

15.

Biologically Active Sesterterpenes from a New Caledonian Marine Sponge *Hyrtios sp.*†

Marie-Lise Bourguet-Kondracki,*" Cécile Debitus⁶ and Michèle Guyot"

^aLaboratoire de Chimie, associé au CNRS, Muséum National d'Histoire Naturelle, 62 rue Buffon, 75231-Paris Cedex 05, France ^bLaboratoire de Pharmacologie, ORSTOM, B.P. A5, Nouméa, New Caledonia

Biologically active sesterterpenes of the manoalide family, thorectolide monoacetate (1) co¹occurring with thorectolide (2), were isolated from a marine sponge *Hyrtios sp.* collected in New Caledonia.

Chemical investigations of marine sponges from the genus *Hyrtios* has yielded a predominance of scalarane-type sesterterpenes.¹ We have previously isolated heteronemin and the new 12-epi-heteronemin as representatives of this class of sesterterpenes, from the marine sponge *Hyrtios erecta* collected in New Caledonia.² However, both scalarane-type sesterterpenes and those of the manoalide family have been clearly shown to co-occur in a sample of *Hyrtios erecta*, collected at Amani Island, Japan.³ In our continuing chemical investigation of sponges from New Caledonia, we studied *Hyrtios sp.* which contained only sesterterpenes of the manoalide family as major constituents.

In this paper we report on the isolation and structure elucidation of thorectolide monoacetate 1 and thorectolide 2. By HMQC and HMBC experiments we corrected the ¹³C NMR assignment of C-5 and we assigned the resonances of carbons C-8, C-12 and C-16 of thorectolide monoacetate, previously isolated from the sponge *Thorectandra excavatus.*⁴ We also investigated the stereochemistry at C-4 and C-24. Both *Hyrtios* sesterterpenes provide a further example of secondary metabolite variation within the *Hyrtios* genus.

Fractionation of the CH₂Cl₂ extract of *Hyrtios sp.*, which exhibited in a preliminary pharmacological screening significant antimicrobial activity against *S. aureus* and cytotoxic activity against KB cells, was monitored by an antimicrobial bioassay using *S. aureus*. The CHCl₃-MeOH 95:5 fraction, which retained maximum activity, was successively subjected to Sephadex LH-20 (CHCl₃-MeOH, 2:8 v/v) and silica gel (hexane-EtOAc, 7:3 v/v) column chromatography to afford thorectolide monoacetate 1 and thorectolide **2.** The known heteronemin and 12-epiheteronemin was not detected in the CH₂Cl₂ extract of this sponge.

Compound 1 was obtained as an optically active pale yellow glass, $[\alpha]_D = +33.8^{\circ}$ (c 0.49, CHCl₃). The formula $C_{27}H_{38}O_6$ determined by HREI-MS (*m/z*, 458.26684; required, *m/z* 458.26683) and the 2D NMR experiments COSY, HMQC and HMBC allowed the presence of a γ -hydroxybutenolide moiety, as in manoalide 3⁵ and luffariolides A-B⁶ and F-G,⁷ to be determined. This information was confirmed by a UV maximum at 212 nm (ϵ 4400) and by IR absorptions at 3398 and 1748 cm⁻¹. Furthermore, the EI-MS fragments at 311, 244, 137 and 69, and the ¹H and ¹³C NMR data, suggested an isoprenoid chain of the farnesyl type. Hence, compound 1 was identical with thorectolide monoacetate.⁴ However on the basis of COSY and HMQC experiments, the earlier ¹³C NMR assignment of H-5 at δ 32.4 should be corrected to δ 28.2. HMBC experiments led us to assign the resonances of carbons C-8, C-12 and C-16 at δ 25.7, 39.5 and 39.6, respectively.

Diagnostic ¹³C shifts at δ 15.8 for C-21, C-22 and C-23 assigned the stereochemistry of C-10–11 and C-14–15 olefins

166-71

J. Chem. Research (S),

010026216

1996, 192-193†

as E.⁸ The axial nature of the H-4 protin was deduced from its coupling constants with both H-5 protons: J = 4 and 9 Hz. Since these H-5 protons are indistinguishable NOE experiments furnished as the only exploitable result a 10% enhancement of the OH signal at position 24 upon irradiation of the H-4 signal at δ 4.75, thus establishing an axial stereochemistry for the hydroxy group at C-24.

The absolute configuration at C-4 could be assigned unambiguously by measurement of the Cotton effect of the diol 4, obtained by reduction of thorectolide monoacetate 1. Reduction of 1 with NaBH4° afforded a mixture of compounds 4 and 5, from which the predominant diol 4 was separated by chromatography. The diol 4 displayed characteristic ¹H NMR signals at δ 4.11 (2H-24, AB system, J = 14 Hz), 5.39 (H-6, t, J = 7 Hz), 5.98 (H-2, br s), and, like the (4R)-manoalide diol,¹⁰ showed a negative Cotton effect at 212 nm. Since the 4R absolute configuration was assigned to comparison both manoalide by with synthetic stereoisomers,10 the absolute configuration at C-4 of thorectolide monoacetate 1 is suggested to be identical with that of manoalide.

The NMR data of 1 showed that, in contrast to the manoalide isolated from *Hyrtios erecta* collected off Amani Island,³ only one isomer at position C-25 was present. The configuration at C-25 of thorectolide monoacetate isolated from the marine sponge *Thorectandra excavatus* was obviously the same as in 1 on account of its optical activity $[\alpha]_D = +34^\circ$.

The new and more polar sesterterpene thorectolide 2 was obtained as an unstable colourless glass, $[\alpha]_D = +37.6^{\circ}$ (c 0.13, CHCl₃) and had the molecular formula C₂₅H₃₆O₅. The 'H and ¹³C NMR spectra of 3 were almost identical with those

^{*}To receive any correspondence.

[†]This is a Short Paper as defined in the Instructions for Authors, Section 5.0 [see J. Chem. Research (S), 1996, Issue 1]; there is therefore no corresponding material in J. Chem. Research (M).

of thorectolide monoacetate 1. We noticed a missing signal assigned to the acetate methyl at δ 2.14 (20.4) and the shielding of the signal of H-25 at δ 6.15. Hence, thorectolide 2 appeared to be the desacetyl derivative of 1. This conclusion was entirely substantiated by the HMQC and HMBC experiments (see Table 1). Hydrolysis of thorectolide monoacetate 1 yielded thorectolide 2, identical (TLC, 'H NMR and mass spectra) with the natural product 2.

Recently, three new manoalide-related sesterterpenes co-occurring with manoalide have been isolated from the marine sponge Fasciospongia sp.11 These compounds called fasciospongides A, B and C also possess an original variation of the alkyl chain attached to the y-hydroxybutenolide moiety. In the sample of Hyrtios sp. studied here, manoalide was not detected.

Thorectolide monoacetate 1 exhibited the same cytotoxic activity against KB cells as did manoalide (IC₅₀ = 0.3 μ g ml⁻¹), while thorectolide 2 was much less active (IC₅₀ = 5.3 $\mu g \text{ ml}^{-1}$). Only thorectolide 2 exhibited inhibitory activity of both HIV-1 nucleocapside and integrase at 10 and 20 µg ml⁻¹, respectively. In a preliminary assay using a colorimetric method,¹² thorectolide monoacetate 1 inhibited cobra venom phospholipase A_2 up to a concentration of 2 μ M but was unable to inactivate bee venom phospholipase A2. Halfinhibition of cobra venom phospholipase A2 was obtained for a manoalide¹³ concentration of *ca.* 1.7 μ M. Further studies of the potent antiinflammatory activity of these compounds are in progress.

Experimental

NMR spectra were measured on a Bruker WM300 instrument and IR spectra on a Nicolet 400D spectrometer. UV spectra were determined on a Uvikon 930 Kontron spectrometer, optical rotations on a Perkin Elmer 141 polarimeter and circular dichroism spectra on a Jobin-Yvon Mark V dichrograph. Low-resolution mass spectra were recorded on a Thomson-Houston THM 208 mass spectrometer. High-resolution mass spectra were supplied by a Kratos MS50 spectrophotometer.

Collection, Extraction and Purification. - Hyrtios sp., lyophilized sponges (500 g), collected by scuba diving in New Caledonia (Walpole), were immersed in CH_2Cl_2 at room temperature for 2 days. Solvent was removed in vacuo and the residue partitioned between CH_2Cl_2 and H_2O . Fractionation of the CH_2Cl_2 extract (7.7 g) was performed by chromatography on a silica gel column, eluted with CHCl₃-MeOH using a step gradient of increasing MeOH. Fractions were screened for antimicrobial activity using S. aureus. The CHCl₃-MeOH 95:5 (v/v) fraction, which retained maximum activity, was successively subjected to Sephadex LH-20 (CHCl₃-MeOH, 2:8 v/v), and silica gel (hexane-EtOAc, 7:3 v/v)

Table 1	NMR data for thorectolide 2 //	CDCL &/nom- 14 330 MHz- 18C 75 MHz	•
Labic I			

Atom no.	δ_{c}	δ _H •	HMBC correlations
1	173.8		
2	117.6	6.07 (s)	C-1, C-3
3	170.6		
4	62.6	4.84 (dd, J = 4, 9)	
5	26.5	2.11	
6	120.6	5.63 (br s)	C-24
7	137.1		
8	32.3	2.15	
9	25.8	2.12	C-8
10*	123.2	5.07 (m)	C-12, C-23
11	134.8		
12	39.4	1.95 (m)	C-10, C-11
13*	27.7	1.98	
14*	123.9	5.07 (m)	C-13, C-22
15	134.8		
16	39.4	1.95 (m)	C-14, C-15
17*	27.5	1.98	
18	124.2	5.07 (m)	C-16, C-17, C-20
19	131.0		
20	25.4	1.65	C-18, C-19
21	15.8	1.59	
22	15.8	1.59	
23	15.8	1.59	
24	91.3	5.27 (s)	C-4, C-6, C-7
25	92.6	6.15 (s)	

*May be interchanged with closest values. *J values in Hz.

0

. column chromatography to afford thorectolide monoacetate 1

column chromatography to afford thorectolide monoacetate **1** (0.004% dry weight) and thorectolide 2 (0.0006% dry weight). *Thorectolide Monoacetate* **1**.—Pale yellow oil, $[\alpha]^{22}{}_{\rm D} = +33.8^{\circ}$ (c 0.49, CHCl₃) (Found: [M]⁺, 458.26684, C₂₇H₃₈O₆ requires *M*, 458.266834, $\delta_{\rm H}$ (330.13 MHz, CDCl₃) 6.08 (d, J = 1 Hz, H-2), 4.76 (ddd, J = 4, 9, 1 Hz, H-4), 2.29 (H-5), 5.67 (br s, H-6), 2.10 (H-8), 2.12 (H-9), 5.06 (m, H-10^{*}), 1.95 (m, H-12^{*}), 2.05 (H-13^{*}), 5.06 (m, H-14^{*}), 1.95 (m, H-16^{*}), 2.05 (H-17^{*}), 5.06 (m, H-18), 1.64 (H-20), 1.57 (3 CH₃-21-22-23), 5.27 (s, H-24), 7.05 (s, H-25), 2.14 (H-27); $\delta_{\rm c}$ (75.45 MHz, CDCl₃) 169.3 (C-1), 118.5 (C-2), 165.6 (C-3), 61.5 (C-4), 28.2 (C-5), 120.2 (C-6), 137.3 (C-7), 31.7 (C-8), 25.7 (C-9), 123.1 (C-10^{*}), 134.7 (C-11), 39.7 (C-12^{*}), 26.5 (C-13^{*}), 123.8 (C-14^{*}), 135.6 (C-15), 39.6 (C-16^{*}), 26.4 (C-17^{*}), 124.1 (C-18), 131.0 (C-19), 25.4 (C-20), 15.9 (C-21), 15.8 (C-22, C-23), 91.3 (C-24), 92.6 (C-25), 168.9 (C-26), 20.4 (C-27) (Assignments marked * may be interchanged with closest values). *Thoreetolide* 2.—Colourless oil, $[\alpha]^{22}{}_{\rm D} = +37.6^{\circ}$ (c 0.13, CHCl₃).

Thorectolide 2.—Colourless oil, $[\alpha]^{22}{}_{D} = +37.6^{\circ}$ (c 0.13, CHCl₃), $C_{25}H_{36}O_5$; m/z (%) 416 (10, M⁺), 398 (48), 380 (10), 355 (24), 329 (24), 283 (24), 269 (31), 247 (33), 229 (40), 215 (97), 203 (69), 137 (36), 81 (60), 69 (100); v_{max}/cm^{-1} (KBr) 3434, 1745, 1664, 1117, 604; for δ_H and δ_C see Table 1. NAPH, Badwater of 1 (5 me) in F4OU (2 me)

NaBH₄ Reduction of 1.—A solution of 1 (5 mg) in EtOH (3 ml) was reduced with NaBH₄ (2 mg) by stirring for 1 h at 0 °C. Excess reagent was destroyed by dropwise addition of 2% HCl until hydrogen evolution had ceased. The product was partitioned between brine and ether. The washed and dried extract was evaporated and the residue, a mixture of compounds 4 and 5, purified by silica gel column chromatography (CHCl3-acetone 9:1 putnied by since get column chromatography (CFC1₃-acteone 9:1 v/v) to afford 1.4 mg of diol 4. Oil, $\delta_{\rm H}$ (CDCl₃) (1.59 (3 CH₃, s), 1.63 (CH₃, s), 4.11 (2H-24, AB syst., J = 14 Hz), 5.39 (H-6, t, J = 7 Hz), 5.98 (H₂, br s); $m/z \delta_{\rm H}$ (CDCl₃) 1.59 (3 CH₃, s), 1.63 (CH₃, s), 4.11 (2H-24, AB syst., J = 14 Hz), 5.39 (H-6, t, J = 7 Hz)), 5.98 (H₂, br s); m/z (%) 402 (1, M⁺), 358 (12, M-44), 137 (100). Hydrolysis of Thorectolide Monoacetate 1.—Excess Na₂CO₃ was

added in small portions to a stirred solution of 1 (3 mg) in MeOH (2 ml) at room temperature. The mixture was stirred for 30 min, the reaction solution was extracted with CHCl₃ (5 ml), washed and dried over anhydrous Na₂SO₄, filtered and evaporated in vacuo. The product was purified by preparative TLC on silica gel (1 mm, 20×20 cm) to provide compound 2 (1 mg, $R_{\rm F} = 0.58$ in hexane-EtOAc 7:3 v/v), $\delta_{\rm H}$ see Table 1.

We are grateful to Dr. J. Bolard for allowing us to use the Jobin-Yvon Mark V dichrograph. We thank Rhône-Poulenc-Rorer for biological assays on HIV-1, Mme C. Tempête (I.C.S.N., CNRS, Gif-sur-Yvette) for the bioassays on KB cells and Mme A. Longeon for determination of phospholipase A₂ activity. We also thank the E.E.C. for financial support (contract MAS-2-CT 91-0004).

Received, 25th August 1995; Accepted, 10th November 1995 Paper F/5/07476B

References

- 1 P. Crews and P. Bescansa, J. Nat. Prod., 1986, 49, 1041.
- 2 M. L. Bourguet-Kondracki, M. T. Martin, C. Debitus and M. Guyot, Tetrahedron Lett., 1994, 35, 109.
- M. Kobayashi, T. Okamoto, K. Hayashi, N. Yokoyama, T. Sasaki and I. Kitagawa, *Chem. Pharm. Bull.*, 1994, 42, 265.
 4 R. C. Cambie, P. A. Craw, P. R. Bergquist and P. Karuso, *J. Nat.*
- Prod., 1988, 51, 331.
- 5 E. Dilip de Silva and P. J. Scheuer, Tetrahedron Lett., 1980, 21, 1611
- 6 M. Tsuda, H. Shigemori, M. Ishibashi, T. Sasaki and J. Kobayashi, J. Org. Chem., 1992, 57, 3503.
- 7 J. Kobayashi, C. M. Zeng and M. Ishibashi, J. Nat. Prod., 1993, 56, 436.
- 8 P. A. Courperus, A. D. H. Clague and J. P. C. M. Van Dongen,
- Org. Magn. Reson., 1976, 8, 426.
 9 R. S. Jacobs and J. D. Faulkner, Eur. Pat. Appl., EP 133,376 (Cl, C07D307/58), 20 February 1985; US Appl. 519,852, 3 August 1983 (15 pp). 10 V. E. Amoo, S. De Bernardo and M. Weigele, *Tetrahedron Lett.*,
- 1988, 29, 2401.
- 11 A. Montagnac, M. Païs and C. Debitus, J. Nat. Prod., 1994, 57, 186.
- 12 A. Logo de Araujo and F. Radvanyi, Toxicon, 1987, 25, 1181.
- 13 D. Lombardo and E. A. Dennis, J. Biol. Chem., 1985, 260, 7234.