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In areas where Plasmodium falciparum transmission is endemic, clinical immunity against
malaria is progressively acquired during childhood and adults are usually protected
against the severe clinical consequences of the disease. Nevertheless, pregnant
women, notably during their first pregnancies, are susceptible to placental malaria and
the associated serious clinical outcomes. Placental malaria is characterized by the
massive accumulation of P. falciparum infected erythrocytes and monocytes in the
placental intervillous spaces leading to maternal anaemia, hypertension, stillbirth and
low birth weight due to premature delivery, and foetal growth retardation. Remarkably, the
prevalence of placental malaria sharply decreases with successive pregnancies. This
protection is associated with the development of antibodies directed towards the surface
of P. falciparum-infected erythrocytes from placental origin. Placental sequestration is
mediated by the interaction between VAR2CSA, a member of the P. falciparum
erythrocyte membrane protein 1 family expressed on the infected erythrocytes surface,
and the placental receptor chondroitin sulfate A. VAR2CSA stands today as the leading
candidate for a placental malaria vaccine. We recently reported the safety and
immunogenicity of two VAR2CSA-derived placental malaria vaccines (PRIMVAC and
PAMVAC), spanning the chondroitin sulfate A-binding region of VAR2CSA, in both
malaria-naïve and P. falciparum-exposed non-pregnant women in two distinct Phase I
clinical trials (ClinicalTrials.gov, NCT02658253 and NCT02647489). This review discusses
recent advances in placental malaria vaccine development, with a focus on the recent
clinical data, and discusses the next clinical steps to undertake in order to better
comprehend vaccine-induced immunity and accelerate vaccine development.
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INTRODUCTION

In 2019, approximately 11 million pregnant women were exposed
to the risk of P. falciparum infection (1). Malaria contracted during
pregnancy can lead to significant clinical complications for the
mother, including anaemia (2, 3) and hypertension (4, 5), but also
for the child. Indeed, malaria in pregnancy may account for over
200,000 stillbirths each year (6) and for the delivery of over
800,000 low birth weight babies (1). This clinical picture varies
depending on the parity status and intensity of P. falciparum
transmission in a given geographical area (7). Primigravid women
are highly susceptible to develop severe clinical outcomes
following P. falciparum infection. However, in high endemicity
area, the incidence of illness sharply drops after successive
pregnancies (7), demonstrating that protective immunity can be
naturally acquired. These observations raised the hope of
developing a vaccine that could protect pregnant women against
the serious clinical manifestations of malaria in pregnancy.

P. falciparum infection in pregnancy can cause substantial
morphological and immunological changes in the placenta,
where a massive accumulation of infected erythrocytes (IEs)
takes place (8–10), reshaping the cytokine profile of the local
environment (11–13) and altering the maternofoetal exchanges
(14). IEs from placental origin present a unique adhesive
phenotype and do not bind to the host receptors (CD36,
CD31, EPCR) commonly used by the parasite to cytoadhere to
the microvasculature lining (15–17). Instead, placental IEs
interact with a low-sulphated sugar only present at the surface
of syncytiotrophoblasts, the chondroitin sulphate A (CSA) (18–
21). This low-sulphated placental CSA is structurally distinct
from CSA present in other organs or secreted into the
extracellular matrix and body fluids (21). A single member of
the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1)
family, named VAR2CSA, has been identified as the main
parasite-derived ligand mediating the interaction of IEs with
placental CSA (22–27). Numerous studies have correlated the
presence of antibodies reacting to VAR2CSA with protection
against placental malaria (PM) (28–30). In a recent systematic
review and meta-analysis, Cutts et al. showed that VAR2CSA
derived antigens were positively associated with the presence of
placental infections. However, they could not identify evidence
that antibody response towards a specific VAR2CSA antigen is
associated with protection from PM (31). The capacity of anti-
VAR2CSA antibodies to block the adhesion of IEs to CSA is
thought to play a major role in protection (32) but accumulating
evidence suggests that other antibody-dependent effector
mechanisms, such as opsonic phagocytosis (33–35), could also
actively participate in parasite clearance.

Current malaria control strategies during pregnancy mainly
consist in the use of long-lasting insecticidal bed nets and the
administration of intermittent preventive treatments based on
sulphadoxine-pyrimethamine (IPT-SP) as well as iron and folic
acid supplementation [reviewed in (36, 37)]. Even if effective in
reducing the malaria burden in pregnant women living in endemic
areas (1), the global implementation of such approaches is
threatened by the emergence of widespread resistance of both
anopheles mosquitoes to insecticides (38) and of parasites to anti-
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malarial drugs (39). Furthermore, since IPT-SP is only initiated at
the first antenatal care visit, usually in the second trimester, and
that increasing evidence suggests that P. falciparum infection is
particularly frequent and detrimental in the first trimester of
pregnancy (40–43), complementary intervention regimens such
as vaccines would therefore be extremely valuable. In the current
global malaria vaccine landscape, predominated by anti-infection/
transmission approaches, VAR2CSA-based PM vaccines stand as
the main anti-disease strategy to reduce placental malaria
morbidity and mortality.

IDENTIFYING THE BEST VAR2CSA-
DERIVED VACCINE CANDIDATE

Prevention of placental infection in first pregnancies is not
bestowed by the naturally acquired immune responses from
previous P. falciparum infections, i.e., prior to pregnancy.
Nevertheless, natural and protective immunity develops after
one or two pregnancies (7, 44, 45). Vaccine candidates aiming to
protect against PM should mimic, at least in part, the naturally
acquired antibody response associated with protection (32).
Ideally, the vaccine-induced immune responses should be
boosted and even substantiated by natural infections.

Following the identification of VAR2CSA and the determination
of its role in PM pathogenesis and immunity, researchers have been
trying to identify the best VAR2CSA-derived antigen to include in a
PM vaccine (27). Indeed, VAR2CSA is a complex cysteine-rich 350
kDa protein composed of an N-terminal segment (NTS) followed
by six Duffy-binding like (DBL) domains interspaced by four inter-
domains (ID) with less defined structures, a transmembrane region
and a cytoplasmic ATS region (Figure 1). This complexity,
associated to the difficulty in expressing sufficient material of the
full-length VAR2CSA extracellular region to proceed to clinical trial,
have spurred researchers to characterize and identify a subunit
VAR2CSA vaccine. All P. falciparum genomes carry one or several
var2csa genes (46, 47). Var2csa has also been identified in the
genomes of P. reichenowi, which infects the chimpanzee, indicating
that the CSA-binding phenotype has an ancient origin and that
protein functionality might exert some degree of constraint on
sequence variation (48). Among the various VAR2CSA variants,
most of the functional studies have been performed on VAR2CSA
derived from 3D7 and FCR3 laboratory strains. The secondary
structure of the DBL fold is conserved, and variable regions are
scattered in the primary sequence as mosaic blocks, which are
generally the prime target of anti-VAR2CSA antibodies (49–51).
The assumption that a structurally constrained adhesion-mediating
region within VAR2CSA could be more conserved than others, led
early research to focus on the determination of the single DBL
domain(s) involved in CSA-binding (25, 51–57). The finding that
single DBL domains, which appeared not to bind CSA, could induce
inhibitory antibodies was a primary indication that the tertiary
structure of the protein was not like DBL-pearls on a string (58, 59).
When full-length recombinant VAR2CSA proteins became
available, low-resolution structures obtained by small-angle X-ray
scattering (SAXS) and CSA-binding kinetics of the full-length
recombinant proteins indicated that VAR2CSA harboured a
globular conformation rather than a linear-shaped structure
February 2021 | Volume 12 | Article 634508
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(60, 61). The determination of the CSA-binding kinetics of the full-
length recombinant VAR2CSA also revealed that the full-length
protein was able to interact with CSA with high specificity and high
affinity, yielding nano-molar affinity constants. This was markedly
different to those obtained for single-domain constructs in the
micromolar range (60, 61). Using SAXS and single particle
reconstruction from negative stained electron micrographs, a
recent study confirmed the globular conformation of VAR2CSA
and suggested a model for CSA-binding (62). Dissection of the
CSA-binding affinities of recombinant truncations of full-length
VAR2CSA, as opposed to single DBL domains, identified the N-
terminal part of VAR2CSA as the CSA-binding region (63–65).
While for the 3D7 variant, a more specific binding to CSA was
observed using the DBL1x-DBL3x multidomain protein (64), the
DBL1x and DBL3x domains did not appear as essential for high
affinity CSA binding for the FCR3 variant (65). The binding affinity
of FCR3 DBL2x including small N and C terminal flanking ID1 and
ID2 inter-domains was similar to the autologous full-length
VAR2CSA. Thus, the minimal binding region of FCR3-
VAR2CSA was designated as ID1-DBL2x-ID2a (65).

Although the identification of the high affinity CSA-binding site
has orientated researchers to target this region to induce inhibitory
antibodies, many studies have looked at the quality of the immune
response generated by the different single DBL domains and
multiple domains, including the full-length extracellular region of
VAR2CSA. Indeed, due to the globular fold of the full-length
molecule it appears possible that antibodies directed towards
residues not directly involved in CSA-binding could i) be cross-
reactive against different variants and/or ii) affect the molecular
interaction of VAR2CSA with CSA by steric hindrance.

Interestingly, the generation of single domain nanobodies
following immunization of camelids with the full-length
VAR2CSA recombinant protein revealed a preferential targeting
of the DBL1x domain and, to a lower extent, of DBL4ϵ, DBL5ϵ, and
DBL6ϵ (66) suggesting the existence of immunodominant epitopes
outside the CSA-binding region of the protein. This assumption is
also strengthened by another study showing that monoclonal
antibodies generated from naturally infected women are
Frontiers in Immunology | www.frontiersin.org 3
predominantly directed against DBL3x and DBL5x (67).
Remarkably, none of these nanobodies and monoclonal
antibodies presented CSA-binding inhibitory capability, which
indicates that a single molecule targeting an epitope outside the
binding region is unlikely to inhibit the adhesion of IEs to CSA.

Several small animal immunization studies, many of which
have been carried out in collaboration between different
laboratories, have established that the generation of antibodies
targeting epitopes shared between different parasite lines could
be achieved using various VAR2CSA domains (68–75).
Although antibodies raised against the full-length VAR2CSA
may not be cross-inhibitory (76), several studies performed in
rodents have shown that shorter constructs including the N-
terminal region of VAR2CSA are able to induce cross-inhibitory
antibodies preventing IEs from binding to CSA (77–81).

Taken together, these data have evolved the rationale for
developing a vaccine against PM based on the CSA binding N-
terminal region, in the hope that it will prime the immune
response towards semi-conserved antigenic determinants and
then mimic the antibody repertoire acquired through natural
exposure in first pregnancy (32).
PRIMVAC AND PAMVAC PHASE I
CLINICAL TRIALS

VAR2CSA-based vaccines spanning the CSA-binding region
(PRIMVAC and PAMVAC), designed to generate antibodies
capable of inhibiting IEs adhesion to placental cells, have recently
been assessed in two separate phase I clinical trials (ClinicalTrials.gov
identifiers NCT02658253 and NCT02647489, respectively) (Figure
1). Together they represent an attractive intervention strategy to
protect primigravid women from the serious clinical outcomes of
PM. PAMVAC expressed in a Drosophila Schneider 2-derived cell
line spans the interdomain region 1 through Duffy binding-like
domain 2 to inter-domains 2 (ID1-DBL2x-ID2a) of the FCR3
variant of VAR2CSA (82), while PRIMVAC expressed in
E. coli SHuffle® is based on the DBL1x-2x multidomain of
FIGURE 1 | Schematic representation of VAR2CSA and vaccines tested in clinical trials. VAR2CSA is a 350-kDa transmembrane protein composed of an N-terminal
segment (NTS) followed by six Duffy-binding like (DBL) domains interspaced by 4 inter-domains (ID), a transmembrane region and a cytoplasmic Acidic C terminus
sequence (ATS). PRIMVAC and PAMVAC schematic representation with sequences boundaries, predicted molecular weight, expression systems, and adjuvants
used for the Phase I clinical trials. ClinicalTrials identifier for both Phase I are indicated.
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VAR2CSA from the P. falciparum 3D7 strain (Figure 1) (79, 80,
83). In order to allow comparative assessment of different
placental malaria vaccine candidates, especially PRIMVAC and
PAMVAC, two workshops hosted by the European Vaccine
Initiative allowed the harmonization of clinical development
plans and of assays for immunological assessment (84).

Based on these recommendations, both clinical trials were
designed as randomized, double-blind, placebo-controlled, dose
escalation trials and were meant to evaluate the safety and
immunogenicity of three intramuscular vaccinations with
progressively higher doses. PRIMVAC was adjuvanted with
Alhydrogel or glucopyranosyl lipid A adjuvant in stable emulsion
(GLA-SE) whereas PAMVAC was adjuvanted with Alhydrogel or
GLA-SE or injected as a liposomal formulation in combination with
QS21 (GLA-LSQ) (Figure 1). Volunteers were recruited into
sequential cohorts receiving 20 mg, 50 mg, or 100 mg of vaccines at
day 0, 28, and 56. PAMVAC volunteers were observed for 6 months
following last immunization, while PRIMVAC volunteers were
followed for one year after the last vaccination. While the safety
and immunogenicity of PRIMVAC has been recently published in
both malaria naïve (French volunteers) and P. falciparum-exposed
non-pregnant women (Burkinabe women) (83), only the clinical
evaluation of PAMVAC in malaria naïve volunteers (German
volunteers) has been so far reported (82). All PAMVAC and
PRIMVAC formulations were safe and well tolerated and none of
the vaccines induced serious adverse events (82, 83).

PAMVAC and PRIMVAC were immunogenic in all participants
and antibody levels were usually higher for both vaccines when
adjuvanted with GLA-SE as compared to Alhydrogel and GLA-LSQ,
at all dosages. In the case of PRIMVAC, all the volunteers
seroconverted after two vaccine doses and a high proportion of
them were still seroconverted one year after the third vaccination,
which is indicative of a long-lasting immunity. Interestingly, IgG
subclass analysis revealed that the induced antibodies were mostly
IgG1 and IgG3 for PRIMVAC vaccinated volunteers. Therefore, the
PRIMVAC-induced antibody response seems to mimic the naturally
acquired immune response observed in multigravid women (85, 86).

Both vaccines generated antibodies reacting with the homologous
VAR2CSA expressing parasites (NF54 for PRIMVAC and FCR3 for
PAMVAC), however limited cross-reactivity was observed against
heterologous VAR2CSA variants either recombinantly expressed
(PAMVAC trial) or expressed on the surface of FCR3-CSA and
7G8-CSA IEs (PRIMVAC trial). The highest cross-reactivity was
observed in sera collected from women that received the 100 mg
PRIMVAC dose. Both vaccines induced functionally active
antibodies inhibiting the interaction of their corresponding
homologous VAR2CSA expressing IEs to CSA but low or no
CSA-binding inhibition was observed for IEs expressing
heterologous VAR2CSA variants (82, 83).

DISCREPANCIES BETWEEN
PRECLINICAL AND CLINICAL STUDIES

Interestingly, the PAMVAC and PRIMVAC vaccines were able to
induce antibodies in humans at significantly high titers after three
doses received by the study participants. These antibodies were
Frontiers in Immunology | www.frontiersin.org 4
mainly vaccine-specific and mainly possessed functional activity
against the homologous strains. Although these antibodies made it
possible to describe a cross-reactivity with the constructs
originating from other parasite variants, in particular those
induced by vaccines adjuvanted with GLA-SE (82, 83), the lower
cross-reactivity and the lack of cross-inhibition contrasts with the
data generated in small animal models that guided the selection of
these vaccine candidates (63, 77, 79, 80).

The observation that the responses in humans appear less
cross-reactive than in rodents clearly raises the question of the
transferability of the data generated in small animal models to
humans. One confounding effect could be that the rodents
received a higher dose per bodyweight than humans, so that
the induced antibody titers are overall lower in humans
compared to small animal models. A lower antibody titer
would then possess less cross-reactive antibodies and then
explain the lowest observed cross-reactivity. It is also possible
that there is species-specific selection for cross-reactive epitopes
in rodents versus humans. This would be a major obstacle in the
placental malaria vaccine development process where the lack of
an appropriate animal model remains. An animal model that
would be as close as possible to humans, like non-human
primates could be an asset in the preclinical validation phases.
Efforts to develop such a model in the Aotus monkey is currently
underway and could offer an interesting track in this perspective.

Interestingly, it was noted that some nulligravid women
participating in the study in Burkina Faso to receive the
PRIMVAC vaccine, possessed VAR2CSA antibodies before the
administration of the vaccine doses (83). While these observations
corroborate those of a few studies which have shown the presence
of antibodies reacting with certain VAR2CSA antigens in some
non-pregnant or male subjects living in endemic regions (87–89),
their potential interference or benefit with vaccination deserves to
be considered.
CURRENT VACCINE DEVELOPMENT GAPS
AND POTENTIAL FUTURE DEVELOPMENTS

The preclinical and phase I clinical trial results for PAMVAC
and PRIMVAC are highly encouraging and confirm the
feasibility of developing a PM vaccine through further clinical
testing. However, prior to embarking on costly, large-scale phase
II clinical trials, it is essential to further evaluate the longevity of
the immune response in vaccinated women and meanwhile
assess its development upon natural infections. Novel strategies
to enhance the immunogenicity of the PM vaccine candidates
and to maximize the antibody cross-reactivity against different
VAR2CSA variants could also be envisaged.

Longevity
Longevity of the vaccine-induced immune response is an essential
element in placental malaria vaccine development, since nulligravid
women will be vaccinated many months or years prior to their first
pregnancy. In 2012, Fowkes et al. suggested that half-lives of
antibody responses in pregnant women induced by natural
February 2021 | Volume 12 | Article 634508
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P. falciparum infection were in general relatively short for merozoite
antigens (0.8–7.6 years) (90). However, half-lives of antibodies to
VAR2CSA were significantly longer (36–157 years), suggesting that
antibodies acquired in one pregnancy may be maintained to protect
subsequent pregnancies (90). This raises hope for PM vaccine
development, a hope that is further bolstered by the results
obtained in the pre-clinical and clinical PM vaccination studies.
The PM vaccine candidates, especially PRIMVAC, produced a long-
lasting immune response in PRIMVAC vaccinated women who
developed an immune response that lasted for more than a year (83).
To further characterize the longevity of the PRIMVAC-induced
immune response in women in malaria-endemic areas and to define
vaccination age and frequency of booster vaccinations, follow-up of
the vaccinated women for several years will be crucial. Additionally,
the capacity of the vaccine candidates to boost and broaden a
naturally acquired immune response would provide valuable insight.

Immunogenicity
Recombinant soluble proteins are often thought to induce an
immune response of insufficient strength and breadth to confer full
protection. Therefore, alternative approaches for the presentation of
the VAR2CSA antigens are considered. Themost advanced approach
is using a capsid-like particle (CLP) that has been added as a
backbone to the PM antigen, thereby possibly inducing a stronger
immune response than a vaccine based on soluble recombinant
protein and thus potentially improving immunogenicity, cross-
reactivity and longevity of the induced immune response (91, 92).

Cross-Reactivity
Each vaccine candidate, PAMVAC and PRIMVAC, consists of a
single recombinant protein. However, VAR2CSA is a diverse
antigen and in Benin alone, 57 haplotypes of the vaccine target
were identified which phylogenetically cluster into five clades
(93). The PM vaccine candidates PRIMVAC and PAMVAC are
from two distinct clades; 3D7 (clade 1) and FCR3 (clade 2)
respectively. Interestingly, the authors found an association
between the 3D7-like clade and low birthweight (93). Because
of the extensive VAR2CSA polymorphism, the development of a
PM vaccine is challenging. While the correct part of VAR2CSA
to target appears established, it may be needed to generate
second-generation vaccines, which expands the possibility of
immunizing against several variants to improve cross-reactivity.

Different approaches may be evaluated: 1) prime - boost
vaccination using VAR2CSA variants from different clades,
2) combination vaccination approaches either using, e.g., soluble
recombinant proteins or multi-VAR2CSA-CLPs, 3) chimeric
VAR2CSA variants, either based on the PAMVAC or PRIMVAC
protein boundaries or rational structure-based designs. Finally, the
recently hyped mRNA vaccine technology deployed against Covid-
19 may be a way to incorporate several variants due to the ease and
low cost of manufacture (94).
CONCLUSION

Over the past years, a promising portfolio of PM vaccine
candidates was developed and two VAR2CSA-derived vaccines
Frontiers in Immunology | www.frontiersin.org 5
were brought to clinical evaluation, confirming the feasibility of
developing a PM vaccine. However, to evaluate and compare the
results of the various PM vaccine approaches, the harmonization
of clinical trial procedures and the standardization of
immunoassays that was initiated before the start of the phase I
clinical trials (84) has to be further strengthened. Stringent go/no-
go criteria will be required to decide to enter in the next
development stages based on production feasibility, safety, and
induction of cross-reactive and functional immune responses. A
major obstacle to transitioning a PM vaccine from preclinic to
clinic is the lack of a suitable animal model (95). Evaluation of
PM vaccine efficacy is particularly complex. Indeed, the lack of
surrogates to predict PM vaccine-induced protection limits the
potential of early clinical trials to provide indications on vaccine
efficacy. The amplitude of the antibody response resulting from
vaccination appears today as an indicator of putative efficacy,
although the threshold levels of antibodies required for protection
are undetermined. The lowest cross-reactivity observed during
the clinical trials in comparison to the preclinical evaluation could
be the consequence of a lower amplitude of the immune response
upon antigen exposure in humans compared to rodents. Since
sterile immunity is not required for a PM vaccine, the hope is that
the vaccine-induced response will be boosted and even broadened
by natural infection. Alternate schedules of immunization,
antigen dosage, and combinations with other VAR2CSA-based
vaccines are under development and will be assessed in future
studies for their capacities to broaden the cross-reactivity
of the induced immunity against heterologous VAR2CSA
variants and then fully protect women from the negative
outcomes of PM.
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