entry of mercury. Hence, as it 
is well-known in soil science, the more small pores constric- 
tions prevent full fluid invasion in the whole sample, the more 
the apparent volume is underestimated in the largest pore size 
classes and overestimated in the smallest pore sizes. The so- 
called “equivalent” pore size distribution is shown in Fig. 5b. 
and can be compared with the “real” pore size distribution 
(Fig 5a). 

~ 

’ , 
I 

4 Conclusion 

Use of the Voronoi diagramto determine the pore space skele- 
ton is an’important inovative step to calculate pore size dis- 
tribution both in 2D and 3D media. Local pore sizes are cal- 
culated as Euclidean distances instead of linear voxel size as 

done until now using morphological image analysis., 
The determination of a spatialized pore size distribution at- 

tributing a local pore size to each voxel of the pore space per- 
mits one to depict the connectivity ofthe pore space through 
a specific map. 
. The latter information can be used to perform fluid inva- 

sion numerical experiments which can be used to simulate 
mercury intrusion ‘as done with classical laboratory devices, 
or to estimate in the same way basic hydraulic properties 
such as water retention curves 

The method is limited by the size of the sample, the reso- 
lution of the image and the computing capacity necessary in 
exploring large images, 

It is hoped that after a given number of investigations of 
pore space in 3D, one can better model pore networks in or- 
der to simulate the hydraulic behavior of soils. 
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