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Motivated by the finding that there seems to be some universality in the size distributions of tropical tuna 
, fish schools over several years and in various conditions, we conjecture that a simple model, inspired by a 

physical model of particle aggregation [H. Takayasu, Phys. Rev. Lett. 63, 2563 (1989)], can be applicable to 
many instances of schooling in fish, or even of animal grouping in general. This model, which makes no 
assumption about the specific details of how fish aggregate to form a school but rather assumes that they are 
able to do so, predicts not only the power-law behavior observed in nature, but also its particular exponent as 
well as deviations from pure power-law towards exponential decay. 
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I I. INTRODUCTION 
J 

Some biological phenomena, especially those involving a 
lot of interacting entities, possess many similarities with 
physical processes and can be modeled with tools originating 
from physics [l]. In particular, aggregation or grouping phe- 
nomena in biology have numerous counterparts in physics, 
which have been and still are under intense investigation [2]. 
Finding bridges between aggregation phenomena in physics 
and biology may lead to a mutual enrichment of both fields 
[3]: besides the better understanding of empirical biological 
observations, common models may help extend the classes 
of natural phenomena sharing the same characteristic prop- 
erties, such as “critical” exponents. 

Groups of animals in general and schools of fish in par- 
ticular have attracted a lot of interest for a long time [4] (see 
also Ref. [5] for a more mathematical review), but have been 
studied mostly from the viewpoint of the behavioral algo- 
rithms which govern their formation and dynamics [6]. Ref- 
erence [7] is an exception. In the present paper, we propose a 
simple “statistical” (as opposed to behavioral) model of 
school formation, based on a physical model of particle ag- 
gregation introduced by Takayasu et al. [8]. Our approach 
was motivated by a striking feature of the size distributions 
N ( s )  of tropical tuna fish schools (in which three species- 
yellowfin tuna Thunnus albacares, skipjack tuna Katsuwonus 
pelamis, and bigeye tuna Thunnus obesus-are mixed): in 
effect, many such distributions follow a power law N ( s )  
=S-P up to a cutoff size s,. The data have been obtained 
from commercial fisheries [9]: s is the quantity of fish (in 
tons) caught in a circular net whose perimeter is about 2 km. 
If s, seems to depend on specific factors, the exponent ß 
looks universal: from our field data, ß= in most cases (ß 
ranges from 1.39 to 1.67 with a peak at 1.5). A log-log plot 
of N ( s )  over 7 years is represented in Fig. 1. The data have 
been binned so as to avoid large fluctuations in the graph: the 
original data exhibit a power-law behavior with fluctuations 
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over about or more than two decades. Other data (not repre- 
sented here) originating from measurements performed in 
different conditions (such as in the vicinity of a fish- 
aggregating object-s.g., a wreck) confirm this observation. 
’ In order to account for this apparent stability of ß, a 
model should be simple and robust enough that it could ap- 
ply to a wide spectrum of conditions and individual aggre- 
gation behaviors: this is precisely the case of Takayasu 
et al.’s model [8]. Note that this model has been applied to 
river network formation, to vortex aggregation in turbulence 
[lo], or to cloud formation [ll]. Alternative but related mod- 
els of coagulation-fragmentation, based on a Smoluchowski 
rate equation including a breakup kernel, are also available 
with comparable results [12]. We chose Takayasu et al.’s 
model because the properties we are interested in can be 
easily and elegantly extracted. As we shall see, simple modi- 
fications of the model may destroy the critical nature of the 
process, but the exponent remains, e.g., N ( s )  ccs-3/2e-s/sc 
(consistent with a number of numerical experiments [12], or 
more generally N ( s )  = S - ~ / ~ ~ ( S / S , ) ,  where the particular 
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form of the scaling function f depends on the details of the 
aggregation and breakup processes. From the field data, we 
also find in one case (out of 14) an exponentially decreasing 
size distribution (year 1981: see Fig. 2), therefore character- 
ized by no well-defined exponent: the present înode1 can also 
explain these deviations from power-law behavior through 
several possible modifications which tend to decrease s, . 
The cutoff size s, within this model could simply be a side 
effect of the general aggregation process combined with the 
finiteness of the number of fish. In reality, however, the cut- 
off size may stem from additional factors, such as some het- 
erogeneity in the speed capacities of the fish composing the 
school (the slower fish cannot follow the leaders), or the 
capacity of a school to maintain its integrity over a certain 

i amount of time, or can be computed from optimality consid- 
erations (tradeoff between school size and prey density [13]). 

I Implicit inclusion of such additional factors into the model is 
easy: it suffices to assume that, e.g., a school of size s has a 
probability Psplit(s) cc 1 - to split, where the charac- 
teristic size u is an explicit parameter of the model integrat- 
ing all of the above mentioned factors. The observed cutoff 
size in the distribution will then result from the competition 
between aggregation and breakup. How schools split (even 
from a simple statistical viewpoint) is yet another challeng- 
ing question that can be tested only numerically, for lack of 
clear experimental data. 
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II. MODEL AND RESULTS 

The only’ biological assumption underlying the model is 
the tendency of schools of fish to aggregate when they meet. 
Such a tendency can be viewed as an extension of the con- 
cept “biosocial attraction,” i.e., a mutual attraction of indi- 
viduals (usually associated with polarization as a condition 
for school formation) (see the review by Shaw [14]). This 
assumption is clearly minimal. 

We further assume for modeling purposes that there are N 
sites (coarse-grained zones of space) between which n fish 
move. A single fish is considered as a 1-school; m fish swim- 
ming together form an m-school. One (tuna) fish may not be 
the right atomic unit, since field observations suggest that no 
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FIG. 2. Same as Fig. 1, but with a semilogarithmic scale and only for 
1981. 

school exists under a certain “minimal” size: a 1-school 
should then be considered as an atomic object, which may 
contain a certain number of or correspond to a certain weight 
of fish. When an m-school and an h-school happen to move 
to the same site, they aggregate to form an (m+h)-school. 
At each discrete time step, all schools move towards a ran- 
domly selected site. They may move to any site with equal 
probability. -This corresponds to the mean-field theory of 
Takayasu et aL’s model [SI, which is justified here because 
of the high potential speed of the fish: they can swim from 1 
up to 100 km within one single day. We may therefore as- 
sume that there is no spatial effect so that the mean-field 
theory is most appropriate. It can be shown analytically that 
in the presence of injection, this simple aggregation process, 
in which “particlesyy move randomly and aggregate to form a 
larger mass particle when they encounter, leads to a station- 
ary power-law distribution with the desired index [8]. Intro- 
ducing the characteristic function of the size distribution 
2, (p, t )  = (exp[ips]) where ( . ) denotes the average over 
all possible realizations of the process, we have 
Zl(p,t+ l)=@(p)ez-l(Pi‘)-l where @(p) is the character- 
istic function of the injection random variable. To see this, let 
us write the distribution D(s, t+ 1) of s-schools at time t ,  as 
a function of D(s , t ) :  

D(s , t+  1)  

where s;,,j is the size of a particular realization of the injec- 
tion. This formula is equivalent to 

hence the result. @(p) can be expanded as 
@( p) = 1 + i(I) p - ( (12)/2)p2 + . . . Taking the limit 
N + m ,  one obtains the steady-state characteristic function 
Zl(p)=l- @(I)l“)p\l”i-l”+. -, so that the size distri- 
bution satisfies D ( s ) ~ s - ~ / ’  [lS] for large enough s 
(@(I)). It can be shown that this steady-state distribution is 
also an attractor of the dynamical process described above, 
and that any perturbation is absorbed [10,16]. Therefore, 
starting from any initial condition, one should converge to- 
wards the power-law distribution. Computer simulations 
show that this prediction is robust and holds, up to a cutoff 
size, when the model is modified so as to take various factors 
into account: schools may split or disintegrate in many ways, 
fish may die, etc. 

Let us take the following example, where n is maintained 
constant over time: we assume that a fraction p of each 
school is separated from the school, and that the correspond- 
ing p n  fish qre reinjected to the N sites. Consequently, the 
expectation of the injection is p n / N .  To see how the previ- 
ous model without loss is affected by the breakup, process, let 
us write, once again D(s , t+  1): in the present case, we have 
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since it takes a total weight of s / ( l  - p )  hopping onto the 
same site to get a weight of s at that site after the removal of 
a fraction p (we have assumed for simplicity that the re- 
moval of particles occur after the injection, but another 
choice leads to essentially similar results). We then obtain 
Z,(p,t+ l ) = @ ( ( l  -p)p)eZ1((l-P)P’f)-l. Note that this last 
equation does not ensure the conservation of the total weight 
in the process for arbitrary a, but we chose here a specijic 
injection function, represented by the characteristic function 
a, which precisely conserves the total mass. It follows from 
this equation that Zl(p)=l-i(s‘)p+. e. Therefore the 
size distribution is short ranged with a finite mean 
( s ’ ) = [ ( l - p ) n ] / N ,  (s’) is a mean taken over occupied and 
empty sites, i.e., it includes the statistics of O-schools. The 
mean (s) we are ,interested in does not include empty sites, 
and is related to (s’) through (s)=(s’)(N/N+), where Nf 
is the number of occupied sites. To evaluate N+ in the sta- 
tionary state, let us write the evolution equation of N’, ne- 
glecting encounters of order higher than 2 

[ N f ( t ) + p n ] [ N f ( t ) + p n -  11 
2N2 N+( t  + 1) -N+  ( t )  + p a -  > 

provided N is large enough. We therefore obtain (s) 
cc [ (1 - p ) / p  ‘I”] (n ‘/”/N). We see that (s) increases with 
decreasingp. In the present case, the total mass of fish being 
conserved, there must be a finite mean, but what is more 
important is that the size distribution retains some of its 
power-law characteristics: in effect, the distribution is expo- 
nentially decreasing only for large sizes, but follows 
D ( S ) ~ ~ - ~ % - ~ ’ ( ~ ) ,  exhibiting a power-law behavior for 
medium sizes 0 6 s 4 ( s ) .  Of course, when (s) is small, the 
power law is not observed, but only an exponential decay. To 
illustrate this, we have performed simulations with different 
values of p .  For a relatively small value of p (e.g., 
p = O . l ) ,  we observe a clear power law up to a cutoff size 
(Fig. 3), while for larger p (e.g., p=O.5) the distribution is 
exponentially decreasing (Fig. 4). In a related model (of 
cloud formation), the ‘authors of Ref. [12] observed only the 
exponential decay because their simulations, though differ- 
ent, were similar to those we performed with a high value of 
P .  

In the previous calculations, we have assumed that all 
“splitting” fish were equally redistributed between all sites, 
while this may not be the case: a group of fish separating 
from their school can very well stay together and be rein- 
jected into the system as a whole; the size distribution of 
splitting groups can also be a parameter on its own. More- 
over, as mentioned in the Introduction, the probability for a 
school to split may be related to its size. As an illustration, 
Fig. 5 represents the size distribution with p=O.Ol and a 
uniform splitting for any school with a size greater than a 
maximum allowed size smax=50 [i.e., P,,li,(s)=O if 6 5 0  
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FIG. 3. Log-log plot of N ( s )  vs s. Simulation with N=300 O00 sites, 
n=80 000 individuals, p=O.l. Simulation run= lo6 time steps. This curve 
is obtained from 1 run; all runs yield similar curves. 

and Psplit(s)=l if s>50]. But all simulations show that 
these additional parameters do not qualitatively modify the 
results: a power-law behavior with index ß= $ is observed, 
with a (somewhat more complicated) crossover to an expo- 
nential decay around a given s u e  which depends on the val- 
ues>of the parameters. In particular, the cutoff size results 
from a competition between aggregation and disintegration 
and therefore crucially depends on the associated time scales. 
For instance, a tropical tuna fish school such as those studied 
in this paper is capable of maintaining its integrity over sev- 
eral days to several weeks (low disintegration rate, certainly 
related to migratory capacity), while other fish, such as the 
spottail shiner (Notropis hudsonius) [17], are only “occa- 
sional” schoolers [18,5], whose schools can hardly be main- 
tained beyond a minute. In the first case, we observe a clear 
power-law distribution up to the cutoff size, while in the 
second case the distribution is clearly exponential. A purely 
exponentially decreasing distribution may also occasionally 
appear in the first case, e.g., in a period of intense fishing: 
this model then predicts an exponentially decreasing distri- 
bution, such as the one observed in 1981. 
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FIG. 4. Same as Fig. 3, but with a semilogarithmic scale and p=O.5. 
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,: FIG. 51 Same as Fig. 3, with p=O.Ol and with uniform splitting above 
s=50, i.e., any school with s>50 divides into two schools of sizes s' and 
s-s' where s' is uniformly distributed in the interval [l,s-11. 

III. CONCLUSION 

In conclusion we have presented evidence that a simple 
model of particle aggregation [8] can account for the ob- 
served power-law exponent in the size distribution of tropical 
tuna fish schools. The power law, up to a cutoff size, is 
robust enough to resist many modifications of the model nec- 
essary to take various biological or environmental factors 
into account. Purely exponential distributions appear as the 
disintegration rate increases in whatever form. Therefore we 
have shown that if the cutoff size certainly depends on fac- 
tors external to the model, the exponent ß appears to be 
universal. To speak of (biological) universality, however, one 
should test for the presence of this exponent in other species 
of fish, or even in other types of animal groups, such as herds 
of mammals or flocks of birds. Our prediction is that in most 
grouping phenomena in biology, the size distribution must 
either be exponential (or, in the vocabulary of Ref. [5], geo- 
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FIG. 6. Log-log plot of the size distribution of herds of African buffalos 
(s must be multiplied by 100, i.e., s ranges from 10 to 1200). 

metric) or follow a power law with an exponent close to 
-2 up to a cutoff size if the mean-field theory can be con- 
sidered biologically valid. In fact, other exponents can be 
obtained with more complicated combinations of aggrega- 
tion and breakup kernels, even in the mean-field case [12]. 
Note that the possibility of power laws was already present 
in Anderson's model [7], but has not been exploited. A lot of 
available data seem to fall into the first category, i.e., geo- 
metric distributions, although we are certainly not aware of 
all possible data. Yet, our finding about tuna fish led us to 
reconsider some existing data, e.g., the size distribution of 
herds of African buffalos (Syncerus cufser) [19]: we found 
that this distribution is much better fitted by a power law 
than by a geometric decay, as was suggested in [5] (see Fig. 
6). This clearly supports our conjecture. But the power index 
is closer to - 1.2 than to - 1.5, indicating that spatial effects 
or other relevant factors (such as particular aggregation and 
breakup functions) must come into play. 
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