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a b s t r a c t

Peruvian anchovy (Engraulis ringens) stock abundance is tightly driven by the high and unpredictable var-
iability of the Humboldt Current Ecosystem. Management of the fishery therefore cannot rely on mid- or
long-term management policy alone but needs to be adaptive at relatively short time scales. Regular
acoustic surveys are performed on the stock at intervals of 2 to 4 times a year, but there is a need for more
time continuous monitoring indicators to ensure that management can respond at suitable time scales.
Existing literature suggests that spatially explicit data on the location of fishing activities could be used
as a proxy for target stock distribution. Spatially explicit commercial fishing data could therefore guide
adaptive management decisions at shorter time scales than is possible through scientific stock surveys.
In this study we therefore aim to (1) estimate the position of fishing operations for the entire fleet of
Peruvian anchovy purse–seiners using the Peruvian satellite vessel monitoring system (VMS), and (2)
quantify the extent to which the distribution of purse–seine sets describes anchovy distribution. To esti-
mate fishing set positions from vessel tracks derived from VMS data we developed a methodology based
on artificial neural networks (ANN) trained on a sample of fishing trips with known fishing set positions
(exact fishing positions are known for approximately 1.5% of the fleet from an at-sea observer program).
The ANN correctly identified 83% of the real fishing sets and largely outperformed comparative linear
models. This network is then used to forecast fishing operations for those trips where no observers were
onboard. To quantify the extent to which fishing set distribution was correlated to stock distribution we
compared three metrics describing features of the distributions (the mean distance to the coast, the total
area of distribution, and a clustering index) for concomitant acoustic survey observations and fishing set
positions identified from VMS. For two of these metrics (mean distance to the coast and clustering index),
fishing and survey data were significantly correlated. We conclude that the location of purse–seine fish-
ing sets yields significant and valuable information on the distribution of the Peruvian anchovy stock and
ultimately on its vulnerability to the fishery. For example, a high concentration of sets in the near coastal
zone could potentially be used as a warning signal of high levels of stock vulnerability and trigger appro-
priate management measures aimed at reducing fishing effort.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The Peruvian pelagic ecosystem is highly dominated by ancho-
vy (Engraulis ringens). This species sustains the world’s largest sin-
gle species fishery with 6.5 millions tons landed per year on
average over the last decade. Management of the fishery presents
a unique challenge as anchovy stock dynamics are tightly driven
by the high and unpredictable variability of the Humboldt Current
Ecosystem (Alheit and Niquen, 2004). Successful management can-
ll rights reserved.
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not rely on mid- or long-term policies but needs to be adaptive on
weekly or monthly time scales. Decisions on catch and effort lim-
itations within this adaptive management framework need to be
based on almost continuous, near real-time estimates of the fish
stock condition (available biomass and vulnerability to the fleet),
which depend largely on how the fish population is distributed
in space (Csirke, 1989; Arreguín-Sánchez, 1996; Harley et al.,
2001). Regular scientific acoustic surveys of Peruvian anchovy are
performed 2 to 4 times a year by the Instituto del MAR del PEru
(IMARPE). To obtain estimates of the condition of the stock at the
shorter time steps needed to implement an adaptive management
framework, complementary monitoring indicators based on prox-
ies are required.
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Existing literature suggests that the spatial distribution of fish-
ing operations should reflect to some extent patterns of fish distri-
bution. Fishers constitute, with marine birds and sea lions (Muck
and Pauly, 1987; Muck and Fuentes, 1987), the main predators of
the Peruvian anchovy population. Although predator–prey spatial
relationships may be complex (Fauchald et al., 2000; Davoren
et al., 2002), fishers have to search for and find their prey, and their
spatial behaviour track the dynamics of prey distribution in a sim-
ilar way to animal predators (Frontier, 1987; Russel et al., 1992;
Bertrand et al., 2005, 2007). Peruvian anchovy are targeted primar-
ily by purse–seiners. Fishing set locations are currently known for a
small fraction of the fleet (about 1.5% of the vessels) from an at-sea
observer program run by IMARPE. Continuous monitoring of vessel
location is obtained via a satellite vessel monitoring system (VMS)
called SISESAT (SIstema de SEguimiento SATelital). Implemented in
1999, SISESAT covers the movements of the entire industrial an-
chovy fishery (approximately 1350 fishing vessels), providing high
resolution, real-time, and low cost information on fleet behaviour
and spatial dynamics. In this study our aim is to estimate fishing
set locations from the one-dimensional geometry of the vessel path
provided by the raw VMS data, and to assess the extent to which
these estimates are representative of the distribution of anchovy
along the Peruvian coast.

A growing number of studies have made use of satellite VMS
data to better understand fishery dynamics and behaviour
(Bertrand et al., 2005; Bertrand et al., 2007; Deng et al., 2005;
Dinmore et al., 2003; Mills et al., 2007; Murawski et al., 2005). In
the Peruvian anchovy fishery, purse–seiners fitted with VMS auto-
matically report their position once an hour or less on average.
VMS data do not explicitly report whether a vessel is fishing. Each
fishing trip lasts from a few hours to 2 days, and one fishing oper-
ation (set) lasts on average 2 h. In the course of a fishing trip, be-
tween one and five fishing operations may occur on average.
Because the time taken for a fishing set is only twice that of the
VMS sampling period, identifying fishing set locations from VMS
is possible but not trivial. Speed-related criteria have been trialled
Table 1
Summary of the study periods, the corresponding number of fishing sets and elementary s
and fishing sets distributions: mean distance to the coast (MDC), total area of the convex

Month fishing
operations

Num fishing
sets

MDC
(km)

TA
(km2)

Clust.(km2) Acoustic survey
reference

March 2000 2376 49.5 39,115 63,323 Sv 2000 01–02
April 2000 997 61.4 40,332 54,343 –
May 2000 1648 52.4 31,023 55,633 –
June 2000 1592 55.6 53,898 73,026 –
July 2000 2801 80.1 56,713 153,481 Sv 2000 06–07
October 2000 1058 18.9 25,055 279,410 Sv 2000 08–09
November 2000 1902 23.9 39,235 79,306 Sv 2000 10–11
December 2000 1703 79.7 37,190 102,379 –
April 2001 1590 55.4 32,131 61,265 Sv 2001 02–04
June 2001 3455 41.0 45,299 26,836 –
July 2001 172 32.8 40,696 77,077 Sv 2001 07–08
October 2001 760 19.1 7 738 64,026 Sv 2001 08–09
November 2001 208 18.0 5 632 191,618 Sv 2001 10–11*

December 2001 129 18.7 10,691 34,618 –
March 2002 1287 31.5 7 851 123,525 –
April 2002 2512 48.2 29,850 39,015 Sv 2002 02–03
May 2002 2880 48.2 33,771 82,736 –
June 2002 1635 77.6 40,487 57,118 –
July 2002 1662 88.4 43,769 170,898 Sv 2002 08
October 2002 407 77.0 28,797 73,383 –
November 2002 3512 58.1 31,439 165,164 Sv 2002 10–11
December 2002 4088 20.5 14,711 155,632 –

* One survey performed during 10-11 2001 was discarded because an important bias b
period.
(speed usually ranges between 0.2 and 1.6 knots, i.e. 0.4–
2.9 km h�1, during a fishing set) but tend to over-estimate the
number of fishing sets (+182%) due to similarities in vessel speeds
when fishing, drifting, and searching.

To improve identification performance, we implement an iden-
tification methodology based on artificial neural networks (ANN,
Bishop, 1995; Ripley, 1996; Fine, 1999) which have recently be-
come popular tools for non-parametric classification and predic-
tion in many fields of science and engineering. ANNs have
proven to be successful at modelling a number of fishery-related
variables and to outperform comparable linear models for Pacific
herring (Clupea pallasi) recruitment (Chen and Ware, 1999), for
modelling of virtual fishermen searching behaviour (Dreyfus-
León, 1999), and for predicting the relative abundance of bigeye
tuna (Thunus obesus) from catch and effort data (Maunder and
Hinton, 2006) for instance. In this study, we developed an ANN
fed with raw VMS data and trained on a sample of fishing trips
with known fishing set positions (provided by at-sea observers)
to predict a binary response (fishing set/no fishing set). Fishing
set positions estimated by the ANN were then compared with
acoustic data estimating anchovy biomass to determine the extent
to which the spatial distribution of the fleet fishing operations cor-
relates with the patterns displayed by the anchovy stock.

2. Material and methods

2.1. Data

VMS data used to identify fishing set locations were extracted
from the SISESAT database, which contains vessel movements for
the entire industrial anchovy fleet (about 1350 vessels) since
1999. Each vessel is equipped with an Argos satellite transmitter
and global positioning system (GPS) receiver. The transmitter
sends a time-referenced position with an accuracy of 100 m on
an hourly basis. VMS data extracted from the database covered
all of the fishing seasons between 2000 and 2002 (22 months,
ampling distance units (ESDU), and the different indexes computed for describing fish
polygon enclosing the distribution (TA) and clustering index (Clust).

Date of the survey in the
study zone

Number of
ESDU

MDC
(km)

TA
(km2)

Clust.
(km2)

sA

> 0
sA

> 500

09/02–20/02 1451 765 89.3 73,589 32,985
– – – – – –
– – – – – –
– – – – – –
10/06–22/06 741 131 91.9 82,664 175,378
30/08–12/09 551 113 23.7 66,022 132,648
16/10–24/10 646 81 28.7 60,864 113,667
– – – – – –
09/03–18/03 961 514 60.2 50,317 37,050
– – – – –
11/07–20/07 824 116 70.9 52,899 64,472
30/08–14/09 622 133 18.9 49,442 122,406
– – – – – –
– – – – – –
– – – – – –
01/03–10/03 619 337 40.4 37,105 36,858
– – – – – –
– – – – – –
17/08–27/08 679 110 82.8 64,523 135,481
– – – – – –
25/10–09/11 631 99 41.1 53,925 72,227
– – – – – –

etween sampling by acoustic and by the fishery was evidenced by IMARPE at this
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see Table 1 for details) and Peruvian coastal waters from 7�S to
10�S (Fig. 1). SISESAT does not make the distinction between posi-
tions at sea or in port. To identify the positions corresponding to
fishing trips, and to resample the trajectories into elementary
straight moves (Turchin, 1998), we used the set of 3 pre-processing
algorithms described in Bertrand et al. (2005, 2007). From the raw
positions, we identified 15,975 fishing trips operated by 563 ves-
sels. VMS data held in the database comprises of vessel ID, date,
hour, longitude and latitude. From these raw data we derived high-
er order variables for each elementary straight move: speed (ratio
of move length to move duration), speed variation (difference be-
tween the speeds of two consecutive moves), and change of direc-
tion (absolute angle between the headings of two consecutive
moves). Of the raw and derived variables, five were selected as
important from the viewpoint of the fishing operation: speed, hour,
absolute change of direction, and two calculations of speed
variation (current and next position, and current and previous po-
sition). All the other available variables that could be deduced from
raw latitude–longitude data (distance, heading, etc.) were not in-
cluded in the set of characterizing variables as they were not found
to improve model performance. After pre-processing these
variables (standardizing and linearization of the circular variables),
they served as inputs to a neural network model.

In order to train the neural network, we needed a reference
sample of fishing trips for which we knew where the fishing oper-
ations truly occurred. We used information collected by the at-sea
observer program run by IMARPE since 1996 and which has sam-
pled an average of 25 vessels almost continuously since that time.
The observers collect among other information the exact position
of the fishing operations and the corresponding catches. We se-
lected from this data the fishing trips corresponding to the period
and area of interest (142 fishing trips, 494 fishing operations). We
then extracted the corresponding fishing trips from the VMS data-
base. To build a training dataset, each vessel elementary move gen-
erated from the VMS data was assigned the five selected input
Fig. 1. Map highlighting the region
variables (speed, hour, absolute change of direction, and speed var-
iation � 2) and a Boolean variable where 1 identified a fishing
operation and 0 was assigned to all remaining elementary moves.
The remaining VMS elementary moves (the forecast dataset) corre-
sponded to fishing trips where there were no corresponding at-sea
observer records.

2.2. Design of the neural network

Neural networks have become a popular tool for classification.
The type of neural network used in this study is a multilayer per-
ceptron (MLP), which is probably the most widely used architec-
ture for practical applications. They are supervised networks, so
they require a desired output to be trained. They learn how to
transform input data into a desired output response, so they are
widely used for pattern classification. MLPs have been shown to
be able to approximate any continuous function when a sufficient
number of hidden nodes are used (Cybenko, 1989; Funahashi,
1989; Hornik et al., 1989). These properties make neural networks
good tools for non-parametric classification as they do not assume
any parametric form for distinguishing between categories. The
MLP used in this study is made up of three neural layers: the input
layer, the output layer, and a middle ‘hidden’ layer. The input layer
consisted of the five input neurons, i.e. the speed and hour of the
move, the absolute change of heading between the current and
the previous move (|Dh|), the speed variation between the current
and the previous move (Dv�1) and the speed variation between the
current and the next move (Dv+1). The output layer (neuron) con-
sisted of a simple two-class classifier: fishing set or no fishing set.

Fig. 2 displays the topology of a 5-3-1 MLP. In this network
typology, the input layer is determined by the input signals. This
upper layer sends these signals to neurons in the hidden layer.
Each hidden neuron computes the weighted sum of the inputs,
i.e. the inner product between its inputs and corresponding
weights plus a ‘bias’ term. This quantity is then transformed using
of interest (7�–10� S off Peru).



Fig. 2. Topology (5-3-1) of the multilayer perceptron (MLP), a kind of supervised
artificial neural network, used to identify fishing sets from VMS data.
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an activation function. The output layer processes its signal in the
same manner. Therefore, the neural network has multiple inputs
(xi, i = 1, . . ., l) which are non-linearly mapped to m intermediate
variables called hidden neurons (hj, j = 1, . . ., m), and which are
then mapped to an output variable y. Mathematically, the relation-
ship linking input to output can be described as follows:

hj ¼ /1

Xl

i¼1

wijxi þ bj

 !
; j ¼ 1; . . . ; m ð1Þ

y ¼ /2

X
j¼1

m w
�

j
hj þ b

�
 !

ð2Þ

The characteristics of this empirical model are determined by
m*(l + 1) weight parameters (wij and wj) and (m + 1) bias parameter
(bj and b). For a two-classes classifier, one output neuron is suffi-
cient. /1 and /2 are activation functions for the hidden and output
layer. They can be any monotonic smooth function. A multiple lin-
ear regression is therefore a special type of neural network with no
hidden layer and where /i are linear functions. By allowing /i to be
monotonic non-linear functions the neural network can model the
non-linear relationship that might exist between the input and
output signals. In a neural network model, the weights between
neurons are the connections between the problem and its solution.
The weights and biases contain all the information about the net-
work. Therefore, the objective is to train the network to obtain a
combination of weights and biases that minimizes the error be-
tween the neural network output signal and the observed output.
The most commonly used criterion is to minimize the least mean
squares error function (MSE) between the simulated output (y)
and the observed output.

To train the network, we used a back-propagation procedure
(Reed et al., 1999). This procedure aims at adjusting the weights
and biases of the network to minimize the error function. Back-
propagation adjusts the weights in the steepest descent direction
in which the performance function is decreasing most rapidly.
We used the Levenberg–Marquardt algorithm that has the major
advantage of speed.

One of the problems that occur during neural network training
is called overfitting. The error on the training set is driven to a very
small value, but when new data is presented to the network the er-
ror is large. The network has memorized the training examples, but
not learned to generalize to new situations. We use an efficient
technique for improving the generalization performance of the
MLP, called early stopping. In this technique the data is divided
into three subsets. The first subset is the training set which is used
to compute the gradient and update the weights and biases of the
network. The second subset, the validation set, is used to stop the
training when the error on the validation set begins to rise (i.e. the
network begins to over-fit the training data) and the weights and
biases at the minimum of the validation error are returned. The
test set error is not used during the training, but it is used to com-
pare different models. Another method for improving generaliza-
tion, called Bayesian regulation (MacKay, 1992) has also been
tested but did not give better results than early stopping.

For achieving the balance between data-fitting and model com-
plexity from the proposed performance function, we also aimed to
find the best number of hidden nodes. Several statistical criteria
were analyzed in order to find the best MLP architecture and gen-
eralization performance: (i) mean squared error (MSE), (ii) correla-
tion coefficient (r) and (iii) the correct and incorrect predicted
classification rate of fishing operations with respect to the ob-
served fishing operations. The output of the MLP is a real number
with range in [0, 1]. We therefore needed to select a threshold
on the output to provide the percentage of detections correctly
and incorrectly classified. This threshold was chosen so that the to-
tal number of identified fishing sets was about the same as the
number of observed fishing sets. Its value was set at 0.5.

For each model architecture tested, sensitivity analyses were
performed by way of multiple test runs starting from random ini-
tial weights to decrease the chance of getting trapped in a local
minimum and to find stable results. To compare the results ob-
tained with the MLP, we also used a generalized linear regression
model directly adapted using the MLP topology. We used a MLP
with one input layer, one output logistic layer and no hidden layer,
which is equivalent to a generalized linear regression model with
logistic function. The same threshold (0.5) was used to compute
the classification.

2.3. Training of the neural network

We trained the MLP described in the previous section with dif-
ferent number of neurons in the hidden layer to find the best archi-
tecture to predict fishing operations. The MLP with one hidden
layer was tested using hyperbolic tangent sigmoid and logistic sig-
moid activation functions for hidden (/1) and output layers (/2),
respectively. Other activation functions were also used but did
not perform as well. The MLP with two hidden layers was also
tested but no significant improvement was observed. Training
was confined to 2000 iterations, but in most cases there were no
significant improvement in the MSE after 300 iterations. The MLP
was tested with the number of hidden nodes ranging from 1 to
10, while the training set size was set up randomly as 75% of the
sample set. The validation and testing sets each took half of the
rest. For reliable results and to better approximate the generaliza-
tion performance for prediction, each experiment was repeated 50
times with different initial weights, training, validation and testing
sets. The reported values were averaged over the 50 independent
runs.

2.4. Comparing fish stock and fishing operations distributions

We tested the hypothesis that the distribution of fishing opera-
tions was correlated to the distribution of the anchovy stock using
two approaches. The first relied on a visual comparison of monthly
maps of spatial distribution of fishing sets identified by the neural
network with the concomitant spatial distribution of acoustic bio-
mass as observed by 10 IMARPE acoustic surveys (exact dates of
these surveys are given in Table 1). The second test was based on
a comparison of three spatial indices describing general features
of the concomitant distributions of fishing sets and anchovy stock.
Acoustic data were collected with a scientific echosounder system
(38 and 120 kHz split-beam SIMRAD EK500, Kongsberg SIMRAD
AS, Norway), calibrated using standard procedures (Foote et al.,
1987). The water column was sampled to depths of 250 and
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500 m, for 120 and 38 kHz, respectively. The survey design con-
sisted of parallel transects running from 3.7 km from the coast to
approximately 185 km offshore, with inter-transect distances
varying between 26 and 30 km. Acoustic backscattered energy by
surface unit (sA) was recorded in each elementary sampling dis-
tance unit (ESDU) of 1852 m (1 nautical mile). Species composition
was determined from the combination of information from trawl-
ing, echo-trace characteristics, and abiotic conditions. Data corre-
sponding to anchovy for the study area were selected, with sA

used as an index of anchovy abundance.
For the comparison of spatial distributions of fishing sets and an-

chovy abundance (given by non-zero sA ESDU) we first computed an
index of the longitudinal extent covered by each dataset, using
mean distance to the coast as a proxy for longitudinal extent. For
Peruvian anchovy, longitudinal extent can be used as an indicator
of adverse warm conditions (i.e., anchovy highly vulnerable to the
fleet) or cold favourable conditions (Mathisen, 1989). A classical
illustration for anchovy population relies on the effect of El Niño
events on its spatial patterns. Typically, the stock distribution fol-
lows the inshore contraction of cold coastal waters (Valdivia
1978; Bertrand et al., 2004), which increases its availability to fish-
ermen, resulting in magnification of catchability when the stock is,
at the same time, particularly vulnerable to unfavourable environ-
mental conditions. For fishing sets, the average distance to the coast
was estimated with an accuracy of 10 nm (18.5 km) (isoparalitoral
areas, IMARPE unpublished data) and then averaged by month. The
mean distance to the coast (MDC) for anchovy distribution was esti-
mated as the average distance to the coast of the ESDU associated
with anchovy presence. Because fish acoustic data usually include
a high proportion of ESDU values with a very low sA, we weighted
the distance estimates by the corresponding ESDU sA value.

For the second index we estimated the area covered for each
distribution (fishing sets and fish abundance). We first determined
the minimum convex polygon encompassing all points of the dis-
tribution (for an example see Fig. 7), and then estimated the area
of these polygons using an algorithm based on a partition of the
polygon into a series of elementary triangles.

The third index characterized the patchiness or clustering of the
spatial distributions using Ripley’s K function (Ripley, 1976). De-
signed for analysing spatial point processes, the K function is based
on the estimation of the average number of events occurring in a
disc of radius t
Fig. 3. Performance of the MLP according to the number of neurons in the hidden
layer: (a) mean square error (MSE) and (b) correlation coefficient (CC) between
observed and predicted fishing sets for the training (solid line), validation (dashed
line) and test (dashed-dotted line) dataset. MSE and CC were estimated as an
average of 50 independents runs. From this figure, the best MLP used for prediction
is chosen to be the one with 3 neurons in the hidden layer.
K̂ðtÞ ¼ A
n2

X
i

X
j–i

Iðdij � tÞ ð3Þ

where I = 1 for each point within t distance otherwise I = 0, A is an
estimate of the area covered by the process, dij the distance between
the ith and the jth point, and n the total number of points of the pro-
cess. This estimator is biased for large values of t as edge effects may
lead to an underestimation of the number of neighbours for the
points located at the edges of the process. Several correction factors
may be applied (e.g. Dixon, 2002), but one empirical way to limit
the impact of these edge effect is to consider only t values smaller
than half of the main dimension of the domain. Here we used
t < 18.5 km as this represented the smallest mean distance to the
coast for both anchovy and fishing set distributions. To quantify
the degree of clustering of the observed distributions, we calculated
the area comprised (the sum of the differences) between the K func-
tion estimated from observed data with a random reference K func-
tion. The observed distribution of fishing sets is a point process
which can be directly compared to a theoretical complete random
distribution (homogeneous Poisson process), for which we have

KðtÞ ¼ p t2 ð4Þ
For anchovy distribution, we had to adapt this approach in two
ways. First, anchovy distribution is essentially a 2D field distribu-
tion sampled by a 1D continuous transect. From this data, we de-
fined as a point process the occurrence of ESDU presenting sA

values above 500 m2 nm�2. This threshold was numerically defined
as the median value for the mean non-zero sA by survey. Empiri-
cally, this threshold can be considered to represent fish densities
of primary interest to the commercial fleet. Second, because the
survey is systematic, the locations where the process may occur
are fixed. The random hypothesis as defined here is therefore not
a true random spatial process but a random distribution of the se-
lected ESDUs (sA above 500 m2 nm�2) among all the existing ESDU
locations. For each survey, we generated 100 replicate random dis-
tributions of high density ESDUs among transects of the same sur-
vey. We defined the clustering index as the area comprised (the
sum of the differences) between the experimental K function and
the higher K function from the random replicates. Values of K are
expressed in nm2. The clustering index, defined as a difference be-
tween two K functions, was therefore also expressed in nm2.

To explore the potential relationships between fish and fishing
sets distributions, we estimated the correlation for these indexes
between each survey period and the closest month of fishing activ-
ity (see Table 1 for time references). For the tests we calculated
Pearson’s correlation statistic for normally distributed variables
(total area of distribution) and Spearman’s non-parametric rank
correlation for non-normally distributed variables (mean distance
to the coast and the clustering index).

3. Results

3.1. Identification of fishing operations

The performance of a neural network depends on the number of
neurons in the hidden layer. Generally speaking, the more neurons
there are in the hidden layer, the better the network performs dur-



Fig. 4. Correct and incorrect classification rates averaged over 50 independent runs,
given different numbers of hidden nodes. The percentage shown represents the
number of correctly and incorrectly identified fishing operations divided by the
number of real fishing operations. The results were consistent with Fig. 3. MLP with
three neurons gave about 83% of correct classification (solid line) and 17% incorrect
ones (dashed line) which is a good generalization performance for predicting
fishing operations.

384 S. Bertrand et al. / Progress in Oceanography 79 (2008) 379–389
ing training. However, the more neurons there are, the higher is the
risk of over-fitting, which leads to poorer predictions. This is illus-
trated by Fig. 3 which gives the average of the MSE (Fig. 3a) and
correlation coefficient (Fig. 3b) of 50 runs, given different numbers
of hidden neurons for the training, the validation and the test
dataset.

While the correlation coefficient monotonically increases with
the number of neurons for the training set, it reaches a maximum
for both the validation and test set at about three neurons. With
more neurons in the hidden layer, this value decreases signifi-
cantly, indicating that there is over-fitting with more than three
neurons. Similar results are obtained with the MSE, with the small-
est MSE for the testing set obtained with three neurons. The best
MLP network from structural learning is therefore chosen to be
three nodes in the hidden layer. Fig. 4 gives the average of the cor-
rect and incorrect classification rates of 50 runs, given different
numbers of hidden nodes. The results were consistent with
Fig. 5. Tracks of three fishing trips (horizontal succession of pictures) showing the total e
registered by observers on board (Fig. 5d–f), the number (n) and position of the sets estim
estimated by the MLP (Fig. 5j–l). Note that in the first trip the MLP optimized the iden
overestimated by one the number of real sets and during the third one the MLP undere
classification, MLP is statistically significantly more powerful than other methods tested
Fig. 3. MLP with three neurons gave about 83% of correct classifica-
tion and 17% incorrect ones which is a good performance for pre-
dicting fishing operations. Regardless of the number of neurons
considered in the hidden layer, the performance of the MLP ex-
ceeded that of the generalized linear regression model (65% correct
classification, 16% incorrect classification). Similarly, the speed
threshold (Fig. 5) overestimated by 182% the number of observed
fishing sets, justifying the use of a more complex tool. The neural
network was therefore used to forecast fishing operations for those
trips where no observers were onboard. The neural network iden-
tified between 129 and 4088 fishing set positions (mean 1744) for
the 22 study months and 3 degrees latitude study area (Table 1).
Variability in the number of sets per month is largely caused by
the imposition of short term access restrictions.

3.2. Spatial distribution of fishing sets and comparison with acoustic
biomass

Fig. 6 graphically compares the spatial distribution of fishing
sets with concomitant acoustic biomass. In general the patterns
are broadly similar. Fishing sets were located near to the shore
when high acoustic densities were concentrated along the coast
(e.g. October 2000, November 2000 and October 2001), and con-
versely during times when higher levels of anchovy abundance
were recorded offshore (e.g. July 2000). Large clusters of high den-
sity fish aggregations are highly coincident with the distribution of
fishing sets (e.g. March 2000, April 2001). The degree of spatial
coincidence is less apparent as the patch size of fish abundance de-
creases. At times catches are not seen to occur in areas where an-
chovy densities appear to be very high (see the small offshore
patch of fishing sets in November 2000); conversely some high
density but small anchovy patches are not tracked by fishing set
distribution (see the offshore anchovy patch in October 2001).

For the distribution of fishing sets, mean distance to the coast
varied between 18.5 km (November 2001) and 90.9 km (July
2002). The total area covered by these fishing sets (See Fig. 7a
and b for an example of convex polygon used) ranged between
missions during the trip (Fig. 5a–c), the number (n) and position of real fishing sets
ated only by speed threshold (Fig. 5g–i) and the number (n) and position of the sets
tification process by successfully finding the real sets, in the second trip the MLP
stimated by one the real sets. Although the last two cases show examples of mis-
for identifying fishing set locations.
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5631 km2 (November 2001) and 56,714 km2 (July 2000). The
clustering index (see Fig. 7c and d for an example of estimated
Ripley K function) varied between 26,836 km2 (June 2001) and
279,410 km2 (October 2000).

There was sufficient data from the acoustic survey to allow a
comparison of the indices computed for anchovy distribution for
10 corresponding months (Table 1). The number of ESDU
Fig. 6. Monthly maps of spatial distribution of fishing sets identified by the MLP and th
scientific survey performed during the periods of interest (exact dates of these surveys
(1.852 km long) with presence of anchovy (sA > 0) varied be-
tween 551 and 1451. The corresponding mean distance to the
coast varied between 18.9 km (October 2001) and 91.9 km (July
2000). The total area of the polygon enclosing ESDU having an-
chovy presence varied between 37,105 km2 (April 2002) and
82,664 km2 (July 2000). Finally the clustering index was maxi-
mum in July 2000 (175,378 km2) and minimum in April 2002
e corresponding spatial distribution of acoustic biomass as observed by 10 IMARPE
are given in Table 1).



Fig. 6 (continued)
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(36,858 km2). Correlations between corresponding indices from
anchovy and fishing set distributions were significant (p < 0.05)
for the mean distance to the coast and for the clustering index
(Table 2). The correlation between the area of the polygons
enclosing fish and fishing set distributions was not found to be
significant.
4. Discussion

4.1. On the neural network

In this study we showed the effectiveness of neural networks
for identifying the location of fishing operations. The use of a mul-



Fig. 7. Example of the minimum convex polygon used to determine the area encompassed by (a) the anchovy distribution and (b) the fishing sets distribution for the month
April 2001. Below are represented the corresponding K function estimations for fish (c) and for fishing sets (d). In (c), dots represent the empirical K function; below are
represented the 100 K functions corresponding to the 100 replicates of simulated random distributions. In (d), the dotted line represents the empirical K function and the
dashed line represents the K function for a theoretical complete random (Poisson) spatial distribution. The clustering index was estimated as the area comprised between the
empirical K and the simulated/theoretical random distribution K.

Table 2
Correlation results between fishing and fish indicators, n number of individual, q
Pearson or Spearman correlation coefficient, p-value probability of type I error.

Descriptor n q p value

Mean distance to the coast 10 0.78 (Spearman) 0.0200
Total area of distribution 10 0.61 (Pearson) 0.0587
Clustering index 10 0.77 (Spearman) 0.0220
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tilayer perceptron allowed us to properly identify 83% of the fish-
ing operations, significantly outperforming linear methods. The
ability of neural networks to capture non-linear patterns among
a collection of inputs allows them to be robust classifiers for com-
plex systems. The performance values verify that this particular
neural network has potential to identify fishing operations.
Improvements, however, could still be made. Other types of neural
networks, such as Kohonen Maps, as well as different classification
techniques, such as support vector machine, could be tested to see
whether identification performance can be further improved.

4.2. Fishing activity as an indicator of the fish stock condition

There was generally a high level of visual agreement between
the spatial distributions of anchovy and fishing sets. The few dis-
crepancies noted may have several explanations: (1) a slight time
lag between acoustic and fishery data (this is the case for October
2001 which was compared to acoustic data collected in Septem-
ber); (2) only few days in a month open to fishing, as in July
2001, where there are too few fishing sets to reliably track anchovy
distribution; (3) when anchovy is dramatically abundant, fishers
may tend to preferentially exploit the more coastal aggregations
(see March 2000 for instance); and (4) the port location may also
influence fishing sets distribution, with areas closer to port being
preferentially exploited. However, in the Peruvian anchovy fishery,
fishing power is so strong (in terms of fleet size: around 1700 ves-
sels for the industrial sector; in terms of number and latitudinal
extent of the landing points, spanning all the Peruvian littoral),
and anchovy distribution is so narrow in longitude (less than
200 nm), that the effects of these biases are minor and do not affect
the overall ability of fishing operations to effectively track the main
pattern of anchovy stock distribution.

The distributions of anchovy abundance and fishing sets tend to
exhibit a seasonal pattern. Highest values for the mean distance to
the coast and the total area of the polygon of presence are found
during the austral winter (July). During this time the coastal
upwelling is stronger and cold coastal upwelled waters (CCW),
the habitat for anchovy, cover a wider extent (Mathisen, 1989;
Muck et al., 1989; Bertrand et al., 2004). The reverse situation oc-
curs in austral summer. Despite the clear seasonal patterns in envi-
ronmental conditions, similar patterns are not apparent for the
clustering indexes. Spatial clustering of the anchovy stock is
thought to be more dependant on meso-scale physical features,
such as eddies (Hyrenbach et al., 2006; Bertrand et al., 2008) which
dynamic is influenced by non-periodic oceanic events, such as the
arrival of oceanic Kelvin waves in the coastal system (Lengaigne,
2004).

We found significant correlations between fish and fishing set
distributions for the mean distance to the coast and for the cluster-
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ing index. Thus despite the potential biases that may affect the
ability of fishing operations to track anchovy distribution (see
above), and some spatial discrepancies for small patches of fish
abundance, we can assert that the distribution of fishing sets do in-
deed capture the main features of anchovy stock distribution, such
as longitudinal extent and patchiness. Of the three spatial indices,
the correlation between the areas covered by anchovy and fishing
sets failed to be significant. One explanation could be that surface
estimation was more sensitive to the high number of low sA ESDUs,
abundance values that fishers do not consider to be commercially
exploitable. It will be interesting in the future to extend the time
series to examine in more detail the relationships described by
the relatively small sample size available for this study (10 periods
could be compared).

Both of the spatial dimensions, longitudinal extent and cluster-
ing, are closely related to fish catchability and vulnerability. High
clustering and low distance to the coast correspond to situations
where fish biomass is concentrated in a small area, and thus make
fish aggregations easier to detect, and to catch (e.g. Valdivia, 1978;
Csirke, 1989; Fréon and Misund, 1999). In other words, the stock is
more vulnerable to the fishing fleet in these situations. Conse-
quently, times when the fleet is found to be highly concentrated
in the coastal zone (e. g. October 2001 in Fig. 6), or highly clustered,
should be used as a warning signal of anchovy being highly vulner-
able to the fishery, and lead to management measures aimed at
reducing fishing effort.

4.3. Perspective opened by the use of spatially explicit fishing data

Because fishing activity constitutes, albeit indirectly, the main
sampling effort on exploited populations, catch per unit effort
(CPUE) has long been and is still widely used as an indicator of
stock size by fishery management authorities. The use of CPUE
may, however, be questionable with anchovy, because of the
strong variability in catchability (e.g. Csirke, 1989). A number of
studies have shown that an important part of this variability is ex-
plained by the spatial dynamics of fish populations and the fleets
that exploit them (e.g. Winters and Wheeler 1985; Csirke, 1989;
Crecco and Overholtz 1990; Rose and Leggett, 1991; Hilborn and
Walters, 1992; Swain and Sinclair 1994; Petitgas 1998; Gaertner
and Dreyfus-Leon 2004). Hilborn and Walters (1992) notes that
‘‘spatial mapping of CPUE should be done whenever possible to
determine. . .how the spatial distribution of the stock and effort
are changing”. Our study has shown that with the advent of VMS
technology we are now able to produce routine, near real-time
and comprehensive maps (whole fleet) of the distribution of fish-
ing effort. We noted above how information on the location of fish-
ing sets provides useful insights into the condition of the Peruvian
anchovy stock and its vulnerability to fishing, and in turn can be
used to inform management measures aimed at reducing fishing
pressure in an adaptive manner. An important next step will be
to combine information on fishing set locations with catch statis-
tics for each trip in order to develop a more complete understand-
ing of the spatial distribution of the catches made by the Peruvian
anchovy fishery.

The availability of spatially explicit catch statistics has consider-
able value in fisheries science, in part to address issues of catch-
ability mentioned above, but also to improve our understanding
of fishers’ behaviour and to forecast the spatial allocation of effort.
These last questions, which constitute an important field of fisher-
ies science, have been addressed mainly through limited observa-
tional studies (limited in space, in time and in number of
individuals observed) or through numerical models. Allen and
McGlade (1986), for instance, were interested in the strategies
developed by fishers in searching for fish. They established through
a simulation model the existence of two types of fishermen strat-
egies: the stochasts (or risk takers) and the Cartesian (or followers).
Millischer and Gascuel (2006) studied, through an individual based
model, the impacts of communication and cooperation between
vessels during fish searching activities. Spatially explicit catch data
will allow a return to the underlying assumptions of this kind of
models, to validate or invalidate their general results, and hope-
fully shed light on the processes contributing to fishers’ behaviour.
This will be an important step forward as strategies for fishing ef-
fort allocation directly impact the effectiveness of fishery manage-
ment measures. Management measures usually have a spatial
component, whether explicit through marine protected areas, mar-
ine reserves, or temporary zone closure, or implicit through regio-
nal quotas (Babcock et al., 2005). A number of studies have
emphasized the importance of testing the effect of different spa-
tially explicit management devices on fisher’s behaviour and to
forecast their efficiency (e.g. Walters et al., 1999; Sanchirico and
Wilen 2001; Smith and Wilen 2003; Hutton et al., 2004; Mahevas
and Pelletier, 2004). Spatially explicit fishing data should prove
particularly beneficial in this regard by ensuring that the assump-
tions of the forecasting simulation tools are more realistic and clo-
sely adapted to each fishery.

5. Conclusions

This work aimed to assess the extent to which the distribution
of fishing operations could track the distribution of the Peruvian
anchovy stock, and to assess how fisheries-dependent data could
complement acoustic estimates of fish abundance from scientific
surveys in an adaptive management process. Fishing set positions
were routinely available for only a very small fraction of the fleet
(1.5%). We therefore developed an automatic process for the iden-
tification of fishing set positions for the entire fishery from vessel
trajectories as routinely collected in real-time by VMS. A neural
network approach provided the best results, being able to identify
83% of total fishing set locations. Two of the three spatial indices
we tested (longitudinal extent and patchiness) found that the dis-
tribution of fishing sets and fish abundance were significantly cor-
related and showed that fishing activity reflects the main features
of the spatial dynamics of the stock. These patterns can subse-
quently be used to inform levels of stock vulnerability. Our results
further encourage the use of VMS data as a near real-time monitor-
ing tool for the condition of the Peruvian anchovy stock. The frame-
work is currently being integrated into daily monitoring and
management.

Acknowledgments

The authors would like to thank Jaime Atiquipa and Mariano
Gutierrez from IMARPE for their valuable aid in providing VMS
and acoustic data, respectively, and Arnaud Bertrand from IRD
for earliest discussions at the origin of the paper. We are very
grateful to Sylvie Thiria, Carlos Mejia and Julie Leloup for fruitful
discussions on neural networks. We warmly thank Paul Eastwood
for his remarkable editing work and valuable comments on the
manuscript. This work is a contribution of the UR 097 ‘ECO-UP’
and the UMR ‘LOCEAN’ from IRD. This work was supported in part
by the US National Science Foundation in Grant No. NSF0526392 to
Sophie Bertrand.
References

Allen, P.M., McGlade, J.M., 1986. Dynamics of discovery and exploitation: the case of
the Scotian shelf groundfish fisheries. Canadian Journal of Fisheries and Aquatic
Sciences 43, 1187–1200.

Alheit, J., Niquen, M., 2004. Regime shifts in the Humboldt Current ecosystem.
Progress in Oceanography 60, 201–222.



S. Bertrand et al. / Progress in Oceanography 79 (2008) 379–389 389
Arreguín-Sánchez, F., 1996. Catchability: a key parameter for fish stock assessment.
Reviews in Fish Biology and Fisheries 6, 221–242.

Babcock, E.A., Pikitch, E.K., McAllister, M.K., Apostolaki, P., Santora, C., 2005. A
perspective on the use of spatialized indicators for ecosystem-based fishery
management through spatial zoning. ICES Journal of Marine Science 62, 469–
476.

Bertrand, A., Segura, M., Gutiérrez, M., Vásquez, L., 2004. From small-scale habitat
loopholes to decadal cycles: a habitat-based hypothesis explaining fluctuation
in pelagic fish populations off Peru. Fish and Fisheries 5, 296–316.

Bertrand, A., Gerlotto, F., Bertrand, S., Gutiérrez, M., Alza, L., Chipollini, A., Diaz, E.,
Espinoza, P., Ledesma, J., Quesquén, R., Peraltilla, S., Chavez, F., 2008.
Schooling behaviour and environmental forcing in relation to anchoveta
distribution: an analysis across multiple spatial scales. Progress in
Oceanography 79, 264–277.

Bertrand, S., Burgos, J., Gerlotto, F., Atiquipa, J., 2005. Lévy trajectories of Peruvian
purse–seiners as an indicator of the spatial distribution of anchovy (Engraulis
ringens). ICES Journal of Marine Science 62, 447–482.

Bertrand, S., Bertrand, A., Guevara-Carrasco, R., Gerlotto, F., 2007. Scale invariant
movements of fishermen: the same foraging strategy as natural predators.
Ecological Applications 17 (2), 331–337.

Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Oxford University
Press, Inc., New York, NY. 500p.

Chen, D., Ware, D., 1999. A neural network model for forecasting fish stock
recruitment. Canadian Journal of Fisheries and Aquatic Sciences 56,
2385–2396.

Crecco, V., Overholtz, W.J., 1990. Causes of density-dependent catchability for
Georges Bank Haddock Melanogrammus aeglefinus. Canadian Journal of Fisheries
and Aquatic Sciences 47, 385–394.

Csirke, J., 1989. Changes in the catchability coefficient in the Peruvian anchoveta
(Engraulis ringens) fishery. In: Pauly, D., Muck, P., Mendo, J., Tsukayama, I. (Eds.),
The Peruvian Upwelling Ecosystem: Dynamics and Interactions. ICLARM
Conference Proceeding, pp. 207–219.

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems 2, 303–314.

Davoren, G.K., Montevecchi, W.A., Anderson, J.T., 2002. Scale-dependent
associations of predators and prey: constraints imposed by flightlessness of
common murres. Marine Ecology Progress Series 245, 259–272.

Deng, R., Dichmont, C., Milton, D., Haywood, M., Vance, D., Hall, N., Die, D., 2005. Can
vessel monitoring system data also be used to study trawling intensity and
population depletion? The example of Australia’s northern prawn fishery.
Canadian Journal of Fisheries and Aquatic Sciences 62, 611–622.

Dinmore, T.A., Duplisea, D.E., Rackham, B.D., Maxwell, D.L., Jennings, S., 2003.
Impact of a large-scale area closure on patterns of fishing disturbance and the
consequences for benthic communities. ICES Journal of Marine Science 60, 371–
380.

Dixon, P.M., 2002. Ripley’s K function. In: El-Shaarawi, A.H., Piegorsch, W.W. (Eds.),
Encyclopedia of Environmetrics, vol. 3. John Wiley and Sons, Ltd., Chichester,
pp. 1796–1803.

Dreyfus-León, M., 1999. Individual-based modeling of fishermen search behaviour
with neural networks and reinforcement learning. Ecological Modelling 120,
287–297.

Fauchald, P., Erikstad, K.E., Skarsfjord, H., 2000. Scale-dependent predator–prey
interactions: the hierarchical spatial distribution of seabirds and preys. Ecology
81, 773–783.

Fine, T.L., 1999. Feedforward neural network methodology. Springer-Verlag, New
York. 356p..

Foote, K.G., Knudsen, H.P., Vestnes, D.N., MacLennan, D.N., Simmonds, E.J., 1987.
Calibration of Acoustic Instruments for Fish Density Estimation: A Practical
Guide. ICES Cooperative Research Report, No. 144, pp. 1–69.

Fréon, P., Misund, O.A., 1999. Dynamics of Pelagic Fish Distribution and Behaviour:
Effects on Fisheries and Stock Assessment. Blackwell Science. 348p.

Frontier, S., 1987. Applications of fractal theory to ecology. In: Legendre, P.,
Legendre, L. (Eds.), Developments in Numerical Ecology. Springer-Verlag, Berlin,
pp. 335–378.

Funahashi, K., 1989. On the approximate realization of continuous mappings by
neural networks. Neural Networks 2, 183–192.

Gaertner, D., Dreyfus-Leon, M., 2004. Analysis of non-linear relationships between
catch per unit effort and abundance in a tuna purse seine fishery simulated with
artificial neural networks. ICES Journal of Marine Science 61, 812–820.

Harley, S.J., Myers, R.A., Dunn, A., 2001. Is catch-per-unit-effort proportional to
abundance? Canadian Journal of Fisheries and Aquatic Sciences 58,
1760–1772.

Hilborn, R., Walters, C.J., 1992. Quantitative Fisheries Stock Assessment. Choice
Dynamics and Uncertainty. Chapman and Hall, New York, London. 570p..

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are
universal approximators. Neural Networks 2, 359–366.
Hutton, T., Mardle, S., Pascoe, S., Clark, R.A., 2004. Modelling fishing location choice
within mixed fisheries: English North Sea beam trawlers in 2000 and 2001. ICES
Journal of Marine Science 61, 1443–1452.

Hyrenbach, K.D., Veit, R.R., Weimerskirch, H., AndHunt Jr., G.L., 2006. Seabird
associations with mesoscale eddies: the subtropical Indian Ocean. Marine
Ecology Progress Series 324, 271–279.

Lengaigne, M., Boulanger, J.P., Delecluse, P., Menkes, C., Slingo, J., 2004. Westerly
wind events and their influence on coupled ocean-atmosphere system: a
review. AGU Monograph: Earth Climate: The Ocean-Atmosphere Interaction,
pp. 49–71.

MacKay, D.J.C., 1992. Bayesian interpolation. Neural Computation 4 (3), 415–447.
Mahevas, S., Pelletier, D., 2004. ISIS, a generic and spatially explicit simulation tool

for evaluating the impact of management measures on fisheries dynamics.
Ecological Modelling 171, 65–84.

Mathisen, O.A., 1989. Adaptation of the anchoveta (Engraulis ringens) to the
Peruvian upwelling system. In: Pauly, D., Muck, P., Mendo, J., Tsukayama, I.
(Eds), The Peruvian Upwelling Ecosystem: Dynamics and Interactions. ICLARM
Conference Proceeding, pp. 220–234 .

Maunder, M., Hinton, M., 2006. Estimating Relative Abundance from Catch and
Effort Data, Using Neural Networks. Inter-American Tropical Tuna Commission,
Special Report, 15, 18p.

Millischer, L., Gascuel, D., 2006. Information transfer, behavior of vessels and fishing
efficiency: an individual-based simulation approach. Aquatic Living Resources
19, 1–13.

Mills, C.M., Townsend, S.E., Jennings, S., Eastwood, P., Houghton, C.A., 2007.
Estimating high resolution trawl fishing effort from satellite-based vessel
monitoring system data. ICES Journal of Marine Science 64, 248–255.

Muck, P., Pauly, D., 1987. Monthly anchoveta consumption of guano birds, 1953 to
1982. In: Pauly, D., Tsukayama, I. (Eds.), The Peruvian Anchoveta and its
Upwelling Ecosystem: Three Decades of Change. ICLARM Studies and Reviews,
vol. 15, pp. 219–233.

Muck, P., Fuentes, H., 1987. Sea lion and fur seal predation on the Peruvian
anchoveta, 1953 to 1982. In: Pauly, D., Tsukayama, I. (Eds.), The Peruvian
Anchoveta and its Upwelling Ecosystem: Three Decades of Change. ICLARM
Studies and Reviews, vol. 15, pp. 234–247.

Muck, P., Zafra de Moreno, A., Aranda, C., 1989. The seasonal dynamics of sea surface
temperature and its impact on anchoveta distribution off Peru. In: Pauly, D.,
Muck, P., Mendo, J., Tsukayama, I. (Eds.), The Peruvian Upwelling Ecosystem:
Dynamics and Interactions. ICLARM Conference Proceeding, pp. 33–44.

Murawski, S.A., Wigley, S.E., Fogarty, M.J., Rago, P.J., Mountain, D.G., 2005. Effort
distribution and catch patterns adjacent to temperate MPAs. ICES Journal of
Marine Science 62, 1150–1167.

Petitgas, P., 1998. Biomass-dependent dynamics of fish spatial distributions
characterized by geostatistical aggregation curves. ICES Journal of Marine
Science 55, 443–453.

Reed, R.D., Marks II, R.J., 1999. Neural Smithing: Supervised Learning in Feedforward
Artificial Neural Networks. The MIT Press, Cambridge, MA. 346p.

Ripley, B.D., 1976. The second-order analysis of stationary point processes. Journal
of Applied Probability 13, 255–266.

Ripley, B.D., 1996. Pattern Recognition and Neural Networks. Cambridge University
Press. 416p.

Rose, G.A., Leggett, W.C., 1991. Effects of biomass-range interactions on catchability
of migratory demersal fish by mobile fisheries: an example of Atlantic cod
(Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 48, 843–
848.

Russel, R.W., Hunt, G.L., Coyle, K.O., Cooney, R.T., 1992. Foraging in a fractal
environment: spatial patterns in a marine predator–prey system. Landscape
Ecology 7, 195–209.

Sanchirico, J.N., Wilen, J.E., 2001. A bioeconomic model of marine reserve creation.
Journal of Environmental Economics and Management 42, 257–276.

Smith, M.D., Wilen, J.E., 2003. Economic impacts of marine reserves: the importance
of spatial behavior. Journal of Environmental Economics and Management 46,
183–206.

Swain, D.P., Sinclair, A.F., 1994. Fish distribution and catchability: what is the
appropriate measure of distribution? Canadian Journal of Fisheries and Aquatic
Sciences 51, 1046–1054.

Turchin, P., 1998. Quantitative analysis of movement. Measuring and Modeling
Population Redistribution in Animals and Plants. Sinauer Associates, Inc.. 396p..

Valdivia, G.J.E., 1978. The anchoveta and el Niño. Rapports et Procès-verbaux des
Réunions du Conseil International pour l’Exploration de la Mer 173, 196–202.

Walters, C., Pauly, D., Christensen, V., 1999. Ecospace: prediction of mesoscale
spatial patterns in trophic relationships of exploited ecosystems, with emphasis
on the impacts of marine protected areas. Ecosystems 2, 539–554.

Winters, G.H., Wheeler, J.P., 1985. Interactions between stock area, stock abundance
and catchability coefficient. Canadian Journal of Fisheries and Aquatic Sciences
42, 989–998.


	Patterns in the spatial distribution of Peruvian anchovy (Engraulis ringens) revealed by spatially explicit fishing data
	Introduction
	Material and methods
	Data
	Design of the neural network
	Training of the neural network
	Comparing fish stock and fishing operations distributions

	Results
	Identification of fishing operations
	Spatial distribution of fishing sets and comparison with acoustic biomass

	Discussion
	On the neural network
	Fishing activity as an indicator of the fish stock condition
	Perspective opened by the use of spatially explicit fishing data

	Conclusions
	Acknowledgments
	References


