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ABSTRACT

Anchovy (Engraulis ringens) and sardine (Sardinops
sagax) landings in the north of Chile and in Peru between 1930
and 1993 are analyzed. Abundance variations of both species
are expressed as catch per unit effort (CPUE), and compared
with VPA (Virtual Population Analysis) estimates. Environmental
fluctuations are analyzed through historical series of the
Southern Oscillation Index (SOI), sea surface temperatures
(SST), and the upwelling and turbulence indices. A global
production model is fitted to data from the anchovy fishery of
the north of Chile and in Peru from 1957 to 1977. The model
explains variations of CPUE as a function of fishing effort and of
SST, included as a linear subfunction of carrying capacity (B).
A similar model for the sardine fishery is fitted to data from the
north of Chile from 1975 to 1992. The latter includes CPUE,
fishing effort, and SST as a quadratic subfunction of B., as
explanatory variables. It is concluded that both resources were
intensively exploited and affected by environmental changes
that impacted surplus production. Anchovy develops better in a
relatively cold environment; meanwhile sardine shows a clear
preference for warm periods, but not as extreme as the El Nino
1982-83.



RESUME

Les évolutions des captures d’anchois (Engraulis ringens) et de sardine
(Sardinops sagax) au nord du Chili et au Pérou sont analysées entre 1950 et
1993. Les variations d’abondance des deux especes sont estimées en utilisant
les captures par unit¢ d’effort (CPUE) et comparées avec les estimations des
VPA (Analyses Virtuelles des Populations). Les fluctuations environnementales
sont analysées 4 partit des séries historiques de l'indice d'oscillation Sud, de
la température de surface (SST), et des indices d’upwelling et de turbulence.
Un modéle global est ajusté pour la pécherie d'anchois au nord du Chili et au
Pérou entre 1957 et 1977. Ce modele explique les variations de CPUE en
fonction de I'effort de péche et de la SST introduite comme une fonction de
la capacité biotique (B.,). Un modéle similaire est appliqué pour la sardine
pour le nord du Chili entre 1975 et 1992. Ce dernier inclut la CPUE, I'effort de
péche et la SST en tant que fonction quadratique de B, 1l est conclu que ces
deux ressources furent intensivement exploitées et affectées par les
changements environnementaux qui ont des effets négatifs sur la production.
Lanchois se développe micux dans un environnement relativement froid,
tandis que la sardine montre une nette préférence pour des périodes
chaudes, cependant qui ne soient pas aussi extrémes que le El Nifo 1982-83,

INTRODUCTION

In the Pacific Ocean, south of the equator and in close relationship with the center of high atmospheric pressures
located between 20°-35°S and 90°-110°W, lies the south-east Pacific anticyclonic gyre. The eastern sector of this gyre is the
Chile-Peru Current System, a northern extension of the West Wind Drift reaching the south American coast at around 40°S

(Bernal and Ahumada, 1985).

Thus, the oceanographic regime of the region is determined by the combined action of: 1) the Humboldt current, carrying
cold waters and low salinities from the subantartic region towards the north; 2) coastal upwellings generated by the
predominantly south-southwest winds along the coast of Chile (with maxima in the spring-summer season), and south
southeast winds in Peru (with maxima in winter); 3) the intrusion of subtropical waters of high temperature and salinity
from the north towards the coast; and 4) below the surface, a southward flux of equatorial subsurface water of high salinity

and low oxygen content, which plays an important role in the distribution of marine pelagic resources (Robles et al., 1976,

Guillén, 1983; Bernal et al., 1983; Parrish et al., 1983; Bernal, 1990).
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The region is also affected by the El Nifo events, which produces an anomalous warming of surface waters. These events
oceur at irregular intervals in conjunction with the Southern Oscillation, a large fluctuation of atmospheric pressure
between the tropical southeast Pacific and the West Pacific (Wyrtki, 1975; Guillén, 1983; Ramage, 1986; Philander, 1990).
The region is also affected by environmental changes associated with cold periods and longer warm periods (Cafion, 1986
Yanzz and Barbieri, 1988; Sharp and Mclain, 1993).

This dynamic and variable system is however one of the most productive regions of the world ocean, though with a low
diversity of pelagic species. These species however are very abundant and thus support important fisheries: which is
particularily the case of anchovy (Engraulis ringens) and sardine (Sardinops sagax), exploited in Peru (Fig. 1a) and the
north of Chile (Fig. 1b).
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Fig, 1:-Catch of majof ‘pelagic species in: a) Peru (IMARPE, 1950-94), and b) northern Chile (SAG, 1950-77;
SERNAP,1978:94). i :

Variability is an inherent feature of these resources. This variability is generally associated with both the intensity of
exploitation and changes in environmental conditions (Csirke and Sharp, 1983; Caion, 1986; Ydfiez, 1989). This variability,
well analyzed may become a source of information for a better understanding of the dynamics of the above mentioned
species (Bernal, 1990).

Quinn et al. (1978) estimated that certain features of the Southem Oscillation can be used as precursors of El Nifio events.
Michelchen (1985) suggested that the interannual variations of coastal upwellings in West Africa are related to the
variability of the Southern Oscillation. Binet (1988) discussed the possible role of an intensification of the westerly winds in
the distribution changes of pelagic fishes of West Africa. Bakun (1992) suggested that an intensification of the winds
causing upwelling may be due to greenhouse effects.

Parrish and MacCall (1978) analyzed the horse mackerel fishery off California, and incorporated oceanographic variables
into the stock-recruitment models, thus explaining 75% of total variance. Mendelssohn and Cury (1987) analyzed the catch
per unit effort (CPUE) of small pelagic fishes Cote-d'Ivoire (1966-82), as a function of the sea surface temperature (SST)
collected by merchant ships, which explained 43% of the variance. Cury and Roy (1989) indicated that there exists an
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‘optimum environmental window’ for the success of the pelagic resources recruitment in upwelling areas. Patterson ef al.
(1993) analyzed the collapse of the horse mackerel in the Eastern Central Pacific. They found that catchability varied with
environmental conditions and stock size. Fréon (1988), analyzing the small pelagic fisheries of West Africa, proposed the
incorporation of environmental variables in global production models. Later, an interactive software was developed for this
purpose (Fréon et al., 1993).

Mendelssohn (1989) fitted an additive non-linear mode! using the parental biomass and Trujillo’s transport in Peru, thus
explaining 75% of the variance of recruitment of anchovy in Peru. Muck (1989) analyzed biomass changes, individual
growth, dominance of species, feeding strategies and oceanographic parameters off Peru. He concluded that overfishing
and high temperatures affected the anchovy which led to increases of sardine, jack mackerel and horse mackerel, among
other species. Muck et al. (1989) showed that the anchovy’s area of distribution is biomass and SST related. Yanez (1991)
showed that the decrease of anchovy CPUE from 1957 to 77 could be explained by fishing effort and SST; whereas the
change in the CPUE of sardine from 1973 to 88 was explained by fishing effort and Bakun’s upwelling index (1973). Yifiez
et al. (1994) showed that the distribution of anchovy and sardine in time and space in the north of Chile varied along with
intra and interannual changes of SST as measured by NOAA satellites.

This brief review establishes — if needed be — the need to consider environmental variables when assessing the pelagic
fish stocks of upwelling systems. Thus, we move on to describe these environmental variables.

T. ENVIRONMENTAL FLUCTUATIONS

Time series of environmental changes are analyzed, these include sea surface temperatures (SST) from 1930 to 1990
off Peru (4°-18°S), from the COADS dataset (Mendelssohn and Roy, this vol.); SST of tidal gauges of Arica (18°28S) (1951-
93), and Antofagasta (23°40°S) (1950-9%); magnitude and direction of the wind from the meteorological station of
Antofagasta (1950-93), used to obtain an upwelling index (Bakun, 1973) and a turbulence index (Elsberry and Garwood,
1978); and atmospheric pressures of Darwin (12°26'S-130°52'E) and Tahiti (17°33'S-149°20'W) (1950-93), used to estimate
the Southern Oscillation index (SOI) (Ropelewski and Jones, 1987). Monthly anomalies were computed for each of the
series and smoothed by 13 month centered moving average procedures. The monthly anomalies were also integrated to
generate a series of accumulated values, taking into account their monthly signs.

The relationship of the Chile-Peru environmental system with changes of the ocean-atmosphere system is of a global
nature. In fact, the SOI shows apericdical decreasing trends associated to the occurrence of the El Nifo events (Fig. 2a);
since 1976 negative anomalies prevailed, due to a long term weakening of the South-East Pacific anticyclone (Fig. 2b). It
should be noticed that after the 1987 El Nifio event, the SOI recovered its positive values, then diminished again when the
El Nifio of 1992-93 developed.

Associated with such SOI variations, the monthly mean SST off Peru showed positive anomalies during the El Nifo events
(Fig. 32); after the 1950-75 period, a clear dominance of positive anomalies settled in at least until 1990 (Fig. 3b). Along
the coast of the north of Chile, monthly mean SST also shows the effects of El Nio events: there is a predominance of
negative anomalies from 1950 to 1975, followed by a warm period, and a cooling trend in the last period under study
(Fig. 4, 3).
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Fig, 2: Moﬁthly mean Southern Oscillation Index (SOI) from 1950 to 1993: a) anomalies, and b) added
anomalies. '
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Fig: 3: Monthly mean sea surface temperature off Peru (1950-90): a) anomalies, and b) added anomalies.

The monthly anomalies of the upwelling index at the meteorological station of Antofagasta showed a predominance of
negative values from 1950 to 1975; later on, the anomalies became mainly positive, with a tendency to decrease from the
mic 1980s (Fig. 6a). The anomalies of the turbulence index follows the same trend, as an effect of the $-SW predominant
winds (Fig. 6b). Bakun (1990) showed similar trends for wind stress along the coast of California, the Iberian Peninsula,
Morocco and Peru, from 1950 to 86. This author suggests the existence of a mechanism through which the greenhouse
effect would strengthen the upwellings by intensifying wind strength along the coast.

Thus, there appear to be a positive relationship between SST trends and the wind indexes. It is likely that the observed
warming trend starting in 1976, may have been caused by an invasion of subtropical waters from the north and coastward,
assaciated with the long term weakening of the Pacific anticyclone. The intrusion of these waters would have caused a
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Fig. 4: Monthly mean sea surface temperature at Arica coastal station (1951-93):a) anomalies, and b) added
anomalies. ' ‘
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Fig. 5: Monthly mean sea surface temperature at Antofagasta coastal station (1950-93): a) anomalies, and b)
added anomalies.
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deepening of the thermocline; thus, the upwelling would not bring cold waters to the surface, but warm and nutrient-poor
waters (Guillén, 1983; Ramage, 1986).

Candn (1986) indicated that this effect become strongest during the extcaordinary strong El Nifio event of 1982-83: the
subtropical layer of water reached a thickness of 150-200 m, over a large and extensive region.

The seasonal variations of the Pacific convergence zones are influenced by variations in intensity and position of the
subtropical anticyclones (Rutllant, 1985). In general, during the Southern Hemisphere winter the Pacific anticyclone is well
developed, and the south Pacific convergence reaches its most westerly position, crossing 20°S at 175°W. In summer, it
cresses the 20°S at 145°W, and is located to the equator. The interannual variations of the SO1 show a behaviour similar to
that of the scasonal variation,

It is therefore deduced that the predominance of SOI negative anomalies since 1976 may be associated with a long term
eastward displacement of the climatic action centers, in particular areas of pressures. This would explain the increase of
wirds favourable to upwellings in the north of Chile and in Peru. On the contrary, in the area of Talcahuano (37°S),
decrease of SOl is observed after 1975, which may be associated with a period of anticyclonal weakness (Ynez et al., 1992).

2. PELAGIC FISHERIES AND ENVIRONMENTAL CHANGES

2.1. The anchovy fishery

IMARPE (1970) indicated that the anchovy fishery extends almost along the entire Peruvian coast, and penetrates
waters of the northernmost extreme of Chile, without any clear discontinuity to suggest the presence of isolated and
independent populations. Thus, for the analysis of the relationships between the catch, the CPUE and the fishing effort (f),
a single anchovy population was assumed.

Still, the possibility that several unit stocks existed was not dismissed (Serra, 1983; Pauly and Tsukayama, 1987), including
the hypothesis of a great number of local subpopulations (Mathisen, 1989).

In any case, anchovy catches off Peru and in the north of Chile have the same trend (Fig. 1a, b), with fluctuations associated
with: El Nifio events and the environmental changes previously mentioned (Fig. 2 and 6). The largest landing of the northern
zonez of Chile in the latest years, compared to historical levels, is due to the technological development of the fleet (Caballero
et a', 1992). The CPUE estimated here, combining the CPUE of the north of Chile (1957-77) (Yanez and Batbieri, 1988) and
that of Peru (1961-70) (IMARPE, 1972), follows the same trend as the Peruvian anchovy biomass (Fig. 7) estimated by Pauly et
al. (1987) by means of a length-structured version of VPA, the same method is also used in Mendoza et al. (this vol.).

The anchovy catch series used by Ydnez (1991), were here reanalyzed with the CLIMPROD program of Fréon et al. (1993).
The linear relationship between CPUE; and the f, i.e., contemporary effort (f;) had a coefficient of determination of R? =
79%, increasing to 82% when a weighted fishing effort (fr) is recalculated to account for the two age classes which
contribute to the catches (Fox, 1975), thus explaining the sirong relationship between the decreasing index of abundance
and fishing effort which increased from 1957 to 1977.
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A second explanatory variable was then considered: SST of Arica, in form of the mean of the second semester of year i-1
and the first semester of year i (SSTA;). The fitted model much reduced the differences between the estimated and the
observed values (R2=91%):

CPUE; = 3,5727- 0,1609 . SSTA; -1,69 . 10-8*ft; (see Fig. 8a)

C, = CPUEi . fr, (see Fig. 8b)

This model, similar to the one fitted with SSTA; data off Peru, does not suffer from multicolinearity problems between the
explanatory variables, nor shows trends in its residuals; it was validated by the jackknife method (R2=87%). The partial
correlation coefficients are: -0,95 between the CPUE; and fr;; 0,61 between the CPUE, and SSTA;; and -0,65 between fr; and
SSTA;. The simple linear regression between frj and SSTA; has a R2=9%.

The anchovy is typically a neritic species (60-80 n. miles off the coast; 50 m depth); it spawns very near the coast, is recruited
at 69 months and participates significantly in the catches until it reaches 2 years (IMARPE, 1970 and 1972; Serra et al., 1979,
Serra, 1983; Santander and Flores, 1983). Bernal et al. (1983), and Santander and Flores (1983) showed that anchovy
spawning declines during warm years. During warm periods, the upwelling continues but the upwelled waters are warm and
low in nutrients, thus resulting in a decreasing abundance of phyto- and zooplankton (Guillén, 1983; Chévez er al., 1989).
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Fig. 8 : Observed and predicted values for anchovy off Peru-northern Chile region of: a) CPUE; b) catches.
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Since during El Nifio events, the winds that generate the upwelling do not decrease, but intensifies (Romero and Garrido,
1985; Bakun, 1987), the increased turbulence thus generated disperses eggs and larvae, disrupts the spatial distribution of
food in patches, and thus affects recruitment (Bakun, 1984). Mendelssohn (1989) showed that a large parental biomass and
a moderate level of transport produces the best recruitment, Chavez et al. (1989) indicated that, in warm periods, primary
production decreases and that changes of plankton composition occur, which affect the survival of anchovy larvae and their
recruitment levels. Loeb and Rojas (1988) indicated that starting with the 1972-73 El Nifio, there was a succession of years of
peor anchovy larval survival off Peru and Chile.

It can therefore be suggested that during the period analyzed (1957-77), the anchovy, while intensively exploited, was also
aftected by warm periods that modified the production system itselft (Fig. 9). The fitted model considers that the
environmental influence impacts the abundance of the resource,notwistanding changes in catchability. Csirke (1989)
found that the catchability coefficient (g) is inversely refated with the size of the population. He also showed that, after
1972, Peruvian anchovy fluctuations appeared to be constained by a much reduced carrying capacity. Ydnez et al. (1994)
showed that during warm years, a high degree of concentration of the resource occurs near the coast, also affecting its
lat:tudinal distribution; Santander and Flores (1983) indicated that the same happens to the spawning areas. The long
warm period visible since 1976 is thus associated with the increasing abundance of sardines, a predator of anchovy eggs
(Santander and Flores, 1983).

It :s likely that the noticeable abundance of eggs and larvae observed since 1985 (Loeb and Rojas, 1988; Castillo ef al,
1994}, as well as the extraordinary increase of catches in recent years (Fig. 1), are related to cooling trend, visible in spite
of :he El Nifto events of 1987 and 1991-92 (Fig. 4 and 5).

Landings (t.106)

Fig. 9: Relationships between anchovy catches,
fishing effort-and three levels of SST along the
Peru-northern Chile coast.

Fishing effort (standard trips.108)

2.2. The sardine fishery

In the late 1960s the sardine experienced an increase in abundance and expended geographical distribution in the
sourh-east Pacific (Serra and Tsukayama, 1988). This became obvious in the northern zone of Chile after the Ef Nifio event
of 1972-73, and even more clearly from 1976 on, (Drago, 1984; Yfiez, 1989; Cubillos and Fuenzalida, 1990).
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De Buen (1960) considers that it is the subspecies Sardinops sagax musica which inhabits coasts of Chile while S. sagax
sagax occurs off Peru and around the Galapagos islands. Chirichigno et @/ (1982) indicated that the latter is limited to the
FAO fishing areas 77C (1°39'N and 5°S), 87A (5°-6°S), 87B (6°-18°S) and 87C (18°-37°S); the former occurs only in fishing
area 87C (18°-37°S). There is a need to identify with greater precision the distribution limits of both subspecies. There is
also the possibility of the existence of two subpopulations, apparent when abundance levels were low. Now, due to their
high abundance the two subgroups become mixed over their distribution area (Serra and Tsukayama, 1988).

During the 1964-73 period, the anchovy in Chile had two very well-defined spawning areas, one in the northern zone
(18°21'-24°S), the other off Talcahuano (35°-38°S); meanwhile the sardine spawning area was restricted to the first one of
these, with a mean density of eggs equal to about 16% of the estimated egg density of anchovy (Serra, 1983; Bernal et al.,
1983). Contrary to what happened to the anchovy, during the warm years associated with the El Nifio events of 1963, 1969
and 1972-73, sardine showed positive anomalies in its spawning intensity, independently of anchovy's egg abundance
(Bernal et al., 1983).

From the standpoint of population dynamics and population genetics, an interesting working hypothesis is to assume that
when anchovy dominated the pelagic ecosystem of Chile and Peru, the sardine populations were restricted within two
separate refuge zones, one to the north of Chile and the other to the north of Peru, thus effectively limiting genetic drift
among the two subpopulations (Bemal et al., 1983).

After the decrease of anchovy (Fig. 7), sardine in Chile increased their area of distribution even establishing a spawning
center in the area of Talcahuano (Serra, 1983). This expansion of sardine occurred after the El Nifo of 1972-73, reflecting a
replacement of the epipelagic dominant filtering fish in the ecosystem (Bernal et al., 1983).

With the El Nifo of 1972-73, a large increase in the spawning and larvae distribution of the sardine was observed in Peru,
spreading out to the whole coast and concentrating outside 35 n. miles, apparently avoiding the coastal spawning area of
the anchovy (Santander and Flores, 1983). From this year until 1982, sardine spawning area expended with until 1979,
Moreover, the higher concentrations are getting closer to the coast (10-20 n. miles), close to those of anchovies. Sardine
decreased since 1980/82, with slight increases when there is a warming such as that of 1982-83.

Present ichthyoplankton abundance levels of pelagic species in the north of Chile, confirms the persistence of the change
in the specific composition detected since 1985, characterized by the strong dominance of the anchovy over the sardine
and jack mackerel (Castillo et al, 1994).

In the northern zone of Chile the increase of sardine abundance until 1980-82 (Serra, 1991), and of its catches until 1985
(Fig. 1b), are associated with a long term warm trend (Fig. 4 and 5). This trend period should have favoured the increase
of spawning intensity and recruitment levels produced three vears later, thus yielding a Ricker (1954) type stock-
recruitment relationship and a dome-shaped relationship between recruitment and SST (Ydnez, 1989). An increment of
the abundance of 5-8 year old individuals would have then been produced, which are most represented in the catches of
the expansion phase of the fisheries (Serra and Tsukayama, 1988; Martinez et al., 1986).

It is also likely that, up to a certain limit, fishing activity would have not affected the growth of stock abundance, due to
exploitation rate remaining below the natural rate of increase of the resource (Yanez, 1991). However, sardine abundances
tend to diminish after the El Nino of 1982-83 (Fig. 10), when the environment begins to show a cooling trend (Fig, 4 and 5).

The sardine fishery of the north of Chile for the years was analyzed using the CLIMPROD program. The following variables
were considered: annual catches (C;; t) (Fig. 1b), annual fishing effort (£) estimated as standard trips with catch (vcpst)
(Ydnez, 1991; Yddez et al., 1993), and annual mean SST, recorded at the tidal gauge station of Antofagasta (SST;).
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The calculated CPUE; (t/vcpst), follows almost the same trend as the sardine stock biomass (B; 3+) estimated by Barrfa and Serra
(1993) by means of VPA (Fig. 10; R%=91%). A weighted fishing effort (fr;) was recalculated by considering the significant
participation of the 34 years classes in the catches. The close relationship between CPUE; and SSTP; ((R2=80%) is established,

viz. CPUE; = - 5469 + 598 SSTP, - 16.22 (SSTP.)2, where SSTP, is the mean SST from spawning to recruitment at 3-4 years

of age.
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By additionally considering the weighted effort (fr), the following quadratic lineal model is adjusted (R2=92%):

CPUE; = - 5282 + 570 SSTP; - 15.15 (SSTP-l)2 -8.03. 104 fr; (see Fig. 11a)
C; = CPUE;. fr; (see Fig. 11b)
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Fig. 11: Observed and predicted values for sardine off riorthern Chile: a) CPUE; b) catch, -

It can be thus deduced that environmental changes modify conditions for surplus production by the sardine stock off
northern Chile (Fig. 12). Warm conditions would be favourable (as long as they are not as extreme as those observed
during the El Nifio event of 1982-83), while cold conditions would be unfavourable.
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From 1974 to 1983, the 5+ year groups represented on the average 89% of the annual catch (Serra and Tsukayama, 1988).
Since 1985, a sustained decrease of the older age groups begins, while individuals of 7 years or more disappeared; at the
same time a strong increase in the catches of 2 and 3 year old individuals was observed (Martinez et al., 1993). Thus, the
mean age at first capture now roughly corresponds to the first maturity, of 4.2 years (Martinez ef al., 1986; Ydnez, 1989).
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The parental stock increase led to a density-dependent relationship such as in Ricker (1954). Surprisingly after the
successful recruitment of 1984, associated with the maximum parental biomass observed in 1981, recruitment linearly
diminishes with the adult stock (Fig. 13). This decrease coincides with the occurrence of the strong El Nifo event of 1982-
83 and the sub sequent cooling trend of the environment (Fig. 4 and 5). This implies a temperature-dependent
relationship, which can be seen observed by relating recruitment to mean SST of years i, i-1 and i-2 (Fig. 14). In this case,
the environment affects natural mortality and individual growth during the previous period to recruitment (Fréon, 1988).

T — Ricker 76-83 (96%)
= Linear 84-92 (91%)

40

Fig.”13: Stock-recruitment relationships for
sardine off northern Chile (%= variance
explained by plot).
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Chariges of the thermal structure as observed with the NOAA satellites also affect the sardine distribution in the north of
Chile (Ydnez et al., 1993 and 1994). The sardine concentrated near the coast during the warm periods, as happened in
1987-92. During periods such as the 198891, with cooler characteristics, sardine spread out in the zone, even over the
200 n. miles off the coast, particularly between 18°-19°S,

CONCLUSION

Anchovy was intensively exploited during the period 1957-77, and also affected by El Nifio events, which diminishes its
competitor’s abundance and catches. Thereafter the fishery did not recover due to a long term warm period and to the
increase of predator species such as the jack mackerel, horse-mackerel and of sardine.

In effect, with a very reduced abundance of anchovy during a significant period of time (1973-85) and favoured by the
environmental change observed from the mid 1970s, sardine increased its distribution and abundance, becoming the
dom:nant species in the system. At the same time an intensive exploitation developed which, together with the strong El
Nifio of 1982-83 and the cooling trend observed later, induced a decrease of sardine abundance. This led to the collapse of
the fshery in northern Chile, which decreased from 2.6 million t in 1985 to 0.2 million t in 1994.

Nevertheless, after 1985, anchovy catches increased noticeably, well beyond the historical levels in Chile (1 million t in
1966; 2.7 million t in 1994) (SERNAP, 1994), and approaching such levels in Peru (12 million t in 1970; 10 million t in 1994)
(IMARPE, 1994).

For hoth fisheries, models were fitted considering fishing effort and an environmental variable (SST) as affecting the
abundance of these resources. In the case of anchovy, SST appears as additional variable in the adjusted model while for
sardine it is a key parameter. However the fits indicated that environmental variations modified the production models of
both species (Fig. 9 and 12). Anchovy favours cooler environmental conditions, while the sardine prefer warmer
conditions.

Contrary to conventional models, these models generate different MSY level for different environmental settings (Fig. 15).
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In spite of their limitations, applications of this type allows a better understanding, and sometimes forecast of the fisheries
trends (Fréon and Yéfiez, 1995). According to Csirke (1984), fisheries management should be prescriptive and preventive
instead of being only reactive. Models including parameters such as SST — whose changes can be predicted — may thus
help for fisheries management.
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