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Abstract

Artificial neural networks (ANNs) are non-linear mapping structures based on the function of the human brain.
They have been shown to be universal and highly flexible function approximators for any data. These make powerful
tools for models, especially when the underlying data relationships are unknown. In this reason. the international
workshop on the applications of ANNs to ecological modelling was organized in Toulouse, France (December 1998).
During this meeting, we discussed different methods, and their reliability to deal with ecological data. The special
issue of this ecological modelling journal begins with the state-of-the-art with emphasis on the development of
structural dynamic models presented by S.E. Jorgensen (OK). Then, to illustrate the ecological applications of ANNs,
examples are drawn from several fields, e.g. terrestrial and aquatic ecosystems, remote sensing and evolutionary
ecology. In this paper, we present some of the most important papers of the first workshop about ANNs in ecological
modelling. We briefly introduce here two algorithms frequently used; (i) one supervised network, the back propagation
algorithm; and (ii) one unsupervised network, the Kohonen self-organizing mapping algorithm. The future develop
ment of ANNs is discussed in the present work. Several examples of modelling of ANNs in various areas of ecology
are presented in this special issue. © 1999 Elsevier Science B.V. All rights reserved.

Kevwords: Backpropagation; Kohoncn neural network; Self-orgamzing maps; Ecology; Modelling; ANN Workshop

I. Introduction

Ecological modelling has grown rapidly in the
last three decades. To build his models, an ecolo
gist disposes a lot of methods, ranging from nu
merical, mathematical, and statistical methods to
techniques originating from artificial intelligence

• Corresponding author. TeI.: +D-561-558687; fax: + 33
561-556096.

E-mail address:lck@cict.fr (S. Lek)

(Ackley et al., 1985), like expert systems (Brad
shaw et al., 1991; Recknagel et al., 1994), genetic
algorithms (d'Angelo et al., 1995; Golikov et al.,
1995) and artificial neural networks, i.e. ANN
(Colasanti, 1991; Edwards and Morse, 1995).

ANNs were developed initially to model biolog
ical functions. They are intelligent, thinking ma
chines, working in the same way as the animal
brain. They learn from experience in a way that
no conventional computer can and they can
rapidly solve hard computational problems. With

0304-380099/5 - sec front matter © 1999 E1sevier Science B.V. All rights reserved
PH: S0304-3800(99)00092-7



66 S. Lek, l.F. Guégan / Ec%gical Modelhng 120 (1999) 65-73

the spread of computers, these models were sim
ulated and later research was also directed at
exploring the possibilities of using and improv
ing them for performing specific tasks.

In the last decade, research into ANNs has
shown explosive growth. They are often applied
in physics research Iike speech recognition
(Rahim et al., 1993; Chu and Bose, 1998) and
image recognition (Dekruger and Hunt, 1994;
Cosatto and Graf, 1995; Kung and Taur, 1995)
and in chemical research (Kvasnicka, 1990;
Wythoff et al., 1990; Smits et al., 1992). In biol
ogy, most applications of ANNs have been in
medecine and molecular biology (Lemer et al.,
1994; Albiol et al., 1995; Faraggi and Simon,
1995; Lo et al., 1995). Nevertheless, a few appli
cations of this method were reported in ecologi
cal and environmental sciences at the beginning
of the 90's. For instance, Colasanti (1991) found
similarities between ANNs and ecosystems and
recommended the utilization of this tool in eco
logical modelling. In a review of computer-aided
research in biodiversity, Edwards and Morse
(1995) underlined that ANNs have an important
potential. Relevant examples are found in very
different fields in applied ecology, such as mod
elling the greenhouse effect (Seginer et al.,
1994), predicting various parameters in brown
trout management (Baran et al., 1996; Lek et
al., 1996a,b), modelling spatial dynamics of fish
(Giske et al., 1998), predicting phytoplankton
production (Scardi, 1996; Recknagel et al.,
1997), predicting fish diversity (Guégan et al.,
1998), predicting productionjbiomass (PjB) ratio
of animal populations (Brey et al., 1996), pre
dicting farmer risk preferences (Kastens and
Featherstone, 1996), etc. Most of these works
showed that ANNs performed better than more
classical modelling methods.

2. Scope of tbis particular issue

The pressures to understand and manage the
natural environment are far greater now than
could ever have been conceived even 50 years
ago, with the loss of biodiversity on an unprece
dented scale, fragmentation of landscapes, and

addition of pollutants with the potential of al
tering climates and poisoning environments on a
global scale. In addition, many ecological sys
tems present complex spatial and temporal pat
terns and behaviours.

Recent achievements in computer science
provide unrivaled power for the advancement of
ecology research. This power is not merely com
putational: parallel computers, having hierarchi
cal organization as their architectural principle,
also provide metaphors for understanding com
plex systems. In this sense, in sciences of ecolog
ical complexity, they might play a role like
equilibrium-based metaphors had in the develop
ment of dynamic systems ecology (Villa, 1992).

ANNs have recently become the focus of
much attention, largely because of their wide
range of applicability and the case with which
they can treat complicated problems. ANNs can
identify and learn correlated patterns between
input data sets and corresponding target values.
After training, ANNs can be used to predict the
output of new independent input data. ANNs
imitate the learning process of the animal brain
and can process problems involving very non
linear and complex data even if the data are
imprecise and noisy. Thus they are ideally suited
for the modelling of ecological data which are
known to be very complex and often non-linear.

For this reason, we organized the first work
shop on the applications of ANNs in ecological
modelling in Toulouse in December of 1998.
This special volume gathers sorne of the papers
presented.

3. What is an artificial neural network

An ANN is a 'black box' approach which has
great capacity in predictive modelling, i.e. ail the
characters describing the unknown situation
must be presented to the trained ANN, and the
identification (prediction) is then given.

Research into ANNs has led to the develop
ment of various types of neural networks, suit
able to solve different kinds of problems:
auto-associative memory, generalization, opti-
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mization, data reduction, control and prediction
tasks in various scenarios, architectures etc.
Chronologically, we can cite the Perceptron
(Rosenblatt, 1958), ADALINE, i.e, Adaptive
linear element (Widrow and Hoff, 1960),
Hopfield network (Hopfield, 1982), Kohonen
network (Kohonen, 1982, 1984), Boltzmann ma
chine (Ackley et al., 1985), multi-Iayer feed-for
ward neural networks learned by
backpropagation algorithm (Rumelhart et al.,
1986). The descriptions of these methods can be
found in various books such as Freeman and
Skapura (1992), Gallant (1993), Smith (1994),
Ripley (1994), Bishop (1995), etc. The choice of
the type of network depends on the nature of
the problem to be solved. At present, two popu
lar ANNs are (i) multi-Iayer feed-forward neural
networks trained by backpropagation algorithm,
i.e. backpropagation network (BPN), and (ii)
Kohonen self-organizing mapping, i.e. Kohonen
network (SOM). The BPN is most often used,
but other networks has also gained popularity.

3.1. Multi-layer feed-forward neural network

The BPN, also called multi-Iayer feed-forward
neural network or multi-layer perceptron, is very
popular and is used more than other neural net-

work types for a wide variety of tasks. The
BPN is based on the supervised procedure, i.e.
the network constructs a model based on exam
pies of data with known outputs. It has to build
the model up solely from the examples pre
sented, which are together assumed to implicitly
contain the information necessary to establish
the relation. A connection between problem and
solution may be quite general, e.g. the simula
tion of species richness (where the problem is
defined by the characteristics of the environment
and the solution by the value of species rich
ness) or the abundance of animaIs expressed by
the quality of habitat. A BPN is a powerful
system, often capable of modelling complex rela
tionships between variables. It allows prediction
of an output object for a given input object.

The architecture of the BPN is a layered feed
forward neural network, in which the non-linear
elements (neurons) are arranged in successive
layers, and the information flows unidirection
ally, from input layer to output layer, through
the hidden layer(s) (Fig. 1). As can be seen in
Fig. l, nodes from one layer are connected (us
ing interconnections or links) to ail nodes in the
adjacent layer(s), but no lateral connections
within any layer, nor feed-back connections are
possible. This is in contrast with recurrent net-
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Fig. 1. Schematic illustration of a three-Iayered feed-forward neural network. wilh one input layer, one hidden layer and one output
layer. The nght-hand side of the figure shows the data set to be used in backpropagalion network models. XI"'" X" are the input
variables, YI' .. , Y k are the output vanables, SI' S,. S" ... are the observatIOn data.
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works where feed-back connections are also per
mitted. The number of input and output units
depends on the representations of the input and
the output objects, respectively. The hidden lay
er(s) is (are) an important parameters in the net
work. BPNs with an arbitrary number of hidden
units have been shown to be universal approxi
mators (Cybenko, 1989; Hornick et al., 1989) for
continuous maps and can therefore be used to
implement any function defined in these terms.

The BPN is one of the easiest networks to
understand. Its learning and update procedure is
based on a relatively simple concept: if the net
work gives the wrong answer, then the weights
are corrected so the error is lessened so future
responses of the network are more likely to be
correct. The conceptual basis of the backpropa
gation algorithm was first presented in by Webos
(1974), then independently reinvented by Parker
(1982), and presented to a wide readership by
Rumelhart et al. (1986).

In a training phase, a set of input/target pat
tern pairs is used for training and presented to
the network many times. After the training is
stopped, the performance of the network is
tested. The BPN learning algorithm involves a
forward-propagating step followed by a back
ward-propagating step. A training set must have
enough examples of data to be representative for
the overall problem. However, the training phase
can be time consuming depending on the net
work structure (number of input and output vari
ables, number of hidden layers and number of
nodes in the hidden layer), the number of exam
pIes in the training set, the number of iterations
(see Box 1).

Typically, for a BPN to be applied, both a
training and a test set of data are required. Both
training and test sets contain input/output pat
tern pairs taken from real data. The first is used
to train the network, and the second to assess the
performance of the network after training. In the
testing phase, the input patterns are fed into the
network and the desired output patterns are com
pared with those given by the neural network.
The agreement or disagreement of these two sets
gives an indication of the performance of the
neural network model.

Box 1. A brief algorithm of backpropagation
in neural networks

(1) Initialize the number of hidden nodes
(2) Initialize the maximum number of itera

tions and the learning rate (11). Set ail
weights and thresholds to small random
numbers. Thresholds are weights with
corresponding inputs always equal to 1.

(3) For each training vector (input Xp =

(x[,XZ, ... ,xn ), output Y) repeat steps 4--7.
(4) Present the input vector to the input

nodes and the output to the output node;
(5) Calculate the input to the hidden nodes:

aS = L7~ 1 W"x,. Calculate the output from

h . '1 ." f( " 1t e hldden nodes. Xl = al) = 1 _ h'+e al

Calculate the inputs to the output nodes:
ak = L;~ 1 Uj,,>;j' and the corresponding

~ 1
outputs: Yk=j(ak )= .

1+e-ak

Notice that k = 1 and :9k = :9, L is the
number of hidden nodes.

(6) Calculate the error term for the output
node: {)k = (Y - :y)f'(ak) and for the hid
den nodes: ()7 = f'(a")Lk{)kUjk

(7) Update weights on the output layer:
Ujk(t+I) = ~k(t)+11b0;' and on the
hidden layer: W,/(t+ 1) = W,/(t)+17bSx,

As long as the network errors are larger than
a predefined threshold or the number of itera
tions is smaller than the maximum number of
iterations envisaged, repeat steps 4-7.

Another decision that has to be taken is the
subdivision of the data set into different sub-sets
which are used for training and testing the
BPN. The best solution is to have separate data
bases, and to use the first set for training and
testing the model, and the second independent
set for validation of the model (Mastrorillo et
al., 1998). This situation is rarely observed in
ecology studies, and partitioning the data set
may be applied for testing the validity of the
model. We present here two partitioning proce
dures:
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1. if enough examples of data sets are available,
the data may be divided randomly into two
parts: the training and test sets. The propor
tion may be 1: l, 2: l, 3: 1, etc. for these two
sets. However, the training set still has to be
large enough to be representative of the
prob1em and the test set has to be large
enough to allow correct validation of the
network. This procedure of partitioning the
data is called k-fold cross-validation, some
times named the ho1d-out procedure (Utans
and Moody, 1991; Geman et al., 1992; Efron
and Tibshirani, 1995; Kohavi, 1995; Kohavi
and Wolpert, 1996; Friedman, 1997).

2. if there are not enough examples avai1ab1e ta
permit the data set to be split into represen
tative training and test sets, other strategies
may be used, Iike cross-validation. In this
case, the data set is divided into Il parts usu
ally small, i.e. containing few examp1es of
data. The BPN may now be trained with
n - 1 parts, and tested with the remaining
part. The same network structure may be
repeated to use every part once in a test
set in once of the Il procedures. The result
of these tests together allow the performance
of the mode1 to be determined. Sometimes,
in extreme cases, the test set can have only
one example, and this is called the leave-one
out or sometime lacknife procedure (Efron,
1983; Kohavi, 1995). The procedure is often
used in eco1ogy when either the avai1able
database is small or each observation is
unique information and different to the oth
ers.

3.2. Kolzonen self-organi::ing mapping (SOM)

Kohonen SOM falls into the category of un
supervised 1earning methodology, in which the
relevant multivariate algorithms seek clusters in
the data (Everitt, 1993). Conventionally, at least
in eco1ogy, reduction of multivariate data is nor
mally carried out using principal components
ana1ysis or hierarchica1 clustering analysis (Jong
man et al., 1995). Unsupervised Iearning allows
the investigator to group objects together on the
basis of their perceived c10seness in n dimen-

sional hyperspace (where Il is the number of
variables or observations made on each abject).

Formally, a Kohonen network consists of two
types of units: an input layer and an output
layer (Fig. 2). The array of input units operates
simply as a flow-through layer for the input vec
tors and has no further significance. In the out
put layer, SOM often consist of a two
dimensional network of neurons arranged in a
square (or other geometrical form) grid or lat
tice. Each neuron is connected to its Il nearest
neighbours on the grid. The neurons store a set
of weights (weight vector) each of which corre
sponds to one of the inputs in the data. The
SOM algorithm can be characterized by several
steps (see Box 2).

Box 2. A brief algorithm of self-organizing
mapping neural networksLet a data set of ob
servations with n-dimensional vectors:

----------------

Initialise the time parameter t: t = O.
(1) Initialise weights Wu of each neuron j in

the Kohonen map to random values (for
example, random observations).

(2) Present a training samplex(t) =

[x1(t), ... ,xn(t)] randomly selected from
the observations.

(3) Compute the distances d, between x and
ail mapping array neurons j according
to: ~(t) = L7~ ,[x,(t)- W,JtW where
-'-",(t) is the i 1h component of the N di
mensional input vector and Wu(t) is the
connection strength between input neu
ron i and map array neuron j at time t

expressed as a Euclidean distance.
(4) Choo~·,' [he mapping array neuron j *

with minimal distance d/o: dJo(t) =

min[~(t)].

(5) Update all weights, restricted to the ac
tuaI topo1ogical neighbourhood NE,o(t):
w,/(t+ 1) = W,,(t)+I1(t)(X,(t)- W,)t)
for JE NE,o(t) and 1<::;,i<::;'n. Here
NE/o(t) is a decreasing function of time,
as is the gain parameter '7 (t).

(6) Increase the time parameter t

(7) If t < tmax return to step 2
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Since the introduction of the Kohonen neural
network (Kohonen, 1982, 1984), several training
strategies have been proposed (see e.g. Lipp
mann, 1987; Hecht-Nielsen, 1990; Freeman and
Skapura, 1992) which deal with different aspects
of the use of the Kohonen network. In this sec
tion, we will restrict the study to the original
algorithm proposed by Kohonen (1984).

4. Overview of the presented papers

During the three days of the workshop on
ANN applications in ecology, 45 oral communi
cations and posters were presented. They were
thoroughly discussed by 100 or so participants
coming from 24 countries. The session started
with the general review 'state-of-the-art of eco
logical modelling with emphasis on development
of structural dynamic models' (J0rgensen, see
paper in the next chapter). Then applications of
ANNs in several fields of ecology were pre
sented: primary production in freshwater and
manne ecosystems (seven papers), remote sens-

ing data (six papers), population and community
ecology and ecosystems (six papers), global
change and ecosystem sensitivity (six papers),
fishery research in freshwater and marine ecosys
tems (four papers), evolutionary ecology and
epidemiology (three papers), population genetics
(two papers) and seven remaining papers which
rather concerned the methodological aspects, i.e.
improvement of ANN models in ecological
modelling. Sorne of these papers have been se
lected for publication in this special issue. The
aim of this special issue, as weil as of this first
workshop, was both to contribute to an im
provement of methodology in ecological mod
elling and to stimulate the integration of ANNs
in ecological studies.

Most of the papers propose the use of a
backpropagation algorithm in ANN models.
Certain papers suggest improvement by includ
ing the Bayesian (see Vila et al.' paper) or radial
base functions (see Morlini's paper). Only a few
papers used unsupervised learning to model re
mote sensing data, microsatellite data, or marine
ecology data (see Foody's paper).
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5. Future developments of ANNs in ecological
modelling

In 1992, during the first international confer
ence on mathematical modelling in limnology
(Innsbruck, Austria), 10rgensen (1995) presented
a review on ecological modelling in limnology. He
noted the rapid growth of ecological modelling
and proposed a chronological development in
four generations of models. The first models cov
ered the oxygen balance in streams and the prey
predator relationships (the Lotka-Volterra model)
in the early 1920s. The second phase of modelling
(in the 1950s and 1960s) was particularly con
cerned with population dynamics. The third gen
eration started from the 70's with more
complicated models and rapidly became tools in
environment management, e.g. eutrophication
models. In the fourth generation, more recent
models are becoming increasingly able to take the
complexity, adaptability and flexibility of ecosys
tems into account.

As the modelling techniques available in the
fourth generation of ecological models, re
searchers have a lot of methods ranging from
numerical, mathematical and statistical methods
to techniques based on artificial intelligence, par
ticularly ANNs. During the last 2 decades of the
current century, the growing development of com
puter-aided analysis, easily accessible to ail re
searchers has facilitated the applications off.NNs
in ecological modelling. /

To use ANN programmes, ecologists .can ob
tain freeware or shareware using different web
sites in the World. Users interested could find
these programmes by filling in 'neural network' as
a keyword in the search procedure of the web
explorer. Thus, they can obtain many computer
ANN programmes functioning with all operating
systems (Windows, Apple, Unix stations, etc.).
Moreover, increasingly specialized ANN packages
are proposed at acceptable prices for personal
computers and most professional statistical soft
ware now proposes ANN procedures inc1uded
(e.g. SAS, Splus, MatIab, etc.).

The development of computers and ANN soft
ware must allow ecologists to apply ANN meth
ods more easily to resolve the complexity of

relationships between variables in ecological data.
A lot of reports, and especially the papers pre
sented in this first workshop on the applications
of ANNs in ecology, demonstrate the importance
of these methods in ecological modelling. The
second workshop on this subject is programmed
for November 2000 in Adelaide University (Aus
tralia), and is being organized by F. Recknagel
(Email: frecknag@waite.adelaide.edu.au) and S.
Lek (Email: lek@cict.fr). Vou are cordially invited
to participate in this meeting.
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Abstract

The paper deals with two major problems in ecological modelling today, namely how to get reliable parameters?
and how to build ecosystem properties into our models? The use of new mathematical tools to answer these questIons
is mentioned briefly, but the main focus of the paper is on development of structural dynamic models which are
models using goal functions to reflect a current change of the properties of the biological components in the models.
These changes of the properties are due to the enormous adaptability of the biological components to the prevailing
conditions. Ali species in an ecosystem attempt to obtain most biomass, i.e. to move as far away as possible from
thermodynamic equilibrium which can be measured by the thermodynamic concept exergy. Consequently, exergy has
been proposed as a goal function in ecological models with dynamic structure, meaning currently changed properties
of the biological components and in model language currently changed parameters. An equation to compute an
exergy index of a model is presented. The theoretical considerations leading to this equation are not presented here
but references to literature where the basis theory can be found are given. Two case studies of structural dynamic
modelling are presented: a shallow lake where the structural dynamic changes have been determined before the model
was developed, and the application of biomanipulation in lake management, where the structural dynamic changes
are generally known. Moreover. it is also discussed how the same idea of using exergy as a goal function in ecological
modelling may be applied to facilitate the estimation of parameters. © 1999 Elsevier Science B.V. Ali rights reserved.

KeYll'ords: Structural dynamic models; Biological components; Ecological modelling

1. Introduction: state-of-the-art of ecological
modelling

Ecological modelling ongmates from Lotka
Volterra and Streeter-Phelps in the 1920s, while
the comprehensive use of models in environmen
tal management started in the beginning of the

* Fax: + 45-35375744.
E-mail address:seJ@maildlb.dk (S E. Jorgensen)

1970s, During the seventies we learnt that devel
opment of ecological models requires a compre
hensive knowledge to the functioning of
ecosystems and that it is extremely important to
find a balanced complexity considering the avail
able data, the ecosystem and the focal problem.
Meanwhile many models have been developed
and today we have the experience from more than
4000 ecological models which have been used as
tool in research or environmental management.

0304-3800/99/$ - see front matter © 1999 Elsevier Science B.V. Ali rights reserved.
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Recently, a book 'Environmental and Ecological
Modelling' by J0rgensen et al. (I995b), Lewis
Publisher, reviewed more than 400 models and
gave details about the models. The idea was to
give the experience from previous modelling stud
ies to those who want to develop models of
similar ecosystems or focusing on similar environ
mental problems. In spite of the widely gained
experience in ecological modelling, we are still
facing serious problems in modelling, which, how
ever, we attempt to overcome. The main problems
are in short:
1. usually/often we cannot get sufficient data to

develop models which can give reliable
prognoses

2. the parameter estimation is often the weakest
point in modelling

3. the models do not refiect the real properties of
ecosystems, particularly their adaptability and
ability to meet change in forcing functions
with change in species composition. Several
research ideas have been pursued to solve
these problems:
3.1. fuzzy models are used to overcome the

problem of a poor data base (J0rgensen,
1994a)

3.2. use of chaos and fractal theory in mod
elling to improve the parameter estima
tion (J0rgensen, 1995, 1997)

3.3. use of catastrophe theory in modelling as
an attempt to model structural changes
(see J0rgensen, 1997).

3.4. use of artificial intelligence in parameter
estimation (Kompare, 1995)

3.5. recently developed parameter estimation
methods (J0rgensen, 1995, 1997, 1998)

3.6. data base of ecological parameters
(J0rgensen et aL, 1991). A parameter
data base three times larger than the vol
ume published in 1991 is under develop
ment on a CD.

3.7. development of structural dynamic mod
els by use of goal functions (J0rgensen,
1986, 1988, 1990, 1992a,b, 1994a,b,c,
1997; J0rgensen et aL, 1995a; J0rgensen
and Padisak, 1996: J0rgensen and de
Bernardi, 1997) to account for the ecosys
tem properties.

This presentation will concentrate on the last
development (vii), but will also briefiy touch the
use of chaos, fractal and catastrophe theory and
the relationship between the development of
structural dynamic models and the emergence of
additional parameter estimation methods.

2. How can we consider ecosystem properties in
our model developments?

Ecology deals with irreducible systems (Wol
fram, 1984a,b; J0rgensen, 1990, 1992a,b, 1994a,
1995; J0rgensen et aL, 1995a). We cannot design
simple experiments which reveal a relationship
that can in aIl detail be transferred from one
ecological situation and one ecosystem to another
situation in another ecosystem. That is possible
for instance with Newton's laws on gravity, be
cause the relationship between forces and acceler
ation is reducible. The relationship between force
and acceleration is linear, but growth of living
organisms is dependent on many interacting fac
tors, which again are functions of time. Feedback
mechanisms will simultaneously regulate aIl the
factors and rates and they also interact and are
functions of time, too (Straskraba, 1979).

Table 1 shows the hierarchy of regulation
mechanisms, that are operating at the same time.
The regulation mechanisms operate over different
time scales which are indicated in the table. From
this example the complexity alone clearly pro
hibits the reduction to simple relationships that
can be used repeatedly. An ecosystem consists of
so many interacting components that it is impossi
ble ever to be able to examine aIl these relation
ships and even if we could, it would not be
possible to separate one relationship and examine
it carefully to reveal its details, because the rela
tionship is different when it works in nature with
interactions from the many other processes, from
when we examine it in a laboratory with the
relationship separated from the other ecosystem
components. The observation, that it is impossible
to separate and examine processes in real ecosys
tems, corresponds to that of the examinations of
organs that are separated from the organisms in
which they are working. Their functions are com-
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Table 1
The hierarchy of rcgulating feedback mechamsms, (Jorgensen, 1994a, 1997)

77

Level Explanation of regulatlOn process Exemphfied by phytoplankton growth Timc scale
._----_._----

2

3

4
5
6
7

Rate by concentratIOn m medium

Rate by needs

Rate by other external factors (biochemical adap
tation)
AdaptatIOn of properltes (biological adaptation)
Selection of other species
SelectIOn of other food web
Mutations, new sexual recombmations and other
shifts of genes

Uptake of phosphorus m accordance wlth phos
phorus concentration
Uptake of phosphorus m accordance with intra
cellular concentration
Chlorophyll concentratIOn in accordance with
previous solar radiation
Change of optimal temperature for growth
Shift to better fitted species
Shift to better fitted food web
Emergence of new species or ShiftS of speCies
properties

Mm-h

Min-h

Days

Days-months
Weeks-years
Months-years
10-105 years

pletely different when separated from their organ
isms and examined in for instance a laboratory
from when they are placed in their right context
and in 'working' condition. These observations
are indeed expressed in ecosystem-ecology. A
known phrase is: 'everything is linked to every
thing' or: 'the whole is greater than the sum of the
parts' (Allen 1988). It implies that it may be
possible to examine the parts by reduction to
simple relationships, but when the parts are put
together they will form a whole, that behaves
differently from the sum of the parts. This state
ment requires a more detailed discussion of how
an ecosystem works.

The complexity of an ecosystem is formed not
only by a high number of interacting components;
the complexity is far more complex. Ecosystems
belong to the class of systems denoted complex
adaptive systems (Brown, 1995). The number of
feedbacks and regulations is extremely high and
makes it possible for the living organisms and
populations to survive and reproduce in spite of
changes in external conditions. Numerous exam
pies can be found in the literature. If the actual
properties of the species are changed the regula
tion is named adaptation. These regulations corre
spond to level 3 and 4 in Table 1. Phytoplankton
is for instance able to regulate its chlorophyll
concentration according to the solar radiation. If
more chlorophyll is needed because the radiation
is insufficient to guarantee growth, more chioro
phyll is produced by the phytoplankton. The di-

gestion efficiency of the food for many animais
depends on the abundance of the food. The same
species may be of different sizes in different envi
ronments, depending on what is most beneficial
for survival and growth. If nutrients are scarce,
phytoplankton may become smaller and vice
versa. In this latter case the change in size is a
result of a selection process, which is made possi
ble because of the distribution in size as illustrated
in Fig. 1.

The feedbacks are constantly changing, i.e. the
adaptation is adaptable in the sense that if a
regulation is not sufficient another regulation pro
cess higher in the hierarchy of feed-backs-see
Table l-will take over. The change in size within
the same species is for instance only limited.
When this limitation has been reached, other spe-

Frequency

Property

Fig. 1 Typlcal Gausslan frequency distribution of slze withm
the same speclCS.
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cies will take over. It implies that not only the
processes and the components, but also the feed
backs can be replaced, if it is needed to achieve a
better utilisation of the available resources. The
ecosystem and its properties emerge as a result of
many simultaneous and parallel focal-level pro
cesses, as influenced by even more remote envi
ronmental features. This implies that the
environment of a system inc1udes historical fac
tors as weIl as immediately cogent ones (patten,
1997). The history of the ecosystem and its com
ponents is therefore important for the reactions
and further development of the ecosystem. It is
one of the main ideas behind Patten's indirect
effect that the indirect effect accounts for the
'history,' while the direct effect only reflects the
immediate effect. The importance of the history of
the ecosystem and its components emphasises the
need for a dynamic approach and supports the
idea that we will never observe the same situation
in an ecosystem twice. The history will always be
'between' two similar situations. Therefore, the
equilibrium models may fail in their conclusions,
particularly when we want to look into reactions
on the system level.

Ecosystems show furthermore a high degree of
heterogeneity in space and in time. An ecosystem
is a very dynamic system. Ail its components and
particularly the biological ones are steadily mov
ing and their properties are steadily modified,
which is why an ecosystem will never return to the
same situation again. Every point is furthermore
different from any other point and therefore of
fering different conditions for the various life
forms. This enormous heterogeneity explains why
there are so many species on earth. There is, so to
say, an ecological niche for 'everyone' and 'every
one' may be able to find a niche where he is best
fitted to utilise the resources. Ecotones, the transi
tion zones between two ecosystems, offer a partic
ular variability in life conditions, which often
results in a particular richness of species diversity.
Studies of ecotones have recently drawn much
attention from ecologists, because ecotones have
pronounced gradients in the external and internaI
variables, which give a dearer picture of the rela
tion between external and internai variables. Mar
galef (1991) daims that ecosystems are

anisotropic, meaning that they exhibit properties
with different values, when measured along axes
in different directions. It means that the ecosys
tem is not homogeneous in relation to properties
concerning matter, energy and information, and
that the entire dynamics of the ecosystem works
toward increasing the differences. These varia
tions in time and space make it particularly
difficult to model ecosystems and to capture the
essential features of ecosystems.

3. Ecosystems have dynamic structure

Ecosystems and their biological components,
the species, developjevolve steadily and in the
long term perspective toward higher complexity.
Darwin's theory describes the competition among
species and states that the species, that are best
fitted to the steadily changed prevailing conditions
in the ecosystem will survive. The species are
currently able to offer new combinations of prop
erties due to self-organisation (Kauffman, 1996),
sexual recombinations and mutations. AlI species
in an ecosystem are confronted with the question:
how is it possible to survive or even grow under
the prevailing conditions? The prevailing condi
tions are considered as aIl factors influencing the
species, i.e. aIl external and internaI factors in
cluding those originating from other species. This
explains the coevolution, as any change in the
properties of one species will influence the evolu
tion of the other species.

Species are generally more sensitive to stress
than functional properties of ecosystems. Schin
dler (1988) observed in experimental acidifications
of lakes that functional properties such as primary
production, respiration and grazing were rela
tively insensitive to the effects of a continued
exposure to acidification, while early signs of
warning could be detected at the level of species
composition and morphologies. This underlines
the importance of development of models, de
noted structural dynamic models, able to predict
the changes in focal properties of the dominant
species, included a possible shift in species compo
sition by significant changes of external factors.
AlI natural external and internaI factors of ecosys-
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tems are dynamic-the conditions are steadily
changing, and there are always many species wait
ing in the wings, ready to take ovec if they are
better fitted to the emerging conditions than the
species dominating under the present conditions.
There is a wide spectrum of species representing
different currently changed combinations of prop
erties available for the ecosystem. The question is,
which of the available combinations of properties
are best able to ensure survival and growth under
the present conditions and which available combi
nations of properties are best able to offer sur
vival and growth under the conditions one time
step further and two time steps further and so on?
The necessity in Monod's sense is given by the
prevailing conditions-the species must have genes
or maybe rather phenotypes (meaning properties)
which match these conditions, to be able to sur
vive. But the natural external factors and the
genetic pool available for the test may change
randomly or by 'chance'.

Steadily new mutations (misprints are produced
accidentally), sexual recombinations (the genes
are mixed and shuffled) and results of self-organ
ising processes (Kauffman, 1996) will emerge and
give steadily new material to be tested toward the
question: which species are best fitted under the
conditions prevailing just now? These ideas are
illustrated in Fig. 2. The external factors are
steadily changed and sorne even relatively fast
partly at random, e.g. the meteorological or cli
matic factors. The species of the system are
selected among the species available and repre
sented by the genetic pool, which again is cur
rently changed by mutations, new sexual
recombinations and self-organising processes.
What is named ecological development is the
changes over time in nature caused by the dynam
ics of the external factors, giving the system suffi
cient time for the reactions, including an
organisation of the network.

Evolution, on the other hand, is related to the
genetic pool. It is the result of the relation be
tween the dynamics of the external factors and the
dynamics of the genetic pool. The external factors
steadily change the conditions for survival and the
genetic pool steadily cornes up with new solutions
to the problem of survival. Darwin's theory as-

External factors
Forcing functions

limet

Ecosystem

New recombinations
of genes 1mutations

~
Genepool ---.1

Ecosystem

Structure

limet + 1

Fig. 2. ConceptualIsatIOn of how the external factors steadily
change the species compositIOn. The possible shifts in species
composition are determined by the gene pool, whlch IS steadtly
changed due to mutations and new sexual recombmatlOns of
genes. The development IS, however, more complex. This is
mdlCated by (1) arrows from 'structure' to 'external factors'
and 'selection' to account for the possibtlity that the specles
are able to modify their own envlronment and thereby their
own selection pressure and show self-organIsation; (2) an
arrow from 'structure' to 'gene pool' to account for the
possibilities that the specles can to a certam extent change
their own gene pool.

sumes that populations consist of individuals,
who:
1. On average produce more offspring than is

needed to replace them upon their death-this
is the property of high reproduction.

2. Have offspring which resemble their parents
more than they resemble randomly chosen in
dividuals in the population - this is the prop
erty of inheritance.

3. Vary in heritable traits influencing reproduc
tion and survival (i.e. fitness)- this is the prop
erty of variation.

All three properties are part of the presentation in
Fig. 2. The high reproduction is needed to get a
change in the species composition caused by
changes in external factors. The variability is rep
resented in the short and long term changes in the
genetic pool and the inheritance is needed to see
an effect of the fitness test in the long run. With
out the inheritance every new generation would
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900 Number of Families

Fig. 3 Changes III species diver'lty over geologica1 time
(Shugart, 1998).

instance man-made pollution or natural catastro
phes-for a shorter time, but the probability that
1. new and better genes are developed; and
2. new ecological niches are utilised
will increase with time. The probability will even
again excluding the short time perspective-in
crease faster and faster, as the probability is
roughly proportional to the amount of genetic
material on which the mutations and new sexual
recombinations can be developed.

It is equally important to note that a biological
structure is more than an active non-linear sys
tem. In the course of its evolution, the biological
structure is continuously changed in such a way
that its structural map is itself modified. The
overall structure thus becomes a representation of
ail the information received. Biological structure
represents through its complexity a synthesis of
the information with which it has been in commu
nication (Schoffeniels, 1976). Evolution is maybe
the most discussed topic in biology and ecology
and millions of pages have been written about
evolution and its ecological implications. Today
the basic facts of evolution are taken for granted
and the interest has shifted to more subtle classes
of fitness/selection, i.e. toward an understanding
of the complexity of the evolutionary processes.
The coevolution explains the interactive processes

o·400 -200
Geological Time. millions of years

-600

300

600

start from the same point and it would not be
possible to maintain the result of the fitness test.
The evolution is able to continue from the already
obtained results. The species are continuously
tested against the prevailing conditions (external
as weil as internaI factors) and the better they are
fitted, the better they are able to maintain and
even increase their biomass. The specific rate of
population growth may even be used as a measure
for the fitness (Brown, 1995). But the property of
fitness must of course be inheritable to have any
effect on the species composition and the ecologi
cal structure of the ecosystem in the long run.
Natural selection has been criticised for being a
tautology: fitness is measured by survival and
survival of the fittest therefore mean survival of
the survivors. However, the entire Darwinian the
ory including the above mentioned three assump
tions, should not be conceived as a tautology, but
may be interpreted as follows: the species offer
different solutions to survival under given prevail
ing conditions and the species that have the best
combinations of properties to match the condi
tions, have also the highest probability of survival
and growth.

Fitness is therefore a question of having the
best combination of properties under the prevail
ing conditions and survival (growth) is the award
to the organisms which have the fittest combina
tion of properties. The formulation by Ulanowicz
(1986) may also be applied: Those populations are
fittest that best enhance the auto catalytic be
haviour of the matter-energy loops in which they
participate. Man-made changes in external fac
tors, i.e. anthropogenic pollution have created
new problems, because new genes fitted to these
changes do not develop overnight, while most
natural changes have occurred many times previ
ously and the genetic pool is therefore prepared
and fitted to meet the natural changes. The spec
trum of genes is able to meet most natural
changes, but not all of the man-made changes.
because they are new and untested in the
ecosystem.

The evolution moves toward increasing com
plexity in the long run; see Fig. 3. The fossil
records have shown a steady increase of species
diversity. There may be destructive forces-for
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among species. It is difficult to observe a coevolu
tion, but it is easy to understand that it plays a
major role in the entire evolution process. The
coevolution of herbivorous animaIs and plants is
a very illustrative example. The plants will de
velop toward a better spreading of seeds and a
better defence towards herbivorous animaIs. This
will in the latter case create a selection of the
herbivorous animaIs that are able to cope with the
defence. Therefore the plants and the herbivorous
animaIs will coevolve. Coevolution means that the
evolution process cannot be described as reduc
tionistic, but that the entire system is evolving. A
holistic description of the evolution of the system
is needed.

The Darwinian and neo-Darwinian theories
have been criticised from many sides. It has for
instance been questioned whether the selection of
the fittest can explain the relatively high rate of
the evolution. Fitness may here be measured by
the ability to grow and reproduce under the pre
vailing conditions. It implies that the question
raised according to the Darwinian theories (see
the discussion above) is: 'which species have the
properties that give the highest ability for growth
and reproduction?' We shall not go into the dis
cussion in this context-it is another very compre
hensive theme- but just mention that the
complexity of the evolution processes is often
overlooked in this debate. Many interacting pro
cesses in the evolution, including self-organisation
(Kauffman, 1996) may be able to explain the
relatively high rate of evolution that is observed.

4. Problems associated with development of
structural dynamic models

The problem associated with the development
of ecological models is in short, that we base our
model on an analysis of an ecosystem at a given
time t, when the external factors and the species
composition are given, but we would like to chal
lenge the mode! to predict what is going to be the
response to a given change in the external factors
at a later time t + l, when not only the external
factors but also the species composition and their
adaptation processes have adapted to the new

Input

Fig. 4. The conceptual diagram of a tYPlCal eutrophicatlOn
mode! The boxes mdicate state variables and the arrows
processes.

situation. Organisms develop and coevolve in the
fitness landscape (Kauffman, 1996). When we
analyse the ecosystem, we can presume that the
organisms and their network have found if not
the optimum solution then at least an excellent
solution of combination of properties to obtain
the highest possible survival and growth for ail
the organisms. The problem arises when the
fitness landscape is changed due to change in the
external factors, change in the properties of the
organisms and even in the constraints associated
with the interdependence of the organisms and
their coevolution. We have with other words a
different, in the best case a slightly different,
fitness landscape at time t + l, and our model
should describe that the ecosystem is able to find
a new excellent solution to the challenge of the
new fitness landscape. The model should therefore
currently change the parameters representing the
properties of the species included in the mode!.
The organisms and species with the combination
of properties offering the highest or even a very
high peak in the fitness landscape should be repre
sented as the new components in the mode!.

Let us describe the problem by means of an
example. The mode! shown in Fig. 4 has been
used several times to describe the development of
eutrophication. A typical application of the model
anticipates that we reduce the inputs of phospho
rus (or other nutrients) significant1y. A removal of
90% or even more is possible by the right environ-
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where !J, is a weighting factor accounting for the
information the species carry, while c, is the con
centration in for instance g/m3 for aquatic ecosys
tems and g/m2 for terrestrial ecosystems. How it is
possible to come from the definition of exergy to
Eq. (1) can be found in the references given
above. Calculated !J -values for various organisms
are shown in Table 2 (Sources: Li and Grauer,
1991; Lewin, 1994). They are based on informa
tion about the number of non-nonsense genes in
the various species. These calculations are based
on the use of the same system as the one under
consideration but at thermodynamic equilibrium
anticipating the same temperature and pressure.

tance from thermodynamic equilibrium, where
there is no structure and no free energy available
The amount of exergy stored in the system has the
following advantages as measure of the fitness
height:
1. Biomass contribute significantly to the exergy.

The contribution is the free energy of biomass,
approximately 18.7 kJ/g. Survival is measured
by the biomass of living organisms.

2. Information has also exergy accordance to
Boltzmann (1905). The free energy (work) of
information is RT InW, where W is the num
ber of possible microstates among which one
has been selected for the focal system. This
contribution from information implies that the
information carried by the various species will
be included in the amount of exergy stored in
the system. The information is applied by the
species to ensure survival or even growth un
der the prevailing conditions.

3. Biomass and information are directly linked to
the structure and order of the system in oppo
sition to the random state at thermodynamic
equilibrium. The total distance in energy unit
from thermodynamic equilibrium is equal to
the exergy.

It can be shown (Jorgensen et al., 1995a;
Jorgensen, 1997) that the exergy of a modeL Ex,
may be calculated as (the system at thermody
namic equilibrium as reference state as indicated
above):

mental management plan, but it implies that other
species of phytoplankton are better fitted to the
new and lower nutrient concentration. Therefore
we should be able to change the parameters ac
cordingly in the mode!. Furthermore, the
zooplankton will change too because their food
source has been changed in size and maybe even
in elementary composition. This implies that also
the planktivorous fish will change their properties
because they will (probably) meet a food source in
form of zooplankton with (probably, often) in
creased size. How can we determine ail these
changes in parameters? We know, that each spe
cies tries to get the best possible survival and
fastest growth. Survival could be measured by the
biomass. but an optimisation of the biomass of
several species at the same time, requires that we
sum up the biomass or perhaps make an addition
of the weighted biomass. An addition of the
biomass seems not to be an appropriate idea, as
the plants and trees for instance in a forest ecosys
tem will be so dominant. that changes in the
biomass of for instance foxes will be negligible.
The possibility for a fish to find a new pathway
for survival under new and emergent circum
stances is furthermore much better than for phy
toplankton due to the more advanced properties
of a fish. A fish can move to the corner of the
ecosystem where the food resources are most
abundant, it can see, smell and hear in which
direction it is most beneficial to move. A fish
carries more information in its genes, an informa
tion which is used to obtain a better surviva!.

The crucial question is: 'How can we quantify
the height in the fitness landscape? If we could
propose a quantification of the 'size of fitness', we
could be able calculate the fitness for any combi
nation of properties for instance by an ecological
model and select the combination giving the best
fitness. The thermodynamic variable exergy seems
to be an appropria te candidate as measure of the
height of fitness. Exergy is defined as the amount
of work, the system can perform when brought
into thermodynamic equilibrium with a weil
defined reference state (for instance the same sys
tem at thermodynamic equilibrium at the same
temperature and pressure as the considered
ecosystem). Exergy measures therefore the dis-

1=11

Ex = L !J,c,
1=0

(1)
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The unit applied is exergy in detritus exergy
equivalents. As 1 g of detritus has approximately
18.7 kJ of free energy, it is easy to obtain the
exergy content i kJ by multiplication by 18.7 of
the number resulting from Eq. (1).

Application of Eq. (1) for determination of the
exergy content corresponding to the model im
plies that the calculations determine the amount
of work the system can perform entirely due to its
chemical composition and its content of informa
tion, because there is no difference between the
temperature, pressure and other potentials be
tween the focal system and the reference state.
Moreover, the exergy found by these computa
tions is of course only the exergy of the model
which is always a simplification of the real ecosys
tem. If we know the composition of the real
ecosystem (which we will never be able to do in ail
details) then we could of course use the same
equation to find the exergy of the ecosystem. It
seems, however, more appropriate to use the term

Table 2
Approximate number of non repetitive genes

Orgamsms Number of infor- Conversion fac-
matlon genes tor d

Detritus 0 1
Mmimal cell (Mo- 470 27

rowitz, 1992)
Bacteria 600 3.0
Aigae 850 3.9
Yeast 2000 6.4
Fungus 3000 10.2
Sponges 9000 30
Moulds 9500 32
Plants, trees 10000-30000 30-87
Worms 10 500 35
Insects 10 000-15 000 30-46
Jellyfish 10 000 30
Zooplankton 10000-15000 30-46
Fish 100 000-120 000 300-370
Birds 120000 390
AmphibJans 120000 370
Reptiles \30000 400
Mammals 140000 430
Human 250000 740

d Based on number of mformation genes and the exergy
content of the orgamc matter in the various orgamsms, com
pared wlth the exergy contained in detritus. 1 g detritus has
about 18.7 kJ exergy (= energy which can do work).

'an exergy index' for Ex in accordance with Eq.
(1), because we will never know the complete
composition of an ecosystem and the equation
(see for instance Jorgensen, 1997) is anyhow an
approximatIOn as most thermodynamic calcula
tions are. It is assumed that the exergy index
expresses the fitness (the height in the fitness
landscape) and can be applied to find the combi
nation of parameters (properties of the species)
ensuring the best survival and growth.

5. Modelling structural dynamics

If we follow the usually applied modelling pro
cedure, we will attain a model that describes the
processes in the focal ecosystem, but the parame
ters will represent the properties of the state vari
ables as they are in the ecosystem during the
examination period. They are not necessarily valid
for another period of time, because we know that
an ecosystem is able to regulate, modify and
change them, if needed as response to the change
in the prevailing conditions, determined by the
forcing functions and the interrelations between
the state variables. Our present models have rigid
structures and a fixed set of parameters, reflecting
that no changes or replacements of the compo
nents are possible. This may cause problems for
the modeller, as he in the calibration phase at
tempts to find a set of parameters that is able to
give an acceptable fit between model results and
observations. It may be an impossible task-not
because the model gives an incorrect picture of
the focal processes in the ecosystem, but because
the properties of the components covered by the
parameters do change during the time of simula
tion due to seasonal and diurnal changes of the
forcing functions. It may therefore be necessary to
use time-varying parameters to get an acceptable
model calibration. Patten (1997) has used this
approach in a linear bear mode!. He demonstrates
that it is possible to use a set of linear differential
equations with time-varying parameters to get a
good accordance between model and observa
tions. He c1aims that the use of non-linear differ
ential equations often is based on our attempt to
get an acceptable fit by the unrealistic use of a
rigid set of parameters.
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We need to introduce parameters (properties)
that can change according to changing forcing
functions and general conditions for the state
variables (components) to be able to optimise
continuously the ability of the system to move
away from thermodynamic equilibrium. Conse
quently, we may be able to hypothesise, that the
level 5 and 6 in the regulation hierarchy Table 1
can be accounted for in our model by a current
change of parameters according to an optimisa
tion of exergy computed by Eq. (1). The idea is
currently to test if a change of the most crucial
parameters is able to produce a higher exergy of
the system and, if that is the case, to use that set
of parameters. Exergy is used in the modelling
procedure as a so-called goal function. Thereby
we obtain a better description of the regulation
mechanisms in our model. If this hypothesis
works, we obtain more realistic models that are
able to describe more accurately our observations,
and we get at least a certain support for the
hypothetical fourth law of thermodynamics.

The type of models that are able to account for
the change in species composition as weIl as for
the ability of the species. i.e. the biological com
ponents of our models, to change their properties,
i.e. to adapt to the prevailing conditions imposed
on the species, are sometimes called structural
dynamic mode!s to indicate, that they are able to
capture structural changes. They may also be
called the next generation of ecological mode!s to
underline that they are radically different from
previous modelling approaches and can do more,
namely describe changes in species composition. It
could be argued that the ability of ecosystems to
replace present species with other (level 6 in Table
1), better fitted species, can be modelled by con
struction of models that encompass aIl actual
species for the entire period that the model at
tempts to cover. This approach has, however, two
essential disadvantages. The mode! becomes first
of aIl very complex, as it will contain many state
variables for each trophic level. It implies that the
model will contain many more parameters that
have to be calibrated and validated. This will
introduce a high uncertainty to the mode! and will
render the application of the model very case
specific (Nielsen, 1992). In addition, the model

will still be rigid and not give the model the
property of the ecosystems to have continuously
changing parameters even without changing the
species composition (Fontaine, 1981).

Exergy has been used most widely as a goal
function in ecological models, and the resuIt of
sorne case studies will be presented and discussed
below. It should be emphasised, that we are calcu
lating by the proposed method only an approxi
mate and relative value of the exergy, based on
statistical thermodynamic considerations. A rela
tive value is, however, sufficient for the use of an
exergy index as goal functions in models. It is
obviously of theoretical as weIl as of environmen
tal management interest to develop mode!s which
are able to predict changes in the species composi
tion and/or in the ecological structure or at least
to indicate the changes of the important proper
ties of the dominant species to account for ecosys
tem reactions to changes in external factors. The
idea of the new generation of models presented
here is to find continuously a new set of parame
ters (limited for practical reasons to the most
crucial (= most sensitive) parameters) which is
better fitted for the prevailing conditions of the
ecosystem. 'Fitted' is defined in the Darwinian
sense by the ability of the species to survive and
grow, which mayas already discussed be mea
sured by exergy (see Jorgensen, 1982, 1986, 1990;
Jorgensen and Mejer, 1979; Jorgensen et al.,
1995a; Mejer and Jorgensen, 1979). Fig. 5 shows
the proposed modelling procedure, which has
been applied in the cases presented be!ow. The use
of exergy calculations to vary continuously the
parameters has only been used in 10 cases, of
which two biogeochemical models will be dis
cussed be!ow. One of the JO case studies has been
used to support the so-called Intermediate Distur
bance Hypothesis.

6. Presentation of a case study illustrating the
application of the structural dynamic modelling
approach

The resuIts from Sobygaard Lake (Jeppesen et
al.. 1990) are particularly fitted to test the appli
cability of the described approach to structural
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Select parameters based upon the
Iiterature and according to species

composition.

r
Select most crucial parameters, sym
bolized by a parameter vector P.

,
Test after timesteD t ail combinations
of ail the selected Darameters +/- x%
i.e., 3 levels for each, totally 3 corn
binations, where n is the number of
selected parameters (number of ele-
ments in the parameter vector), to find
the combination giving the highest
exergy.

,

Test after timestep n*t ail combinations
of the parameters again using the
parameters at timestep n*t-1 +/-
x% and select the combination, that
gives the highest exergy.

Fig. 5. The procedure used for the development of structural
dynamic models.

dynamic models. As an illustration to structural
dynamics of ecosystems and the possibilities to
capture the flexibility of ecosystems, the case
study of S0bygaard Lake will be presented in
detail. S0bygaard Lake is a shallow lake (depth 1

m) with a short retention time (15 20 days). The
nutrient loading was significantly red uced after
1982, namely for phosphorus from 30 to 5 g
Pjm2y. The reduced load did, however, not cause
reduced nutrients and chlorophyll concentrations
in the period 1982-1985 due to an internalload
ing caused by the storage of nutrients in the
sediment (1eppesen et al., 1990). However, radical
changes were observed in the period 1985-1988.
The recruitment of planctivorous fish was signifi
cantly reduced in the period 1984-1988 due to a
very high pH caused by the eutrophication. As a
result zooplankton increased and phytoplankton
decreased in concentration (the summer average
of chlorophyll A was reduced from 700 in 1985 to
150 ~gjl in 1988). The phytoplankton population
even collapsed in shorter periods due to extremely
high zooplankton concentrations. Simultaneously
the phytoplankton species increased in size. The
growth rate decreased and a higher settling rate
was observed (Jeppesen et al., 1990). The case
study shows, in other words, pronounced struc
tural changes. The primary production was, how
ever, not higher in 1985 than in 1988 due to a
pronounced self-shading by the smaller algae in
1985. It was therefore very important to include
the self-shading effect in the model, which was not
the case in the first mode! version, which therefore
gave wrong figures for the primary production.
Simultaneously a more sloppy feeding of the
zooplankton was observed, as zooplankton was
shifted from Bosmina to Daphnia.

The model applied has six state variables: N in
fish, N in zooplankton, N in phytoplankton, N in
detritus, N as soluble nitrogen and N in sediment.
The model was developed by use of the software
STELLA. A- ~een, only the nitrogen cycle is
included in the model, but as nitrogen is the
nutrient controlling the eutrophication, it may be
sufficient to include only this nutrient. The aim of
the study is to be able to describe by use of a
structural dynamic mode! the continuous changes
in the most essential parameters using the proce
dure shown in Fig. 5. The data from 1984-1985
were used to calibrate the mode! and the two
parameters that it is intended to change from
1985 to 1988, got the fol1owing values by this
calibration:
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Table 3
Parameter combinations giving the highest exergy

Maximum growth rate of phytoplankton: 2.2 day
-1

was observed that the average size was increased
from a few 100 11m3 to 500-1000 11m3, which is a
factor of about 2-3 (Jeppesen et al., 1990). It
would correspond to a specific growth reduction
by a factor 1=22/3-32/3 (see J0fgensen, 1997;
Peters, 1983). It means that:

growth rate in 1988 = growth rate in 1985/1 (2)

where 1 is between 1.58 and 2.08, while 2.0 is
found by use of the structural dynamic modelIing
approach.

The settling was 0.2 m day - 1 (range 0.02-0.4)
~n 1985, while it was 0.6 m day - 1 (range 0.1-1.0)
III 1988. By the structural dynamic modelIing
approach was found an increase from 0.15 to 0.45
day - l, the factor being the same-three-but with
slightly lower values. The phytoplankton concen
tration as chlorophylI-A was simultaneously re
duced from 600 to 200 Ilg/1, which is
approximately according to the observed reduc
tion. AlI in aIl it may be concluded that the
structural dynamic modelIing approach gave an
acceptable result and that the validation of the
model and the procedure in relation to structural
changes was positive. The structural dynamic
modelIing approach is of course never better than
the model applied, and the presented model may
be criticised for being too simple and not account
ing for the structural dynamic changes of
zooplankton.

For further elucidation of the importance to
introduce a parameter shift, it has been tried to
run the 1985 situation with the parameter combi
nation found to fit the 1988 situation and vice
versa. It was not possible to get a workable model
if the parameters from 1985 was used to simulate
the 1987 and 1988 data. The structural changes
were so pronounced that a prediction based upon
the parameters from 1985 for 1987-1988 would
give completely wrong results. These exergy and
stability results for this exercise are shown in
!able 4. The results demonstrate that it is of great
Importance to apply the right parameter set to
given conditions. If the parameters from 1985 are
used for the 1988 conditions a lower exergy is
obtained and the model to a certain extent be
haves chaoticalIy while the 1988 parameters used
on the 1985 conditions give a significantly lower

1988

0.15
0.45

Setthng Rate

1.6

1985
Time (sommer monlhs only)

.J::

~
C>..
lU

0.15 :E
1.0

1985 2 2
1988 1.1

Rate (day-I) Maximum Growth
(m'day-I)

0.3 CI>

ë
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.!:
~
Ul

0.45 2.2 t--__

Fig. 6. The continuous changed parameters obtamed from the
applIcation of a structural dynamic modelling approach on
Sobygaard Lake are shown. a covers the settling rate of
phytoplankton and b the maximum growth rate of phyto
plankton.

Settling rate of phytoplankton: 0.15 day - 1

The state variable fish-N was kept constant = 6.0
during the calibration period, but an increased
fish mortality was introduced during the period
1985-88 to reflect the increased pH. The fish
stock was thereby reduced to 0.6 mg N/l-notice
the equation mort = 0.08 if fish> 6 (may be
changed to 0.6) else almost O. A time-step of t = 5
days and .\"Yo = 10% was applied; see Fig. 5. This
means that nine runs were needed for each time
step to select the parameter combination that
gives the highest exergy. The results are shown in
Fig. 6 and the changes in parameters from 1985 to
1988 (summer situation) are summarised in Table
3. The proposed procedure is able to simulate
approximately the observed change in structure.
The maximum growth rate of phytoplankton is
reduced by 50% from 2.2 to 1.1 day - l, which is
approximately according to the increase in size. It
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Table 4
Exergy and stablhty by dlfferent combinations of paramctcrs
and conditions

Parameter

1985

1988

Conditions

1985

75.0 Stable

38.7 Stable

1988

398 (average) VIOlent fluctu
ations. Chaos
614 (average) Only mmor
fluctuatIOns

The property of dynamic structure and adapt
able parameters is crucial in our description of
ecosystems and should therefore be included in ail
descriptions of the system properties of ecosys
tems. The few examples presented here show that
it is feasible to account for the adaptability of the
properties in models, although a more general
experience is needed before clear recommenda
tions on the application can be given.

Nutrtent concentraflon

7. The use of structural dynamic models to
understand the application of biomanipulation

-Range, where
blomanlpulaHon
hardly can:-be__•
applled

~
Range,where blomanlpu
lotion can be applled

Eutrophlcatlon (measured by phytoplankton cane or
Prlmary production)

Range, where Faster reco.
blomanlpula- very ableln.
flon nof 1& ad by blo

malpula
flon

FIg. 7. The hysteresls relation between nutnent level and
eutrophication measured by the phytoplankton concentration
is shown. The possible effect of blOmampulatlOn IS shown. An
effect of blOmanipulatlOn can hardly be expected above a
certain concentration of nutrients, as indicated on the dia
gram.

The eutrophication and oligotrophication of a
lacustrine environment do not proceed according
to a linear relationship between nutrient load and
vegetative biomass, but display rather a sigmoid
trend with delay, as shown in Fig. 7. The hys
teresis reaction is completely in accordance with
observations (Hosper, 1989; Van Donk et al.,
1989) and it can be explained by structural
changes (de Bernardi, 1989; Hosper, 1989; Sas,
1989; de Bernardi and Giussani, 1995). At in
creasing nutrient level, a lake ecosystem shows a
marked buffer capacity to variations, as only
slightly higher phytoplankton concentrations are
observed. It can be explained by a current increas
ing removal rate of phytoplankton by grazing and
settling. The zooplankton concentration and the

exergy. These results are consistent with
J0fgensen (1995), where it was shown that
parameters may be estimated by use of the princi
pIe applied in structural dynamic models, i.e. that
the parameter combination giving the highest ex
ergy should be expected in the real ecosystems. If
we have a high certainty for ail the parameters
except let us say two, these two missing parame
ters could be found as the combinations of these
two parameters in possible parameter space that
would give the highest exergy. If slightly too high
values of the parameters, above the values giving
maximum exergy, would be applied the model
would behave chaotic. The parameter giving the
highest exergy will therefore operate as the edge
of the chaos, which is according to the results
presented in Kauffman (1996).

The results of the presented case study show
that it is important for ecological and environ
mental models to contain the property of flexibil
ity, which we know ecosystems possess. If ~e

account for this property in the models, we obtam
models that are better able to produce reliable
predictions, particularly when the forcing func
tions on the ecosystems change and thereby pro
voke changes in the properties of the important
biological components of the ecosystem. In sorne
cases we get completely different results, when we
apply a continuous change of the parameters
from when we use tixed parameters. In the tirst
case we get results that are better in accordance
with our observations and as we know that the
parameters do actually change in the natural
ecosystems, we can only recommend the applica
tion of this approach as far as possible in ecolog
ical modelling.
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concentration of predatory fish are maintained at
relatively high level under these circumstances. At
a certain level of eutrophication it is, however, not
possible for zooplankton to increase the grazing
rate further, and the phytoplankton concentration
will increase very rapidly by slightly increasing
concentrations of nutrients. When the nutrient
input is decreased under these conditions a similar
buffer capacity to variation is observed. The
structure has now changed to a high concentra
tion of phytoplankton and planktivorous fish
which causes a resistance and delay to a change
where the second and fourth trophic levels be
come dominant again.

Willemsen (1980) distinguishes two possible
conditions:
1. A bream state characterised by turbid water,

high eutrophication, low zooplankton concen
tration, absent of submerged vegetation, large
amount of breams, while pike is hardly found
at aIl.

2. A pike state, characterised by clear water, low
eutrophication. Pike and zooplankton are
abundant and there are significant fewer
breams.

The presence of two possible states in a certain
range of nutrient concentrations may explain why
biomanipulation not always has been used suc
cessfully. According to the observations referred
in the literature, success is associated with a total
phosphorus concentration below 50 llg/l
(Lammens, 1988) or at least below 100-200 llg/l
(Jeppesen et al., 1990), while disappointing results
are often associated with phosphorus concentra
tion above this level of more than approximately
120 llg/l (Benndorf, 1987, 1990) with a difficult
control of the standing stocks of planktivorous
fish (Mills et al., 1987; Shapiro, 1990; Koschel et
al., 1993).

Scheffer (1990) has used a mathematical model
based on catastrophe theory to describe these
shifts in structure. This model does however not
consider the shifts in species composition, which is
of particular importance for zooplankton. The
zooplankton population undergoes a profound
structural change when we increase the concentra
tion of nutrients passing from a dominance of
calanoid copepods to small cladocera and rotifers

according to the fol1owing references: Carpenter
et al., 1985, 1987; Sterner, 1989; de Bernardi and
Giussani, 1995; Giussani and Galanti, 1995. It
would therefore be interesting to test if structural
dynamic models, i.e. models which consider the
current changes in properties of the species due to
changes in the conditions (the forcing functions,
mainly the concentration of nutrients), could be
used to give a better understanding of the rela
tionship between concentrations of nutrients and
the vegetative biomass and to explain possible
results of biomanipulation. This section refers the
results achieved by development of a structural
dynamic models with the aim to understand the
above described changes in structure and species
compositions (Jorgensen and de Bernardi, 1998).

The applied model has six state variables, dis
solved inorganic phosphorus, phytoplankton,
phyt, zooplankton, zoopl., planktivorous fish, fish
l, predatory fish, fish 2 and detritus, detritus. The
forcing functions are the input of phosphorus, in
P, and the through flow of water determining the
retention time. The latter forcing function deter
mines also the outflow of detritus and phyto
plankton. The conceptual diagram is similar to
Fig. 4, except that only phosphorus is considered
as nutrient, as it is presumed that phosphorus is
the limiting nutrient.

Simulations have been carried out for phospho
rus concentrations in the in flowing water of 0.02,
0.04, 0.08, 0.12, 0.16, 0.20, 0.30, 0.40, 0.60 and
0.80 mg/l. For each of these cases the model was
run for any combination of a phosphorus uptake
rate of 0.06,0.05,0.04,0.03,0.02,0.01 1/24 h and
a grazing rate of 0.125, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6,
0.8 and 1.0 1/24 h. When these two parameters
were changed a simultaneous changes of phyto
plankton and zooplankton mortalities were made
according to allometric principles (see Peters,
1983). The parameters which are made variable to
account for the dynamics in structure are there
fore for phytoplankton growth rate (uptake rate
of phosphorus) and mortality and for zooplank
ton growth rate and mortality.

The settling rate of phytoplankton was made
proportional to the (length)2. Ralf of the addi
tional sedimentation when the size of phytoplank
ton increases corresponding to a decrease in the
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Fig, 8. The maximum growth rate of phytoplankton obtained
by the structural dynamic modelling approach is plotted versus
the phosphorus concentration.

Fig. 9. The maximum growth rate of zooplankton obtained by
the structural dynamic modelling approach lS plotted versus
the zooplankton concentration.

Information 1 and 2 versus P-input

2000 -r-----------------~

Fig. 10. The exergy is plotted versus the phosphorus concen
tration. Information 1 corresponds to a maximum zooplank
ton growth rate of 1/24 h and information 2 corresponds to a
maximum zooplankton growth rate of DA 1/24 h, The other
parameters are the same for the two plots, included the
maximum phytoplankton growth rate taken from Fig. 8 as
function of the phosphorus concentration.
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and 9. The uptake rate of phosphorus for phyto
plankton is graduaIly decreasing when the phos
phorus concentration increases. As seen the
zooplankton grazing rate changes at the phospho
rus concentration 0.12 mg/l from 0.4 1/24 to 1.0
1/24 h. i.e. from larger species to smaIler species.
which is according to the expectations.

uptake rate, was aIlocated to detritus to account
for resuspension or faster release from the sedi
ment. A sensitivity analysis has revealed that ex
ergy is most sensitive to changes in these five
selected parameters which also represent the
parameters which change significantly by size. As
mentioned in the introduction, a change in size is
observed as a response to changes in nutrient
loading. The six, respectively 9 levels selected
above represent approximately the range in size
for phytoplankton and zooplankton.

For each phosphorus concentration 54 simula
tions were carried out to account for aIl combina
tions of the two key parameters. Simulations over
three years, 1100 days, were applied to ensure that
either steady state, limit cycles or chaotic be
haviour would be attained. It was according to
the above presented structural dynamic modeIling
approach presumed that the combination giving
the highest exergy under the prevailing conditions
should be selected as representing the process
rates in the ecosystem. If exergy oscillates even
during the last 200 days of the simulation, the
average value for the last 200 days was used to
decide on which parameter combination would
give the highest exergy. The combinations of the
two parameters, the uptake rate of phosphorus
for phytoplankton and the grazing rate of
zooplankton giving the highest exergy at different
levels of phosphorus inputs are plotted in Figs. 8



90 S.E. Jorgensen / Ecological Modelling 120 (1999) 75--96

12 -,------------------,

Data 'rom "data catastrophe" If it is presumed that exergy indices can be used
as a goal function in eco10gica1 modelling. the
results seem to be able to exp1ain why we observe
a shift in grazing rate of zoop1ankton at a phos
phorus concentration in the range of 0.1-0.15
mg/!. The ecosystem selects the smaller species of
zoop1ankton above this 1eve1 of phosphorus be
cause it means a higher 1eve1 of the exergy index,
which can be trans1ated to a higher rate of sur
viva1 and growth. It is interesting that this shift in
grazing rate on1y gives a little higher 1eve1 of
zoop1ankton, whi1e the exergy index 1evel gets
significantly higher by this shift, which may be
trans1ated as survival and growth for the entire
ecosystem. Simultaneous1y, a shift from a
zooplankton, predatory fish dominated system to
a system dominated by phytop1ankton and partic
u1arly by p1anktivorous fish takes place.

It is interesting that the 1eve1s of exergy indices
and the four bio10gica1 components of the mode1
for phosphorus concentrations at or be10w 0.12
mg/1 parameter combinations are on1y slightly
different for the two parameter combinations. It
can explain why biomanipu1ation is easy in this
concentration range. Above 0.12 mg/1 the differ
ences are much more pronounced and the exergy
index 1eve1 is clearly higher for a grazing rate of
1.0 1/24 h. 1t shou1d therefore be expected that
the ecosystem after the use of biomanipu1ation
easi1y fall back to the dominance of p1anktivorous
fish and phytop1ankton. These observations are
consistent with the general experience of success
and fai1ure of biomanipu1ation; see above.

If the concentrations of zoop1ankton and fish 2
is 10w, and high for fish 1 and phytop1ankton, i.e.
we are coming from higher phosphorus concen
trations, the simulation gives with high probabil
ity a1so a 10w concentration of zoop1ankton and
fish 2. When we are coming from high concentra
tions of zoop1ankton and of fish 2. the simulation
gives with high probabi1ity a1so a high concentra
tion of zoop1ankton and fish 2, which correspond
to an exergy index 1eve1 slight1y 10wer than ob
tained by a grazing rate of 0.4 1/24 h. This
grazing rate will therefore still be prevailing. As it
a1so takes time to recover the population of
zoop1ankton and particu1arly of fish 2 and in the
other direction of fish 1. these observations ex-

1000800

phyl l

---+-- phyl"
__ phyl 2

600400200

1'9 P Il

o-f.ll1I::Z;::...........-.,.....~- ........-,..............-..._--.,........,
o

4

6

10

-
}
Co

Fig. 10 shows the exergy, named on the dia
gram information, with an uptake rate according
to the results in Fig. 8 and a grazing rate of 1.0
1/24 h (called information 1). respective1y of 0.4
1/24 h (called information 2). Be10w a phosphorus
concentration of 0.12 mg/1 the information 2 is
slightly higher, whi1e information 1 is significantly
higher above this concentration. The phytop1ank
ton concentration increases for both parameter
sets with increasing phosphorus input. as shown
Fig. 11, whi1e the p1anktivorous fish shows a
significant1y higher 1evels by a grazing rate of 1.0
1/24 h. when the phosphorus concentration is 0.12
mg/1 (= valid for the high exergy 1eve1). Be10w
this concentration the difference is minor. The
concentration of fish 2 is higher for the case 2
corresponding to a grazing rate of 0.4 1/24 h for
phosphorus concentrations be10w 0.12 mg/!.
Above this value the differences are minor, but at
a phosphorus concentration of 0.12 mg/1 the 1eve1
is significant higher for a grazing rate of 1.0 1/24
h, particu1arly for the 10wer exergy 1eve1, where
a1so the zoop1ankton leve1 is highest.

Fig. II The phytoplankton concentration as function of the
phosphorus concentratIOn for parameters correspondlllg to
'lllformation l'and 'informatIOn 2'; see Fig. 10. The plot
named 'Illformation 1*' coincides with 'informatIOn l'. except
for a phosphorus concentratIOn of 0.12 mg/!. where the model
shows hmlt cycles. At this concentratIOn. information 1* rep
resent the higher phytoplankton concentration. while informa
tion 1 represent the lower phytoplankton concentration.
Notice that the structural dynamlc approach can explain the
hysteresls reactions.
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Table 5
kJ/equiv available to build ATP for various oxidation pro
cesses of organic matter at pH 7.0 and 25°C

utilise this energy flow to move away from ther
modynamic equilibrium. If more combinations of
processes and components are available to utilise
this energy flow, the combination which can ob
tain the highest storage of exergy ( = provide the
biggest distance from thermodynamic equi
librium) will win. It has been possible in addition
to the structural modelling studies, to find a few
case studies (see below) where several pathways
are available to utilise the flow of exergy and
where the exergy gained by the system can be
calculated directly (Jorgensen, 1997). These (few)
case studies support the presented hypothesis, as
the selected pathways give the system the highest
(stored) exergy.

The sequence of oxidation of organic matter
(see for instance Schlesinger, 1997) is as follows:
by oxygen, by nitrate, by manganese dioxide, by
iron (III), by sulphate and by carbon dioxide. It
means that oxygen will always out-compete ni
trate which will out-cornpete manganese dioxide
and so on. The amount of exergy stored in ATPs
(ATP represents a storage of 42 kJ exergy per
mole) in the microorganisms winning the competi
tion as a result of the oxidation processes de
creases in the same sequence, as it should be
expected if the hypothesis was valid; see Table 5.
Numerous experiments have been performed to
imitate the formation of organic matter in the
primeval atmosphere on earth 4 x 109 years ago
(see for instance Jorgensen, 1997). Various

plain the presence of hysteresis reactions. An in
terpretation of the results points toward a shift at
0.12 mg/l, where a grazing rate of 1.0 1/24 h yields
limit cycles. It indicates an instability and a prob
ably easy shift to a grazing rate of 0.4 1/24,
although the exergy level is in average highest for
the higher grazing rate. A preference for a grazing
rate of 1.0 1/24 h at this phosphorus concentra
tion should therefore be expected, but a lower or
higher level of zooplankton is dependent on the
initial conditions.

The model is considered to have general appli
cability and has been used to discuss the general
relationship between nutrient level and vegetative
biomass and the general experiences by applica
tion of biomanipulation. When the model is used
in specific cases, it may however be necessary to
include more details and change sorne of the
process descriptions to account for the site specific
properties, which is according to general mod
elling strategy. It could be considered to include
two state variables to coyer zooplankton, one for
the bigger and one for the smaller species. Both
zooplankton state variables should of course have
a current change of the grazing rate according to
the maximum value of the goal function. The
model could probably also be improved by intro
duction of size preference for the grazing and the
two predation processes which is in accordance
with numerous observations. In spite of these
shortcomings of the applied modeL it has been
possible to give a right qualitative description of
the reaction to changed nutrient level and bioma
nipulation, and even to indicate an approximately
correct phosphorus concentration, where the
structural changes may occur. This may be due to
an increased robustness by the structural dynamic
modelling approach.

8. Further support to the hypothesis

The hypothesis which we have applied to de
velop structural dynamic models-to describe
adaptation and/or shifts to better fitted species
with other properties-may be formulated as fol
lows: If a system receives an inflow of energy (for
ecosystems solar radiation), it will be able to

Reaction

CH20+02 --->C02+H20
CH 20+O.8 NO; +0.8H+--->

CO2+0.4 N2+ 1.4 H20
CH20+2Mn02 +H+ --->

CO2 +2 Mn2 ++3H20
CH20+4FeOOH+8H+

--->C02 + 7H20+Fe2+
CH20+0.5S0~-+0.5H+

--->C02+O.5HS- +H20
CH 20+O 5C02 --->C02 +O.5CH4

Available
(kJ/eqUlv)

125
119

85

27

26

23
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zooplankton. On the figure is indicated, whether a
steady state can be obtained, or whether fluctua
tions occur. If regular oscillations occur, the aver
age of the exergy for one oscillation is used. At a
maximum growth rate of 0.5 I/day regular oscilla
tions occur, and the average level of exergy is
slightly lower than for a maximum specifie growth
rate of 0.425 I/day. At a maximum specifie
growth rate of 0.6 I/day an even lower average
exergy is obtained and the regularity is smaller. At
higher growth rate the exergy and the state vari
ables exhibit violent and irregular changes.

The highest level of exergy is obtained for
maximum growth rate of zooplankton slightly
lower than the values, that give exhibit chaotic
behaviour; see Fig. 12. The highest exergy is
therefore for this particular model obtained at the
'edge of chaos'. The maximum growth rate ob
tained at the highest level of exergy can further
more be considered realistic, i.e. according to the
range found in the literature for the maximum
specifie growth rate of zooplankton; see Jorgensen
et al. (1991). Fig. 13 shows the same plot as Fig.
12, but with introduction of fish in the model.
Lower specifie growth rate means that zooplank
ton get bigger in size following general allometric
relationships (see Peters, 1983). This behaviour of
the model is entirely following several 0 bserva
tions in nature: predation by fish yields zooplank
ton, that often has bigger size (provided that fish
doesn't have any size preference which, however,

Fig. 12. Exergy as mg detritus/l is plotted versus the maximum
growth rate of zooplankton for a model with nutrients, de
trItus, phytoplankton and zooplankton as state variables.

A detailed examination of the relationship be
tween the behaviour and the value of a specifie
parameter, in this case the maximum growth rate
of zooplankton, has been made in Jorgensen
(1995). Fig. 12 shows the results of simulations
with a model with the following state variables:
nutrients, phytoplankton, zooplankton and de
tritus. The maximum growth rate of zooplankton
has been varied. The model is run to steady state,
if a steady state can be obtained. The exergy index
expressed as 'exergy of g organic matter' /1 is
plotted versus the maximum growth rate of

9. The application of the exergy index to assess
the value of unknown parameters

sources of energy have been sent through agas
mixture of carbon dioxide, ammonia and
methane. Analyses have shown that a wide spec
trum of various compounds included amino acids
is formed under these circumstances, but generally
only compounds with rather large negative free
energy (i.e. high exergy storage) will form an
appreciable part of the mixture (Morowitz, 1968).

At the biochemical level, we find that different
plants operate three different biochemical path
ways for the process of photosynthesis: (a) the C3
or Calvin Benson cycle; (b) the C4 pathway; and
(c) the crassulacean acid metabolism (CAM) path
way. The latter pathway is the less efficient than
the two other possible pathways, measured as g
plant biomass formed per unit of energy received.
Plants using CAM pathway can, however, survive
in harsh, arid environment, but the photosynthe
sis will switch to C3 as soon as the availability of
water is sufficient (see Shugart, 1998). Givnish
and Vermelj (1976) made the assumption leaves
optimise the payoff of having leaves of a given
size versus maintaining leaves of a given size.
They can by this assumption which corresponds
to optimisation of exergy storage, explain the size
of leaves in a given environment dependent on the
solar radiation and the humidity. The entire evo
lution has been towards organisms with an in
creasing number of non-nonsense genes and more
types of cells, i.e. towards storage of more exergy
due to the increased information content.
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maximum values, smaller and smaller minimum
values and increasing occurrence of the smaller
values, resulting in decreasing average values of
the exergy. It is iIlustrated Fig. 15, where the
average exergy is plotted versus the fractal
dimension.

In this case is obtained a fractal dimension of
1.0 for the values of the maximum growth rate of

Fig. 14. The fractal dimension obtamed for the plots exergy =

f(time) for various values of the maximum growth rate of
zooplankton IS shown.

may be the case) and has slower growth rates (see
Peters, 1983). The maximum specifie growth rate
found at maximum exergy for the model mn with
fish is also within the range of values found in
nature: approximately 0.15/0.5 I/day; see
J0rgensen et al. (1991), and J0rgensen (1988),
J0rgensen (1 994a).

If the fish is removed from the model again.
The level of exergy decreases drastically due to the
loss of the information embodied in the fish, but
by increasing the maximum growth rate of
zooplankton the exergy increases again. The re
sults from Fig. 12 is reproduced again with the
highest Ievel of information at a maximum growth
rate of 0.425 I/day, and at the edge of chaos.

The fractal dimension may be considered a
measure of the chaotic behaviour. The fractal
dimensions obtained for the plots of exergy versus
the time for various levels of the maximum
zooplankton growth rate for the model mns with
out fish are shown on the Fig. 14. As seen the
fractal dimension increases with increasing maxi
mum growth rate of zooplankton as expected due
to the more and more violent fluctuations of the
state variables and thereby the exergy. When the
maximum growth rate increases more and more
violent fluctuations result with higher and higher

Fraelal dimension
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Fig. 15. The average exergy is plotted versus the fractal
dimension based on the case study used m Figs. 12-14.
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Fig. 13. Exergy as mg detritus/I is plotted vcrsus maximum
growth rate of zooplankton with nutrients, detritus, phyto
plankton. zooplankton and fish as state variables. N otzce that
the exergy IS higher than m Fig. 12 due to the presence of fish,
and that the maximum growth rate at maxImum exergy levells
lower. No slze preference is assumed for thc zooplankton
preda ted by the fish.
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zooplankton ::;; 0.425 Ijday, because the model
considers a steady state situation where no fluctu
ations in the phytoplankton due to variations in
temperature and solar radiation are considered. If
normal diurnal and seasonal changes are consid
ered these parameter values will exhibit a fractal
dimension slightly more than l, but the fractal
dimension will still increase when the maximum
growth rate is > than the maximum growth rate
at maximum exergy index.

The values of exergy and the fractal dimensions
in the here illustrated case study are of course
dependent on all the selected parameter values.
The shown tendency is, however, general: the
highest exergy is obtained by a parameter value
above which chaotic behaviour, increasing fractal
dimension for the state variables and the exergy
index as function of time and decreasing average
exergy index occur. The parameter estimation is
as mentioned in the introduction often the
weakest point for many of our ecological models.
Reasons are:

an insufficient number of observations to en
able the modeller to calibrate the number of
more or less unknown parameters,
no or only little literature information can be
found,
ecological parameters are generally not known
with sufficient accuracy
the structure shows dynamical behaviour, i.e.,
the parameters are continuously changing to
achieve a better adaptation to the ever changing
conditions; see also Jorgensen (1988, 1992a),
or a combination of two or more of these
points.

The above-mentioned results seem to reduce these
difficulties by imposing the ecological facts that
aIl the species in an ecosystem have the properties
(described by the parameter set) that are best
fitted for survival under the prevailing conditions.
The property of survival can currently be tested
by use of exergy, since it is survival translated into
thermodynamics. Coevolution, i.e. when the spe
cies have adjusted their properties to each other,
is considered by application of exergy for the
entire system. Application of the ecological law of
thermodynamics as constraint on our ecological
models enable us to reduce the feasible parameter

range, which can be utilised to facilitate our
parameter estimation significantly.

10. Conclusions

Ecosystems are very different from physical
systems mainly due to their enormous adaptabil
ity. It is therefore crucial to develop models that
are able to account for this property, if we want
to get reliable model results. The use of exergy as
goal functions to coyer the concept of fitness
seems to offer a good possibility to develop a new
generation of models, which is able to consider
the adaptability of ecosystems and to describe
shifts in species composition. The latter advantage
is probably the most important, because a de
scription of the dominant species in an ecosystem
is often more essential than to assess the level of
the focal state variables.

It is possible to model a competition between a
few species with quite different properties, but the
structural dynamic modelling approach makes it
feasible to include more species even with only
slightly different properties, which is impossible
by the usual modelling approach; see also the
unsuccessful attempt to do so by Nielsen (1992).
The rigid parameters of the various species make
it difficult for the species to survive under chang
ing circumstances. After some time only a few
species will still be present in the modeL opposite
what is the case in reality, where more species
survive because they are able to adapt to the
changing circumstances. It is therefore important
to capture this feature in our models. The struc
tural dynamic models seem promising in this re
spect, although more experience is needed before
a final conclusion on their applicability can be
made.

It is interesting that the ranges of growth rate
actually found in nature (see for instance
Jorgensen et al., (1991)) are those, which give
stable, i.e. non-chaotic conditions. AlI in aIl it
seems possible to conclude that the parameters
that we can find in nature today, are in most cases
those which assure a high probability of survival
and growth in a11 situations; chaotic situations are
thereby avoided. The parameters that could give
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possibilities for chaotic situations, have sirnply
been excluded by selection processes. They rnay
give high exergy in sorne periods, but later the
exergy becornes very low due to the violent fluctu
ations and it is under such circurnstances that the
selection process excludes the pararneters (proper
ties), that cause the chaotic behaviour.

References

Allen, P.M .. 1988. EvolutIOn: Why the whole IS greater than
the sum of the parts. In: W.Wolff, CJ. Soeder and F.R.
Drepper (editors), Ecodynamics: Contribution to Theoreti
cal Ecology. Part 1: Evolution. Proceedings of an Interna
tIOnal Workshop, 19-20. October, 1987, Jühch, Germany,
Springer Verlag, Berlin, pp. 2-30.

Benndorf. J., 1987 Food-web manipulation wlthout nutrient
control: A useful strategy in lake restoratlOn? Schwelz Z
Hydrol. 49, 237 - 248.

Benndorf. 1.. 1990 Conditions for effective biomanipulation.
ConclUSIOns derived from whole-Iake experiments m Eu
rope. Hydrobiologia 200/201, 187-203

Boltzmann, L.. 1905. The Second Law of thermodynamlcs.
Populare Schriften. Essay No 3. (address to Imperial
Academy of Science in 1886). Reprinted in Enghsh m
TheoretIeal Physies and Philosophieal Problems, Seleeted
Writings of L. Boltzmann. D. Reidel. Dordrecht.

Brown, J.H., 1995. Macroecology The University of Chicago
Press, Chicago. IL. p. 269.

l'arpenter, S.R.. Kitchell, J.F., Hodgson, J.R., 1985. Cascad
ing trophic interactions and lake productivity. BioScience
35, 639-643.

l'arpenter, S.R., Kitchell, J.F., Hodgson. J.R., Cochran, P.A.,
Eiser, J J., Eiser, MM., Lodge, D.M., Kretchmer. D., He,
X., von Ende, CN.. 1987. Regulation of lake pnmary
productlvity by food web structure Ecology 68, 1863
1876.

de Bernardi, R. and Giussani, G. 1995. BlOmampulatlOn'
Bases for a Top-down Control 1-14. In Guidelines of Lake
Management, Volume 7. BlOmampulatlOn in Lakes and
Reservoirs, edited by De Bernardi, R. and Giussani, G.
ILEC and UNEP. p. 211.

de Bernardi, R., 1989. Biomanipulation of aquatic food chains
to Improve water quahty in eutrophlc lakes 195-215 In:
Ravera, O. (Ed ), Ecological Assessment of Environmental
DegradatIOn, Pollution and Recovery. Elsevier, Amster
dam, p. 356.

Fontaine, T.D., 1981. A selfdeslgmng model for testmg hy
potheses of ecosystem development 281-291. In: D. Dubois
(editor), Progress in ecologlcal engmeering and manage
ment by mathematical modelling, Proc. 2nd Int. Conf.,
State-of-the-Art of Ecologlcal Modelling, 18-24 April
1980, Liege, Belgium. p. 720

GlUssam, G .. Galantl. G .. 1995 Case Study' lake Candla
(Northern Italy) 135-146. In. Oc Bernardl, R. and GlUssalll
(edltors). GUldelmcs or Lakc Managcmcnt. Volume 7
Blomampulatlon m Lakes and Reservoirs, G. ILEe and
LINEP. 211 pp

Glvmsh, T J . Vermclj, G J.• 1976. Sizes and shape, or liana
leaves. Am Natur llO, 743 - 778.

Hosper. S.H.. 1989. BlOmampulatIon, new perspective for
restonng shallow, eutrophie lakes m The Netherlands
Hydroblol Bull 73. Il ··18.

Jorgensen, S.E. 1982 A hoh,tle approach to eco10gleal mod
elling by apphcation of thermodynamics 72·86. In:
Mltseh, Bosserman and Dillon (editors). Systems and en
ergy., Ann Arbor. p. 176.

Jorgensen. S.E., 1986. Structural Dynamles model. Ecol. Mod
elling 31. 1-9.

Jorgensen. S.E., 1988. Use or models as an expenmental tool
to show the structural changes are aecompamcd by in
ereased exergy Ecol. Model. 41.117-126.

Jorgensen, S.E.. 1990. Ecosystem theory, ecologleal buffer
capaelty, uncertalllty and complcxity. Ecol. Model. 52,
125-133.

Jorgensen, S.E, 1992a Dcvclopment of models able to ac
count for changes III specles composition Ecol. Model. 62,
195-208.

Jorgensen, S.E., 1992b. Parameters, ecological eonstramts and
exergy Eeol Model. 62, 163-170.

Jorgensen, S.E., 1994a. Fundamentals of Ecological Mod
elling, 2nd editlOn Elsevier, Amsterdam. p. 630.

Jorgensen, S.E., 1994b. Modcls as instruments for eombina
tion of ecological theory and envlronmental practIce Eco!.
Model 75176, 5-20.

Jorgensen, SE, 1994c. Revicw and companson of goal func
tIons l1l system ecology. Vie et Mlheu 44. 11-20

Jorgensen, S.E, 1995 The growth rate of zooplankton at the
edge of chaos. J. Theor. BIOl. 175, 13-21.

Jorgensen, S.E., 1997. IntegratIOn of Ecosystem Theories. A
Pattern, 2nd edition. Kluwer. Dordrecht, p. 400.

Jorgensen. S.E., 1998. An improved parameter estImation
procedure in lake modelhng. Lakes and Reservoirs: Res.
Manag. 3, 139-142.

Jorgensen. SE., Mejer, H.F .. , 1979. A holistie approach to
ecologleal modelhng Ecol Model 3, 39-61.

Jorgensen, S.E., Padisak, J., 1996. Does the intermediate dis
turbance hypothesls eomp1y wlth thermodynamics? Hydro
biologia 323, 9- 21.

Jorgensen, S.E., de Bernardl, R .. 1997. The apphcallon of a
model with dynamic structure to slmulate the effect of
mass fish mortahty on zooplankton structure in Lago de
Annone. HydrblOlogIa 356, 87 -96.

Jorgensen, S.E, de Bernardi, R., 1998. The use of structural
dynamle models to explain the suecess and failure of
biomanipulatlOn. HydroblOlogIa 379, 147-158.

Jorgensen, S.E., Nielsen, S.N., Jorgensen, L.A., 1991 Hand
book of Ecological Parameters and Eeotoxlcology El
sevIer. Amsterdam, pp. 1320



96 S.E. Jorgensen;' ECO!Oglca! Modelling 120 (1999) 75-96

Jorgensen, S.E, Nielsen, S.N., MeJer, H.F., 1995a. Emergy.
enVIron, exergy and ecologlCal modelling. Ecol. Modelling
77. 99-109

Jorgensen, S.E., Hulling-Sorenscn, B, Nlelsen, S.N., 1995b.
Handbook of Environmental and Ecologlcal Modelling.
CRC Press, Boca Raton, FL, US, p. 672

Jeppcsen, E.L Mortensen, E., Sortkjaer, 0., Kristensen,
P., Bldstrup, J., Timmermann, M., Jensen, J P., Han
sen, A.M., Sondergaard, M, Muller, J.P., Jensen, J.,
Riemann, B., Lmdegaard-Petersen, c., Bosselmann,
S, Chnstoffersen, K., Dall, E, Andersen, J.M., 1990.
Fish manIpulatIon as a lake restoration tool in shallow,
eutrophic temperate lakes. Cross-analysls of three Danish
case studles HydroblOlogia 200/201, 205-218.

Kauffman, S., 1996. At Home in the Universe The Search for
Laws of Complexlty Penguin Books, Oxford University
Press, Oxford, p. 320.

Kompare, B, 1995. The Use of Artificlal IntellIgence in Eco
logical Modelling, Ph.D Thesis at DFH. UnIversity Park
2, Copenhagen, p. 360.

Koschel, R., Kasprzak, P., Kriellltz, L., Ronneberger,
D., 1993. Long term effects of reduccd nutrient loadmg
and food-web manipulatIon on plankton in a stratlfied
Baltic hard water lake. Verh mt. ver Llmnol. 25, 647
651

Lammens, E.H .R.R., 1988. Trophic interactIOns in the hyper
trophic Lake TJeukemeer: Top-down and bottom-up ef
fects m relatIOn to hydrology, predation and blOturbatlOn,
dunng the period 1974-1988. LlmtlOloglGI (BerlIn) 19,
81--85

Lewm, B., 1994. Genes V. Oxford UlllverSIty Press, Oxford, p.
1272

Ll. W.H, Grauer, D., 1991. Fundamentals of Molecular Evo
lution. Sinauer, Sunderland, Massachusetts, p. 660.

Margalef, R., 1991. Networks in ecology. In' HIgashl, M. and
Burns, T P. (edItors). Theoretlcal Studies of Ecosystems:
the Network Perspectives. Cambndge Ulllverslty Press.
Cambridge, pp. 41-57

MeJer, HF. and Jorgensen, S.E., 1979. Energy and ecologlCal
buffer capacity 829-846 In State-of-the-art of ecological
modelling. ISEM, Copenhagen. p. 866.

MIlls, E.L., Forney, J.L, Wagner, K.J. 1987. Fish predation
and ItS cascading effcct on the Oneida Lake food chain
1I8-l31. In: Kerfoot, R. and Sih, S. (editors), Pre
datIon-direct and indIrect impacts on aquatIc commullltles.

University Press, New England, Hanover & London. p.
324.

Morowltz, HI, 1968 Energy flow in blOlogy. Academic Press,
New York, p. 180.

Morowitz, HI, 1992 Begmnmgs of Cellular life. Yale Univer
sIly Press, New Haven and London, p. 260.

Nlelsen, S.N., 1992 Application of maximum exergy in struc
turai dynamic modcls. Ph.D. Thesis, DFH, Institute A,
Section of Envlronmental Chemlstry, Copenhagen, Den
mark. p 51.

Patten, RC., 1997. Bear Model for Aironduck NatIOnal Park.
Ecol Model. 100, 11-42.

Peters, R.H., 1983. The Ecological Implication of Body Size.
Cambridge Ulllverslty Press, Cambridge, p. 286

Sas, H. (coordination) 1989. Lake restoration by reductlOn of
nutrient loadmg ExpectatlOns, experiences, extrapolatIOns.
St. AugustIn. Academia Verl. Richarz., p. 497.

Scheffer, M., 1990. Simple models as useful tools for ccolo
gists. Elsevier, Amsterdam. p 192

Schmdler, D.W., 1988. Effects of acid rain on freshwater
ecosystems. Science 239, 149-157

Schlesmger, WH., 1997. Biogeochemistry. An Analysis of
Global Change. Academic Press, New York, p 588

Schoffeniels, E., 1976. Anti-Chance. Pergamon Press, New
York, p. 198.

ShapIro, J., 1990. B/Omanipulation. the next phase-making it
stable. HydroblOlogia 200/210, 13-27

Shugart, H.H , 1998. Terrestrial Ecosystems in Changing EnvI
ronments. Cambridge University Press, Cambridge, p 537

Sterner, R.W., 1989. The role of grazers m phytoplankton
succession 107-140 In: Sommer, U. (Ed.), Plankton Ecol
ogy. Spnnger Verlag, Germany, p. 476.

Straskraba, M., 1979. Natural control mechanisms in models
of aquatic ecosystcms. Ecol Model. 6, 305-322.

Ulanowicz, R.E., 1986. Growth and Development. Ecosystem
Phenomenology Spnnger Verlag, New York. p. 203.

Van Donk, E., Gulatl. RD., Grimm, M.P., 1989. Food web
manipulatIOn in lake Zwemlust: posItIve and negative ef
fects dunng the tirst 2 years. HydroblOl. Bull. 23, 19-35.

Willemsen, J.. 1980 Fishery aspects of cutrophlcatlOn. Hydro
biol. Bull. 14, 12-21.

Wolfram, S., 1984a Cellular automata as models of complex
Ity. Nature 311, 419-424.

Wolfram, S.. 1984b Computer software m sCIence and mathe
matlCS. SCI. Am. 251, 140-151.



ELSEVIER Ecologlcal Modelhng 120 (1999) 97 - 107

E[OlOIiI[Al
mODElUnli

www.c1scvlcr com/locatc/ecomodel

Applications of the self-organising feature map neural
network in community data analysis
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Abstract

Freedom from restrictive assumptions that underlie many quantitative techmques make neural networks attractive
for ecological investigations. The potential of the self organising feature map (SOFM) neural network for the
classification, and to a lesser extent, ordination of vegetation data was investigated. The SOFM output was shown 10

correspond closely to classifications obtained from three alternative clustering algorithms, with similar samples
located close together in the SOFM output space. Moreover, the classes were distributed spatially in the SOFM
output by their relative similarity. This was eVldent with comparison against classifications derived at various levels
of a hierarchical classification that revealed thal the classes aggregated during each step of the hierarchical
classification also tended to lie close together in the SOFM output space. As a consequence, the spatial distribution
of classes in the SOFM output may represent the data in a manner similar to an ordination analysis. Sorne evidence
for this inference is provided by comparison with the results of a standard ordination analysis. © 1999 Elsevier
Science B.V. Ali rights reserved.

Keywords: Kohonen SOFM; Vegetation classification; Ordination

1. Introduction

Quantitative methods have been used increas
ingly for ecological investigations since the 1950s
(Greig-Smith, 1980). Many of the methods used
are based on conventional statistics. Conse
quently, the analyses are often based on a set of
often untenable assumptions (Potvin and Roff,
1993). For example, the general linear model that
underlies many methods of community classifica
tion and ordination, two major areas of quantita-

* Fax: + 44-1703-593295.
E-mail address:gmf@soton.ac.uk (G.M. Foody)

tive ecology, requires the satisfaction of
ecologically unrealistic assumptions. It is, for ex
ample, assumed that the relationships between
variables are linear when often they may be non
linear and even non-monotonie (Greig-Smith,
1980, 1996; Terborgh et al., 1997). Furthermore.
the underlying assumption of normal1y distributed
data is often not satisfied with ecological data
(Tong, 1992; Potvin and Roff, 1993) and empha
sis is placed on typical rather than the sometimes
more important extreme values in the data set
(Gaines and Denny, 1993). Deviations from the
assumptions of a particular quantitative method
are not always important, particularly if emphasis

0304-3800/99/$ - see front matter © 1999 Elsevier Science B.V. Ali nghts reserved.
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is on low level data exploration (Greig-Smith,
1980) but can result in major misuses and misin
terpretations. Attention has, therefore, turned to
the refinement of the techniques so they may be
appropriately applied or to adoption of alterna
tive methods. Thus, for example, non-linear ordi
nation analyses or use of classification methods
based on fuzzy sets have attracted interest (e.g.
Bosserman and Ragade, 1982; Bradfield and
Kenkel, 1987; Ludwig and Reynolds, 1988; Equi
hua, 1990; Tong, 1992; Foody, 1996). Further,
possibi1ities are offered by alternative paradigms
such as neural networks that are free of constrain
ing assumptions.

A variety of neural networks have been used in
eco10gica1 research. Much attention has focused
on feedforward neural networks (e.g. Lek et al.,
1995; Mastrorillo et al.. 1997; Maier and Dandy,
1998) with considerab1y less directed at exploiting
the potentia1 of the Kohonen or self organizing
feature map (SOFM) networks (e.g. Chon et al.,
1996). This type of neural network organises the
data by simi1arity. The output of the SOFM is a
low, typically two-dimensional, array in which
similar samples are clustered together. The aim of

this paper was to evaluate the use of the SOFM in
community data ana1ysis, particularly in relation
to classification but with sorne reference to ordi
nation. Despite sorne simi1arities, these two types
of analyses have different aims and applications.
Classification, for example, seeks to form groups
of samples with similar attributes whereas ordina
tion aims to arrange samp1es such that their simi
larity is reflected in their relative position or order
(Goldsmith et al., 1976; Greig-Smith, 1980). The
main focus of this paper was on the spatial ar
rangement of samples in the SOFM output and
its relationship to outputs from alternative clas
sification and ordination approaches.

2. Self organizing feature map (SOFM)

This section aims to provide a brief overview of
the salient features of the SOFM neural network.
Unlike other widely used neural networks, the
SOFM uses unsupervised learning and produces a
topologically ordered output that displays the
similarity between the samp1es presented to it
(Davalo and Naim, 1991; Schalkoff, 1992). The

+- Interconnecting welghts

+- Input unlts

Fig. 1. A basIc SOFM Note that each umt in the mput layer IS connected to every umt m the output layer by a weighted connection.
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3. Test site and data

Attention focused on data from surveys of veg
etation acquired from sites in Exmoor National
Park, UK (Fig. 2). Large tracts of the Park are
covered with moor and heath, much of high con
servational value, and these were the subject of
the field surveys. The analyses were undertaken

The output unit with the lowest distance is the
closest to the particular input sample and is taken
to be the "winning' or best matching unit, b. Once
b has been identified, the weights connecting the
input and output units may then be subject to
adjustment. Weight adjustment is, however, con
strained to include only those weights associated
with output units close to b with ail other weights
unaffected. Weight up-dating is, therefore, under
taken only within a defined neighbourhood, N, of
b and the size of this neighbourhood is generally
reduced during the learning phase. Although aIl
units, including the winning unit. within the
neighbourhood are included in the weight up-dat
ing process the magnitude of change made is also
a function of distance from the winning unit. The
weights associated with units close to the winning
unit are subject to a larger change than those
associated with units further from the winning
unit. TypicaIly the weight up-dating is achieved by
a function such as,

ilWIj = IX(~ - WIj)(sin db,/2db,) (2)

where IX is the learning rate, db, is a measure of the
distance between units i and b, and the terrn (sin
dh z/2db,) acts to reduce the magnitude of weight
changes with increasing distance from b. The
magnitude of IX is typically defined as a decreasing
function of iteration. The final output of the
SOFM is dependent on the selected network
parameter values, notably the size and shape of
the output layer and the number of iterations
together with N and IX and their associated
"shrinkage' terms (Schalkoff, 1992). TypicaIly
these parameters are defined subjectively on the
basis of trial investigations.

network consists of only two layers (Fig. 1). The
input layer contains a node or unit for each
variable (e.g. species) in the ecological data set.
The input units operate in a similar fashion to
those in other neural networks, effectively acting
as a means of presenting the data for each sample
to the network in an appropriate format. Unlike
the more widely used feedforward neural network,
there is no hidden layer and the input units are
instead connected directly to units in the output
layer or Kohonen layer. This output layer is also
typicaIly, but not necessarily, a two-dimensional
array of units and each of these units is connected
to every unit in the input layer by a weighted
connection. Lateral interaction between units in
the output layer also ensures that learning is a
competitive process in which the network adapts
to respond in different locations for inputs that
differ. Consequently, samples that are similar
should be associated with units that are close
together in the output layer while a dissimilar
sample would be associated with a distant unit
elsewhere in the output layer. While the rows and
columns on the output layer can be interpreted as
co-ordinate axes to locate units and upon which
the output of the SOFM may be interpreted they
need not have an explicit meaning or relation to
the ecological variables of the input data set. The
projection depicted by the SOFM output is also
non-linear. The distance between output units is,
therefore, difficult to evaluate objectively but
does, however, provide information on the simi
larity of samples associated with the units (Blayo
and Demartines, 1991; Goodacre et al., 1994).

As with other neural networks the analysis is
based on the solution of a large number of simple
operations that can be performed in paraIlel.
Since each of the n input units is linked to every
output unit by a weighted connection, each out
put unit has the same number of weights associ
ated with it as the dimensions of the input data
vectors. Each output unit, i, is fed the input data
vector, 1 = (1" 12 ••• 1n ), for each sample in paraIlel
and has an associated weight vector, W, = (W'l'
W'2"" W",). At the outset the weights are set
randomly but adjusted on each training iteration
t. This adjustment is often based on the Euclidean
distance measurement D, made for each output
unit with

Il

D,= l (IJ- W'Jf
J~ 1

(1)
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Fig. 2. Location of the test sites within Exmoor National Park.
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on a data set that comprised the presence/absence
of 10 vegetation types in 1 m quadrats sampled
along transects located at five sites in the Park
(Fig. 2). These vegetation data were acquired
typically at 50 or 100 m intervals along the tran
sects, the sampling approach was defined to sup
port a vegetation mapping project. Here the data
from 211 quadrats acquired during a ~ 6 week
period in mid-summer were used.

4. Methods

of network learning. The parameter defining the
size of the neighbourhood around the winning
unit, identifying the weights to be included in the
up-dating phase of network learning, was set at
0.65 and was reduced with iteration by the
function

(3)

where No is the initial neighbourhood size, Nf the
neighbourhood size at iteration t and T the total
number of iterations to be performed. The learn
ing rate was initially set at 0.30 and also declined
with iteration by the function:

where ao and a f represent the initial setting and
that at iteration t, respective1y. The total number
of learning iterations, T, was 50000.

For comparative purposes the results of the
SOFM analysis were evaluated against outputs
from a set of widely used alternative techniques.
The main focus was on three other forros of
unsupervised classification. The methods used
were a basic k-means clustering algorithm, a hi-

The nature of the SOFM output is dependent
on the settings of the various network parameters.
Here the parameters were selected on the basis of
trial runs and the Iiterature, with the study di
rected mainly at the exploration of the spatial
arrangement of samples in the SOFM's output
space. The main focus of the investigation was a
SOFM comprising 25 output units arranged in a
square layer and 10 input units. The weights
between the input and output units were initially
set randomly and then adjusted during the course

a, = ao(1 - t/T) (4)
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erarchical clustering algorithm (using between
group linkages based on Euclidean distance mea
surements) and the fuzzy c-means (FCM) al
gorithm. Of these classifiers, the FCM is perhaps
the least encountered but has been used for the
classification of ecological data (e.g. Equihua,
1990; Foody, 1996). The FCM is a non-hierarchi
cal clustering algorithm that may be used to sub
divide a data set into c clusters or classes. In a
fuzzy c-partition of a data set. the membership
functions characterise the membership of each
sample in ail classes. Memberships close to unity
indicate a high degree of similarity between a
sample and a class whereas memberships close to
zero indicate !ittle similarity between a samples
and a class. The algorithm used to derive these
membership values was that described by Bezdek
et al. (1994) using Euclidean distance measure
ments and with the parameter m = 2. A conven
tional hard classification was achieved by
allocating each sample to the class with which it
has the highest fuzzy membership value.

Ali classifications have a large subjective com
ponent and so comparison of the groupings
derived from different algorithms, or even from
the same algorithm with a different set of parame
ters, is likely to reveal differences. Furthermore,
the evaluation of the differences is difficult and
the identification of the most appropriate classifi
cation contentious. N onetheless, the concern here
is that the SOFM offers a largely assumption-free
and flexible method of classification that may
sometimes be more applicable than other meth
ods. The evaluation of the SOFM classification is,
therefore, made relative to the other methods with
particular emphasis on how classes derived from
the other algorithms are located in the space
defined by SOFM output layer. As the potential
of the SOFM was to be evaluated relative to the
other classifications in the absence of a means for
absolute evaluation, the classifications were not
optimised. Other studies have sought to compare
the accuracy of SOFM classifications with a range
of other classifications (e.g. Waller et aL, 1998).
Here the focus was on the spatial arrangement of
the vegetation samples in the SOFM output space
with particular emphasis on the potential to or
ganise the data into classes. If the SOFM is

providing a realistic classification of the data and
the other techniques are reasonably applicable, it
would be expected that samples belonging to the
same class, as assessed by the other classification
algorithms, would cluster together in the SOFM
output layer. Furthermore, it would be expected
that classes that are aggregated in the hierarchical
classification would be relatively close in the
SOFM outputs. The classifications derived from
the other algorithms, therefore, provide the back
drop for the evaluation of the SOFM classifica
tion.

5. Results and discussion

After the iterative learning phase in the SOFM
analysis, each of the 211 samples was associated
with an output unit. Each output unit contained
sorne of the samples and there was no obvious
discrete grouping of cases (Fig. 3a). This is likely
to be a function of both the nature of the vegeta
tion at the site and low level of measurement
precision of the vegetation data, but it is possible
that different network parameters, particularly a
larger output layer, could have produced a
sharper classification. Nonetheless, mapping the
vegetation presence/absence data for each sample
into the SOFM output reveals that sorne classes
are associated with different parts of the SOFM
output layer (Fig. 4), with sorne occurring across
much of the output layer while others were very
concentrated into a !imited region. For example,
the samples containing members of the Cyper
aceae were associated with the units along the
base of the SOFM outputs while gorse was associ
ated almost '. \dusively with the upper right cor
ner of the SOFM output layer. The SOFM,
therefore, appeared to have organized the samples
such that the various output units were associated
with different vegetation groupings. To assess this
more rigorously, the SOFM output was compared
with the other classifications.

As an initial step, various three and four class
classifications were derived using the three alter
native classification algorithms, these numbers se
lected subjectively on the basis of the nature of
the vegetation and dimensions of the SOFM.
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These three classifications (k-means, hierarchical
clustering and FCM) differed markedly. For in
stance, the pairwise correspondence between the
three 4-class classifications revealed no more than
58% agreement. The main concern here, however,
was that classes defined by each of the alternative
classifications should be associated with different

(a)

15 11 6 9 18

14 4 2 14 8

14 3 5 11 18

7 3 5 5 8

8 3 3 9 8

(c)

15 x 4 11 x 4 2 x 1 8 x 1 3 x 1
4x4 1 x 2 15 x 2

3x2 10 x 1 5 x 15x3 4x3 2x3 4x2 3x26x4
1 x 1 16 x 114 x 2 3x2 5 x3 3x2 2x2
7x3

6x2 3x2 5x3 2x2 6x1
1 x 3 3x3 2x2

5x1 1 x 1 3x3 5x2 8x23x2 2x3 4x3

4 classes, 80.1 %

parts of the SOFM output. That is, the samples of
any class should be clustered together in the
SOFM output. For each of the alternative classifi
cation outputs, the class associated with each
sample was mapped onto the location of the
sample in the SOFM output. Each SOFM output
unit was then associated with the class that domi-

(b)

1 x 1 11 x 3 2 x 1 7 x 1 18 x 114 x 3 4x3 2x2

3x2 2x2 1 x 2 12 x 1 8 x 111 x 3 2x3 1 x 3 2x2

5x1 3x2 4x2 1 x 1 12 x 1
9x2 1 x 3 10x2 6x2

7x2 3x2 5x2 5x2 4 x 1
4x2

8x2 3x2 3x2 9x2 8x2

3 classes, 85.8%

(d)

15 x 1 11 x 1
3 x 1 6x3 3 x 1
3x3 3x4 12 x 4

3 x 1 2x1
14 x 1 4 x 1 2x3 8x3 3x3

3x4 3x4

10 x 1 3x1 2x1
4x4 3x1 5 x 1 7x2 16 x 41x3

3 x 1 2 x 1 2 x 1
3x4 2x2 1 x 2 8x44x4 1 x 4 2x4

2x2 1 x 1 7x18x4 3x4 1 x 4 4x2 1 x 44x4

4 classes, 76.8%

FIg. 3. Summary of the class allocations made by a selection of classifications and their relatlOnshlp with the SOFM output. (a) a
representatlOn of the SOFM output layer showing the number of samples m the data set assoclated wlth each umt; (b) reiatlonshlp
between the class allocatIOns denved l'rom the 3 class k-means classificatIOn and the SOFM output; (c) relationshlp between the class
allocations derived from the 4 class k-means classificatIOn and the SOFM output; (d) relationship between the class allocations
denved l'rom the 4 class fuzzy c-means classIficatIOn and the SOFM output. Note that in (b)-(d) the number of samples E allocated
to a class A defined by one of the three alternative claSSIfication algonthms is indICated as {; x À; the class codes used are those
denved l'rom the alternative algorithm and are not comparable between the vanous alternatIve algorithms. Each SOFM output umt
was labelled wlth the code of the class that dommated It or. 1f there was a tie, by the code of the co-dominant class that also
dommated surroundmg units. The SOFM output space was then partItioned to show the location of the classes defined by the
alternative classificatIOns. The boundanes of the classes defincd are IIldlcated by the bold lmes between output units. The levcl of
agreement between the partitlOned SOFM output space and the alternative classification was then expressed as the percentage of
samples with a dass label defined from the alternatlve classificatIOn algorithm that occupied the region associated wlth the same
label in the partItioned SOFM space.
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nated the samples it contained and the SOFM
output space thereby partitioned by the classes
defined by the alternative classification algorithm.
To derive an index of the level of agreement
between the derived partitioning of the SOFM
output space and the allocations from an alterna
tive classification, the percentage of samples with
the same class label was computed. Fig. 3 shows
the distribution of the samples of the classes
defined in sorne of the classifications. In each, it
was apparent that the samples of each class are
clustered in the SOFM output layer, with a rela
tively high degree of agreement ( > 76%). In com
parison against the three class classification with
the k-means algorithm (Fig. 3b), for example, the
classes occupied the upper right corner, upper left
corner and lower portion of the SOFM output.
Moreover, disagreements (samples associated with
a SOFM output unit more strongly associated
wi th a class other than the one alloca ted by the
alternative classification algorithm) were spatially
concentrated around the (arbitrary) boundaries of
the classes depicted on the SOFM output. Over
aU, it was apparent that samples of each class
derived from the other alternative classifications
were clustered in the SOFM output with the
classes occupying different regions of the SOFM
output space (Fig. 3).

Since the number of classes permitted can have
a significant influence on the nature and quality of
an unsupervised classification or clustering analy
sis, the hierarchical classification was designed to
produce a range of classifications, with between 2
and 10 classes. The nature of the class aggregation
in the hierarchical classification is shown in Fig. 5.
As with the evaluations relative to the other clas
sifications, the allocated class label of each sample
was mapped onto its location in the SOFM out
put layer at each level in the hierarchy defined. As
previously, samples of the same class were found
to c1uster and the classes appeared to be associ
ated with different parts of the SOFM output
layer (Fig. 6). In addition to the classes occupying
different locations, it was apparent that the sam
pies and hence classes were distributed by relative
similarity. This was evident in comparison against
the classifications derived at different levels of the
hierarchical classification. The samples of classes

(b)

(el

(g)

(cl

(a)

~
B.,; 1

(il (jl
Fig. 4. Distribution of the ten vegetation types in the SOFM
output. The grey level of each output unit indicates the
percentage of samples associated with that unit (Fig. 3a) for
which the specified vegetation type was present (white = 100%,
black = 0%). The classes, as defined in the ground data, were
(a) Juncaceae; (b) broad leaved grasses; (c) fine leaved grasses;
(d) Molinia; (e) Ericaceae; (f) Cyperaceae; (g) Aowering plants;
(h) mosses; (i) bracken; and (i) gorse.
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classes. However, the SOFM is also providing a
representation of the data that may yield sorne
information on sample similarity analogous to
an ordination.

Ordination aims essentially to arrange the
samples spatially in a manner that reflects their
similarity (Goldsmith et al., 1976) which may,
therefore, have sorne correspondence to the out
put of an SOFM. Although the data set is too
limited for a rigorous assessment, a crude inves
tigation of the potential of the SOFM for ordi
nation was undertaken. For this. the mean
vegetation vector of the samples allocated to
each SOFM output unit was derived and input
to a basic ordination analysis, a principal com
ponents algorithm (peA). The PCA, a widely
used form of ordination, recast the data and the
location of the SOFM output units in the space
defined by the first two components is shown in
Fig. 7. While care is required in the interpreta
tion, particularly as the data are not ideal and
the main components leave much of the vari
ance unaccounted for, sorne trends are apparent.
For example, the SOFM output units in
columns A- E and row E-Y (Fig. 7b) are ar
ranged in order along the axis representing sec
ond principal component and, slightly less
clearly, columns K-O and P-Tare ordered
along that representing the first principal com
ponent. The SOFM, therefore, appears to have
ordered the data in a manner related to the axes
of the PCA. Unlike the SOFM, however, the
PCA allows the distance between samples to be
measured in a well-defined and consistent man
ner along the derived axes and evaluation of the
importance of each axis. The selection of which
method to use will, therefore, depend on the
objectives of the study (Greig-Smith, 1980) with
perhaps the SOFM most suited to situations in
which the analysis needs to be free from as
sumptions about the data and/or for low-level
data exploration. Although the comparison of
the PCA and SOFM analyses is difficult (Blayo
and Demartines, 1991) the results do indicate
the potential for sorne interpretation of the
SOFM output like an ordination but a more
detailed and rigorous analysis is required.

10 279B643

10 ~+--+_I~+__+_-t__+___+___+__+___+-----'
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Numberof
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t
2 ~-------'---------'----I---

6 ---------------

5

4 -------j ---------

that were aggregated at any stage of the hierar
chical classification tended to lie within neigh
bouring output units. Note, for instance, that
the samples of classes 3 and 5, joined at the first
step of the hierarchical classification, and 2 and
10, joined at the second step of the hierarchical
classification, lie close together in the SOFM
output (Figs. 6a and 6b). Similar trends are ap
parent throughout the hierarchy, with the classes
merged into the final two class scheme (Fig. 5)
occupying approximately the corresponding area
in the SOFM output (Figs. 6a and 6f). Follow
ing the class aggregation through the hierarchy,
the SOFM, therefore, appeared to have pro
vided a classification in which the classes corre
sponded closely to those defined from the other
algorithm and display them in a two dimen
sional array in which similar classes are located
close to each other.

The SOFM output appears, therefore, to 10
cate samples in terms of their relative similarity.
This is clearly desirable for a classification, and
the analyst could seek to group together samples
located in neighbouring SOFM output units into

Fig. 5. Summary of class aggregatlOn with the hierarchlcal
classificatIOn. The class codes used were those defined III the
initial, 10 class. classification
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Fig. 6. LocatIOn of the classes defined at various steps in the hierarchical classification III the SOFM output space The
representation IS similar to that used in Fig. 3 and the class labels correspond to those denved from the hlerarchical classification.
(a) 10 class classification, with the class labels corresponding to those depicted III Fig. 5; (b) 8 class classificatIOn; (c) 5 class
classification; (d) 4 class classification (relate to Figs. 3c and 3d); (e) 3 c1ass classification and (f) 2 class classificatIOn. Note in (f)
the reglOns of the SOFM output space associated with the two classes corresponds closely to the reglOns associated wlth the classes
defined at the illltial 10 class classification from which they were derived (FlgS. 5 and 6a).
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Fig. 7 Comparison of the SOFM output with the results of a pnnclpal components anaJysls. (a) the locatIOn of each SOFM output
umt, defined m (b), is shown within the space defined by the first two pnnclpal components (which accounted for 42.4% of the
variance).

6. Conclusions

Neural networks are attractive for ecological
studies. Analyses of vegetation survey data with a
SOFM neural network showed that samples of
classes, defined by other classifications, clustered
in the SOFM output space. Moreover, these sam
ples and classes were arranged by similarity, with
the class aggregation of a hierarchical classifica
tion corresponding essentially to the merging of
neighbouring regions in the SOFM output layer.
This indicates that the SOFM has potential as a
tool for ecological classification (grouping similar
samples) and ordination (arranging samples in an
ordered manner). Further investigations are, how
ever, required to fully evaluate the use of SOFM
in ecological studies. It must be stressed, however,
that while offering a simple and largely assump
tion-free approach the use of the SOFM is not
without its problems and limitations. Neural net
works such as the SOFM are not a panacea and
have a large subjective component with significant
analyst input required (e.g. in specification of the
network parameters or in group identification).
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Abstract

The problem of estimating a classification mIe with partially classified observations, which often occurs in
biological and ecological modelling, and which is of major interest in pattern recognition, is discussed. Radial basis
function networks for classification problems are presented and compared with the discriminant analysis with
partially classified data, in situations where sorne observations in the training set are unclassified. An application on
a set of morphometric data obtained from the skulls of 288 specimens of Microtus subterraneus and Microtus
multiplex is performed. This example illustrates how the use of both classified and unclassified observations in the
estimate of the hidden layer parameters has the potential to greatly improve the network performances. © 1999
Elsevier Science B.V. Ali rights reserved.

Keywords.- Classification; Discriminant analysis; Mixture analysis. Radial basis function networks

1. Introduction

One of the major problems related to practical
applications in pattern recognition is the presence
of partially classified data. In these situations the
population from which the sample is taken con
sists itself of a number of several homogeneous
sub-populations, but the group membership of the
training data is known only for sorne input vec
tors. If the quantity of data available is suffi
ciently large, and the proportion of unclassified
observations is small, then the simplest solution is
to discard those patterns from the data set. This
approach, however, is implicitly assuming that the
cause of the omission of the group membership is
independent of the data itself. If the reason of the

* Fax: + 39-0521-902375_
E-mail address:morlini@economiaeconumpr.it (1. Morhm)

omiSSIOn of the group membership depends on
the data, then this approach will modify the effec
tive data distribution (Bishop, 1995). When there
is too !ittle data to discard the unclassified one, or
when the proportion of unclassified observations
is high, it becomes important to use ail the infor
mation which is potentially available from the
incomplete patterns. It is intuitively clear, in fact,
that the unclassified observations, as weil as the
classified ones, contain sorne knowledge about the
distribution of the measured variables in the dif
ferent groups.

The purpose of this work is to show the benefits
of using the information contained in a partially
classified data set to the maximum extent. Radial
basis function networks are introduced and
demonstrated to be a suitable method in situa
tions where sorne observations in the training data
are unclassified. An application on an ecological

0304-3800/99/$ - see front matter © 1999 Elsevier Science B_V. Ali rights reserved

PlI: S0304-3800(99)00095-2
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problem, which illustrates how to include un
classified observations in the network training,
and which compares the network performances
with those reached by conventional discriminant
analysis and by discriminant analysis with par
tially classified observations, is presented. The
network performances are measured in terrns of
classification error rate and generalisation to un
observed patterns.

2. Radial basis function networks

Radial basis function (RBF) networks provide
a powerful technique for generating multivariate,
non-linear mappings (Broomhead and Lowe,
1988). Unlike the widely used multi-Iayer percep
tron, that is based on units which compute a
non-linear function of the scalar product of the
input vector and a weight vector, the activation of
a RBF hidden neuron is determined by the dis
tance between the input vector and a prototype
vector. The RBF network mapping from a d-di
mensional input space x to a c-dimensional target
space t is a linear combination of a set of M basis
functions, which take the forrn:

M

h(x) = l li'k/pillx - ,ll;ll) + li'k a k = 1, ... , c (1)
I~l

where x is the d-dimensional input vector with
elements x, and PI is the vector determining the
centre of basis function rP; and has elements fllj'

The basis functions can be normalised (Moody
and Darken, 1989) through lateral connections
between different hidden units in the network
diagram, so that the output becomes:

where the standard deviation 6 1, also called
smoothing parameter, determines the width of the
hidden unit. If the basis functions are Gaussians,
then the hidden units assume a localised nature:
the network forms a representation in the space of
hidden units which is local with respect to the
input space, because, for a given input vector,
only few hidden units will have significant activa
tions. The use of radial basis functions can be
motivated from a number of different concepts as
function approximation, noisy interpolation, den
sity estimation and optimal classification theory
(Bishop, 1995). In this work we are considering
the use of such networks for a classification prob
lem. A multilayer perceptron can separate classes
by using hidden units, which form hyperplanes, or
hypersurfaces in the input space, and for this
reason can be related to discriminant analysis. A
RBF network is able to model each class distribu
tion by local kernel functions, and so can be
rather compared with the kernel discriminant
analysis. If, in a classification problem, the goal is
to model the posterior probabilities p (Ck lx) for
each of the classes Cio (k = L. .. , c), then these
probabilities can be obtained through Bayes' the
orem, using prior probabilities p(Ck ) as follows:

p(Cklx) =p(xICk)P(Ck) = p(xICk)p(Ck) (4)
p(x) ,l p(xlC;)p(C/ )

k~l

where PC') indicates a probability and p(.) a prob
ability density function. If the class-conditional
distributions are obtained by using not a single
kernel function, but a mixture model constituted
by a common pool of M basis functions, labelled
by an index j and equal for every density, then the
probabilities p(x!Ck ) and p(x) can be written as

Usually the distance Ilx - ,li; Il is taken to be
Euclidean and several form of basis functions can
be considered, the most common being the
Gaussian:

k = 1, ... , c (2)

(3)

111

p(xICk) = l p(xv)p(jICk)
;~l

and
, M

p(x)= l p(xICk)p(Ck) = l p(xV)P(j)
k~ 1 ;~ 1

where priors P(j) are given by

c

P(j) = l P(jICdP(Ck)
k~l

(5)

(6)

(7)
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This expression represents a radial basis function
network (Bishop, 1995), in which the normalised
basis functions are given by

The posterior probabilities can be obtained by
substituting Eqs. (5) and (6) into Bayes' theorem
(4) and adding an extra factor of 1 = P(j)/P(j)
to give:

M

l P(jICdp(xli)p(Ck)P(j)

PCC 1) ),---~---,-l----:-:- _
k X =- M

l p(xli')p(j')P(j')
)'~ 1

M

l IlVP/X) (8)
)~ 1

(11 )
N ,

E = l l {Yk(X) - tdx)f
Il~lk~l

sorne multiple of the average distance between the
basis function centres. This ensures that the basis
functions overlap to sorne degree and hence give a
relatively smooth representation of the distribu
tion of the training data. In order to determine
the number of basis functions by the complexity
of the data, rather by the size of the data set, a
subset of the input vectors can be chosen by
forward selection or orthogonal least squares to
serve as centres. A different approach is to choose
the number of basis functions and determine the
parameters by supervised or unsupervised meth
ods. An exhaustive list of these methods, together
with their theoretical issues, is in Bishop (1995). A
k-means procedure is adopted in the example of
section 4. This procedure proposed by Moody
and Darken (1988), sets the centres of basis func
tions equal to the cluster centres found by the
k -means clustering algorithm, and the standard
deviations cri equal to the average distances to the
z-nearest clusters. Moody and Darken (1988) re
port good empirical results for using this proce
dure. The main drawback of this method is that
the number of basis functions must be defined a
priori. This leads to similar problems as the 'num
ber of hidden units' dilemma in the muiti layer
perceptron, since it is very difficult to estimate an
appropriate number of basis functions. In Section
4 we determine the optimal number of clusters
(and, therefore, the optimal number of basis func
tions in the RBF network) on the basis of the
within-groups and between-groups deviances, for
different number of groups. Once the parameters
of the hidden layer are determined, the network
has to be trained to produce the optimal values of
the second layer weights. When the error function
is a quadratic function of these weights, its mini
mum can be found in terms of the solution of a
set of linear equations. In fact, if we indicate with
N the number of training cases and with tk(xll ) the
target value for output unit k when network is
presented with input vector XII (n = 1, ... , N;
k = 1, ... , c), then the sum of squares error func
tion is given by

(9)

(10)

rPI(X) = MP(Xli)P(j) = p(jlx)

l p(xli')p(j')
J'~ 1

and the second layer weights are given by

Il' = p(jICk)p(Ck) = PCC li')
k) P(j) k

After training, for a particular partition of the
data into c groups, the value of each k output
neuron, (k = 1, ... , c) can be interpreted as the
posterior probability of corresponding class mem
bership. Thus, following the optimal classification
mIe (Anderson, 1984), in a two class problem an
observation should be classified as be10nging to
group k if the value of the corresponding output
unit is bigger than 0.5. In practice, when least
squares are used to set the second layer parame
ters and the target values are coded with the
l-of-c coding scheme (so that they sum to unity),
the output values are forced to sum to unity but
they are not forced to lie in the range [0, 1]. If the
output values do not lie in this range, they should
be normalised.

The major problems re1ated to a RBF network
are the determination of the number of basis
functions and the choice of the parameters. The
faster and simplest procedure is to create a Proba
bilistic Neural Network (Specht, 1990) which has
N localised hidden units centred on each input
vector. In these networks the parameters (JI are
usually heuristically determined. One approach is
to choose aIl (J) to be equal and to be given by
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where Yk is defined in Eqs. (1) and (2). Training is
then very fast and does not have the problem of
local minima.

3. Estimating group membership with partially
cIassified observations

ln real applications, especially in biological and
ecological modelling, it sometimes happens that
group membership is known only for a subset of
the original sample. This can arise, for example,
when the exact determination of group member
ship requires high laboratory costs. In these situa
tions, classical supervised methods, like the
discriminant analysis or the multi-Iayer percep
tron, are often applied. Classified observations are
used to estimate the discrimination mie and this
mie is then applied to unclassified observations,
to determine the corresponding group member
ship. Evidently, this procedure does not use the
information contained in the data to the maxi
mum extent, since it is clear that the unclassified
observations contain sorne information about the
distribution of the measured variables in the
groups, as weil. There is also sorne theoretical
literature on the benefits of using unclassified
observations for estimation (O'Neill, 1978;
McLachlan and Basford, 1988). On the other
hand, using an unsupervised procedure (like mix
ture analysis, cluster analysis or the Kohonen
network) over the entire data set means ignoring
group membership of classified observations and,
therefore, discardmg important available informa
tion. Airoldi et al. (1995) found that mixture
analysis, compared with discriminant analysis on
a data set with partially classified observations,
reveals highly unstable estimates. They conclude
that ignoring group membership is a bad idea. In
statistics, an iterative method that uses the infor
mation contained in both classified and un
classified observations in the parameter estimation
is fairly weil developed under the name of dis
criminant analysis with partially classified data
(discrimix). This method (McLachlan and Bas
ford, 1988; Airoldi et al., 1995) has the potential
to greatly improve the estimation of the classifica
tion mie. However, it is a re-estimation procedure

which may involve sorne technical problems in the
solution of the equation system. These drawbacks
are the computational time and costs, the eventual
convergence to a singular estimate of the covari
ance matrix (that will cause the algorithm to fail),
the absence of convergence or the convergence to
a local maximum. Sorne of these problems can be
overcome with a constrained maximum solution
and the availability of good computer programs.
Therefore, the main drawback of this method
seems to be the assumption of multivariate nor
mality of the density function in each group. This
assumption is indispensable in discriminant analy
sis with partially classified data, since the density
function appears explicitly in one equation of the
system. This is also a crucial difference to discrim
inant analysis, where calculus can be justified
without assuming normality or any other particu
lar distribution.

RBF networks in which the basis functions
parameters are estimated by unsupervised proce
dures are particularly advantageous for applica
tions with partially classified observations, since
the hidden layer parameters can be determined
using both labelled and unlabelled data, leaving a
relatively small number of parameters in the sec
ond layer to be determined using the classified
data. It must be remarked that using unsupervised
methods for determining the hidden units parame
ters, doesn't mean ignoring group memberships in
the entire procedure, since the second layer
parameters are determined by the solutions of a
set of linear equations, which includes target val
ues. One advantage of RBF networks, over dis
criminant analysis with partially classified data, is
that they do not require iterative procedures in
the estimate of the second layer parameters.
Moreover, they do not need the assumption of
multivariate normality or any other particular
distribution of the density function of the input
variables in each group.

Next section illustrates how the use of unsuper
vised procedures for the determination of the
basis function parameters and, consequently, the
use of unlabelled data in the estimate of the
classification mie in a problem with partially
classified observation, can improve the perfor
mances of a RBF network. RBF networks are
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also compared with discriminant analysis and dis
criminant analysis with partially c1assified
observations.

4. Real data set example

4.1. The microtus data

This example is based on the classification of
two species of voles (FIury, 1997, pp. 333-339).
The two species, Microtus multiplex and Microtus
subterraneus, differ in the number of chromo
somes, but are morphometrically difficult to dis
tinguish. The geographic ranges of distribution of
the two species overlap to sorne extent in the Alps
of southern Switzerland and northern Italy
(Krapp, 1982; Niethammer, 1982). M. subterra
neus is smaller than M. multiplex in most mea
surements. It usually occurs at elevations from
1000 m to over 2000 m, but it is also found at
lower elevations. M. multiplex is found at similar
elevations, and also at latitudes from 200 to 300
m (South of the Alps). Much of the data available
are in form of skull remains, either fossilised or
from owl pellets. Till now, no reliable criteria
based on cranial morphology have been found to
distinguish the two species. The data set consists
of eight variables measured on the skulls of 288
specimens found at various places in central Eu
rope: Xl = width of upper left molar 1; X2 =

width of upper left molar 2; X3 = width of upper
left molar 3; X4 = length of incisive foramen;
X5 = length of palatal bone; X6 = condylo inci
sive length or skull length; X7 = skull height
above bullae; X8 = skull width across rostrum.
Variables Xl to X5 are measured in mm/lOOO;
variables X6 to X8 are in mm/100. These cranial
measurements are relatively inexpensive to carry
out, since they can be measured with a measures
cope (accurancy 1/1000 mm) and dial calipers
(accuracy i/lOO mm). Nevertheless, the exact de
termination of the species requires a costly chro
mosomal investigation. For this reason, only 89 of
the skulls were analysed to identify their species:
43 specimens were from M. multiplex and 46 from
M. subterraneus. The chromosomes were not
analysed and species was not determined for the
remaining 199 observations.

Airoldi et al. (1995) report a discriminant anal
ysis, a finite mixture analysis and a discriminant
analysis with partially c1assified observations
(which they cali Discrimix) of this data set. Here,
we seek to analyse the data with RBF networks
and to compare the classification capabilities of
different models. The analysis is first performed
using both c1assified and unclassified observation
in the optimisation of the basis function parame
ters. In order to reach better generalisation capa
bilities, a pre-processing stage is then applied to
the network. Results are finally compared with
those reached by a RBF network with parameters
determined using the sole 89 c1assified specimens
and with those reached by other statistical
models.

In the RBF networks considered in the follow
ing the input variables are combined via the Eu
c1idean distance function, so that the contribution
of an input variables depends heavily on its vari
ability relative to other inputs. In order to give the
same importance to every input variable, variables
are standardised to zero mean and unit variance
before every process.

4.2. Computation of the error rates

Two types of error rates are used to assess the
performance of classification procedure. The first,
the simplest and most popular error, is the plug-in
error rate: it is the proportion of observations
misclassified when the classification rule is applied
to the data in the training sample. The second, the
cross-validation error (Stone, 1974), is obtained as
follows. The sample is divided in k subsets of
equal size. The network is trained k times, each
time leaving out one of the subsets from training,
and using the omitted subset to compute the error
rate. If k equal the sample size, and only one
observation is used each time to compute the
proportion of observation misclassified, than
cross validation reduces to the leave-one-out error
rate. The plug-in error rate is very fast to compute
and, since it uses the entire sampIe to train the
network, it is very advantageous when only a little
sample is available. The main drawback of the
plug-in error rate is that it tends to be overly
optimistic, that is, it tends to underestimate the
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Tab[e 1
ANOVA table for different number of c1usters

Number of Deviance Degree of Deviance Degree of Deviance Degree of R 2

c1usters between freedom between freedom total freedom

2 1153.229 1142.771 286 2296 0.5023
3 1447640 2 848.360 285 2296 06305
4 1565.199 3 730.801 284 2296 0.6817
5 1636.804 4 659.196 283 2296 0.7129
6 1681.827 5 614.173 282 2296 0.7325
7 1715.849 6 580 151 281 2296 0.7473

probability of misclassifying future observations,
since the error is calculated over the same data
employed during training. Cross validation gives a
better estimate of the generalisation error,
namely, the average misclassification rate over the
entire space of possible inputs. For this reason,
cross validation is often preferred, but if k gets
too small, the error estimate is pessimisticaUy
biased because of the difference in sample size
between the full-sample analysis and the cross-val
idation analyses. For this reason, a value of k =

lOis chosen, since it is shown to offer good
empirical results in literature.

4.3. Using both classified and unclassified
observations in a RBF netll'ork

Eq. (9) points out that the basis functions de
pend solely on the input data and ignore any
target information. In particularly, the basis func
tion parameters should be chosen to form a repre
sentation of the probability density of the input
data and the centre /lj should be regarded as
prototype of the input vectors. This justifies the
use of unsupervised procedures to determine the
basis function parameters, which are usually very
fast and can be run a number of time, in order to
test the robustness of the results, with low cornpu
tational costs. Following Moody and Darken
(1989), the k-means clustering algorithm is per
formed to optimise both the basis function centres
and the widths. The optimal number of clusters is
heuristically chosen comparing the within-groups
and between-groups deviances, for different val
ues of k. Due to an increase in the number of
clusters, the deviance between groups (which indi-

cates the share of total deviance 'explained' by the
aggregation of the observations in clusters) in
creases, while the deviance within (which indicates
the error minimised by the algorithm) decreases.
As long as the increase in the deviance between
groups is considerable, we think it justifies the
increase in the complexity of the grouping struc
ture (due to the addition of new groups). We stop
adding clusters when this increase becomes poor,
in order to reach a good compromise between the
proportion of the total deviance 'explained' by the
aggregation in groups and a parsimonious num
ber of clusters (which means a clearer and simpler
representation of the data set). The ANOVA table
obtained running the k-means cluster analysis for
the 288 observations, for different values of k
(using the package SPSS for Windows, release
7.5), is reported in Table 1. The coefficient R 2 is
the ratio between the deviance between groups
and the total deviance. The increase in R 2 from 2
to 3 clusters is considerable. From 3 to 4 groups it
is still fairly great, while from 4 to 5 clusters it
becomes poor. From 5 to 6 and from 6 to 7
groups the increase in R 2 is nearly negligible. The
'optimal' grouping structure, the one which ap
pears to lead to the best trade off between number
of clusters and variance in each cluster, seems
therefore to be associated with k = 4.

In a RBF network with eight input nodes (one
for each variable), four hidden nodes with centres
determined by the cluster means and widths deter
mined by the minima distance between aU the
other clusters, and second layer weights deter
mined by linear regression, the plug in error rate
is 5.62%, while the cross validation error rate is
2.28%.
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Fig. 1. Scalter plot matrix. or the first three principal components.

Analysing the correlation matrix of the input
data, it can be noted that the eight variables are
highly correla ted and the information related to
many of these variables is therefore redundant.
When input variables are highly correlated, a
subset of these variables or a linear transforma
tion of these into new, fewer variables may de
scribe the data equally weil and, in accordance
with the principle of parsimony (or 'Occam's Ra
2Or') the simplest model, the one with fewer vari
able, should be preferred. Moreover, the network
performances may improve with a reduction of
the input vector dirnensionality (and the related
loss of information), since a network with fewer
inputs has fewer adaptive parameters to be deter
mined. These pararneters are more likely to be
properly constrained by a data set of Iimited size,
leading to a network with better generalisation
properties. As a pre-processing stage, a principal
component analysis is performed in order to form
Iinear combinations of the original variables and
generate new (Iess) input variables for the net
work. The scatter plot diagram of the first three
principal components is reported in Fig. l. Using

the scores of the first n principal components as
input variables, the proportion of original infor
mation that is preserved can be measured. Since
the first three principal components retain the
88% of the original variance, only the 12% of
original information is lost using these scores as
input variables. The scatter plot diagram of Fig. 1
also reveals the presence of possible multivariate
ou tliers, since observations 6, 170 and 250 clearly
stand aside from the cloud of points. In order to
determine the basis function parameters, cluster
analysis is then performed with k = 4 and without
this three possible outliers. The second layer
parameters are determined by least squares, with
a training set of 88 observations (unit 6 is dis
carded also for Iinear regression). With this pre
processing step, the plug in error rate of the RBF
network is 3.37%, while the cross validation one is
4.49%.

An alternative pre-processing concerning dis
card of six (redundant) input variables and elimi
nation of the three possible outliers is also
applied. Performing the anaJysis with the sole
variables Xl and X4, in which the two groups are
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Table 2
Error rates of a radial baS1S function networks with parameters determined using both classified and unclasslfied observations

Error rate RBF network wlth eight input
variables ('X,)

Plug-m 5.62
Cross validation 2.28

RBF network with three mput
variables

3.37
449

RBF network wlth two mput
variables ('Yu)

3.37
3.37

weIl separated (see Airoldi et al., 1995), the plug
in and the cross validation error rates are both
3.37%.

Table 2 summarises the results obtained in the
different analysis. Particularly attention must be
paid to the first analysis, since the cross validation
error rate of the RBF network is less than the
plug-in one.

This is a fairly unusual and unexpected result,
even if it is not impossible in theory. The explana
tion of this phenomenon can be related to the
normalisation of the basis functions. Normalisa
tion is desirable for a classification problem, since
at every point in the input space the sum of the
basis function is forced to sum to unity so that, in
mixture underlying model, the activation of each
basis function can be interpreted as the posterior
probability of the presence of corresponding fea
ture in input space (see Eq. (9)) and the network
outputs can be interpreted as Bayesian posterior
probabilities of group memberships (Bishop,
1995). However, normalisation leads to a number
of side effects which are described in Murray
Smith (1994). Sorne ofthese side effects should be
considered here, in order to motivate the better
performances of the network in the test set rather
then in the training set. The first one is that when
the basis functions are Gaussians, the normalisa
tion results the whole of the input space being
covered and not just the region of the input space
defined by the training data. The second one is
that basis functions with different widths (which
are used in the application) can becorne multi
modal, meaning that their activations increase as
the distance function between the input vector
and the centre decreases (this phenomenon is
called 'reactivation' of the basis functions). A final
side effect, which also concerns basis functions
with different widths, is that the maxima may no

longer be at their centres. These three normalisa
tion effects, which are more pronounced as the
input dimension increases, due to the increased
number of neighbouring units in higher dimen
sions, justify results reported in the first column of
Table 2. From a heuristic point of view, we have
noted that, performing the analysis with an un
normalised RBF network, the plug is error rate is
less than the cross-validation one.

4.4. Using only classified observations in a RBF
netll'Ork

In a classical set of a probabilistic neural net
work, the 89 specimens with known group mem
bership should constitute the training sample and,
in a subsequent stage, the trained neural network
should be used to assign the remaining 199 speci
mens to either the M. multiplex or the M. subter
raneus group. Using a probabilistic neural
network with eight input nodes, one for each
explanatory variable and 89 hidden nodes with
equal width parameters and centres determined by
the input vectors, the following numerical results
are obtained. The plug in error rate is 1.12% and
the cross validation error rate is 10.1%. Using the
first three principal components as input variable,
the plug in and the cross validation error rates are
both 6.82. Performing the analysis with the two
variables Xl and X4, the misclassified observa
tions in the training set are 5 and the plug in error
rate is therefore 5.62%. The cross validation error
is 8.99%. The reduction of the input vector dimen
sionality improves the generalisation properties of
the network, but these numerical results are still
remarkably worse that those previously obtained.
The advantage of using a RBF network with basis
function parameters determined using both
classified and unclassified observations is there-
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fore apparent, since generalisation of a result
obtained from a particular data set is one of the
most important concerns in quit every real
applications.

4.5. Comparisons lI"ith other concurrent methods

For the 89 classified observations and using the
discriminant analysis the following numerical re
sults are obtained for al1 eight variables (for theo
retical and empirical comparisons between
discriminant analysis and other classification too1s
see, for example, Hand, 1981; Ripley, 1994). With
prior probabilities given by the relative frequen
cies of observations in each group, the plug in
error rate is 5.62% and the cross validation one is
6.74%. With equal prior probabilities the error
rates are, respectively, 4.49 and 6.74%. Using
variables XI and X4, only, the plug in error rate
is 4.49% and the cross validation is 5.62%, both
for equal and different prior probabilities. Nu
merical results and parameter estimations ob
tained from discriminant analysis with partial1y
classified observations are reported in Airoldi et
al. (1995). Here it should be noted that error rates
obtained with two input variables are remarkably
similar to those obtained by conventional discrim
inant analysis. The advantage of discrimix over
discriminant analysis is apparent performing
bootstrap analysis, since it reveals that the esti
mates from discrimix are typically much smaller.
From a numerical point of view, RBF network
with basis function parameters given by k-means
cluster analysis outperforms procedure discrimix.
However, comparison between discrimix and RBF
network should be more detailed, since the pur
poses of these two methods are different. Discrim
inant analysis with partial1y classified
observations (like conventional discriminant anal
ysis and mixture analysis) attempts to estimate the
parameters of a population which is known to be
composed of a fixed number of homogeneous
sub-populations. It directly models the class dis
tributions by Gaussian mixtures in the sampling
paradigm. The outputs of a RBF network repre
sent, in an underlying mixture model, the poste
rior probabilities of class memberships. However,
procedure k-means partition a data set determin-

istically into subgroups and the number of these
sub-populations is heuristically determined. The
hidden layer of a RBF network is used to 1earn
bout the class distributions and to estimate the
number of sub-clusters in the training data, when
this number is unknown. Procedure k-means can
be seen as a particular limit of the expectation
maximisation (EM) algorithm used in discrimix. It
can be shown that in case of Gaussian basis
functions with a common width parameter (J and
in the limit (J -+ 0, the EM update formula for a
basis function centre reduces to the k-means up
date formula (Dempster et al., 1977). However,
means and variances of the k-clusters are not in
general considered as estimators of the parameters
of the component densities. Similarly, the mixing
coefficient II"kr which are determined by the EM
algorithm in discrimix, are given by least squares
in the RBF network and should be motivated
from a geometrical point of view rather than from
the principle of maximum likelihood. A final ob
servation relates to the assumption of multivariate
normality of the density function in each group.
In procedure discrimix this density function ap
pears explicitly in the update formula. On the
contrary, calculus performed by a RBF network
can be justified without assuming normality or
any other particular distribution.

If the classification rules found by discrimix and
RBF network are applied to the observations with
unknown group membership, results are remark
ably similar. Of the 199 unclassified specimens,
100 are classified as M. multiplex, 75 as M. subter
raneus, and 24 observations are near the classifica
tion boundary, giving rise to considerable
uncertainty in al10cating them in one of the two
groups both ,':lh discrimix and RBF network.

The CPU time is not a real problem, for the
Microtus data, in any case. Running Discrimix
takes about 10 s of CPU time on a 486PC, using
the Gauss software (Airoldi et al., 1995). Running
the principal components for the pre processing
stage in the neural network set-up takes about 3 s
of CPU time on a pentium PC, using the SPSS for
Windows release 7.5. It takes less then 3 s for each
run of the k-means cluster analysis and for the
solution of the linear equations, to determine the
network parameters. However, for very large data
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sets, the computational costs are usually higher
in discrimix. A further technical problem of dis
crimix if that the re-estimation fonnula must
not deterministically converge, while convergence
is demonstrated for the k-means algorithm.

5. Discussion

The idea of using RBF networks to process
inclomplete data is not new (see Bishop, 1995,
p. 184). This work is an attempt to explain and
illustrate the use of RBF networks in situations
where partially classified data sets occur and to
show the differences between this methodology
and other competitive methods which are often
used in these situations. The goal of this paper
is to make RBF networks more popular, since
they appear to be rather less weil known than
the classical multi-layer perceptron, in the neural
networks field, and than discriminant analysis
and discriminant analysis with partially classified
observations, in statistics. The application on
the Microtus data demonstrates that RBF net
works are a suitable methodological tool for
ecological modelling, since the example is a
rather typical case. The benefits of using RBF
networks with partially classified observations is
that no information is wasted and if very few
observations are labelled the only alternative to
estimate a classification rule is procedure dis
crill1ix. On the other hand, procedure discrimix
is not a suitable tool in situations where the
normality of the density function in each group
is not verified and, for very large data sets, can
lead to sorne technical problems in the solution
of the equation systems. These problems are
overcome in a RBF network in which the basis
functions are trained with the k-means al
gorithm and the second-layer weights are given
by least squares.
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Abstract

The aim of this paper is to present to the community of ecologists concerned with predictive modelling by
feedforward neural network. a new statistical approach to select the best neural network architecture (number of
layers. number of neurons per layer and connectivity) in a set of several candidate networks. The interest of this
approach is demonstrated on a soil hydrology problem. © 1999 Elsevier Science B. V. Ali rights reserved.

Ke)'l1'ords: Ecologlcal modelling; Soil sciences; Neural networks; Non-hnear regression; Bayesian model selection

1. Introduction

In a large number of ecological studies predic
tive modelling approaches are employed. Sorne of
them are mechanistic but many are empirical.
Among the latter linear regression is often used.
But in many instances, the relationships between
the predicting and predicted variables are not
truly linear, and linear regression is then used
only because the non-linear form of the relation
ships are not known. In that case, a neural net
work modelling can be a well-adapted alternative
non-parametric solution to this modelling
problem.

* Correspondmg author. Fax: + 33-4-67521427
E-matf address: vila@ensam.inra.fr (J.-P. Vila)

For example, this is the case in soil hydrology.
where large efforts have been made to predict by
mu1tilinear regressions the soil hydraulic proper
ties from easy-to-measure soil variables like clay,
si1t. sand and organic matter contents (e.g.
Wôsten and Van Genuchten, 1988; Williams et
al.. 1992; Kern. 1995; Bastet et al., 1998). In effect
the knowledge of soil hydraulic properties. i.e.
water retention characteristics and hydraulic con
ductivity of the soil, are essential for modelling
transport of water and solutes through the soil
and evaluating the availability of soil water to
plants. However, it must be recognized that the
performance of the predictions of soil hydraulic
properties by mu1tilinear regression equations re
mains unsatisfying for site-specifie applications.
One reason that can explain this is the fact that

0304-3800/99/$ - see front matter © 1999 Elsevier Science B. V. Ali rights reserved.
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the relationships between the soil hydraulic prop
erties and the basic soil variables are complex and
basically non-linear (Hillel, 1980). Consequently,
one way of improving the prediction of soil hy
draulic properties is to look for multivariate non
linear relationships. In this respect artificial neural
networks are interesting tools as they do not
require to specify a priori the shape of the non
linear relationships, and can easily take into ac
count qualitative variables as predictors. Tamari
et al. (1996) aIready experienced this approach for
predicting soil hydraulic conductivity from parti
cIe size distribution, organic matter content and
bulk density. In their work and in other applica
tions of neural networks one major problem is the
selection of the best neural network architecture
(number of layers, number of neurons per layer
and connectivity) in a set of several candidate
networks.

In this paper we present a new statistical ap
proach to this general problem and illustrate it
with a case study in which we use feedforward
neural networks for predicting the water retention
properties of the soils of a region in southern
France.

Besides the fundamental question of choosing
the right set of input variables, defining an ade
quate neural topology for approximating a func
tion by a feedforward neural network still remains
an unsatisfactorily solved question. The search for
a satisfactory compromise between good data
fitting on one side and good generalization perfor
mance on the other side, has oriented the design
of several on-line and off-line building proce
dures. Among on-line techniques, constructive al
gorithms, as for example cascade correlation
(Fahlman and Lebière, 1990; Kwok and Yeung,
1997), follow an incremental approach by starting
with a small network and trying to increase it step
by step. On the other hand pruning algorithms as
optimal brain damage (Le Cun et al., 1990) or
optimal brain surgeon (Hassibi et al., 1994), fol
low a decremental approach by starting with a
large network and trying to eliminate unnecessary
connections (Reed, 1993). But both types of step
by-step evolution do not ensure the reaching of
the best topology. Moreover, most of the used
termination criteria lack cIear statistical meaning.

Among off-line selection procedures cross-valida
tion (Golub et al., 1979) is one of the most
favored, because of its simplicity and apparent
objectivity, but it is pointwisely dependent on the
dataset and cannot take into account any proba
bilistic information.

Statistically-based comparison techniques di
vide themselves into two main groups:
• asymptotic comparison tests (Wald test, likeli

hood ratio test) and procedures (Akaïke crite
ria, .. ) (Seber and Wild, 1989)

• comparison procedures based on an approxl
mate Bayesian analysis (MacKay, 1992; Thod
berg, 1996).
Neither of these two approaches is definitely

satisfying. The first one relies upon samples of
sufficiently large size and is often restricted to the
comparison of embedded networks. The second
one assumes the disposaI of a pertinent prior
probability distribution for the network parame
ters (weights and biases) and even if this prior is
available this approach can suffer from several
controversial points and drawbacks: treatments of
the hyperparameters introduced by the prior dis
tribution (integrated out or not (Wolpert, 1993;
MacKay, 1995)), debatable estimation of the com
plex posterior weight distributions by question
able Gaussian approximation (MacKay, 1992) or
by heavy Monte Carlo procedures (Neal, 1996),
to cite a few of them.

However, the Bayesian approach could appear
as the most promising: when no reliable subjective
prior distribution is available the modern
Bayesian theory can provide nevertheless power
fuI solutions, and among them efficient proce
dures for the identification of pertinent prior
distributions allowing exact posterior distribution
calculation (Berger, 1985; Bernardo and Smith,
1994). We then decided to consider the problem
of the selection of a neural network architecture
in this renewed Bayesian framework.

Following Bernardo and Smith (1994), we
based our neural network model selection proce
dure on the maximization of an expected utility
criterion defined from a predictive sample reuse
procedure. By comparison with the cross-valida
tion procedure based on pointwise predictions,
this criterion uses a predictive probability distri-
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bution determined for each candidate model. It
then selects the model under which sorne predic
tive probability-based internaI consistency of the
training dataset is maximized. For a given candi
date model this predictive distribution is asymp
totically estimated from the assumed Gaussian
likelihood of the data and the corresponding con
jugate prior density of the model parameters. The
heart of this approach is in the determination of
this particular prior density of the model parame
ters which offers the advantage of allowing ana
lytic calculations of parameter and network
response posteriors.

The main ideas of this Bayesian network archi
tecture selection approach will be now briefly
described. We refer to Vila et al. (1998) for a full
theoretical description. AlI the necessary Bayesian
prereguisites are relegated in Appendices A and B
at the end of the paper.

where Zn _ l[lk] denotes Zn with observation z, =
A

(x,. y,) deleted and p)(y, lx" Zn _ 1[Id) is the
k k k k

posterior predictive density of model M) for the
observation z, , having observed Zn _ ,[Id (see Ap-

k

pendix B).
Among the N candidate models we shall retain

the one for which the guantity VI is maximal.
ln order to compute VI we need to know the

posterior predictive density Pl' which results from
a Bayesian analysis described in Section 3.

3. A Bayesian analysis of non-linear regression

Let us suppose that model MI' as described by
Eg. (1) is the true model of the data Z". To
alleviate the notations we shall drop index j from
aIl relevant guantities since only one model, Ai; is
considered in aIl this section.

2. A general Bayesian non-linear regression model
selection procedure

(3)

(4)

and X = (X,k)l <;, <; n
j <;k<;'

l:S;i:S;n

n < i:S; 2n

Let

3.1. Prior density of (B , À)

ln this section we shall determine a posterior
predictive density p(ylx, Zn) which will be used in
the selection procedure. To do that, we shall first
choose a particular parameter prior density: a
density member of the family of conjugate prior
densities related to the postulated gaussian likeli
hood (Bernardo and Smith, 1994). The form of
this density will greatly simplify the calculation of
the relevant parameter posterior density and then
that of the posterior predictive density.

It can be easily shown thatp(YIX, B, À) belongs
to a 2n-parameter exponential family of probabil
ity distributions (see definition A2) with sufficient
statistics:

h,(Y) = { ;'
y~-n

Conditional to X, the probability density of Y
is multinormal with mean F(X, B) = (f(x j , 0), ... ,

f(xn, B))' and variance ~ /". We shall denote it:

(2)

(1)

Let us first introduce the general principles of
the model comparison procedure that we shall
apply to our neural network architecture selection
problem. This procedure is based on the maxi
mization of an expected utility criterion and is
described at length in Appendix B.

Let {Ai;})EJ be N = card (J) models to be com
pared from Zn = «x), Yl)'''''(Xm YII))' n indepen
dently and identically distributed (i.i.d.) pairs of
observations.

Model Ai; (for example a neural network) is
given by:

y, = I;(x" B) + ë, l:s; i :s; n

where (x, ' ... x, )E~', I:s; i:s; 11; the {ë,} are in-
l 1

dependently and identicaIly normally distributed
with mean 0 and variance denoted l/À); B)E~qJ.

We randomly select K:s; 11 observations {(x, ,
y,), ... ,(X'K' y,)} from the dataset and for each
model M, we compute the expected utility crite
rion V, according to Eg. (15) in Appendix B:

1 K

U; = K k~j 10gp}y,Jx'k' ZII -l[lk])
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(6)

Using proposition Al it can be shown under
regular assumptions (Vila et al., 1998) that the
conjugate prior density of (8, A) is consistently
asymptoticaBy given, as n tends to infinity, by:

p(8, AIY) ~ Nq(8180' ALo )Ga(4~, p) (5)

(we use the symbol ~ to denote asymptotic
equality) with:

8° =

argmin [Y? - F(X, 80my? - F(X, 8°)]/2

n ro - q 1
ex = 2 +

p = ro[Y? - F(X, 8°my? - F(X, 8°)]/2

tical value when no reliable prior is available
and constitutes one important chapter of
modern Bayesian analysis (Robert, 1995) since
the first introduction of the conjugate prior
approach by Raiffa and Schlaifer (Raiffa
and Schlaifer, 1961). Moreover and above aB,
conjugate priors have been designed to lead very
easily to the corresponding posterior distribu
tions.

3.2. Posterior density of (8, A)

According to Eq. (5) and proposition A2 and
after sorne algebra, the posterior density of (8,
A) conditional to Z1/ is consistently asymptoti
caBy given as n tends to infinity, by:

(7)

where Y = (ro, ... , r", ... , r2,,)' is the vector of the
parameters of the conjugate prior density; Y? =

(rIlro, ... , r,,/ro)'; Foo, the Jacobian matrix of
F(X, 8) at 8°; Nq(818°, ALo), density of the
multivariate gaussian distribution of dimension
q, with mean 8° and variance matrix VLO)-l;
Ga(},lex, P), density of the gamma distribution
with parameters ex and p, with mean exp - 1 and
variance exj3 - 2.

Without any prior information on the hyper
parameters Y we foBowed the 'empirical Bayes'
point of view (Maritz and Lwin, 1989) which
sets these quantities to values maximizing the
marginal density of the observations Y. We
showed (Vila et al., 1998) that a very good com
promise between optimality and tractability of
computation is simply given by:

ro = 1

lS;iS;n

n S; i S; 2n

(8)

(9)

where:

8" = (1/2)(28° + (F~o F 0 0 ) - l)F~o( y - F(X, 8°))

p" = p+~ (Y - F(X, 8°) - Foo(t}" - 0°))'( y - F(X, 0°))

3.3. Predictive posterior density p(y\x, Z,,) where
y and x satisfy mode! (1)

p(ylx, Z,,) = fP0'lx, 0, l,) p(8, ÂIZ,,)d8dA

where p(ylx,O,Â) = N(rlf(x,e),I.) by assumption.

After sorne algebra:

p(y\x, Z,,)~St(Ylf(X, 0,,), g,,(/oo)(ex+~)p;;-I, 2ex+n)

(10)

with:
The procedure which consists of building the

prior distribution from the data themselves and
their likelihood, rather than from a subjective
approach of sorne a priori information, is at the
border between Bayesian and frequentist statis
tics and does not belong to the classic Bayesian
paradigm. However it has proved its high prac-

f' = (Df(X, e) of(x, e»)
lia êJe' ... , (je '

1 q li ~ lia
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4.1. Parameter prior densit)' of (0, ),)

123

(11)

is the Student density with mean f(x,O,,) and
variance Pn/(g" (/IIO)(a + 11/2 - 1))

4. Application to neural networks

Let us suppose now that model {MI}' the
true modeL is a feedforward neural network
model. Again, we shall drop index j from all
relevant quantities since only this model will be
considered in this section.

With the empirical Bayes setting (Eq. (8)) we
are using for the hyperparameters {rJ, ()O in
Eq. (6) is the maximum likelihood estimate of ()
(and P = [Y - F(X, ()o)]'[ y - F(%, ()o)]/2). The
whole previous procedure relies on the implicit
assumption of the unimodality of the likelihood
function (Eq. (3)) for each of the N candidate
models. If one of these likelihood functions is
multimodal, which occurs frequently for non-lin
ear regression models, the procedure can be im
paired. Multimodal likelihood is the rule for a
general network mapping function f(x, ()) such
that of a multilayer perceptron: there are several
families of local optima in the parameter space
(Vila et al., 1998). For a given network topol
ogy with H hidden layers and 1Ilh units in layer

h=H
h, there are SF = II mh ! 2"'h parameter set-

h = 1
tings of equal likelihood, which are obtained
from each other by sign changes of the biases
and input and output weights of the units and
by unit interchanges. Then, each local mode of
the likelihood function will in fact belong to a
class of SF equivalent optima of the likelihood.
Moreover, several classes of such local optima
can coexist. Let NC be the total number of such
classes. The relevant formulae for the prior and
posterior distributions in the multimodal case
are given in (Vila et al., 1998) under general
assumptions (negligible overlaps between the
NC x SF specifie priors):

1 Ne Sr

p«(), ),) = NC x SF '~I \~I p(O, ÀI()~).J

where ()~., is the location of the sth likelihood
local optima belonging to the cth class, with
1 :S:;c:s:;NC and 1 :S:;s:s:;SF and p«(), ...lIe?,) de
notes the density of the conjugate parameter
prior distribution computed from Eq. (5) for
()O = ()~.s.

4.2. Posterior density of ((), ))

SF

L p«(), Àlz", ()~.J
')= 1

where:

na + 11/2) (2nF 2

K( = Ra+,,'2 J ..
p ".C . det (2F~? Fil?)

and p«(),).IZ",()~.,) denotes the density of the
conjugate parameter posterior distribution com
puted from Eq. (9), for ()O = ()~.,.

P".c=(Y-F(X, ()~))'(Y-F(X, ()~)), with ()~

any of the SF likelihood modes ()~.s, belonging
to the cth class, 1 :s:; c :s:; Ne.

4.3. Posterior predictive density p(vlx, Z,,) where
y and x satisfy model (1)

p(vlx,Z,,)~(I/C~l KC)C~l (KJ

St(ylf(X, ()",c)' g"(/e~)(a + ~)p;/, 2a + n) (12)

where ()".C = ()?'

Remark 1. Practical limitation of NC:

We can notice that according to Eq. (12) p(vlx,
Z,,) is the weighted average of the predictive
posterior densities related to each of the NC
classes of locallikelihood optima. In this weighted
sum the weights K c' as shown by Eq. (11), are in
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inverse proportion to the corresponding error sum
of squares fJn c and to the associated information
matrix dete~inant, det(F~o Foo ). This permits us
to neglect in Eq. (12), classes with relatively low
and sharp optima which are hopefully the most
difficult to detect by numerical algorithms.

Remark 2. Posterior prediction of y given (x, Z):

The mean of the posterior predictive density
(Eq. (12» gives the minimum squared error loss
prediction of y:

(13)

5. A soi! science case study

This case study is part of a more general re
search program which attempts to evaluate the
influence of global change on crop yields and
available land ressources at the scale of several
european regions (Loveland, 1996). For simulat
ing crop yields and estimating land ressources, the
water retention properties of the soils must be
known. They are usually determined by measur
ing the soil water retention curve, namely the
relationship between the metric soil water poten
tial and the soil water content. But, since this soil
property is expensive to measure, it is rarely mea
sured for ail soils in a region. As pointed out in
the introduction, one way for solving this problem
is to seek functions or models relating the soil
water retention curves to soil properties that are
largely available over the region of interest. This
is what this case study aims at in the case of the
Plain of Languedoc in southern France. In the
following we describe the sampling and data and
the results we obtained by using the statistical
method described above for selecting the best
predictive neural networks.

5.1. Sampling and measurements

The major soil classes of the Languedoc Plain
were sampled at 138 locations (Moulènes, 1993;

Leenhardt et al., 1994). At each sampling site, we
dug a pit, observed the soil and distinguished the
soil layers of different morphology, texture and
origin. Among the 138 pits, 372 soil layers were
distinguished. Each soil layer was sampled for
determining both its soil water retention curve
and basic soil properties that are currently deter
mined in soil survey and can be used as predictors
of the former.

For the determination of the soil water reten
tion curve, undisturbed soil clods of about 30 cm3

were taken. Their water contents at five metric
water potentials: 3, 10, 30, 100 and 300 kPa were
measured using the pressure plate extractor
(Smith and Mullins, 1991). These are the variables
that we consider hereafter as the output variables
of the predictive neural networks to be built. They
correspond to a set of points of the retention
curve. In principle, for use in soil water flow
models, the entire retention curve has to be know.
Therefore, after prediction of the set of points, the
whole curve is generally reconstructed by fitting a
parametric model to the predicted points. This
step will not be done here since we are only
interested in evaluating the proposed neural net
work selection approach.

The basic soil variables that we measured were
the bulk density (bd), the particle size distribution
and the organic carbon content of the soil. These
variables are considered as the input variables of
the neural networks. The bulk density of the
horizon was measured in situ with a surface
gamma densimeter (Troxler 3411). Disturbed soil
samples were taken for measuring in the labora
tory the proportions of five particle size classes,
namely clay (cl) (0-2 flm), fine silt (fs) (2-20 flm),
coarse silt (cs) (20-50 flm), fine sand (fs') (50-200
pm) and coarse sand (cs') (200-2000 flm), and of
organic carbon content (oc).

5.2. The neural network model selection

We shall restrict the presentation to the mod
elling of the third metrie water potential (wp30)

from the seven independent variables bd, oc, cl,
fs, cs, fs', cs'.

In order to assess the efficiency of our Bayesian
selection procedure in selecting the 'best' predic-
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Table 1
Learnmg RSS, U and CV values for the candidate architec
tures

Model RSS CV U
--- ---

A l9 0136 0.1512 2.260
An 0.118 0.141 2.355
A 34 o 114 0134 2.313
A 37 0.113 0.140 2.324
A 46 0.110 0146 2.339

tive neural network architecture, we compared it
with the frequently used standard cross-validation
procedure. For a given dataset. and a set of
candidate models, the cross-validation procedure
selects the model which minimizes CV =

L7~ 1(v, - .V,)2, in which ,v, is the mode! prediction
at X" after adjustment on the dataset without the
ith pair (x" YI)

The family of one hidden layer feedforward
neural networks was considered (its ability to
uniformly approximate any continuous function is
well-known (Cybenko, 1989). The number of
units (neurons) in the layer (each with a logistic
transfer function) was varied from two to six. Ali
five resultant fully-connected networks were fitted
on a same learning basis (LB) of 272 observations

bd ~;::---------==::::::;;~>.....

randomly chosen among the 372 observations of
the initial dataset (DS). We then used well-known
statistical pruning techniques (asymptotic t -tests)
to detect and suppress sorne non-significantly
non-null connections in each of the five fully-con
nected networks. The resulting architectures were
then refitted and successively compared by the
cross-validation procedure and the Bayesian pro
cedure (with K = n = 272 in Eq. (2) and Ne = 1 in
Eq. (12) after application of remark 1). The re
sults are given in Table 1.

5.2.1. The architecture selected by the Bayesian
procedure (U-criterion of Eq. (2))

The architecture which maximizes the U-crite
rion is An, displayed in Fig. 1. It is made of three
hidden neurons, partially connected with the
seven input variables (one link is missing), which
leads to 27 parameters (23 weights + four biases).

5.2.2. The architecture selected by
cross-validation procedure (CV-criterion)

The architecture which minimizes the CV-crite
rion is A34, displayed in Fig. 2. It is made of four
hidden neurons partially connected with the seven
input variables (three links are missing) which
leads to 34 parameters (29 weights + five biases).

oc

cl

cs

fs'

~0,~~~~ ~~W'P30

Fig. 1 Network architecture selected by the Bayesian procedure for predICting wp 30.
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Fig. 2. Network archItecture selected by the cross-validatIOn procedure for predlcting \1'1'30.

The linear regression of Hp 30 on the same
seven independent variables was also adjusted to
the 272 observations of LB, with a residual sum
of squares of 0.173.

The better fit of the learning basis LB by the
CV-selected network is not surprising since this
network has the highest number of connections
and parameters.

5.2.3. Predictive efficienc)' comparison

5.2.3.1. First comparison. We computed the re
spective standard errors of prediction (S.E.P.) of
the five networks: A19, An, A34, A37, A46 plus that
of the linear regression model (1rm), on the sub
dataset TB = DS - LB, made of the 100 remain
ing observations of the initial dataset. The results
are given in Table 2.

The U-selected network An ranks first and the
linear model lrm second. We note an increase of
23% between the S.E.P. of the U-selected network
An and that of the CV-selected one A34, and an
increase of 6°/<, between the S.E.P. of A27 and that
of the linear model lrm. We note also the rela
tively bad behaviour of A34, in fourth position
among the six models.

5.2.3.2. Second comparison. We applied the three
models previously selected and adjusted on LB:
A27 , A34, lrm, on 500 test subsamples, each made
of 50 observations randomly chosen from the 100
observations of TB. The respective pointwise de
pendencies of both U and CV procedures on the
selection data LB. was then taken into account.

In 435 cases (87%), the S.E.P. of the U-selected
network, An, was lower than that of the CV-se
lected one, A34• Among these cases, differences of
more than 5% (of the U-S.E.P.) between both
S.E.P. occurred in 86% of the cases.

In 350 cases (70%), the S.E.P. of the U-selected
network was lower than that of the multiple linear
regression mode!. Among these cases, differences
of more than 5% between both S.E.P. occurred
again in 78% of the cases.

Table 2
S.E.P. of the SIX models on the TB dataset

Model S.E.P

AI9 0.0877

A'7 0.0755
A34 0.0927
A37 0.0959
A46 0.0952
Irm 0.0801
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5.2.3.3. Third comparisoll. As in the second one,
we applied the three models A27 , A 34 and Irm
on 500 test subsamples, each made of 50 obser
vations randomly chosen from TB. But now for
each of the 500 tests, the three selected models
were previously readjusted on 322 observations:
the 272 observations of LB plus the remaining
50 non-selected observations of TB. The robust
ness of the two selection procedures with re
spect to discrepancy between the selection data
and the learning data was then taken into ac
count.

In 411 cases (82%) the S.E.P. of the U-se
lected network was lower than that of the CV
selected one. Among these cases, differences of
more than 5% between both S.E.P. occurred in
84% of the cases.

In 354 cases (71%) the S.E.P. of the U-se
lected network was lower than that of the multi
ple linear regression mode!. Among these cases,
differences of more than 5% between both
S.E.P. occurred in 70'% of the cases.

The overail superiority of the U-selected net
work, and in particular its increased superiority
with respect to the CV-selected one between the
third and the second comparison, can be ex
plained by the density-based structure of the U
criterion, less data-dependent than the
individual-point-based structure of the CV
criterion.

These results are in accordance with the ex
pected greater robustness of the Bayesian selec
tion procedure with respect to the standard
cross-validation one.

6. Conclusion

Neural network predictive modelling is one
method among several modern non-mechanistic
modelling techniques, which can be compared
with the so-called non-parametric modelling
methods. They ail rely on the principle 'let us
have the data speak by themselves' in order to
characterize the functional links between the in
dependent and dependent variables. This ap
proach is particularly well-suited in the analysis

of complex systems, as for example bio-physical
and ecological systems, where complete knowl
edge of ail the interacting mechanisms is most
often unreachable. However, as flexible mod
elling tools as they may be, feedforward neural
networks need to be duly calibrated to prevent
bad predictive performances in case of oversized
architectures. Current statistical approaches of
this problem, can compare advantageously with
the empirically-based most favored ones. How
ever these approaches frequently suffer of lack
of generality. But Bayesian statistical analysis of
the problem can offer a larger degree of appli
ca bility, as for example, the possibility to com
pare non-embedded networks and even to
compare neural networks with models of other
types.

We adapted Bayesian analysis to non-linear
regression and neural network models selection.
This led us to a classic predictive sampie reuse
procedure, based on two Bayesian concepts, i.e.
conjugate prior densities and empirical Bayes
setting of hyperparameters, which allow analytic
characterization of posterior and predictive den
sities, while limiting the introduction of a priori
information.

we applied this 'Ieast false' neural model se
lection procedure to several case studies in bio
logical and bio-physical complex systems, as soil
hydrology, for which feedforward neural net
works appear as competitive modelling tools.
The study of soil hydraulic conductivity tackled
in this paper, reveals the relative improved effi
ciency of this Bayesian selection procedure with
respect to the more classic cross-validation pro
cedure. Let us note that, as interesting as the
present results appear to be, this study points
out a desirable improvement of our Bayesian
selection procedure: the possibility to compare
multioutput neural network models (and more
generally, multiresponse non-linear regression
models). For our present application, this im
provement would allow to select the neural ar
chitecture which simultaneously predicts at best,
the five water potentials of interest. This multi
response extension of our Bayesian procedure is
presently in project.
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Appendix A. Elements of Bayesian analysis

Given a random sample Z = ('::1 •...• .7m ) of m
i.i.d observations. with likelihood p(Z\</J) where </J
is an unknown vector of parameters. and a prior
density p (</J). the Z -conditional posterior density
is defmed by:

p(</JIZ)= p(ZI</J)p(</J)

fp(ZI</J )p( </J )d</J

Multidimensional integration is required to cal
culate this posterior density. In the case of general
likelihood and prior. the exact analytical or nu
merical evaluation of these integrals is most often
untractable. To perform integration over the
range of </J. simultaneous analytic or numerical
approximations are then necessary. However ex
act calculations can be done for a sufficiently rich
class of particular priors: the family of conjugate
priors.

Definition Al (conjugate prior family). The conju
gate [ami/y of prior densities for </J E<p, with respect
to the likelihood p(Zj<P) lI'ith sufficient statistic
tfll = t",(Z) = (m. s(Z)} of dimension k. is defined
by:

lJ!(</J15),:Y = (rû• TI . ... , TdE n,
lI'here:

T= {5;Lp(s = (Tl, ... , Tk)!</J. m = Tû)d</J <XJ}

and

Definition A2 (k-dimensional exponential family).
A probability density p(::j<P) ll'here ::E:!l' and
</J E<p ~ IRq be/ongs to a k -dinzensiona/ parameter
nponential family if it can be lI'ritten:

p(::I</J) = c(.::)g(</J) exp {JI !/J,(</J)h,(::)}

lI'ith:

~= rc(::)exp {± c,!/J,(</J)h,('::)}d::<OO
g('!") 1 ,~l

The exponential family is said ta be regular if the
set of possible values of ::l does not depend on </J.

Proposition Al (Conjugate families for regular ex
ponential families of distributions). Let Z = (::], ... ,

::",) be a random samp/e from a k-dimensional
regu/ar exponentia/ fami/y distribution. Its Iike/i
hood is given by:

",

p(ZI</J) = [1 c(::,)[g(</J )]fII
/ ~ 1

{exp ,tl !/J,(</J{tl h'(Zl»)}
The corresponding conjugate family of prior distri
butions of </J has then the form:

p (</J 15 ) = [K(.:1)] - 1[g( </J WO exp {,tl !/J,( </J )Tl
</JE(J)

lI'here 5 is such that:

Proposition A2 (corresponding posterior and pre
dictive densities). Under the assunzptions of propo
sition A 1 and for the corresponding conjugate prior
density for </J:

(i) the posterior density for </J is given by:

p(</Jlz, .:1) = p(</J15 + tm(Z)

lI'here:

.:1 + tfll(Z) = (Tû + m.

Tl + ltl h1(::). .... T,+ ,tl h,(z))

(ii) the predictive density j'or future observations
Z = (':]0 ... ::1) is:

p(ZIZ, I) = p(ZI·7 + t",(Z»)

[1
/ - K(.7 + tfll(Z) + t/(Z»

= c (7 ) --=-:-=-------=::-:--
, ~ 1 -l K(5 + t",(Z»
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where:

Appendix B. Bayesian mode) comparison

Let {MJjEJ be N = card (J) models to be com
pared from Zn = ((Xl' YI),"" (Xm )'n» n indepen
dently and identically distributed (i.i.d.) pairs of
observations. Model M

J
is given by Eq. (1).

Among the N candidate models we shall retain,
the one for which the expectation of a given
utility function ulM!, z, Zn) (defined in the follow
ing), is maximum:

where Z = (x, y) is a future observation for which
the predictive distribution of v at x is wanted and
p(zIZn) is a density, usually ~nknown, represent
ing actual beliefs about z having observed Z

Let us consider the n partitions of Zn: Zn =
[Zn-I[lk], Z/J, 1 ~ k ~ n where Zn_l[lk] denotes Zn
with observation Zl

k
deleted. Let us randomly

choose K ~ n of these partitions. We have by the
strong law of large numbers as n and K tend to
infinity:

So, the respective expected utilities of the differ
ent candidate models ~, JEJ, can be compared
on the basis of the quantities:

1 K

K k~\ u(~, Zlk , Zn - \[lk)) JEJ

As we are rather interested in comparing mod
els from a predictive distribution point of view,
we shall take as utility function a logarithmic
score:

u(~, Z, Zn) = logp/ylx, Zn)

where p/y lx, Z,,) is the predictive posterior den
sity, knowing Z", of a response y for the depen
dent variable observed at x, for model Mr We
then select over JEJ the model M for which the

1

following quantity is maximum:
1 K

UI=Kk~llogpJ(vd\\,Z"-I[lk]) (15)

This procedure can be considered as a Bayesian
cross-validation-Iike process, which brings us to
select the model under which the data achieve the
highest level of sorne kind of 'internaI consistency'
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Software sensor design based on empirical data
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Abstract

Software sensor design consists of building an estimate of sorne quantity of interest. This estimate can be used
either to replace a physical measurement, or to validate an existing one. This paper provides sorne general guidelines
for the design of software sensors based on empirical data. When the model is a priori unknown, the problem can
be stated in terms of non-parametric regression or black-box modelling. Complexity control is the main difficulty in
this setting. A trade-off must be achieved between two antagonist goals: the model should not be too simple, and
model identificatIOn should not be too variable. We propose to address this issue by a penalization algorithm, which
also estimates the relevance of input features in the identification process. A data-driven software sensor should also
provide accuracy and validity indexes of its prediction. We show how these indexes can be estimated for complex
non-parametric methods, such as neural networks. An application in environmental monitoring, the design of an
ammonia software sensor, illustrates each step of the approach. © 1999 Elsevier Science B.V. Ali rights reserved.

KeYll'ords: Software sensor; Black-box modelhng; Neural networks; Complexity control; Feature selectIOn; Ammonia prediction

1. Introduction

Nowadays SCADA (supervision control and
data acquisition) systems are widely used for envi
ronmental monitoring, thus creating large data
bases. This paper presents a methodology
exploiting the redundancy arising in those data
bases to replace missing measurements, or to
cross-check available ones. This methodology is

• Corresponding author. Fax: + 33-03-44234477; no:
122331.

E-mail address: mmasson@hds.utc fr (M.H Masson)

illustrated on a case study: the design of a 'soft
ware' or 'virtual' sensor of ammonia.

Ammonia is one of the main indicators of water
pollution. Its monitoring is thus needed to assess
the water quality in rivers and in waste water
treatment plants (WWTP). Sorne important deci
sions are derived from this monitoring: in a river,
the intake of a downstream drinking water pro
duction plant should be c10sed to avoid a pollu
tion peak. In a WWTP, an efficient feedback
control requires the real-time estimation of the
ammonia concentration. The availability of the
measurements is therefore crucial. Meanwhile, al
though commercial available ammonia sensors

0304-3800/99/$ - see front matter © 1999 Elsevier Science B.V. Ail rights reserved

PlI: S0304-3800(99)00097-6
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are improving, they are still expensive to buy and
to maintain. Furthermore, as pointed out by Lyn
ggaard-Jensen (1995), they are not reliable in the
long-term. and their long response time (10-25
min) causes delays in rising alarms, and
difficulties in standard feedback control. It is thus
essential to estimate the ammonia concentration
by other means than the physical sensor, i.e. by a
software sensor.

A software sensor computes an estimate of
sorne quantity of interest, based on a mathemati
cal model and other (faithful) measurements. The
computed estimate may be used in place of the
measurement when the latter is missing, or as a
tool to validate an unreliable physical measure
ment. In most real world applications, the soft
ware sensor estimate will not be as accurate as a
carefully tuned physical sensor. If it is designed to
replace a physical sensor, the user should be ready
to encounter an accuracy loss. But the software
sensor has other purposes. It may give predictions
of laboratory data, estimates when the measure is
missing, and provide a sensor diagnosis when the
measure is available.

There are two kinds of software sensors: model
based and data-driven. Model-based, or determin
istic software sensors (e.g. Lynggaard-Jensen,
1997) can be built when the physical, biological
and chemical relations between the measurements
are known up to sorne constants, and that these
constants can be identified. The model is derived
from the problem analysis, and the software sen
sor is build thanks to the estimation of the model
parameters. Data-driven, also known as black
box or statistical software sensors are to be used
when no accurate mode! is known. Data-driven
methods include kernel and spline smoothers, ad
ditive models, projection pursuit and neural net
works. These methods estimate the statistical
dependence between measurements. For this pur
pose they require a 'training set' of valid past
measures, including the quantity of interest.
Hence, the software sensor does not learn the
physics of the process, but the behavior of the
physical sensor, which had to be installed to
provide the training examples.

The first part of this paper gives the general
outline of the methodology for the design of a

data-driven software sensor, with a special em
phasis on neural networks modelling. This
methodology is then illustrated by the design of
an ammonia software sensor on a real application
developed within the EM2S (environmental man
agement and monitoring systems) Esprit project
P-22442, which involves the following partners:
Suez-Lyonnaise des Eaux (France). VKI Water
Quality Institut (Denmark), Danfoss System Con
trol (Denmark), Hitec (Norway), Computas (Nor
way) and Heudiasyc CNRS (France).

2. Methodology

2.1. Sample selection and data splitting

Before building a data-driven software sensor, a
preliminary data validation step has to be carried
out. Indeed, it is likely that sorne sensor failure
happened during the data collection. As software
sensors mimic physical sensors, sensor failures
should be e!iminated from the database.

This 'cleaning' step can be carried out by an
expert or by automatic validation procedures
based on standard signal processing methods
(filtering, sequential hypothesis testing). The de
scription of these validation procedures is out of
the scope of this paper. The reader will find a
review of these methods, together with their use
within the EM2S project, in the report of the
Diagnosis group (1996).

Once a data set has been selected, it has to be
divided into learning and test sets. The learning
set is used for the calibration of the software
sensor, the test set for its validation. These sets
should be independent for the test error to be an
unbiased estimate of the modelling error. When
there is no time dependency, this condition is
ensured by any randomized splitting. In time se
ries, contiguous samples are correlated and should
thus appear in the same set. A usual approach is
to split the set by taking the first part for training
and the last part for testing. However, since envi
ronmental time-series present non-stationarities,
such that seasonalities and trends, this coarse
scheme can not be used. Instead, the data set is
divided in blocks of sequential data that are alter-
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2.2. Black-box modelling

constructed on the basis of the training set. If the
loss function 1 is chosen to be quadratic, one
obtains the least squares method:

The distribution p being unknown, the prediction
error can not be computed. To minimize Eq. (1)
the empirical risk minimization principle proposes
to minimize:

(3)
1 (

Remp(g) ="7 I~I (y, - g(X,»2

Minimizing Eq. (3) amounts to estimate the ex
pected value of Y given x, i.e the regression
function.f{x) = IE[ ylX = X J. As lis unknown, the
function g should be flexible enough to be able to
approximate a large c1ass of functions. Well-tried
examples include kernel or spline regression, addi
tive models, and artificial neural networks (see
e.g. Venables and Ripley, 1994). Ail these regres
sion methods are able to propose a valid solution
to many problems, whereas parametric models
propose a precise or invalid solution, whether the
model is weil specified or not. The choice of one
particular method is motivated by sorne charac
teristics of the problem. Kernel or spline smooth
ing are used if there are only a few explicative
variables (typically one or two). Additive models
provide easily interpretable solutions if there are
no interaction effects between explicative vari
ables. If the dimension of the input space is high,
and the size of the training set is large, neural
networks are weIl adapted.

2.3. Complexity control

The major pitfall of flexible methods is to mis
use their flexibility. The more flexible the model is,
the greater is its ability to approach any function,
but the more instable is the estimation problem
from a finite amount of data. This is known as the
approximation/estimation or bias/variance trade
off. This issue is addressed by the control of
flexibility or complexity, which is a crucial step in
building an estimate of the regression function.
Usually, sorne parsimony or smoothness condi
tions are irJlposed as means to provide this
control.

In neural networks, there are two archetypal
ways to control complexity: by setting the net
architecture, or by setting constraints on the
parameters of the net. In the first case, the net
work is fitted by least mean squares. Complexity
is defined by the number of parameters. The
optimal number of parameters, or number of
hidden units is estimated by constructive or prun
ing methods reviewed in Reed (1993). In the
second case, an oversized network is chosen, and

(1)

(2)

PE(g) = fl(y, g(x))dp(x, y)

In deterministic approaches, a software sensor
estimates a function, which is known up to sorne
parameters, and learning refers to the parameter
calibration. The accuracy of the results depends
on the amount of data available for tuning the
parameters and on the appropriateness of the
function. For example, a well-tuned linear mode!
will do badly if the dependency is truly non-linear.

In the machine learning framework, the goal of
black-box techniques is not explicitly stated as a
function approximation problem, but as an infer
ence problem. The aim is to approach the ex
plained variable }' for any plausible value of the
explicative variables x by sorne function g(x). To
achieve this, a data set SI = {x,, Y,) ~ ~ 1 and a loss
function 1 are given. The data set is the learning
set from which inference is carried out, and the
loss function gives a quantitative objective: how
much should be paid for a given error? In this
context, generalizing means achieving a smail av
erage loss on future predictions, i.e. for X =1= X"

i = l, ... , 1. As predictions are supposed to be done
on examples drawn from the distribution of the
learning set p, generalization is measured by the
mean loss, or prediction error PE:

natively allocated to test and training sets. The
number of blocks results from a compromise.
Each block should be large enough to ensure
small dependency between blocks, and short
enough so that the whole phenomenon is repre
sented in the two sets.
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its parameters are estimated by penalized least
mean squares (e.g. weight decay of Plaut et al.,
1986). Complexity is defined by the strength of
the penalization applied. Here, like in kernel or
spline smoothing, the notion of parameters is no
more relevant. It is replaced by the number of
effective parameters introduced by Moody (1994),
or degrees of freedom, as defined by Hastie and
Tibshirani (1990). These two methods are respec
tively equivalent to subset selection and ridge
regression in linear regression.

Complexity tuning is usually carried out by
estimating the prediction or generalization error
PE Eq. (1), and minimizing this estimate. The
empirical risk Eq. (2) is a down-biased estimate of
PE. The error on an independent validation set is
an unbiased estimate of prediction error, but its
computation requires to put aside a part of the
training set for complexity tuning. Note that the
validation set is a part of the training set used to
provide an estimate of the optimal complexity. It
should not be confused with the test set which
role is to estimate the generalization ability of the
software sensor on unseen data.

Analytic estimates of the prediction error exist
(cf. Krieger and Zhang, 1997), but they are either
loose upper bounds, either based on strong as
sumptions on the data distribution. Sorne of these
estimates have been tested on neural nets, but
Tibshirani (1996) experimentally showed that
their reliability is much lower than resampling
estimates.

Roughly speaking, resampling techniques
provide a large validation set for tuning complex
ity, while the whole training set can still be used
to calibrate the software sensor. This intensive use
of the training set is done at the expense of
intensive computation.

The two main resampling schemes are cross
validation (leave-one-out or leave-many-out), and
bootstrap (cf. Efron and TibshiranL 1993). These
methods should be used with care for time-series,
as the examples in the training set are correlated.
In black-box modelling, this dependence is simu
lated by sampling blocks of contiguous data.
Block-bootstrap requires choosing a relevant
block length. It is simpler to use K-fold cross-val
idation, using large blocks of contiguous data.

Breiman (1996) recommends the number of
blocks to be between 5 and 10.

The training set is divided in K blocks of con
tiguous data: (K - 1) blocks are used for training,
and one block for validating the estimate. This is
repeated K times for ail possible choices of vali
dating block. For each complexity index (such as
the number of parameters in subset selection), K
estimates of the regression function are thus com
puted. The generalization error corresponding to
the complexity index is then estimated by the
average error on the validating blocks, which
minimum estimates the optimal complexity tun
ing. Finally, the whole training set is used to
estimate the net parameters for this tuning.

2.4. Prediction accuracy and l'alidity domain

For practical use, a software sensor should not
only provide a pointwise estimate of the quantity
of interest, but also an accuracy index, such as a
confidence interval. In regression, a confidence
interval is usually defined as a band centered on
the regression estimate, where the true regression
function should lie with sorne confidence level.
Here, the confidence interval should be under
stood as a band including the regression estimate,
where the explained variable should lie with sorne
confidence level. We are interested in the differ
ence rJ(x) - y) between the prediction and the
true value, not in the difference (f~x) - f(x» be
tween the actual and the best possible predication
j(x) = !E[YIXJ = x].

When the software sensor is used to cross-check
measurements, the confidence interval is necessary
to assess the similarity of the two quantities. For
missing measurements, the prediction uncertainty
is needed to evaluate the risks of decisions based
on the prediction.

Another interesting feature of a software sensor
is its ability to provide to the end user a self-diag
nosis, such as 'prediction unlikely to be valid'.
This diagnosis should be given when there is sorne
evidence showing that the operating conditions of
the software sensor have changed. For example, if
temperature is a feature used by the software
sensor. a model trained on summer months data
should not be extrapolated to winter months. As
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faithful extrapolation can not be guaranteed in
data-driven methods, prediction should not be
assumed valid far from previously seen cases.

Actually, accuracy and validity are related is
sues since a very large confidence interval should
be given for data far away from training data. If
our only assumption about the regression func
tion is stated as a regularity or 'smoothness' hy
potheses, then we believe that a training sample
(Xl' y,) should only have a localized influence on
the estimate l(x). Hence the estimate j(x) is arbi
trary when X is far away from the training sam
pies, and the confidence interval should 'blow-up'.

As stated here, assigning a confidence interval
to the prediction is a difficult problem. In kernel
methods (cf. HardIe, 1990), confidence intervals
are determined by the interpolation of pointwise
confidence interval at XI' There is no conventional
means to account for the fact that j(x) is almost
completely unknown for X far from training data.
This may be why no results are usually given in
extrapolation with kernel or spline smoothing.

The fact that almost no information on y is
gained for X far from training points x, can be
easily accounted for in the Bayesian formalism.
However, even if there is no theoretical hurdles,
taking into account heteroscedasticity in this
framework is technically very difficult.

In this paper, we propose a novel approach to
estimate the confidence interval by learning from
data. Compared to other estimates based on data
proposed by Nix and Weigend (1995), or Heskes
(1997), our method does not rely on any assump
tion about the conditional distribution of (Ylx). It
is inspired by stacking regression algorithms in
troduced by Wolpert (1992).

Stacking is defined as a very general technique,
designed to improve the accuracy of a regression
estimate. We only provide here a simple example
introducing our algorithm. Stacking estimates a
correction term which should be applied on the
top of the predictor for test examples. This correc
tion takes into account sorne properties of the test
example with respect to the training set. First, the
training sample is partitioned in several training
and validation sets, as in K-fold cross-validation.
For each learning set, a predictor lk' k = l, ... , K is
built. For each lb and each sample of the valida-

tion set, the error El = K((xi) - YI) is computed.
Moreover, other features CI' such as a distance to
the training set, or the estimate lk(X I ) are com
puted. Once this has been made for each predictor
lk' the new features CI are available on the whole
training set. They are used, together with XI' to
estimate El by a function, the correction term
g(c, x).The whole training sample is then used to
estimate j(x), which prediction is corrected by
g(c, x).

To provide a confidence interval, the only mod
ification made in our algorithm is to estimate the
absolute value of the residuals IE,I. The function g
is not a correction applied to the estimate, but a
standard deviation estimate. The confidence inter
val is a variable width band centered on the
regression estimate. Its width is proportional to
the estimate of standard deviation, and is chosen
so that a given percentage of the validation data
are in the band.

3. Application

3.1. Site and data description

This case study concerns the monitoring of the
Ouche river by the French water supplier Lyon
naise des Eaux. This river is used as pouring for
the sewage system and the WWTP of the city of
Dijon. To quantify the impact of the WWTP on
the river, physical and chemical variables like
water temperature, conductivity, pH, ammonia
and dissolved oxygen were measured and stored
in a database. The temporary monitoring station
was situated downstream the sewage and WWTP
outlets. As the installation and operating costs of
an ammonia sensor are high, this measurement is
not available in the permanent monitoring sta
tion. The feasibility of a virtual sensor was thus
studied.

The raw database is made of 25000 measure
ments of each variable during a period of 5
months (April-August), sampled every 6 min.
Many sensor failures were detected and the vali
dation procedure eliminated a large amount of
data. The further requirement to have blocks of
valid data lasting at least 10 h reduced the num-
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(6)

ber of extracted data to 3200 (during the June
July period). This constraint originated from the
will to be able to take into account long-term
dependencies, if they were any. Each block of
contiguous data was split into two equal blocks,
one for the training set, and one for the test set.
The learning set and the test set are thus com
posed of 1600 samples.

This equal splitting may seem to be a waste of
data, since the only use of the test set is to
validate the software sensor, and to provide a
criterion for comparing different solutions. How
ever, each block of contiguous data in the vali
dated database consists only of 3-4 days. The
halving of these periods aims at ensuring sorne
independence between training and test data. If
the data in the two sets are too dependant, the
test set does only validate the software sensor
ability to leam, not its ability to generalize. Fi
nally, this work was stated as a feasibility study.
In other words, it has to ensure potential results
rather than to give actually accurate results.

3.2. Ammonia prediction

Since a relatively large amount of data is avail
able and no interpretation of the results is needed,
a multilayered perceptron (MLP) with one-hidden
layer was chosen as predictor. The output of such
a network is given by:

g(x) = k~l Il'Ok tanh Ctl Il'/~-\J + Bk) + Bo (4)

where H is the number of hidden units, d the
number of input variables, \t~k and WOk are the
weights of the input-to-hidden and hidden-to-out
put layer, Bk and Bo are the corresponding
thresholds, and tanh is the units activation
function.

To control the complexity, we use here a ver
sion of adaptive ridge regression introduced in
Grandvalet (1998) penalizing/pruning the input
variables according to their relevance, while con
trolling the smoothness of the input-output map
ping. The overall penalization applied to the
network is controlled by a unique hyper-parame
ter À. Tuning the complexity is equivalent to the
estimation of À* minirnizing the generalization

error. The version of adaptive ridge regression
used here is illustrated in Fig. 1. It penalizes
differently d + 1 groups of variables: d groups
gather the outcoming weights of the input units
WJ' j = l, ... , d, and one group the incoming
weights of the output unit Wo, excluding aIl bias
terms which are not penalized. The first d groups
are used to penalize irrelevant features, and the
last one only applies smoothness constraints on
the mapping. The estimate ,f,. is defined by

~ 1 ( d

f)=ArfiJPin/I~1 (f(x')-YY+J~O ÀJwJI12

1 1 1 1
subject to -- l - = - ,À

J
> 0

d + l/~o ÀJ À

(5)

where F is the set of MLPs with H hidden units.
Let wj') and w~) be the value of wJ and Wo at the
step s of the optimization algorithm. The values
of À

J
are simply updated by

À I:~o~
À(s) = -- -------;===--

1 d+ 1 ~Y)112

where the value of À is determined by estimation
of generalization error by cross-validation.

As was pointed out before, the main interest of
adaptive ridge regression is a control of complex
ity together with a selection of relevant features.
The robustness of the network against useless
input variables is thus increased. Hence, instead

input units

hidden units

output unit

Fig 1 Weigth groups used by adaplive ridge penalizalion.
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of using a feature selection algorithm in a sepa
rated pre-processing step, the network may be fed
with a large set of potentially explanatory
variables.

When dealing with time series, the input vari
ables may include present and past variables. The
role of past variables is to take into account the
dynamics of the process. In our application, the
input variables (x], ... , x d ) were chosen to be pH,
temperature, dissolved oxygen, and conductivity
at present time t and previous instants t - crAt,
with At = 1 h, and cr = l, 2, ... , 10. The total
number of input variables dis thus 44. This choice
resulted from a compromise between a good de
scription of short and long-term dependencies and
a moderate number of input variables. We know
that ail these variables are not relevant, but the
penalization is designed to estimate which input
variables should be used by the mode!.

The chosen architecture is a one-hidden-Iayer
perceptron with 20 hidden units. As there are 44
input variables, the number of free parameters is
about 1000, for about 1600 points in the training
sample. This number of free parameters allows a
great flexibi1ity. It is thus possible to approach a
large class of functions. The number of effective
parameters, hence stability of the estimate is gov
erned by the hyperparameter "- of adaptive ridge
regression.

3.3. Prediction accuracy and validity domain

The residuals obtained from the ammonia pre
diction support the hypothesis of heteroscedastic
ity. The stacking inspired confidence interval
described in Section 2.4 is thus used to train a
neural network estimating the prediction accu
racy. As cross-validation is used to tune complex
ity, a major part of the computation required by
stacking is already done: we have the training set
for predicting the errors. We still have to compute
new potentially exp1anatory features, taking into
account the properties of test examples with re
spect to the training set. The feature used are
different distance from x to the training sample
and the prediction. We provided the distance to
the training set gravity center and to the nearest
neighbor in the set, with the Euclidean metric and

the metric derived from the relevance index given
by the adaptive ridge algorithm. The training set
{(x" c,,[ë,I)}: ~] being built, we apply the machin
ery used for predicting ammonia for estimating
the prediction interva!.

3.4. Results

Of the 44 input variables, 22 are estimated to be
irrelevant during the cross-validation procedure.
They are thus deleted of the training sample when
estimating h, on the whole training set. The final
prediction and the confidence interval on the test
set is given in Fig. 2.

The confidence interval width varies in a factor
4 and is coherent with test residuals shown in Fig.
2. These results support the approach, especially
the introduction of distances as input variables for
accuracy, since the main explanatory variable here
is the nearest neighbor distance. The predictor
performance is compared for reference to three
other predictors shown in Table 1. The results for
MLPs are significantly improved over the ones of
linear prediction, supporting the existence of non
linearities in the dependence. The benefits from
adaptive penalization in terms of prediction per
formance are also significant.

The second benefit of adaptive regularization is
that the interpretation of results is eased by the
computation of the relevance index (proportion
ally to 1/"-; Eq. (5), and normalized to sum to
one). This index is indicated in Table 2 for the
most significant explanatory variables. Oxygen
and conductivity are by far the main input vari
ables. This result is surprising for the chemist,
who would expect pH to be more important. But
pH is highly correlated with oxygen, and the pH
measurement is less accurate.

4. Conclusion

In this paper, we showed the feasibility of an
ammonia software sensor on a real application on
the site of Dijon. Since the valid data available for
this study did not cover a full year, the proposed
software sensor can not be imp1emented without
further developments based on new data record-
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Fig. 2 Top: NH4 measurement (thin [me) and MLP output for adaplive ridge training (thlck line) on test data with 90% confidence
interval (shaded region): bottom' absolute errors (points) and 90% confidence mterval (shaded region).

ing. However, rather than solving a particular
problem, this paper aims at providing general
guidelines for the design of data-driven software
sensors.

When little is known about the nature of phe
nomenon to be modelled, black-box methods,
among them neural networks, are well-adapted.
They amount to estimate a quantity of interest
from a set of explanatory variables on the sole
basis of solved examples. A major issue in black
box modelling is to find the relevant input vari
ables. A feature is relevant according to the
dependence and to the predictor used to model
this dependence. Thus feature selection should be
integrated into the modelling process. The adap
tive ridge algorithm is well-suited since it per-

forms input selection while tuning the predictor
complexity, which is a crucial step in black-box
modelling. Thanks to this selection mechanism,
non-linearities are exhibited in our application
a1though the ratio of sample size to input dimen
sion is low.

A usual criticism of black-box models is their
failure to provide confidence intervaL This confi
dence measure is essential for the end user to
compare the predicted value with the physical
measure and to diagnose a fau1ty behavior of the
software sensor. The proposed approach allows a
data-based estimation of such intervals to be
built. The same supervised algorithm is applied
using both the cross-validation residuals as targets
and additional input variables. Among the latter,
the distance between the current input and its

Table 2
Relevance (computed from "',) for the top SIX selected explica
tive vanables

Table 1
Prediction error for hnear regression trained with ridge regres
SIOn (RR). adaplive ridge regresslOn (ARR), and MLP with
welght decay (RR). and adaplive ridge regression (ARR). The
intervals are eslimated from the mtervals of vahdatlOn set
errors Vanable ReJevance index (%)

Method

Lmear+RR
Linear+ARR
MLP+RR
MLP+ARR

Prediction error

4.0 ± 0.2
3.8 ± 0.2
5.3 ± 0 2
3.1 ±0.2

Oxygen(t)
Conductivity(t)
Temperature(t-100)
pH(t-40)
Conductivity( t-IO)
pH(t)

33
21

8
5
5
5
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nearest neighbor in the training set appears to be
the most relevant, justifying the use of training set
characteristics as additional variables.

Acknowledgements

We would like to thanks S. Deveughèle from
the Lyonnaise des Eaux for providing the data
and technical support.

References

Breiman, L., 1996. Baggmg predlctors. Mach. Learn. 24, 123
140.

Oiagnosis group, 1996. Sensor data valIdation. Techmcal Re
port UTC. CNRS/EM2S/3IO/l2-96, http://www.hds. utc
fr/ - em2s, p. 43

Efron, 8., Tlbshlram, R., 1993. An introduction to the boot
strap. In: Monographs on Statistics and Applied Probabil
ity, vol. 57. Chapman and Hall, New York, p. 436.

Grandvalet, Y., 1998. Least absolute shnnkage IS equivalent to
quadratic penalization. In: Niklasson. L, Bodén. M,
Ziemske, T (Eds.), ICANN 1998, PerspectIves in Neural
Computing, vol. 1. Springer, Berlin, pp. 201- 206.

Hardie. W., 1990. Applied nonparametric regression. In: Eco
nomic Society Monographs, vol 19. Cambridge UmversIty
Press, New York, p. 333.

Hastie, T., Tibshirani, R, 1990 Generalized addItIve models.
In: Monographs on Statistics and Applied Probabi1ity, vol.
43. Chapman and Hall, New York, p. 335.

Heskes, T., 1997. Practical confidence and predIctIon intervals.
In: Mozer, M.C., Jordan, M.I., Petsche, T. (Eds.). Advances

in Neural Information Processing Systems 9. MIT Press,
Cambridge, MA, pp. 176-182.

Krieger, A.M., Zhang, P, 1997 GeneralIzed final predIctIon
error cntena. In: Kotz, S., Read, C.B., Banks, O.L. (Eds.),
Encyclopedia of Statistical SCIences, Update, vol. 1 Wlley,
New York, pp. 269-272.

Lynggaard-Jensen, A., 1995 Status for onlIne sensor and
automated operation of wastewater treatment plants. Pro
ceedmgs Nordic Semmar Nltrogen Removal from MumcI
pal Wastewater, Espoo, Finland, pp. 174-186.

Lynggaard-Jensen, A., 1997. The new sensor development for
wastewater treatment plants with nitrogen removal. Pro
ceedmgs of Nordic Conference on Biological Nitrogen and
Phosphorus Removal. Stockholm, Sweden.

Moody, J., 1994 PredictIOn nsk and architecture selection for
neural networks. In: Cherkassky, V.. Friedman, 1., Wech
sler, H. (Eds.), From statistics to neural networks, theory
and pattern recogmtlOn applIcatIOns, NATO ASI series F:
Computer and Systems SCIences, vol. 36. Springer, Berlin,
pp. 147-165.

Nix, O., Weigend, A, 1995. In: Tesauro, G., Touretzky, O.S.,
Leen, T.K. (Eds.), Advances in Neural Infonnation Process
ing Systems 7. MIT Press, Cambridge, MA, pp. 489-496.

Plaut, O., Nowlan, S., Hinton, G, 1986. Experiments on
learning by back propagatIOn. Technical Report CMU-CS
86-126, Carnegie-Melon Oepartment of Computer SCIence,
Pittsburgh, PA, available at http.//www.cs.utoronto.ca/
- hinton/backprop.ps, p. 40.

Reed, R., 1993. Prumng algorithms-a survey. IEEE Trans
Neural Netw. 4 (5), 740-747.

Tibshirani, R., 1996. A comparison of sorne error estimates for
neural networks models Neural Comput. 8 (1), 152-163.

Venables, W., Rlpley, 8., 1994. Modern applied statistics with
S-plus. In: Statistics and Computing. Spnnger, New York,
p.462.

Wolpert, O., 1992. Stacked generalIzatlOns. Neural Netw. 5.
241-259.





ELSEVIER Ecologlcal Modelhng 120 (1999) 141-156

E[OLOIiI[AL
mODELUnli

www.elsevier.com/locatc/ccomodcl

pH modelling by neural networks. Application of control
and validation data series in the Middle Loire river

Florentina Moatar a,*, Françoise Fessant b, Alain Poirel c

d LTHE. UMR 5564, CNRS-INPG-ORSTOM-UJF, BP 53, 38041. Grenohle Cedex 9, Franc/!
b INRETS-MAIA, 2 at'enlle du General Malleret Joinl,tlle, 94114, Arcuel!, France

C EDF-Dll'ision Technlque Générale, 21, at'enue de l'Europe, BP 41, 38040, Grenoble Cedex 9, France

Abstract

Artificial neural networks (ANNs) are applied as a new type of model to estimate the daily pH of the MIddle Loire
river. The model is used for pH measurement screening, error detection (abnorrnal values, discontinuities and
recording drifts) and validating the collected data. The measured values of pH are compared with the values estimated
by the ANN model using statistical tests to verify homogeneity and stationarity. River water pH is affected by
numerous processes: biological, physical and geochemica!. Examples are: CO2 pressure equilibrium with the
atmosphere, photosynthesis, respiration of plants, organic matter degradation, geological and mineraI background,
pollution etc. Inter-relationships between these processes and pH values are complex, non-lînear and not weil
understood. As a neural network provides a non-linear function mapping of a set of input variables into the
corresponding network output. without the requirement of having to specify the actual mathematical form of the
relation between the input and output variables, it has the versatilîty for modelling a wide range of complex
non-lînear phenomena. For this reason the neural network approach has been selected and tested for pH modelling.
We used the classical multilayer perceptron model (MLP).

River discharge and solar radiation variables are used as inputs to the MLP mode!. The choice of these variables
is dictated by what are perceived to be the predominant processes that control pH in the Middle Loire river, which
is typically eutrophic during the low-flow summer period. The influence of the previous day's flows and radiation has
been evaluated in the calibration and verification test. The best network found to simulate pH was one with two input
nodes and three hidden nodes. The inputs are: daily discharge and a variable called 'Index of anterior radiation', i.e.
calculated as an exponential smoothing of the daily radiation variable. When calîbrated over 4 years of data and
tested (i.e. verified) for a one-year independent set of data, the model proved satisfactory on pH simulations, with
accuracies in the order of 86%. After elaborating the pH model, the Student test and the cumulative Page- Hinkley
test were applîed for automatic detection of changes in the mean of the residuals from the ANN pH mode!. This
analysis has shown that such tests are capable of detecting a measurement error occurring over a short period of time
(1-4 days). © 1999 Elsevier Science B.V. Ail rights reserved.
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1. Introduction

French environmental regulations impose con
tinuous monitoring of the aquatic environment at
every river-site equipped with a nuclear power
plant. Therefore 'Electricité de France' performs
continuous data acquisition of four parameters:
temperature, electrical conductivity, dissolved
oxygen and pH, on an hourly basis. Field mea
surements do not always give a perfect view of
reality. The sensor may have a bad contact due to
fouling, clogging or lack of maintenance. The
measurement can be influenced by external fac
tors: humidity, temperature extremes or electro
magnetic fields. The calibration of the measuring
instrument may also give rise to problems. Experi
ence has demonstrated the need to verify measure
ments in order to be able to distinguish between
the different reasons for an anomaly: brief and
unexpected though real fluctuations, systematic or
progressive error in a sensor or progressive evolu
tion of the parameter being measured. A method
to critically analyse these data has been developed
(Moatar, 1997). The method combines modelling
and statistical evaluation. The modelling facili
tates the estimation of the pH parameter values
and the statistical decision tests allow the verifica
tion of the coherence of the measurements to
detect inherent errors.

In this paper, the modelling of pH using neural
networks and details on how to use this technique
for the critical analysis of data are presented. In
water, the pH is affected by the water's chemistry,
particularly the concentration of sorne of the
CO2-system components (Cab H2C03- and
CO~ -) according to the equilibria reactions
(Stumm and Morgan, 1981). The concentration of
CO2 is a function of the CO2 pressure equilibrium
with the atmosphere, as weIl as photosynthesis,
respiration of plants and the degradation of or
ganic matter. Under acidic conditions, where wa
ter chemistry is predominant, the pH is directly
related to the flow. Several authors have modelled
this relation after linearisation using regression or
Box and Jenkins (1976) transfer functions (White
head et al., 1986; Fisher et al., 1988; Hirst, 1992).
Under alkaline conditions, the CO2 concentration
which affects the pH is principally related to

photosynthesis. Photosynthesis is driven predomi
nantly by solar radiation, nutrients, temperature
and algal biomass. In the eutrophic Slapy reser
voir (Nesmerak and Straskraba, 1985), methods
of time series analysis (Box and Jenkins, 1976)
have been used to identify relationships between
automatic measurements of major driving (i.e.
input) variables and changes of pH as an expres
sion of photosynthesis. These analyses have sug
gested that daily changes of pH are closely related
to changes in solar radiation and water
temperature.

The site selected for this study is the Dampierre
power plant, which is located in the Middle Loire
River (Fig. 1). At this location, the stream is
typically eutrophic (the amount of chlorophyll-A
being up to 150-250 mg/m3

) during summer low
flows. The high level of phytoplankton photosyn
thetic activity (> 0.6 mg C/h during summer)
controIs the physical-chemical characteristics of
the water body at this period, notably the pH.
Compared with lake and reservoir studies, the
strong variation in the hydrological regimes
throughout the year makes river discharge a pre
dominant parameter in determining algal biomass
(Recknagel et al., 1997) and other physical and
chemical variables, including pH. This was illus
trated for the Dampierre site by the Principal
Component Analysis run on 104 data series over
13 years (Lair and Sargos, 1993). For this site, the
pH can be considered as a function of the fiow
and the variables characteristic of photosynthetic
activity which are themselves related to the hy
draulic regime and energy exchanges between the
water body and the atmosphere. The purpose of
the model is to quickly furnish probable pH val
ues to validate the measured values. The calcula
tion is based on reliable variables which are
measured on a daily basis. For this reason we
excluded from our model algal biomass, nutrients
and carbonates which are not reliable measure
ments and are only measured one or twice
monthly. Only the discharge and solar radiation
data were used in the model. The water tempera
ture is measured by the same monitoring system
as the pH. We choose to use only those parame
ters which are measured independently. We did,
however, test the sensitivity of the infiuence of
temperature on the mode!.
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A preliminary study of the daily pH-daily dis
charge relationship at the Dampierre station sug
gested that it has a non-linear and complex shape
(Fig. 2). By segmenting the data after solar radia
tion (5 (t) < 200 W/m2 and 5 (t) > 200 W/m2

) we
can improve the correlation of the relationship
between the daily discharge and the daily pH.
Moreover, the data series are nonstationary, i.e.
the basic statistical characteristics such as mean
and standard deviation of the process change with
the time. The interannual mean and standard
deviation of pH present a complex periodic be
haviour (Moatar, 1997). The standard deviation

of pH displays a strong annual variability not
directly related to the absolute leve1 of the pH.
Transformations of the pH data usually used for
modelling water resources time series (Box and
Jenkins, 1976; Salas et aL 1980) do not induce
complete stationarity. Discharge data series do
not follow a normal distribution. In this case the
Box -Cox transform (Box and Cox, 1964) is usu
ally used to obtain normally distributed data
(Lemke, 1991). For instance, the linear time series
models such as ARMAX (auto-regressive moving
average with exogenous inputs) models developed
by Box and Jenkins (1976) are not applicable.

• Water temperature (0 C)
Electrical conductivity at 25°C (IJS/cm)

• Dissolved oxygen (mg/l)

• pH
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Fig. 1. Location and eqUlpment of the Dampierre en Burly study site.
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Fig. 2. Daily pH versus daily discharge.

Input layer Hidden layer Output layer
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Q (t-l)
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S (t)

S (t-I)

S (t-m+I)

Fig. 3. Structure of the three-layer feed-forward artificial neural network used in thls study.

However, when developing ANN models, the
nonstationarities in the data are accounted for by
the hidden layer nodes and the statistical distribu
tion of the data does not need to be known
(Maier and Dandy, 1996). Neural network models
have been largely studied for the last 15 years.
Although they first proceeded from physical, bio
logical or psychological works about modelling,
their use has broadly spread out to many different

scientific areas. Neural networks are usually used
as a particular type of non parametrical statistical
model (Thiria et al., 1997). The most important
and interesting characteristics shared by most
neural networks models may be summarised as
follows: non linear modelling capacity, generic
modelling capacity, robustness to noisy data and
ability to deal with high dimensional data. In the
analysis of water resource phenomena, ANNs are
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Table 1
Companson of regression and ANN for single inputs variables

Smgle mputs variables

Q(t}

Log Q (1)

S (1)

T (1)

Regression ANN

E critenon S D* (pH units) E cnterion S.D* (pH units)

0.45 0.50 0.72 0.34
0.69 0.39 071 0.34
0.37 0.53 0.42 053
0.33 0.54 0.26 0.55

* S.D. = standard devlallon of residuals.

Table 2
Companson of regression and ANN for multiple inputs variables

Multiple mputs variables

Q(I)S(I)

Q(I)T(I)

Log Q (1) S (1)

Log Q (1) T (1)

Q (1) S (1) T (1)

Log Q (1) S (1) T (1)

RegreSSIOn ANN

E cntenon S.D* (pH units) E cntenon S.D* (pH units)

0.60 0.41 0.77 030
0.61 0.41 0.73 0.34
0.73 0.31 0.73 0.33
0.74 0.33 0.77 0.31
0.62 0.41 0.71 035
0.76 0.32 0.74 0.33

* S D. = standard deviation of residuals.

typically used to model the relation between rain
fall and runoff (Dimopoulos et al., 1996; Minns
and HalL 1996). The ANN is shown to provide a
better representation of the rainfall-runoff rela
tionship than the linear ARMAX time series ap
proach (Hsu et al., 1995; Lek et al., 1996b). In the
domain of ecological modelling successful results
have been obtained. For instance, Recknagel et al.
(1997) studied the relationship between different
species of algae and several limiting factors such
as: solar radiation, nutrient concentrations, den
sity and composition of zooplankton. Lek et al.
(1996a) applied ANNs to modelling fish diversity
with respect to riverine habitat characteristics.

2. The data base and the methods nsed in this
stndy

2.1. Site and monitoring ,1',Vstem description

The Loire river has a length of :::::: 1012 km and

a drainage area covering 115000 km2 of the cen
tre and the west of France (Fig. 1). The
Dampierre site, considered in this study, is situ
ated 550 km from the source and drains 35500
km2 of watershed. It has the longest available
record (1990-1995) of water quality parameters
measurements. The monitoring system consists of
a f1.oating platform including a temperature sensor
for direct measurement of water temperature (at a
depth of 20 cm) in the river course and a pumping
device sending a small f1.ow of water (approx.
0.5 I/s) to the three following electrodes: pH
(range: 0-14 pH unit; accuracy: ± 0.2%), Dis
solved Oxygen (DO) (range: 0-20 mg/I; accu
racy ± 1%) and electrical conductivity at 25°C
(range: 0-1000 ilS/cm; accuracy±l%). The pH
accuracy given above is for instantaneous values
and is that estimated by the manufacturer. How
ever, the corresponding accuracy of pH (including
electrode, transmission, and calibration) estimated
in situ by comparison with laboratory measure
ments for the maintenance department of the
Dampierre site are doser to ± 0.3 pH units. Accu-
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racy is defined as two times the standard devia
tion (S.D.) of the check-sample readings. Further
more, these instantaneous values, taken every 5 s
are not archived as such, but as an hourly mean,
which in fact is the average over 50 min (the
remaining 10 min being used for the circuit clean
ing cycle). In this study daily pH values were
used. The hydrometeorological data used in con
nection with the pH data are the discharges at the
Dampierre site (obtained from water-Ievel records

and a rating curve; range 46-2900 m"js; ac
curacy 8-10°;:» and daily solar radiation
(Wjm2 ) measured at the meteorological station of
the city of Tours located 185 km from the study
site.

2.2. pH modelling br artificial neural nefll'orks

In this study, the neural network model used is
the classical multilayer perceptron (MLP) with

a
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Table 3
Comparison of regression and ANN for multiple inputs vanables: Q (t) and /S (t) for different values of the weighting parameter
p

Multiple inputs variables

Q (1) /S (t); P= 0.1
Q (t) IS (t); P= 0.2
Q (1) IS (1); P= 0.3
Q (t) IS (t); P= 0.4
Q (t) IS (t); P= 0.5
Q (t) IS (t); P= 0.6
Q (t) IS (t); P= 0.7
Q (t) IS (t); P= 0.8
Q (t) IS (t); P= 0.9

Regression ANN

E criterion S.D.* (pH units) E criterion S.D.* (pH units)

0.61 0.41 0.79 0.29
0.61 0.41 0.79 0.28
0.62 040 0.80 0.28
0.63 0.40 0.81 0.28
0.63 0.39 0.82 0.27
0.64 0.39 0.82 0.27
0.65 0.38 0.83 0.26
0.64 0.38 0.79 0.29
0.63 0.39 0.79 0.29

* S.D. = standard deviation of residuals.
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Fig. 7 Estimated versus observed pH values for the 5 years calibration penod (left) and for 5 years venfication (right).

one layer of hidden neurons (Fig. 3). It was
developed using the commercially available soft
ware package Matlab-Neural Network Toolbox
(The MathWorks Inc., 1998). The MLP consists
of a large number of highly connected non-linear
simple neurons. We can differentiate three types
of neurons: input, output and hidden neurons.
The input neurons receive information to be pro
cessed, in our case the discharge Q (t) and solar
radiation S (t) (eventually incorporating also the
discharge and solar radiation from previous days).
The output neurons give the results of the neural
network. In this case we have only one neuron
which should return the result of the dependent
variable pH (t). The hidden neurons which are
neither input nor output neurons are used to keep

an internaI representation of the problem. The
parameters associated with each of these connec
tions are called weights. Knowledge of the net
work is kept in these weights. Each hidden and
output unit computes its value as the weighted
sum of its inputs, passed through a nonlinear
function. For a given network architecture, the
model calculates the weights that minimize a cost
function (generally the mean square error func
tion). Given a cost function, a network architec
ture and sorne data, the next step is to find the
appropriate weights which minimize the cost func
tion. This is usually done using an iterative proce
dure. The best known learning mechanism for
neural networks is the backpropagation (BPA)
mIe of Rumelhart et al. (1986). It is a simple
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gradient descent technique, which minimizes the
cost function in weight space by modifying the
weights in the opposite direction of the gradient
error with respect to the weights. The BPA is
often too slow for practical problems. Since
1986, a variety of improvements have been pro
posed (introduction of a momentum term, use
of conjugate gradient techniques, use of second
order information, etc.) (Hertz et al., 1991). We
used the Levenberg-Marquardt algorithm, an
alternative to the conjugate gradient techniques
for fast optimization.

One of the most important features of learn
ing systems is their ability to generalize to new
situations. An early stopping procedure to stop
the learning process was used for improving
generalization. In this technique the available
data were divided into three subsets. The first

subset is the training subset which is used for
computing the gradient and updating the net
work weights. The second subset is the valida
tion set. The error on the validation set is
monitored during the training process. The vali
dation error will normally decrease during the
initial phase of training, as does the training set
error. However, when the network begins to
overfit the data, the error on the validation set
will typically begin to rise. When the validation
error increases, the training is stopped, and the
weights at the minimum of validation error are
returned. The verification test subset is a set of
independent data used to verify the consistency
of the efficiency of the model.

The right number of hidden neurons cannot
be achieved from a universal formula. Networks
with too many parameters tend to memorize the
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Table 4
Statistical evaluation of estimated pH values (venficatlOn period)

Subset test year

1990
1991
1992
1993

1994

1995

Observed pH Estimated pH pH mode! reslduals

Mean S.D.* Mean S.D. Mean S.D

8.35 0.78 8.36 0.67 -0.01 0.28
8.27 0.74 8.33 0.73 -0.06 0.23
8.04 077 8.04 0.65 0.00 0.27
8.19 0.66 8.13 0.62 0.06 0.28

8.11 0.55 7.92 069 0.20 0.27

8.05 0.69 7.98 0.67 0.07 0.26

* S.D = standard devlatlOn of reslduals.

input patterns, while those with too few hidden
parameters may not be able to simulate a com
plex system at ail. We applied a trial-and-error
approach to select the best ANN architecture.

Our initial mode! had few parameters, we grad
ually added hidden neurons during learning un
til the optimal result is achieved in the test
subset.
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2.3. Description of the pH data control method

A method for pH data control was developed
after the pH mode! was built. The measured pH
values were compared with those estimated by the
ANN pH mode! using statistical tests in order to
verify the homogeneity and the stationarity of the
residual error series. These tests are performed for
normal variables having independent observa
tions. The series of residuals s (t) from the ANN
pH mode! are normal (cf. Fig. 10) but have, in
this case, a temporal structure (cf. Fig. Il). The
modelling of this series using an autoregressive
AR mode! allows the extraction of the indepen
dent residual series ~(t).

s(t) = a1s(t - 1) + a2s(t - 2) + "'ans(t - 2) + f1.(t)
(1)

The order n of the AR model was estimated after
analysis of the auto (ACF) and partial (PACF)
autocorrelation functions. Finally, two types of
statistical test are applied for automatic detection
of changes in the mean of the signal ~(t):

1. The Student test comparing the mean of the
values within a sliding window Fil and either a
reference mean ~o (Fig. 4(a)), or the mean of the
values within an anterior sliding window F2• (cf.
Fig. 4(b)).

2. The Page-Hynkley test (Basseville, 1986) was
performed as a cumulative sum test, where
jumps in the mean occur at unknown time
instants (Fig. 4(c).

The details of how the tests are applied are pre
sented below:
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(3)

(2)

1. For each window, the statistical tests which
must evolve according to known probability
distribution laws (assuming the hypotheses that
we are trying to prove are true) are carried out.
1.1. To detect a change in the mean of the

signalll(t), we calculate themean mi within
the current mobile window FlI and the
statistic test Ui The values Ilo and 0"0 are the
mean and S.D. calculated from indepen
dent sampies known to be free of error
measurements. The statistic test u. follows,
assuming no changes, a normal, centred
and reduced law. The test is used to verify
the hypothesis: III = Ilo. If this hypothesis
is confirmed, the difference between ml and
Ilo is uniquely due to errors of estimation
of the true mean population J.1i by the mean
of the sample ml

1.2. If no reference values to test the calculated
magnitudes are available, they will be
calculated in two windows to allow com
parison. The comparison of the mean of
the two windows (m'i and m2J of size n,
and n2 , is performed for small samples
(n, < 30 and/or n2 < 30), sampled indepen
dently from a normal population from
unknown variance but assumed to be
equal to a common variance value (dl =

O"~l = 0"2). Ifwe assume that hypothesis Ho:
Il'i = 1l2i is true, the statistic test follows a
Student law with n, + n2 - 2 degrees of
freedom (d.f.).

2. The Page~Hinkley test (Fig. 4(c» consists in
fixing a priori a minimumjump magnitude J to
be detected, and running two tests in parallel,
because the 'direction' of the jump is not known
a priori (increasing or decreasing mean). The
detector will set the alarm at the first time n at
which Un - mn> À (cf. Eq. (2» for detecting an
increase in the mean and at the first time n at
which Mn - Tn> À (cf. Eq. (3», for detecting a
decrease in the mean.

Un = J, (J.1(t)-mo-%} n>O and Uo=O

mn = min (Uk )
O~k~n

Tn =,t,(J.1(t)-mo+%} n>O and To=O

Mn = max(Tk )
O(k(n

The limit À is determined by learning. The initial
value is calculated by the expression: À = 2*h*O"jJ
where h = 2 for normal distributions and 0" is the
standard deviation of the signal (Ragot et al., 1990).

3. Case study

3.1. Determination of appropriate ANNs model
parameters

The daily pH, discharge and solar radiation
values from the period 1990 to 1995 were used (cf.
Section 1). For these series, data sets for the
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network training, cross-validation and verification
steps were prepared (Fig. 5). Data from 3 years
were used for training, 1 year of data was used for
cross-validation and 1 year of data was used for
verification. The measurements for 1994 were not
taken into account in the final calibration and the
cross-validation process because of a lack of
confidence in the measurements (as explained
later). Each of the 5 years was chosen, one at a
time, as the verification period, the other 4 years
being used as the training and cross-validation
data periods. The performance of the model was

therefore verified using five different test samples.
For each input variable, the performance of the

ANN was compared with the linear regression.
The inputs variables tested was discharge Q (t),
natural logarithm of discharge Log Q (t), solar
radiation S (1) and water temperature T (1). Table
1 summarises the results in terrns of the Nash and
Sutcliffe (1970) efficiency criterion (E criterion)
and the S.D. of the residuals in the verification
subset. A plain improvement of regression (E =

0.45, S.D. = 0.50 for Q (1) and E = 0.69, S.D. =
0.36 for Log Q (t» is indicated for discharge by

2812
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Fig. 14. Control charts: (a) Student's 1 test; (b) Page-Hinkley test.
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Fig. 15. pH and electrical conductivity (25/01-30/01/1994).

as compared to the flow of the considered day.
On the contrary, in the case of the fiow, the
preceding day's radiation does improve the pH
estimation. Thus E, which was 0.77 with two
input variables considered (flow and daily radia
tion), becomes 0.83 for the case of five input
variables (flow and daily solar radiation and solar
radiation at lag times l, 2 .. 3, days: t - l, t - 2,
t - 3). To decrease the number of input variables,
without losing the influence of the previous day's
radiation, an exponential smoothing was applied.
This variable has been cal1ed 'index of anterior
radiation', IS, and has been calculated for a given
day in the fol1owing manner:

3.2. Results

3.2.1. pH modelling by ANNs
Finally the best model found has two inputs (Q

(t) and /S (t», three hidden neurons and one
output for pH (t). The model fits the data well
and explains 86% of the pH variance. The correla
tion coefficient is high in the calibra tion set (R2 =

0.88) as well as in the verification set (R2 = 0.86),
indicating a high consistency of the model effi
ciency. (cf. Fig. 7). The time series of observed

When applied recursively to each successive ob
servation in the series, each new smoothed value
is computed as the weighted average of the cur
rent observation S (t) and the previous smoothed
observation /S (t - 1) depending on the value of
the weighting parameter p. The optimal value of p
in terms of the Nash-Sutc1iffe coefficient, during
both calibration and verification, was 0.7 (cf.
Table 3). Finally the model has two inputs: Q (t)
and /S (t).

We used the tan-sigmoid transfer function on
the hidden layer and a linear transfer function on
the output layer. In order to select the optimal
number of hidden neurons, tests were performed
by varying the number of neurons between 1 and
10. The optimal result of the test set is obtained
for three neurons in the hidden layer, a choice
that is justified by the absence of improvement of
the mode! beyond this value. The data were stan
dardised (zero mean and unity S.D.).

the ANN (E= 0.72, S.D. = 0.34), that confirms
the nonlinear relationship between pH and dis
charge. In contrast, the relationship between solar
radiation and pH appears to be linear, because no
improvement of the regression model (E = 0.37,
S.D. = 0.53) is obtained with an ANN mode!
(E = 0.42, S.D. = 0.53). The same result is ob
tained if we enter as input the water temperature.

Table 2 presents the results for multiple inputs
variable. Both the ANN and the regression model
have a better estimation of the pH when the
discharge and solar radiation and/or temperature
are considered together. The best result for the
multiple regression (E = 0.76, S.D. = 0.32) is ob
tained when Log Q (t), S (t), T (t) are taken into
account. For the ANN, the results are similar for
the diverse combination tested with a slight ame
lioration for the case Q (1) and S (t) (E= 0.77,
S.D. = 0.30) or Log Q (t) and T (t) (E = 0.77,
S.D. = 0.31). The influence of previous day's flows
and previous day's radiation was then investi
gated. The efficiency E was calculated for the
regression mode! and the ANN model (in the
verification sets) as fol1ows: initially the coefficient
was calculated with the daily radiation S (t) and
flows of N previous days Q (t - N), N varying
from 0 to 9, as the input variables (Fig. 6(a». It
was then calculated for the case where the daily
flow Q (t) and solar radiation of the N preceding
days S (t - N) were used as the input variables
(Fig. 6(b».

Fig. 6(a) shows that in the case of the radiation,
the preceding day's flows do not give better results

/S(t) = (1 /S(t - 1) + (1 - (1) S(t) (4)
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3.2.2. Control and validation (~l pH data
In this section, the results of the statistics tests

of detection for the period 1/10/1993-30/6/1994
are presented. Using the method described in
Section 2.3, the residuals D (t) from the pH model
we initially decorrelated. After analysis of the
autocorrelation function and the partial autocor
relation function, a first order autorregressive
model was used.

The calibration of this model as weil as the calcu
lation of the reference values (mean and S.D.),
were performed for the 1991 which appears to
have the most reliable measurements based on the
critical analysis and validation of the other
parameters. This year presents the best correlation
between the modelled and measured pH values.
Fig. 14 presents the test variables calculated for
the series Il (t):
• U, for Test la: the mean of the values in the

sliding window containing ten values compared
to the mean reference ma = O.

• t l for Test 1b: the mean of the values in the
sliding window containing ten values compared
to the mean of the window from 6 anterior
months.

• Un - mn and Mn - Tn for Test 2: cumulative
sum of the values from 1/1Oj1993. This test is
re-initialised after each detection.
It is observed that in each of the three tests, the

first signal is detected between 27/01/1994 and
30/01/1994, after 4 months of error free measure
ments (Test la: 30/01; Test lb: 28/01; Test 2b:
27/01). This period corresponds with the begin
ning of a pH series which was already considered
suspect through using the 'Interparameter' model
which calculates daily amplitudes of dissolved
oxygen (DO) from the pH measurements.
Analysing the raw pH data, a systematic differ
ence of 0.5 units during 6 months (previously
presented in Section 3.2.1) is noted. This differ
ence corresponds with a discontinuity observed on
the 26 /01 at 10:00 (Fig. 15). For the same time
step, an 'abnormal' e1ectrical conductivity value
was measured. This analysis shows that such tests
are capable of detecting a measurement error
occurring over a short period of time (1-4 days).

and estimated values as weil as the correspond
ing series of the residuals for the period between
1990-1992 inclusive and 1993-1995 are pre
sented respectively in Figs. 8 and 9. The model
conserves the same mean as the mean of the
data. The S.D. of the estimated values is slightly
smaller than for the observed values (Table 4).
The mean error is zero for each year, except
1994, for which the values are underestimated.
The S.D. of the errors vary between 0.23 and
0.28 pH units.

The normality and temporal structure of the
residuals were analysed on the test set for 1990
1993 and 1995. Fig. 10 shows that the sample of
model residuals is normal in the central part of
the distribution and for more than 90% of the
data. However, the partial autocorrelation func
tion shows the existence of a temporal (i.e. per
sistence) structure (the autocorrelation function
at lag 1 being equal to 0.9) (Fig. Il).

As shown in Fig. 12, during 5 months in 1994
(from mid-January to mid-June), the difference
between the estimated and observed pH values is
systematically in the order of 0.5 units. To ex
plain this difference, another parameter measured
by the monitoring system was analysed-daily
amplitudes of dissolved oxygen, for which two
estimation models are available. The first is a
linear stochastic model, using the pH from the
monitoring system (the 'Interparameter' model).
The second model is based on physical principles
and has variables which are not measured by the
Electricité de France (EDF) monitoring sys
tem-river discharge and solar radiation. This
model is called the 'External variable mode\'. As
indicated in Fig. 13, from mid-January to mid
June, 1994, the 'External variable mode\' repro
duces the daily amplitudes of dissolved oxygen
(DO) quite weil while the 'Interparameter mode\'
systematically over-estimates them. This compari
son indicates that the pH measurement for this
time period is false (calibration error) or that it
is significantly influenced by an external phe
nomenon (e.g. pollution) which cannot readily be
explained. The method of critical data analysis
applied to the pH and described in the following
section shows that this time period is indeed sus
pect.

e(t) = 0.86 e(t - 1) + J1(t) (5)
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4. Conclusion

The results presented in this paper indicate that
ANN clearly give satisfactory responses in the
modelling of pH as a function of hydrometeoro
logical data such as discharge and solar radiation.
The best network found (R 2 = 0.86) to simulate
pH was one with two inputs and three hidden
nodes. The inputs are daily discharge Q (t) and
the /S (t), 'index of anterior radiation', i.e. calcu
lated as an exponential smoothing of the daily
radiation variable. The model, which was adopted
for its generality and its simplicity, and also be
cause of the availability and reliability of the
significant input variables, was integrated into our
system of modelling tools which facilitate the
critical analyses and validation of physical-chem
ical measurements. This system of modelling tools
is currently in the process of being put into service
on-line by EDF to allow them to follow and
critically evaluate water quality parameters with
respect to hydrometeorological conditions.
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Abstract

The aim of the present work is to propose a model for the estimation of lead concentration in grasses using urban
descriptors easily accessible and to study the specifie effect of each descriptor on lead concentration, Six descriptors
were considered: the density of vegetation, the vegetation height, wind velocity, height of building, distance of
adjacent street, traffic volume. Lead concentrations were determined in one grass species, Cynodon dactylon (L.) Pers,
(Bermuda grass), collected from 30 different locations in Athens city. The proposed model is a multilayer perceptron
(MLP) trained by backpropagation. The predictive quality of the model was judged by two cross-validation methods.
The generalization ability of the model is confirmed by a determination coefficient higher than 0.91. The study of the
first partial derivatives of the output of the MLP with respect to each input is used to identify of the factors
influencing the lead concentration and the mode of action of each factor. Results allow to classify the environmental
descriptors by their decreasing influence on lead concentration: distance of adjacent street, traffic volume, density of
vegetation, wind velocity, height of building and vegetation height. © 1999 Elsevier Science B.Y. Ali rights reserved.

Keywords: Urban pollution; Heavy metal; Modelling; Backpropagation; Multiple regression; Sensitivity analysis

1. Introduction

In the city of Athens the constant increase of
the population over the last decades has resulted

• Corresponding author. Fax: + 30-152-94233.
E-mail address:gphy2hrk@auadec.aua.gr (1. Dimopoulos)

in high traffic volumes and consequently high
automobile emissions. Compounded by the nar
rowness of the roads this has caused discomfort
(due to environmental conditions) to the city resi
dents. Consequently, the air, plants and the soil
are contaminated by various contaminants such
as lead (Pb) (Ndiokwere, 1984; Ho and Tai, 1988;
Mielke, 1991; Francek, 1992).

0304-3800/99/$ - see front matter © 1999 Elsevier Science B.Y. Ali rights reserved.
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In a city environment the main sources of Pb
pollution are car exhausts, fumes and tyre wear, if
there are no smelting sites, heavy industry or
other sources of Pb contamination nearby
(Akhter and Madany, 1993). In addition to the
automobile emissions, the high density of large
buildings amplifies pollution of plants because
dispersion of the pollutants over wider areas is
prevented (Capannesi et al., 1988).

Regarding the dispersion of pollutants in parks,
studies suggest that the pollution burden is greater
in the peripheral than in the central zones of the
open areas (Shao-Lian et al., 1989; Grodzinska et
al., 1990). In a previous study, the authors
(Chronopoulos et al., 1997) examined the impact
of traffic conditions on the vegetation and soil of
two major parks in Athens and concluded that
the density and composition of the peripheral
vegetation has a remarkable effect on the disper
sion of Pb and Cd towards the inner sites of the
parks.

The concentration of pollutants in the different
parts of the plants is strongly dependent on the
plant species. Plant species as well as the design
patterns of parks can also affect the distribution
of Pb concentration in plants. A limited number
of plant species that tolerate and colonize envi
ronments polluted with heavy metals are selected
and used in the composition of city parks and
avenue median dividers. Several plant species
were studied to evaluate Pb contamination in city
environments. Cynodon dactylon (L.) Pers. is one
of the most frequently studied plant species for
this purpose (Ho and Tai, 1988; Sukkop, 1990).

In order to establish realistic simulation models
of Pb deposition and accumulation by plant spe
cies several inter-dependent models of environ
mental processes have to be linked together.
Direct measurements of deposition rates using
micrometeorological methods have advanced the
knowledge of deposition processes. However, rou
tine implementation of these methods for moni
toring deposition rates is difficult and pollutant
dispersion models for urban and industrial re
gions are only just beginning to be developed.

The purpose of our study is the evaluation of
Pb levels in vegetation in an urban environment,
using environmental parameters that are easily

accessible and that strongly influence the diffusion
of the pollutants which are mainly the result of
high traffic (Preer, 1977; Wong, 1996). At the
present study, we use and compare the predictive
capacity of two statistical methods: Multiple Lin
ear Regression (MLR) and Neural Networks
(NN). Model-predicted and observed values are
compared by different statistical parameters. For
the NN model we propose a new simple method
to study the relationship between the Pb concen
trations estimated by the model and each influenc
ing variable.

2. Materials and methods

2.1. Study area and environmental descriptors

The city centre of Athens is characterized by
the presence of high densities of tall buildings and
very infrequent sites covered by vegetation, such
as parks. National Garden and Areos Park are
the two major parks in the city centre they occupy
relatively large areas of 15.8 and 24.0 hectares,
respectively. These two parks are surrounded by
avenues and streets, with different traffic volumes
and an orientation that inhibits air circulation and
dispersion of pollutants.

Squares of considerable size, covered with vege
tation and able to provide comfortable environ
mental conditions for the citizens, are almost
absent from the city of Athens. The great major
ity of city squares (approximately 92%) are less
than 1.0 ha in size.

Samples were collected during the summer of
1995, from the plant species Cynodon dactylon, at
30 different locations (three public squares 1.0 ha
in size, three public squares 5.0 ha in size, three
public squares 10 ha in size, two parks and 14
traffic islands, Fig. 1). At each site three samples
of Cynodon were bulked together to give a com
posite sample of about 5 g. A total of 140 plant
samples were studied. Cynodon dactylon was se
lected for monitoring Pb contamination since it
was found at all studied parks, squares and traffic
islands. All plant samples were oven-dried at 70
80°C and ground to a fine powder by a micro
hammer mill to pass through a 1 mm mesh screen.
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From each powder sample three subsamples of 1
g were weighed and metals were extracted by
digestion with a 2: 1 HCl04/HNO, solution. Then
the sampIes were filtered and diluted with
deionised water to the final volume for Pb deter
mination. Lead concentration was determined in
the extracted solutions by atomic absorption spec
trometry (GBC 908 FBT). The detection limit was
100 ppb for Pb with an accuracy of 1% RSD.

Every sample was described by a set of perma
nent descriptors (discrete and continuous).
• DENS: mean density of vegetation between the

sample point and the nearest adjacent street
(the values of DENS varied over the range
0-90%).

• GRAD: mean vegetation height between the
sample point and the nearest adjacent street
(the value of GRAD varied over the range 0-2
m).

• AIR: Wind velocity recordings were carried out
with a digital measurement device at a network
of 140 selected points. The measurement points
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2.2. Modelling techniques

were located at the plant sampling sites. The
measurements were made at a height of 2.0 m
above ground using a cap anemometer. A total
of 38 measurement trips were conducted. After
processing the data obtained, the average wind
velocity was determined for the selected points.
The reduction of the wind velocity for each
measurement point compared with the maxi
mum mean wind velocity was determined.
Then a variable, AIR, was introduced to take
into account the reduction of the wind velocity
and the degree of ventilation at the measure
ment points. When reduction did not exceed
20%, ventilation was considered good (AIR =
3). At the points where the reduction varied
between 20 and 40% ventilation was considered
moderate (AIR = 2) and whenever the reduc
tion exceeded 40% ventilation was considered
poor (AIR = 1).

• BUILD: mean height of the adjacent buildings
(the value of BUILD varied over the range 2-8
floors).

• DIST: distance between the sample point and
the nearest adjacent street (the value of DIST
varied from 0-66 m)

• TRAF: Traffic volume as expressed from the
number of traffic lanes (the value of TRAF
varied from 2-8 lines).

The techniques of multiple linear regression and
stepwise multiple linear regression (Weisberg,
1980; Tomassone et al., 1983) were used. Calcula
tions were done using SPSS software.

Multilayer Perceptrons (MLP), the most com
monly used artificial neural networks, are general
purpose, flexible, nonlinear models, f:R" ~ R"', of
the general form:

o

o

o

o

_ ..,:,
Cl y

, -- / -0

o

0,

o o

Fig. 1. Locations of measurement points in Athens city centre. 1l'1'lx"JJJJ j= 1, ... ,111
(2)
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(3)

where W, stands for the parameter matrix or
weight matrix and cP, stands for diagonal nonlin
ear operators; the elements of which are the so
calied activation functions. MLP's with a
nonlinear activation function are genuinely non
linear and it has been proved (Cybenko, 1989)
that, under sorne weak assumptions, any function
can be approximated with an arbitrary accuracy
by an MLP. Estimation of W is called training,
learning or adaptation of the weights and regres
sion via MLP is called supervised learning. The
backpropagation algorithm is the most frequently
used for training (Rumelhart et al., 1986).

A major problem in the use of MLP for model
building is the determination of the optimal archi
tecture of the network (number L of layers and 1;,
j = 1.. .L, where 1; is the number of node for layer
j). Usually, the trial-and-error method is applied
to test various alternative model architectures and
choose the one with the optimal generalisation
capability. Generalisation is defined by the ability
of a model to predict data other than those on
which it has been trained. A model with too many
free parameters will fit the training data arbitrar
ily closely, but will not necessarily lead to optimal
generalisation (overfitting).

Two classes of generalisation criteria are usu
ally used for model architecture selection and
model testing. The first class contains criteria
based on the fitting errors (e.g. Akaike informa
tion criterion, Akaike, 1974). The second class of
criteria is based on the principle of cross-valida
tion (CV), according to which, the decisions on
the model structure and predictive capacity are
made on samples of data different than the sam
pIe used to estimate the parameters of the model.
Usually overfitting is controlled by using a subset
of the data, the validation set. This subset is not
used for the computation of the weight matrix but
for stopping the training process and taking deci
sions on the architecture parameters. The general
ization ability is estimated by using another subset
of the data, the test set, which neither participated
in the weight estimation, nor in the architecture
optimization, but only for the ultimate evaluation
of the model. Separation of the data into the
subsets is not straight-forward. Several questions
arise concerning this method, they are discussed
in Weigend et al. (1992).

One of the most efficient methods is k-fold
cross-validation. The data set is divided into k
approximately equal parts, and each part is used
in turn as the test set for the network trained on
the remainder, and the observed error rates on the
k parts are averaged.

The error of a network, as a function of the
weights that define it, is filled with hills and
valleys. A trivial change in the training data can
change the weights. Even with exactly the same
training set, different random starting weights can
result in dramatically different final results. There
fore, we do not dare assert that a network trained
with ail of the known data is essentially identical
to networks trained with subsets of the data. To
take into account this problem Moody and Utans
(1991) propose a modification of the above cross
validation method: nonlinear k-fold cross-valida
tion (NL K-f CV). In this work we use the two
alternative kinds of CV: (1) CV with training,
validation and test data sets and (2) NL K-fCV.

2.3. Preparation of data

The input data had very different orders of
magnitude according to the variables. To stan
dardize the scales of measurement, the values of
the variables were converted by the relationship:

X -xZ,=_o_-
(Jx

with Z,: standardized values, X o : original values,
X and (J, the mean and standard deviation of the
variable. The dependant variable Pb was also
centred, reduced and converted over the interval
[0 ... 1] because the logistic function used for the
NN output neuron modulates the response to
values between 0 and 1.

2.4. Study of the influencing factors

In multiple linear regression, the influence of
each variable can be roughly assessed by checking
the final values of the regression coefficients. In
mathematical terms, each coefficient of a linear
model is the partial derivative of the response of
the model with respect to the variable of that
coefficient. The MLR partial coefficients therefore
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generally give an indication of environmental real
ity, although it is not possible for this type of
model to represent a nonlinear relationship such
as that which probably exists between Pb levels
and sorne influencing factors. On the other hand
the neural network is a 'black box' type model
and does not clarify the participation of each of
the explanatory variables (descriptors). In this
study we use a simple method based on the use of
the partial derivatives of the network

3. Results and discussion

3. J. Performance of the models
3. J. J. Multiple linear regression modelling

3. J. J. J. Complete model. With ail the eight vari
ables, the equation of the MLR model and deter
mination coefficient became:

Pb = -0.374DENS

(t -3.728

(Sig. 0.000

+0.156GRAD

1.739

0.024

-0.033AIR

-0.617

0.538

+0097BUILD

1.646

0.102

-0.724D1ST

-12.125

0.000

+0092TRAF

1.247)

0.214)

(6)

response with respect to each descriptor. The link
between the modification of inputs, xl' and the
variation of outputs, y) = f(x), is the Jacobian
matrix dy/dx' = [9y/9x]mxn' It represents the sen
sitivity of the network outputs according to small
input perturbations. For a network with n inputs,
one hidden layer with ni nodes, and one output
(i.e. m = 1), the gradient vector of y) with respect
to x) is ~ = [d), ... Ae, ...AnV (Dimopoulos et al.,
1995), with:

3. J. J.2. Stepll'ise model. Only three independent
variables were retained by the model:

Pb= -0.228DENS +0.139 BUILD -0.7 DIST
(t -4.155 2.914 -12.650)
(Sig. 0.000 0.004 0.000)

(7)

and the derivative can be efficiently computed as a
minor extension to the backpropagation al
gorithm used for training.

(under the assumption that a logistic sigmoid
function is used for the activation. When s) is the
derivative of the output node with respect to its
input, Il) is the output of the ith hidden node for
the input x)' the scalars w/s and we, are the weights
between the output node and the ith hidden node,
and between the eth input node and the ith
hidden node).

The sensitivity of the MLP output for the data
set with respect to input Xe is:

ni

~e = s) L w,J,/1 - I,)wet

l~ 1

nt

SSDe = L (~ef
,~ 1

(4)

(5)

The study of Fig. 2 shows several problems of
the MLR model (Eq. (7)): an underestimation of
the low values (Fig. 2a), the residuals (differences
between observed and estimated values) tend to
increase with estimated values (Fig. 2b). The
residual distribution is far from normality (Fig.
2c).

3. J.2. Neural network
With the cross-validation approach, a good

predictive model can be obtained using a network
with three neurons in the hidden layer and sig
moid as activation function. In Table 1, the per
formance of the MLP model estimated by two CV
methods is shown (MSE = Mean square error).
The high value of the determination coefficient
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demonstrates the predictive capacity of the model
(R 2 higher than 0.9). The fact that MLP provide
a good predictive model was highlighted by the
independence of the residuals from the variable to
be predicted (Fig. 2e) and their normality (Fig.
2f). The distribution of residuals is better bal
anced with MLP than with MLR. Values that

Table 1
Mean square error (MSE) and determmation coefficient R' for
the NN model estlmated by two a1ternatlve kmds of CV
method

MSE R~

cr- Traming (80) 54.024 0.953
Validation (30) 79.247 0956
Test (30) 107779 0938

NL 10-/ CV Traming 50.37 0.972
Test 88.547 0.911

exceed the limits of the normal approximation are
rather scarce.

3.2. Influence of factors

The study of MLR model (7) leads to the
conclusion that the most significant factors affect
ing Pb diffusion are in decreasing order signifi
cance DIST, DENS and BUILD. Pb
concentration decreased with DIST and DENS
and increased with BUILD. The rest of the fac
tors are either not very important or they are
correlated to the three more significant factors.

The study of the MLP modeL according to the
method presented in Section 2.4, led to the layout
of Fig. 3. Thus, for instance every point of
DDENS versus DENS (Fig. 3a) resulted from Eq.
(4) with j = 1, ... ,140. Eq. (5) allows the variables
to be classified according to their increasing influ-



1. D/l/lOpoulos el al. / EcoloK/cal M{)(IeIIIIIK I:!() (1999) 157-165 163

3 +
0.2 +
0.1 + +

U)2 +t- ++
0 +-;+-lf+ a

~ +
~ -0'IJJ

, + + a 5
0 +

(!) a 2 + + + ~CIO
+ + CI 0.3 +

-1 + +-11- ' 00 -0.4 + ++ +
·2 -0.5

DENS (a) GRAD (b)

1 +
0.5 08 + ia 006

!:!: 05 t
3 :::! t:::J 0.4

"« ·1 :j: co $
CI -1.5 + CI 02

+ +
-2 f

+ a+
-2.5 -0.2 6

AIR (c) BUILD (d)

+
60 80 0+-

·1 u.. :j:
1- "« t~.2 Cl:

1-
0_3 CI a
CI

-4 -,
-5 -2

DIST (e) TRAF (f)

Fig. 3. Partial derivatives of the NN model reponse wlth re,pcct to cach descnptor

ence on Pb concentration: DIST (SSDDlsT =

339.95), TRAF (SSDTRAF = 137.83), DENS
(SSDDENs = 100.29), AIR(SSDA'R = 97.78),
BUILD (SSDBu,LD = 12.99), GRAD
(SSDGRAD = 2.99). The study of Fig. 3 leads to
the following remarks:
• The influence of density (DENS) on the Pb

concentration is rather complicated and non
linear (Fig. 3a). The negative values of partial
derivatives (DDENS) for the majority of the
values of DENS show that the increase of the
density contributes to the reduction of Pb
concentrations.

• The influence of the height of vegetation on the
reduction of Pb diffusion is shown in Fig. 3b.
The negative values of partial derivatives
(DGRAD) show that the height of vegetation
contributes to the reduction of Pb concentra
tion. This reduction increases with height.
These results for the contribution of the density

and the height of vegetation are in agreement
with the remarks of Horbert et al. (1988) that
plant density and structure provide an intensive
decline in contamination in the central area of
the parks.

• Concerning the factor AIR, two hypotheses
may be made:
1. "Good' ventilation allows better Pb diffu

sion, reducing its high concentrations at
points close to the emission source.

2. "Poor' ventilation does not facilitate Pb dif
fusion to distant points and can thus ex
plain the reduction of concentrations in the
centre of parks where ventilation is poor.

• The increase of the negative derivatives DAIR
with AIR (Fig. 3c) shows that the first hypoth
esis is more positive. In a previous study
(Chronopoulos et al., 1997), it has been
pointed out that the dispersion of Pb depends
significantly on the facility of the movement of
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Fig. 4. Pb levels observed and estimated by the MLP mode! (a) and the MLR model (b) in the different reglOns of the study area:
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Garden-lrodou Attikou Street, RS' National Garden-AmalIas, R9: traffie islands.

air masses, which prohibits or inhibits the dis
persion of pollutants. The increase of the nega
tive derivatives DAIR with AIR (Fig. 3c) shows
that the first hypothesis is positive.

• The increase of the number of the floors of the
adjacent buildings supports the increase of Pb
concentrations (Fig. 3d).

• The decrease of Pb concentration with the in
crease ofDIST is evident and nonlinear (Fig. 3e).
The reduction of Pb is very intense near the
emission points and becomes negligible when the
distance is greater than 45 m. The MLR model
without taking into consideration the traffic
factor as expressed by TRAF is unable to
properly estimate the Pb concentrations on
traffic islands (Fig. 4b, R9). The slight reduction
of the estimated values from the MLR model in
that case is due to the fact that the values of the
factor BUILD decrease at those points. The
MLP, taking into account the factor TRAF
gives much better estimations of Pb concentra
tions.

• The increase of the positive derivatives DTRAF
with TRAF shows that Pb concentrations in
crease with traffic volume as expressed by the
number of traffic lanes.

4. Conclusions

The basic idea behind the approach proposed
here is the simulation of the system by a statistical
model and the use of the resulting model to
evaluate the contribution of each explanatory
variable to the response of the explained variable.
The comparison between the response of the
model to the environmental variables on the one
hand, and results from field observations on the
other hand, shows similarities and indicates neu
ral network modelling can be trusted. MLP ad
justs the result of the estimations to the values
actually measured. The result can be considered
satisfactory since the model built up from a set of
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'training data' can predict concentrations for an
other set of data obtained in the same geographic
area.

The advantage of MLP over MLR models
seems to arise from the ability of MLP to directly
take into account any nonlinear relationships be
tween the Pb concentrations and each explanatory
factor. The approach proposed here can be ex
tended to other applications in which non-linear
relationships are observed.
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Abstract

Mixture modelling is becoming an increasingly important tool in the remote sensing community as researchers
attempt to resolve the sub-pixel, mixture information, which arises from the overlapping land coyer types within the
pixel's instantaneous field of view. ThIS paper describes an approach based on a relatively new technique, support
vector machines (SVMs), and contrasts this with more established algorithms such as linear spectral mixture models
(LSMM) and artificial neural networks (ANN). In the simplest case. it is shown that the mixture regions formed by
the hnear support vector machine and the linear spectral mixture model are equivalent; however. the support vector
machine automatically selects the relevant pure pixels. When non-linear algorithms are considered it can be shown
that the non-linear support vector machmes have model spaces which contain many of the conventional neural
networks, multi-layer perceptrons and radial basis functions. However, the non-Iinear support vector machines
automatically determine the relevant set of basis functions (nodes) from the performance constraints specified via the
loss function and in doing so select only the data points which are important for making a decision. In practice, it
has been found that only about 5% of the training exemplars are used to form the decision boundary region. which
represents a considerable compression of the data and also means that validation effort can be concentrated on just
those important data points. © 1999 Elsevier Science B.V. Ail rights reserved.

KeYlfords: Spectral unmixing; Mixture modelling: Support vector machmes

1. Introduction: mixed-pixel classification

The classification of remotely sensed data is an
important use of earth observation satellite tech
nology. In many cases, high classification accura
cies are required to establish and regulate
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economic, social or environmental policy. Where
remotely sensed data has been considered for
future monitoring of the landscape, for example,
it has been proposed that an acceptable accuracy
limit for land cover maps derived from the clas
sification of satellite data is 85% (Anderson et al.,
1976).

Traditionally, pattern recognition has been re
garded as a crisp classification process, where the
algorithms are formulated for discrimination
which is the practice of dividing up the feature

0304-3800/99/$ - see front matter cg 1999 Elsevier Science B.V. Ali nghts reservcd.
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space into a number of non-overlapping regions,
and statistical pattern recognition which is the
practice of modeiling the posterior (or prior) dis
tributions for a pre-defined number of discrete
objects. In such problems, it is typicaily assumed
that the process of generating observable data
may be decomposed into a number of indepen
dent classes, each of which is a sub-process gener
ating data according to a particular class
conditional density for that class. When the class
conditional densities do not overlap a discrimina
tion approach is appropriate, but when they do
overlap, a statistical pattern recognition ap
proach, which models the posterior probabilities,
p(c,lx), is more appropriate. This is generaily
necessary, as the chosen feature vector does not
contain enough information to comp1etely sepa
rate all the classes.

Imp1icit in the traditional classification process
is the concept that each feature vector should be
mapped into one of the classes of interest. In
remote sensing however, this is unrealistic as the
classes represented by a pixel's spectral features
depend on the sensor's instantaneous field of
view. Therefore, within each pixel multiple classes
can occur, and only if every pixel is completely
covered by a single class (a pure pixel) is conven
tional classification appropriate. However, the
scale of many of the classes of interest is near
pixel scale and so class mixture modelling is a
fundamental part of obtaining maps from re
motely sensed images. The spectral mixing can
originate from overlap between different land
coyer classes, but also from clouds partially ob
scuring pure pixels. Hence, the process of mixed
pixel classification is to model the class mixing
proportions (percentage ground coyer area) (Hor
witz et al., 1971), rather than to estimate the
probability that a pixel's spectral response corre
sponds to a particular class label. This mixture
cannot be resolved into either of the two classes,
even when the input information is perfect (poody
and Cox, 1994), yet the estimate of the mixing
proportions may be regarded as a statistical quan
tity, due to missing features and lack of training
data.

This paper describes how support vector ma
chines (SVMs) (Vapnik, 1995; Cherkassky and

Mulier, 1998) can be used for mixture modelling
using sets of exemplar pure pixels. SVMs are
based on the concept of optimal discrimination,
where the data should be correctly classified and
the decision boundary should be as far away as
possible from both classes. When a linear decision
boundary is used, the algorithm can be shown to
be equivalent to using a linear spectral mixture
model (LSMM) which is subject to the sum to
unity constraint. Despite the linear SVM al
gorithm being formulated as a discrimination
technique, the two approaches are equivalent as
the contour of the linear model is the discrimina
tion boundary, so ail that needs to be established
is that the (unthresholded) gains of the two linear
models are equivalent. In addition, the theory
behind non-linear and non-separable SVM is de
scribed and this is compared with more conven
tional neural network approaches. An example
illustrates how the SVM algorithms can be used
to model the mixing problem for a remotely
sensed, Landsat TM data set. To begin, the stan
dard LSMM approach is briefiy described.

2. Linear spectral mixture models

Spectral unmixing has been used as a technique
for analysing the mixture of components in re
motely sensed images for almost 30 years (Hor
witz et al., 1971). The technique is based on the
assumption that the class mixing is performed in a
linear manner between so-called end-members
(pure pixels). However, often 1itt1e attention is
given to the selection of these pure pixels, the
corresponding mismatch between the model and
true mixture, and the concepts that underlie the
basic LSMM algorithm.

2.1. Algorithmic implementation

Assuming there exist m classes of interest and 11

spectral features which are used to model the class
mixture, the user must specify an (n + 1) + m
matrix R which contains the spectral values of the
'pure pixels', one from each class. In addition to
the 11 spectral values within each feature vector, it
is also assumed that a constant, bias value of + 1
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Fig.!. A hnear spectral mixture mode! for two inputs and three classes, in (a) two dimensIOns and (b) three dimensions, having
linear margin boundaries, b?, bg, and b~, passmg through the pure pixels occurring at (0, 0.5), ( ~ 0.5, - 0.5), (0.5. ~ -0.5), and
mlxing proportions Y;

has been appended to the start of each input.
These pure pixel values are generally calculated
to be the classes' means or else selected by the
user or designer. The assumed linear model is of
the form:

where R is the matrix of pure pixels, x is the
vector of spectral inputs, y is the vector of mix
ing proportions, and B is a vector of errors. It is
assumed that R is full-rank, i.e, aIl the
pure pixels are linearly independent. Note also,
that although this set of linear equations
are expressed as an inverse model, the mixing
proportions' estimates are usually calculated us
ing a !east-squares approach under the assump
tion that each class distribution can be
represented by a Gaussian distribution with a
common covariance matrix V but different
means.

Letting V denote the covariance error matrix
of the observations x,

In addition, to ensure that estimated mixtures
sum to unity, an additional linear constraint is
introduced into the optimisation goal which
states that the mixture estimates should sum to
unity. This linear constraint can be combined
with the quadratic error loss criteria to produce
a closed-form constrained least squares (CLS)
estimate (Settle and Drake, 1993) of the mixing
proportions:

y=C-Ie-C~11(1TC-l1)(VC~le-l) (4)

where C = RIV - IR is the weighted auto-correla
tion matrix, e = RIV - lX is the weighted cross
correlation vector and 1 is a unity column vec
tOT. However, the partition of unity constraint
in Eq. (4) does not ensure that the estimates lie
in the unit interval, and in order to explicitly
impose this on the solution, a common practice
is to set Yi = 0 when Yi < 0 and then normalise
the remaining estimates.

(3)J = (x - x)IV ~ I(X - x)

(1)x =Ry+ B

V = E(BB1) (2) 2.2. Interpretation

then the goal of predicting the class mixtures
can be formulated as minimising the weighted
sum squared error:

Using the CLS LSMM algorithm means that
at most n + 1 classes can be linearly mixed, as
illustrated in Fig. 1. When m = n + l, each mix-
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ture model has a linear margin boundary, bJI
which passes through the remaining 11 pure pixels.
This is uniquely determined and the least squares
estimate reduces to y = R - lX. Within the convex
region (11 + 1 dimensional simplex) enclosed by
the linear margin boundaries, each model is linear
and their memberships sum to unity.

When ln < 11 + 1, the linear margin boundaries
are not uniquely determined by the remaining
pure pixels, and this had led Settle and Drake to
comment on the "embarrassment. .. among the
infinity of possibilities" (Settle and Drake, 1993).
In this situation, the position of the boundaries
pass through the corresponding pure pixels and
the orientations are determined by the properties
of the covariance matrix (Brown et al., 1999).

In either case, however the selection of the pure
pixel exemplars may prove to be problematic.
This is especially so when there exists more than
one pure pixel that could describe the class be
cause many pure pixels could be used to separate
(model the linear mixing) the classes, and expect
ing an expert or user to select a single one is
unreasonable. In this case, end-members that are
close to the classes' means are typically selected.
However, these choices introduce an element of
'misclassification', as pure pixels at the edges of
the classes' distributions will lie within the linear

. . .
mlxmg margm.

3. Support vector machines

SVMs are a range of classification and regres
sion algorithms that have been formulated from
the principles of statistical learning theory devel
oped by Vapnik (Vapnik, 1995). This theoretical
framework develops a link between the empirical
performance of a learning algorithm. when
trained from a finite data sample, and the 'true'
performance when used in practice. It has been
shown that the rate of convergence of the empiri
cal estimate to the true value is a function of the

] A boundary bJ! can be defined as b;! = :x' y/x) = O}, i.e Il

represents the mput points for which the jth model's output is
fi.

algorithm's VC-dimension. The VC-dimension of
a model or classifier is, effectively, a measure of
its flexibility and by minimising the model's flexi
bility as part of the learning process (structural
risk minimisation) the risk of over-fitting the
training set is reduced. SVMs therefore embody
this structural risk minimisation process (Haykin,
1999).

In recent years, a number of non-linear classifi
cation and regression SVMs have been developed
and these have been benchmarked against artifi
cial neural networks (ANN). It has been found
that the empirical performance of SVMs is gener
ally as good as the best ANN solution (Hearst et
al., 1998) and it has been hypothesised that this is
because there are fewer model parameters to opti
mise in the SVM approach, reducing the possibil
ity of over fitting the training data and thus
increasing the actual performance. A major dis
tinction between the two approaches is the train
ing algorithm. Both SVMs and ANNs can be
represented as two-Iayer networks (where the
weights are non-linear in the first layer and linear
in the second layer). However, while ANNs gener
ally adapt all the parameters (using gradient or
clustering-based approaches), SVMs choose the
parameters for the first layer to be the training
input vectors, because this minimises the VC-di
mension (Cherkassky and Mulier, 1998). It is
assumed that there are as many nodes in this layer
as there are training points. A selection procedure
is then used to calculate the weights in the second
layer and this generally sets many of the weights
to zero, which has the effect of dropping the
corresponding training point from the overall cal
culation. Again, this selection procedure attempts
to minimise the VC-dimension of the final solu
tion. In the approaches discussed in this paper,
SVMs can be considered to be sparse kernel
methods.

3.1. Linear support uector machines

Consider a data set that contains two classes
that are separable. For the pure pixels containing
these classes, shown in Fig. 2, there are an infinite
number of lines (hyperplanes) that will separate
the data. The linear SVM is based on the principle
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of selecting the one that maximises the minimum
distance of the hyperplane from each class (the
margin). This is because the VC dimension of a
linear classifier is related both to the number of
inputs and to the size of the ca1culated weights
(Vapnik, 1995). Minimising the size of the weight
vector produces a solution that maximally sepa
rates the classes and this is often known as the
optimal separating hyperplane (OSH). As only the
data points which lie on the c!ass boundary C!os
est to the hyperplane are involved in determining
the minimum distance, effectively, ail of the other
data points in the training set are discarded from
the ca1culation.

In classification approaches it is usually as
sumed that the labelled output lies in the unity
interval, [0,1]. However, for the purposes of deriv
ing the algorithms, it is more convenient to as
sume the output lies in the bi-polar interval
[ - 1,1]. This can be done without loss of
generality.

Maximising the margin and correct1y classifying
ail the training data can be formulated as:

min<D(w) = 1/21Iwll~ (5)

subject to

(x'.w + ll'o)!' ::::-: 1 (6)

for the model:

yi = WT.X' + H'o (7)

where {yi); ~ 1 are the output mixing proportions,
w = (11'1""11',,) is the weight vector associated with

JjlS decision boundary

* 1

Fig. 2. A linear SVM for two inputs and two classes. The stars
and crosses represent the labelled training data and the circles
denote the selected support vectors whlch determine the linear
margin's boundaries and the contours. bl!. for the second
model are labelled.

the linear decision boundary, Iro is the corre
sponding bias term and (x', (IJ;~ 1 is the labelled
data set containing the spectral feature vector x'
and the target mixture proportion (' for the ith
data point. This can be formulated as a Lagrange
functional producing a quadratic program (QP)
with a global optimum which can be found using
interior point methods (Burges, 1998; Gunn,
1998). The Lagrange multipliers effectively weight
each data point according to its importance in
determining the solution, and for the linearly sep
arable two-class problem just described, only
those data points that lie on the margin boundary
have a non-zero Lagrange multiplier. There is just
two data points for the example shown in Fig. 2.
Hence, this often performs a considerable com
pression of the data set. Note that although the
previous discussion has concentrated on a two
class problem, it can be easily extended to m
classes via a I-of-m encoding of the data.

It is interesting to compare this simple model
with the one implicit1y assumed to exist for the
LSMM algorithm. In Fig. 3, there exists a convex,
simplex (triangular) region where the mixture
model is linear. It is also constant in the sim
plex (triangular) region 'behind' each proto
type feature vector. Assuming that the LSMM is
a true model of the mixture, that the training set
contains vectors from the class' cores and that it
also contains the three exemplar vectors, the re
suit described in the next section can be estab
lished.

3.2. Linear SVM and LSMM

It can be shown that the Linear SVM and the
LSMM algorithm are identical when the same
information is used in their design. An out1ine
proof of this is provided in this section and a full
proof is contained in (Brown et aL, 1999).

3.2.1. Theorem 1
The models formed by a linear (normalised)

SVM and the LSMM are equivalent, when the
same data set of pure pixels is used to train the
models and the predicted mixtures are
thresholded at 0 and 1.
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Fig. 3. Three hnear SVMs and their margins which are denoted by the margins' boundaries b7 and bi and mixing proportIOns Yi'
for a two input problem shown in (a) two dimensIOns and (b) three dimensIOns

3.2.2. Proo!
To begin with, the case when m = n + 1 is con

sidered and then the problem when m < n + 1.
When m = n + 1, the query point can lie either
within the mixing margin of a11 the classes or it
lies outside the margin of at least one class. When
the data point lies within the margin of a11 the
classes, a11 the unthresholded mixture estimates lie
in the unit interval and both models are equiva
lent. This is easy to establish as both models
contain (n + 1) linear planes which pass through
the same (n + 1) data points, hence, the outputs
must be identical. When the query point lies out
side the margin of at least one class, this class
estimate is thresholded at 0 or 1, and the resulting
thresholded outputs are explicitly normalised to
sum to unity. The motivation for thresholding the
outputs of the LSMM are debatable, although it
has been reported that thresholding at 0 and
normalising the resulting values is a simple and
quick way to ensure that the mixtures lie in the
unit interval. Thresholding the output at 1 as we11
is natural when the mixture estimation problem is
viewed as a margin maximisation process.

Now consider the case when m < n + 1. There
are an infinite number of linear mode1s that can fit
the data set of pure pixels, and the sum to unity
constraint of the CLS LSMM algorithm does not
uniquely specify which one is preferable. This

uniqueness is introduced when a least squares
solution is used to formulate the data fitting pro
cess, even though there are fewer equations than
degrees of freedom in the model, which means
that the data can be interpolated exactly without
the least squares solution. The least squares solu
tion is given by choosing the weight vector that
minimises its norm, where the weight vector in
cludes the bias term (a subtle but important dif
ference when comparing it to the SVM
algorithm). The linear SVM algorithm can be
slightly re-formulated for this particular data set
as requiring that:

min<l>(w) = 1/21Iwll~ (8)

subject to

(x'.w + wo)t' = 1 (9)

Here the general inequality 'classification' con
straints have been replaced by more specific
equality constraints as it has been assumed that
there exists only one data point for each class (the
pure pixel). By exploiting we11 known results for
quadratic programming problems with linear con
straints it can be shown (Brown et al., 1999), that
the formula for the weight vector (and bias term)
which solves the above quadratic programming
problem is equivalent to the CLS LSMM al
gorithm, hence the two techniques produce identi
cal models.
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3.3. Linearly non-separable mixture modelling

(12)

3.4. Non-/inear mixture modelling

Kernel-based mappings can also be used to
construct more flexible, non-linear decision
boundaries. In pursuing this approach, ail of the
previous analysis holds for forming the decision
boundary, and the only change that needs to be
made is to substitute a kernel function instead
of the inner product between two training vec
tors. Common choices for kernel functions in
clude:

as weil as various spline functions, where the
mixing proportions are now given by:

Polynomial Kernel K(x',xl )

= (x'.xl + I)d where d = l, 2, ...

. (-llx' - xlii:;)Gausslan RBF K(x',xl ) = exp 2IT 2 -

Ridge functions K(x',xl ) = tan h(b(x'.xl ) - c)

term which tries to maximise the size of the
margin, Ilwll~, and a term which tries to min
imise it by tolerating classification errors. The
parameter C weights these two competing goals,
and can be optimised using cross validation.
Generally, when C -+ 0, less emphasis is placed
on the classification performance and the margin
becomes wider. In contrast, when C-+ 00, more
emphasis is placed on the classification perfor
mance and the margin becomes narrower. The
task of optimising the smoothness constraint, C,
in the SVM, therefore, is similar to the task of
selecting the end-members
of classes for the LSMM: selecting end-members
that are near to the classes' means produces a
wide margin (1ow classification performance);
whereas selecting end-members that are near to
the edge of the classes' distributions produces a
narrow margin (high classification performance).

Therefore, the non-linear kernels can be used to
produce a wide range of decision boundaries, and
the data selection procedure is equivalent to the
selection of the kernel functions in the network,

1

Y = l a't'K(x,x')
,~ 1

(11 )

(10)t'(w.x' + lVa) 2 1 - (,

The authors argue that the set of constraints
given in Eq. (9) is a more fundamental way of
expressing the data modelling problem, when
compared to the constraints used to derive the
CLS LSMM algorithm, even though they pro
duce the same results. The data is interpolated
rather than producing a least squares solution,
and the mixing margin with the maximum size
is produced. The properties are represented di
rectly in the constraints, rather than being im
plicitly represented in the solution methodology.

The CLS LSMM algorithm also considers a
noise matrix V, and this can be included in the
linear SVM algorithm by minimising wIVw
which simply rotates the 'optimal' mixing mar
gin. Therefore, given the same two data sets of
pure pixels, where each class is represented by a
single pure pixel, the two algorithms are identi
cal. However, the linear SVM has the potential
to automatically select pure pixels Iying on the
edge of a class core from a much larger data
set. In addition, the following two sections
briefly describe how non-linear and non-separa
ble pure pixel data sets can be handled.

Typically, remote-sensing data does not con
tain sufficient information to unambiguously as
sign each data point to a unique class. This
situation of spectral confusion arises from the
sampling of the ground surface in only a few
wavebands by the satellite sensor, and occurs
even if the pixel is pure. In these cases the class
conditional densities overlap and the data is
non-separable. The linear, separable quadratic
programming problem can be modified by in
cluding a set of extra, non-negative variables
(,20 (Vapnik, 1995), which introduce a toier
ance to misclassification:

The modified optimisation problem becomes:

1 1

min<I>(w,() = -Ilw II~ + CI (,
2 ,~l

where C is a given smoothness constraint.
Therefore. the cost function is composed of a
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I.e. only those kernels with a non-zero Lagrange
multiplier, ai, will contribute to the network's
decision. It should be noted that many of the
kernels that can be used within the SYM frame
work (any function can be used as long as it
satisfies Mercer's conditions) are also widely used
within artificial neural networks (ANNs), which
have been widely applied within the remote sens
ing literature for statistical pattern recognition
and area estimation. However, the 'training' pro
cedure is very different. The weights associated
with the hidden nodes in an ANN are generally

trained (using a gradient method) to minimise the
mean squared output error or, alternatively, sorne
clustering-type approach is used so that they rep
resent the mean of the local data cluster (Bishop,
1995; Ripley, 1996). Kernel methods centre the
hidden nodes on unique data points and the SYM
training proced ure identifies those kernels (or data
points) which directly influence the solution. As
stated before, choosing the kernel points to be
centred on the data points minimises the YC-di
mension of the solution (Cherkassky and Mulier,
1998), and so reduces the risk of over-fitting the

(a)

(b)

Fig. 4. Landsat TM image showing (a) the location of the data within the Knighton suburb of Leicester, UK and (b) an enlarged
view of the dataset in the red channel (band 1).

• •• • •
• ~ -LJII •

..._ I.{-

.~'~.',. "--,.'.\ . _o.
• 1• •

(a) (b)

-. •-.-

Fig. 5. Images showing the pure pixels for (a) the developed and other class and (b) the undeveloped and vegetation class .
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Fig. 6. Change in the number of support veetors and the sum-squared error of mixture estimates with the smoothness eonstramt C.

training data. In addition, it may be possible to
use the knowledge about which data points
greatly affect the solution in order to validate or
re-design the network. Further, training is now a
linear process (constrained quadratic program
ming problem) with a global minimum and there
are fewer tuning parameters to set empirically. It
is conjectured that these may be the reasons why
the SVM appear to have good empirical generali
sation properties.

Non-linear, polynomial transformations of the
measured spectral signatures have been proposed
within the LSMM framework (Bosdogianni et al.,
1997), and the SVM kernels appear to provide a
wider range. However, for ail non-linear kernels,
care must be taken not to overfit the data set and
many more data are required to minimise the
variance associated with non-linear modelling.

It should be noted that SVMs can also be used
for modelling (regression) (Smola and Sch6lkopf,
1998), and this is particularly relevant for area

estimation, as the majority of pixels in any train
ing set will exhibit sorne degree of sub-pixel c1ass
variation. Ali of the techniques described above
assume that only pure pixels are contained in the
data set, and that the mixture region is implicitly
specified by the boundary pixels. When the target
data are continuous variables, SVM use an E-in
sensitive region around the prediction in order to
select a subset of the data. Points Iying within the
dead-zone are considered to be weil represented
and are ignored in the modelling process whereas
points Iying outside determine the shape of the
surface. However, this is not considered further in
this paper.

4. Application

In this section, the linear non-separable SVM
algorithm is applied to part of a remote sensing
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A value of C=O.OOOI was found to produce a
linear, non-separable SVM algorithm that pre
dicted the mixture proportions with the lowest
error, SSE = 58.80 (root mean square error =

ture between these two classes on the tile (see Fig.
5).

This dataset was used to design three mixture
models: a Iinear, non-separable SVM algorithm, a
linear spectral mixture model, and a non-linear,
non-separable SVM algorithm. The non-separa
bility of the classes arises from the spectral ambi
guity of several pure pixels that lie within the
mixing margin. In order to establish the optimal
value of the smoothness constraint, C, for this
data set, many linear non-separable SVM al
gorithms were constructed from the 313 pure
pixels for different values of C and their perfor
mances were calculated using the sum-of-squares
error over the remaining k = 794 mixed pixels:

dataset (Lewis et al., 1998). This dataset was
generated as part of the EU FLIERS Project. Fig.
4(a) shows a Landsat TM scene of Leicester, UK,
from which the land cover within a one square
kilometre tile was identified. The land cover in
this tile, Fig. 4(b), consisted of roads, sub-urban
housing, garden and parks.

This land cover was grouped into two base
classes:
• Developed and other (containing slate, tarmac,

concrete, tennis court, etc.) .
• Undeveloped and vegetation (containing sand,

water, soil, grass, shrubs, etc.).
Hence, the composite classes have a broad core

region which proves problematic for conventional
LSMM algorithms. Pixels containing a propor
tion greater than 0.95 of these two classes were
considered as pure pixels. This produced a re
duced data set of 313 training pairs (76 from the
developed and other class and 237 from the unde
veloped and vegetation class) compared to the
original 1000 data points which describe the mix-

k

SSE = l (J'(x') - t'f
I~ 1

(13)
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Fig. 7. Optimal linear SVM mixture predictIons and selected support vectors for Landsat bands 1 and 4. Crosses are used to
represent the developed and other dass data and stars represent the undeveloped and vegetation dass data. Data selected as support
vcctors are clrded.
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FIg. 8. LSMM mixture margin for Landsat bands 1 and 4. Crosses are used to represent the developed and other c1ass data and
stars represent the undeveloped and vegetation c1ass data. The mean of the classes' distributions are shown as black circles and the
optimal, linear SVM mixture margin is shown with dotted lines for comparison.

0.272 pixels) using 122 pure pixels as support
vectors (39% of the training data). Fig. 6 sum
marises the optimisation results and Fig. 7 shows
the margin boundaries and the support vectors
(pure pixels) of this optimal linear, non-separable
SVM. It can be seen that the support vectors lie
within the mixing margin.

In this case, the classification problem cannot
be treated solely as a discrimination problem (i.e.
the class conditional distributions overlap); how
ever, the calculated margin, which denotes the
region of linear mixing, is sensible. Note that the
a priori selection of a set of pure pixels for the
classes cores would be extremely problematic. In
the SVM example, this simply reduces to estimat
ing a single bound parameter, C, which deter
mines the width of the margin, as illustrated
above. In contrast, in the LSMM case the mean
of the classes' distributions is generally chosen as

the 'pure pixel' spectra. For the data set described
here, the LSMM solution predicted the mixture
proportions of the mixed pixels with an error,
SSE = 87.251 (root mean square error = 0.332
pixels). This LSMM mixing margin is shown in
Fig. 8. Since the choice of the classes' means is the
'optimal' solution for the LSMM (assuming a
Gaussian distribution of pure pixels), it can be
seen from these results that the optimal, linear
SVM solution produces better mixture predictions
than the optimal LSMM solution on this data set.

For more complex problems, a linear margin
may not be appropriate and the non-linear mar
gins that are produced by the kernel-based SVMs
could be more appropriate. This is expected to
become more significant as the number of spectral
bands and classes increases. The result of applying
a quadratic (non-linear) kernel to the pure pixel
dataset is also illustrated in Fig. 9. As can be seen
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from the figure, the margin boundaries are no
longer linear or parallel. However, the mixing
margin is approximately linear where there exists
data to support this. About 30 of the data points
have been selected and even though the model
appears to fit the data slightly better, there is little
evidence in sorne regions with only a few data
points for the extra flexibility introduced. This is a
standard manifestation of the bias/variance
dilemma, and when more flexible model spaces
are used, there should be sufficient evidence in the
data to support il.

5. Conclusions

It has been shown that LSMM are related to
the basic, linear SVM and under certain circum
stances, both algorithms are identical. This is an

important observation for the LSMM algorithms,
as they appear to possess the 'maximum margin'
property. However, the observation is significant
in that the SVM performs automatic pure pixel
selection, and the associated non-linear techniques
mean that non-linear mixture models can be
formed from pure pixel, binary target values and
continuous mixture data. The type of non-linear
mixtures which can be formed have been demon
strated on sorne reaL remote sensing data, al
though it still remains to quantify the
performance of these algorithms.
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the developed and other class data and stars represent the undeveloped and vegetation class data. Data selected as support vectors
are circled
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Abstract

Artificial neural networks are used to select a minimal set of input variables to model water vapour and carbon
exchange of coniferous forest ecosystems, independently of tree species and without detailed physiological informa·
tion. Neural networks are used because of their power to fit highly non-linear relations between input and
output-variables. Radiation, temperature, vapour pressure deficit and time of the day showed to be the dynamic mput
variables that determine ecosystem water fluxes. The same variables, together with projected leaf area index are
needed for modelling COz-fluxes. The results for the individual sites show that the neural networks found mean water
and carbon flux responses to the driving variables valid for ail sites. The sensitivity analysis of the derived neural
networks shows that the LAI-effect of the COz-flux model is overfitted because of the low variabihty of LAI.
However, the predictions of COz-fluxes of sites not included in the calibration set indicate that the LAI-response of
the network is reliable and that results can be used as a first estimate of the net ecosystem carbon exchange of the
forest sites. Independent predictions of forest ecosystem vapour fluxes were equally satisfying as empirical models
specifically calibrated for the individual sites. The results indicate that both short term water and carbon fluxes of
European coniferous forests can be modelled without using detailed physiological and site specifie information.
© 1999 Elsevier Science B.V. Ail rights reserved.

Keywords: Neural networks; Carbon fluxes; Water fluxes; Coniferous forests.

1. Introduction

In recent years, great effort is made in mod
elling instantaneous carbon and water fluxes at
stand scale (Landsberg et al., 1991; Jarvis, 1995).
Both top-down and bottom-up approaches are
used to mode! short term forest ecosystem fluxes.
Severa1 detai1ed physiologica1 models use know1-

*Correspondmg author. Fax: + 31-20-5257431.
E-mail address·m.t.wljk@frw.uva.nl (M.T. van Wijk)

edge about photosynthetic and stomatal responses
at leaf 1evel and scale these up to canopy level
using elaborate radiation interception models
(Wang and Jarvis, 1990; Fa1ge et al., 1996). With
these detailed mode1s both water and carbon
fluxes are predicted. For evapotranspiration on1y,
a wide1y used approach is the combinatian of an
energy balance, the Penman-Monteith equation,
with the Jarvis-Stewart canopy conductance
mode1 (Jarvis, 1976; Stewart, 1988). An example
of a more simple, pure1y empirical approach is the

0304-3800/99/$ - see front matter © 1999 Elsevier Science B.Y. Ail rights reserved.
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Makkink model (Makkink, 1957) used in several
forest hydrological models (Bouten and Jansson,
1995). More general applicable models for carbon
fluxes are in most cases working on higher time
and spatial scales (e.g. Williams et al., 1997).

Models for predicting instantaneous water and
carbon fluxes in forest ecosystems are usually
developed, calibrated and validated for one spe
cifie forest. For each application specifie parame
ters of the response functions are optimised or
detailed physiological information on species level
is used. Extrapolation to other forest sites is in
those cases difficult and time-consuming.

Recently the Euroflux project provided mea
surements of carbon and water vapour fluxes
above a large range of forests across Europe
(Tenhunen et al., 1998). These measurements give
the opportunity to model ecosystem fluxes along a
range of biotic and abiotic system inputs, and to
evaluate the processes and environmental vari
ables that determine short term forest ecosystem
responses.

In this paper a dataset of ecosystem flux mea
surements (COl and water vapour) of six different
coniferous forests in Northwestern Europe is used
to explore the possibilities to model these fluxes
with a minimal set of explaining variables. The
goal is to model water and carbon fluxes indepen
dently of tree species and to analyse the model
performance over different forest sites without
using detailed physiological or site specifie infor
mation. For this top-down approach artificial
neural networks are used because of their power
to fit highly non-linear relations (Huntingford and
Cox, 1997). Neural networks give the opportunity

Table 1
Information about the dIfferent forest sites

to have a completely unconstrained optimisation
and they estimate input-output responses without
a pre-defined mathematical model. The method
supplies so called model free estimations (Kosko,
1992). The relations found by the networks are
tested by predicting ecosystem fluxes of forest
sites with intermediate characteristics not included
in the calibration sets. In addition results of the
evapotranspiration fluxes are compared to those
of the Makkink model.

2. Method

The data were placed at disposaI for the Eu
roflux workshop heId in Sesto (Italy) at 26-29th
of January 1998. Latent heat (Lh) and COl-fluxes
of six coniferous forests in North-western Europe
were used to model ecosystem water and carbon
fluxes. The flux and meteorological data were
supplied on a half hourly basis, ail made with
identical equipment (Tenhunen et al., 1998). In
formation about the six different sites is given in
Table 1. The Vielsalm measurements are de
scribed and presented for a longer time period in
Aubinet et al. (1999).

Most data are between day number 150-250 of
the year 1996 or 1997. Ali data were supplied with
the assumption that there was no soil water stress.
Measurements within 24 h after a rain event were
skipped from the dataset to model real ecosystem
transpiration and not also interception evapora
tion. The total dataset of the six sites without
missing values and after omitting the wet canopy
data consisted of 8448 half hourly measurements.

SIte Country Geographica[ coordl- Species
nates

Age (year) Number of days (dry) LAI

Flakahden Sweden 64°07' N 19°27' E Pieea ables 34 37 (19) 2.4
Hyytiala Finland 6[°51' N 24°17' E PinU!> sy/teslns 34 98 (52) 39
Loobos Netherlands 52°10' N 05°44' E PmU!> sy/t'eslris 100 108 (47) 30
Tharandt Germany 50°58' N 13°38' E Puea ahles [06 24 (9) 5.0
Vielsalm BelglUlli 50°18' N 06°00' E Pselll/olsuga IIIcnC:leSSI/ 60-90 41 (36) 42
Weidcn Brun- Germany 50°09' N Il °52' E PIL'ca ahles 44 41 (13) 65

nen
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artificial neural network parameters (e.g. scaling
factors and inter-neurone connection weights).
The number of epochs used in the optimisation
was 75 and for each model fifty initialisations
were tested. The transfer function for the hidden
node layer was the sigmoidal function:

The other transfer functions available in the soft
ware package gave the same (other sigmoidal
transformations) or much worse (other linear
transformations) results (more details can be
found in the Appendix).

The results of different input variable combina
tions were evaluated using the independent valida
tion set. As measures of the goodness of fit the
normalised root mean square error (NRMSE) and
the explained variance (R 2

) are used. The
NRMSE corrects for the size of the data set and
for the mean value of the modelled variable
(Janssen and Heuberger, 1995).

Besides physical driving variables like Rg, T
and VPD, also variables like 'Day of Year' (DoY)
and 'Time of Day' (TofD) are tested. TofD is
expressed in digital time and corrected for each
site so that on cloudless days the maximum global
radiation value was at 12.00 h. TofD is used in
two ways in the input variable analysis because of
the high correlation between the daily pattern of
Rg and TofD. First it is used as an input variable
together with Rg, T, VPD etc., but it is also used
as a variable to analyse the possibilities to im
prove the results of neural networks using purely
physical driving variables. This is done by taking
the best simulation results (BS) achieved with
physical driving variables together with TofD as
input for the network. In this way it is prevented
that the neural network will use TofD as the main
driving force for the daily pattern of ecosystem
fluxes and Rg only as an offset variable to deter
mine the height of this daily pattern. It is impor
tant to be careful with just adding input variables
because correlation's between the variables can
lead to unintended side-effects in the responses
that the network finds.

Variables like soil temperature and soil water
content, of which it is known that they influence

The night-time fluxes of CO2 had to be cor
rected for stable atmosphere effects in combina
tion with storage effects (Baldocchi and VogeL
1996; Kimball et al., 1997), when measured CO2

fluxes were often close to zero. The problems
associated with measuring night-time CO2 fluxes
are cancelled during windy periods (Lee, 1998).
Therefore night-time CO2 fluxes are skipped from
the dataset when wind speed was below 2.5-3.0
mis which corresponds roughly to the wind crite
rion used by Black et al., (1996) in screening
night-time CO2 flux data for quantifying the car
bon uptake of their forest. This reduced the CO2

flux dataset to 5776 point measurements.
In arder to get a calibration set with high

variability of input variables the data of each site
were classified into 15 classes per variable, equally
distributed over their data range. The input vari
ables that were estimated as most important were
global radiation (Rg) (other radiation components
like PPFD were not available for ail sites), tem
perature (T) and vapour pressure deficit (VPD).
Ali measurements of each site were incorporated
in one of the 15 x 15 x 15 = 3375 classes, so in
total there were 3375 x 6 = 20250 classes. From
each of these classes two data combinations of
measurements were randomly selected and put
into the calibration set. To prevent artefacts
caused by non-equally large calibration subsets of
each site, they were made equally large by random
draws from the first calibration set. After this
there were 248 point measurements for Lh and
238 point measurements for CO2 for each site in
the calibration sets. In total the Lh flux calibra
tion set consisted of 1488 data points and the CO2

flux calibration set consisted of 1428 data points.
The other data points (for CO2 4348 and for Lh
6960) were placed in the validation set. Data of
each site are therefore both in the calibration and
in the validation set. The values of the input
variables were scaled between zero and one.

A three layer backpropagation neural network
was used within Neural Network Toolbox 2.0 of
Matlab 4.0, (Demuth and Beale, 1995). The opti
misation method applied in the calibration phase
was the Levenberg- Marquardt method. The total
sum of squared errors (SSE) between measured
and modelled values was minimised by tuning the

2
.I,(U) - - 1
If' -1+e- 2xu

(1)
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Table 2
Madel mlsfits (NRMSE) of neural networks using different sets of mput vanables, explained vanance between brackets

Madel Number of hidden nodes Input-variables Lh-flux CO2-flux

1 3 Rg & T 058 (0.79) 0.77 (0.66)
2 3 Rg & T & LAI 0.57 (0.80) 0.73 (0.67)
3a 2 Rg & T & VPD & LAI 058 (078) 0.76 (0.65)
3b 3 Rg & T & VPD & LAI 0.56 (0.80) 0.71 (0.68)
3c 4 Rg & T & VPD & LAI 0.56 (0.80) 0.70 (0.68)
4 3 Rg & VPD & LAI 0.56 (0.79) 0.73 (0.67)
5a 2 Rg & T& VPD 0.58 (0.78) 0.77 (0.63)
5b 3 Rg & T& VPD 0.56 (0.80) 0.75 (0.64)
5c 3 Rg&T&VPD 0.56 (0.80) 0.75 (0.64)
6 3 Rg & T & VPD & Wind 0.56 (0.80) 0.75 (0.65)
7 3 Rg & T & VPD & TofD 0.56 (0.80) 0.73 (0.67)
8 3 Rg & T & VPD & LAI & TofD 0.52 (0.83) 0.69 (0.70)
9 2 Best Simulation (Rg & T & VPD) & TofdD 0.53 (0.82) 073 (0.67)
ID 2 Best SimulatIOn (Rg & T & VPD & LAI) & TofD 0.53 (0.82) 0.68 (0.71)
II 3 Rg & T & VPD & LAI & DayNr 0.75 (0.65)

soil respiration rates (Freijer et al., 1996) and leaf
N-content, which influences leaf maintenance res
piration (Barnes et al., 1997), were not available
for aIl sites. To simulate the variability of soil
temperature compared to air temperature (more
damped and with a short time lag) also the mean
air temperature of 2 h preceding the current value
were used as input. These calculations were made
on a smaIler dataset because data could only be
used when the air temperature of the 2 h preced
ing the current measurement were available. N
content of leaves is strongly correlated to leaf area
index (Williams et al., 1997), so extra addition of
this variable is not expected to improve the per
formance of the neural networks very much.

The resu1ts of neural networks modeIling Lh
fluxes are compared to the Makkink model, which
is a mode! predicting transpiration when there is
no waterstress. For each site the empirical plant
factor is calibrated.

Lh = lx [0.65 x~ x Rg] (2)
S+r

In which:

Lh latent heat flux (W/m2
)

1 empirical plant factor ( - )
S derivative of saturated vapour pressure

temperature curve (hPa/K)
y psychometrie constant (hPa/K)

Rg global radiation (W/m)

Independent predictions were made for sites not
included in the calibration sets as a more thor
ough test of the water and carbon responses
which the neural networks had found. This was
done by using the Jack Knife method: calibrating
the neural networks on only five of the six forest
sites and predicting the sixth not included forest
site. The carbon fluxes of only four sites could be
predicted because of the importance of the vari
able 'Leaf Area Index' (LAI). The extreme values
of LAI of Flakaliden and Weiden Brunnen (low
est and highest value) are not predicted, because
these values are clearly outside the interval of LAI
values of the other five sites on which the net
works are calibrated. The prediction of carbon
fluxes of Flakaliden and Weiden Brunnen would
therefore be an extrapolation for which the neural
network technique is not suited (Huntingford and
Cox, 1997).

3. Results and discussion

3.1. Model selection

The validation resu1ts of the most important
input variable combinations are shown in Table 2.
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The optimal construction for most artificial neu
ral network models presented here is using three
hidden neurones, except for models 9 and 10
where only two hidden neurones were necessary.
Increasing the number of neurones did not im
prove the model fit of Lh fluxes (see mode! 5b
and 5c), and only led to a minimal improvement
in model fit of CO2 fluxes (see models 3b and
3c). Because of the low variability of LAI (only
six different values) it is extremely important to
keep the number of hidden neurones as low as
possible, otherwise the neural network will use
LAI as a kind of individual site index, without
using it as a real quantitative variable. With two
hidden neurones model performance in simulat
ing Lh fluxes and CO;! fluxes the mode! error
increased considerably (see mode!s 5a and 3a).

Increasing the number of iterations of the cal
ibration period (the number of epochs) did not
improve the model fit. The selection of calibra
tion data over the full experimental validity
range used in this article, precludes the problems
of overfitting reported by Schaap and 80uten
(1996) and Huntingford and Cox (1997), which
also use much smaller calibration sets and which
have no classification of data.

The fit values when using TofD as an extra
input variable (models 7 and 8) and using it as
model mismatch analysis factor (models 9 and
10) are not worse (see Table 2). Lh mode! 9 has
even a lower model error than Lh model 7
which uses Tom as an extra input variable. As
TofD does not improve modelling results when
using it as an extra input variable, the responses
of the different physical driving variables are
not dependent on the values of Tom; there are
no interaction effects between Tom and the
other input variables.

Most striking is that the variable LAI does
not improve modelling results of the Lh neural
network. It seems that there are so many feed
back mechanisms working in the process of
transpiration (e.g. radiation interception and
VPD effects) that LAI has no net influence in
this interval of input values (2.4-6.5 m2/m2

).

Forest floor evaporation will also be more im
portant at low LAI values.

The other input variables that were used for
modelling CO;! fluxes did not improve mode!
performance. Soil temperature (at 5 cm depth)
was available for two sites (Weiden Brunnen
and Vielsalm). Modelling these sites individually
adding the variable 'soil temperature' (ST) led
to slight decrease in model misfit for the Viel
salm data (NRMSE 0.41 versus 0.40), but no
increase in fit was found for the Weiden Brun
nen site. The mean value of air temperatures of
the 2 h preceding the current value led to a
decrease in mode! error for the Vie!salm site in
dividually (NRMSE 0.38), but when applied to
the total dataset adding this variable did not
lead to an increase of model fit (both NRMSE
0.70).

The neural network models to be analysed
further are Lh flux model 9 with input{BS(Rg,
T, VPD) & Tom} and CO2 flux model 10 with
input {BS(Rg, T, VPD, LAI) & Tom}. These
models are chosen instead of the models with
'Tom' as an extra input variables to prevent
model artefacts due to highly corre!ated input
variables.

3.2. Model performance

The performances for the different sites of the
se!ected neural network models are given for Lh
fluxes in Table 3a and for CO2 fluxes in Table 3b.
The results of networks with the same input vari
ables calibrated on the individual sites are also
given. Networks calibrated on ail data of the
individual sites are regarded as the best possible
models with these input variables. For Lh fluxes
results of the Makkink model are also presented.

Results in Table 3 show that for both Lh and
CO;! fluxes the neural networks calibrated on ail
sites found a mean ecosystem response to the
driving variables. The sequence of fit values is the
same for the total model and for the individual
fitted mode!s. The NRMSE values for the total
model are always slightly higher than the individ
ual fitted networks, which is to be expected be
cause the latter are calibrated on site specific data.
These results indicate that the 'total' neural net
works did not fit a few sites very weil and the
other badly, which would be the case if the differ-
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ent forest ecosystems did not react to the same
extend to the driving variables.

Adding the variable TotD in modelling COl
fluxes led to an increase in mode! misfit of the
sites Flakaliden and Weiden Brunnen. This can
probably be explained by the very specifie TotD
response of these sites individually for COl
fluxes (see Fig. 6 and below when explaining the
response curves). When modelling Lh fluxes
adding the variable TotD led to a slight de
crease in misfit for ail sites.

A typical value for the measurement error of
eddy covariance measurements of Lh fluxes is
about 5% which results in a standard deviation
of about 18 W/m l (Bosveld and Bouten, 1992).
One can estimate the possibilities of model im
provement by cakulating the errors of model
minus measurements, expressed in variation or
standard deviation, and comparing them with
the measurement error accarding to:

errar (measurements - model)

~ error (mode!) + errar (measurements) (3)

The measurement minus mode! error of the
total dataset expressed in standard deviation is far
Lh model number 9 23.3 W/m2 and the standard
deviation of the resu1ts of the Vielsalm site, far
which the neural networks are performing the best
of ail sites, is 20.2 W/m2

. According to these
results and this estimate of the measurement errar
the possibilities far improving of the neural net
wark results for modelling Lh fluxes seem small.

The performance results of modelling Lh fluxes
and CO2 fluxes cannot be compared in an easy
way. The higher values of NRMSE for CO2 fluxes
are probably partly due to the fact that negative
and positive values of this variable lead to a small
value of the mean, so that the fit errar expressed
as a relative value of the mean will be higher than
for Lh fluxes.

Table 3
Rcsults for modellmg Lh-fluxes for the mdividual sites (glven are NRMSE and between brackets cxplained vanance)

Site Total neural network Individual network Makkink

Rg& T& BS (Rg & T & VPD) & Tom Rg & T& VPD BS (Rg & T & VPD) &
VPD Tom

a
Flakaliden 0.41 (081) 0.39 (0.84) 0.39 (083) 0.35 (085) 048 (078)
Hyytiala 0.61 (0.79) 0.59 (0.80) 0.57 (0.80) 0.56 (0.81) 0.64 (0.76)
Loobos o58 (0.80) 0.53 (0.83) 0.50 (0.84) 0.47 (0 86) 0.64 (0.78)
Tharandt 0.89 (0.57) 0.83 (0.63) 0.74 (0.66) 0.68 (0.72) 1.13 (0.46)
Vielsalm 0.49 (0.87) 0.47 (0.87) 0.42 (0.90) 0.41 (0.90) 0.56 (0.82)
Weiden Brun- 0.62 (0.82) 0.61 (0.82) 0.52 (0.86) 0.49 (0.88) 0.69 (0.76)

nen

Results for modelling CO2 -fluxes for the indlVldual sites (given are NRMSE and between brackets explained variance)

Site Rg & T& BS (Rg & T & VPD & LAI) Rg & T& VPD BS (Rg & T & VPD) &
VPD & LAI & Tom Tom

b
Flakaliden 0.57 (0.76) 0.61 (0.74) 0.50 (0.82) 0.44 (0.86)
Hyytlala 0.71 (074) 0.71 (0.75) 0.59 (0.78) 0.56 (0.80)
Loobos 0.85 (0 59) 078 (063) 0.75 (0.65) 0.73 (0.67)
Tharandt 0.84 (0.50) 0.78 (0.57) 0.76 (0.59) 0.71 (0.64)
Vielsalm 049 (0.66) 044 (0.72) 041 (0.75) 036 (0.80)
Welden Brun- \.08 (0.79) 1.13 (0.78) 0.94 (084) 085 (0.87)

nen
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Fig. 1. Measured versus modelled Lh-fluxes for the mdlvidual sites.

Graphically the performance of model 9 for Lh
fluxes and model 10 for CO2 fluxes are shawn in
Fig. 1 and Fig. 2. Regression lines are calculated

with the modelled values on the x-axIs and mea
sured values on the y-axis (Janssen and
Heuberger, 1995). Negative CO2 flux values are
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net carbon uptake by the forests and positive
values are net carbon release (respiration). The
Tharandt site has both for Lh and CO2 fluxes
the worst performance. The high misfit values

of Tharandt cannot be explained by the fact
the site has unique properties regarding Rg, T
and VPD compared to the other sites, because
also performances of individual calibrated net-
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works are less than for the other sites (see Table
3a).

For Lh fluxes there is a systematic underesti
mation of the high values of the measured Lh
fluxes. For the plots of CO2 fluxes an overesti
mation of the low negative daytime carbon
fluxes is calculated whereas the high night-time
fluxes are underestimated. Also there can be
seen a kind of border, for CO2 fluxes both at
the upper and lower levels of the modelled val
ues whereas for Lh fluxes the border is only
visible at the high levels of the modelled values.

This systematic misfit could be due to several
causes. Huntingford and Cox (1997) had the
same kind of systematic misfit in modelling
canopy conductance, and they mention a num
ber of possible explanations like non-constant
aerodynamic conductance, missing interannual
variability, failure to capture non-linearity in re
sponses and missing input that varies on a
timescale longer than one day and shorter than
1 year. Not mentioned are possible artefacts due
to the transfer function used in the neural net
work. The shape of these scatter plots is for the
CO2 fluxes very similar to the shape of the sig
moidal transfer function. If the upper and lower
values of the validation data are not defined by
unique values of the input variables it could be
that in the optimisation procedure followed it is
preferable for the network to fit the abundant
values close to the mean very weil and the ex
treme and less abundant values less weIl. The
reason that the systematic error is seen at both
ends for CO] fluxes and only at the higher val
ues for Lh fluxes is probably that for Lh fluxes
the lower boundary is weil defined (if there is
no global radiation there will be almost no
evapotranspiration), whereas for the CO] fluxes
both the upper and lower boundary are not
very weil defined by any value of an input vari
able. Another explanation could be the measure
ment error which is relatively high for the eddy
correlation measurement technique compared to
variables like temperature, radiation and vapour
pressure deficit. Model uncertainty is in such a
case small compared to measurement uncer
tainty. The highest peak measurement values

can be caused by measurements errors, they are
noise effects, and are not characterised by
unique sets of input variables and thereby sys
tematically underestimated by a mode\.

3.3. Respollse curves

Responses of artificial neural networks can be
evaluated by varying one single input while
keeping other inputs at their mean value. These
results should be interpreted with care, as the
reference value of one variable can influence the
response curve of another (Huntingford and
Cox, 1997). To evaluate interaction effects in
the networks presented here, two variables are
varied together while the others are set to their
mean value. The most interesting response sur
faces are shown in Fig. 3 for Lh fluxes and in
Fig. 4 for CO] fluxes. Ali the results presented
in Fig. 3 and 4 have to be interpreted with care
for extreme values of the graphs are in most
cases extrapolations, although the amount of
these is kept as low as possible. The values of
the inputs that are varied are also constrained
by the values of the constant inputs. If one uses
for example a constant VPD input of 15 hPa,
temperature values below 5°C would be an ex
trapolation of the neural network responses, as
these combinations of input values will not be
present in the dataset.

The response surfaces of the Lh model are
not very surprising. Transpiration increases with
radiation and temperature. Above an optimum
value of T (around 18°C) transpiration decreases
(Fig. 3A), probably caused by a coupIed nega
tive effect of high temperature and vapour pres
sure deficit values on the stomatal conductance.
In Fig. 3D the influence of adding the variable
TofD are shown. Best Simulations of Lh fluxes
are decreased in the morning and in the after
noon, whereas values at noon are increased.

Figs. 4A and 4B show different day and
night-time effects of T and LAI on modelled
CO2 fluxes. As the results of Fig. 4B are calcu
lated with a global radiation of 0 Wjm2 as in
put, this response surface can be interpreted as
the night-time respiration curves of the neural
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Fig. 3. The response-curves of the neural network modelling Lh-f1uxes (grey-tones are Lh-f1ux values in W(m 2]).

network mode!. No simple interpretable results
follow from these responses. The network seems
to find a kind of optimum curve for the net
ecosystem carbon uptake at LAIS m2 jm2

, which
is the value for Tharandt. This optimum however
is dependent of VPD (Fig. 4D). When a value of
20 hPa instead of 10 hPa is used, the highest net
ecosystem exchange is at LAI 6.5, which is the
value of Weiden Brunnen. However, the value of
20 hPa cannot be used for this response curve
fitting, because this value never occurs at the sites
of Flakaliden and Hyytiala, and therefore would
mean an extrapolation of the network responses

for which the method is not fit (Huntingford and
Cox, 1997). Different from the daytime carbon
fluxes the respiration response for LAI seems to
be overfitted: the variability of LAI is too low.
The model finds a kind of minimal respiration at
LAI 5. To have an accountable CO2-respiration
flux to LAI relation more sites should be included
or data of a Jonger period of the individual sites
when the 'LAI' is varying should be used. The
LAI response of the neural network will later be
tested by predicting independent datasets. In this
way the validity, reliability and applicability of
this response can be verified.
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The response curves of TofD are interesting.
Opposite to Huntingford and Cox (1997) we
found clear optimum curves both for Lh fluxes
as for CO2 fluxes (see Fig. 3D, Fig. 4F and for
the individual sites Figs. 5 and 6). The response
curves plotted for the individual sites in Fig. 5
(Lh) and Fig. 6 (COl) have a maximum around
noon, except for Weiden Brunnen where both
the Lh and the CO2 fluxes show a time shift
towards the afternoon. This TofD effect could
be due to changes in the fraction of sunlit leafs.
At low solar elevation there is more shadowing
between the trees, and at high elevations (at
noon) radiation can reach much more deeply
into the canopy and can also reach the lowest
leaf levels (Green and McNaughton, 1997). The
effect is not measured in Rg because radiation
measurements are done above the forest canopy.
This effect can lead to an overestimation of so
lar radiation effectiveness for the forest at low
solar elevations and an underestimation of solar

radiation effectiveness at high solar elevations
by the neural network. This will be compensated
by introducing the variable TofD. The same ef
fect can be achieved by introducing for each site
the calculated solar height. The effect will be
damped by cloudy days, when solar penetration
into the canopy is less dependent on solar
height.

The time-shift of the Weiden Brunnen site
could be explained by the fact that the forest
site of Weiden Brunnen is located on a hill
slope (though not very steep, only lOto 15°)
with an exposition towards the south-west. This
means that the sun will reach the highest point,
from forest viewpoint, in the afternoon.

The differences between the other sites in
their reaction to TofD can not be simply ex
plained. You would, for example, expect the
TofD effect to be more pronounced in forests
with high LAI. This is not clearly visible in the
figures.
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3.4. Prediction

Results of independent model predictions are
given in Tables 4a and 4b. The predictions of
Lh fluxes are very satisfying and in aIl cases
better (expressed in 'NRMSE') than the results
of the individually calibrated Makkink mode!
(see Table 3a). The estimates of transpiration
sums are also reliable, considering the fact that
it is a totally independent prediction. The reli
ability of the simulated transpiration and carbon
exchange sums is an important test for the
derived artificial neural networks. Recause of the
high calculation speed of the networks, once the
calibration is completed, the networks can be
applied as input for regional models of carbon
and water cycling.

The results of the CO2 fluxes are worse than
the results of the Lh fluxes. This is due to the
importance of LAI, of which the variability is
so small that the networks tend to overfit the

relation between CO: fluxes and LAI. Other
wise, also these results can be considered satisfy
ing as a first approximation of the carbon
balances of the different coniferous forests.
Striking is the difference between Hyytiala and
the three other sites. Only the Hyytiala sum of
CO2 fluxes is overestimated by the neural net
work, probably caused by the overfitted LAI re
sponse.

3.5. Applicability of neural network models in
data analysis

The neural networks derived in this article are
black box models with no conceptual mecha
nisms behind. Therefore they are only communi
cable by giving the network used and the
derived parameters. This is done in the ap
pendix. The neural network models presented
are mathematical representations of mean re
sponses of coniferous forests' water and carbon
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exchange to different driving variables. As the
neural network technique is an empirical method
(Kosko, 1992; Huntingford and Cox, 1997) the
models given should not be applied to situations
outside the maximum values of the variables.

Neural networks are a very powerful tool to
extract information from datasets. Here neural
networks are used to evaluate the general be
haviour of different coniferous forests. Especially
the results of independent flux predictions show
that satisfying results can be obtained by distract
ing general behaviour of forests. This method can
be applied to ail kinds of ecological processes, if
enough data are available for this top-down anal
ysis. For these kinds of applications the model
free estimations of neural networks are an advan
tage of the method because there is no pre-defined
constraint to the solution which the neural net
work will find. as in other methods. The disadvan
tage of a black box method, no clear insight in

what the neural network did learn, can be over
come by applying other analysing techniques like
fuzzy logic (Kosko, 1992).

4, Conclusions

Both instantaneous water and carbon fluxes can
be modelled with artificial neural networks with
out physiological or site specifie information. The
variables that are needed for modelling the evapo
transpiration are global radiation, temperature,
vapour pressure deficit and time of the day. The
explained variances of this model for the individ
ual sites are between 0.63 and 0.87 (NRMSE-val
ues are between 0.47 and 0.83). The four input
variables of the Lh-flux model together with leaf
area index are needed for modelling COl fluxes.
The explained variances of the carbon flux model
for the individual sites are between 0.57 and 0.78

Table 4
Instantaneous model misfit and misfit m summed values of the mdependent Lh-flux predictions by neural networks fitted on the
other five sites (given are NRMSE and between brackets explained vanance)

Site Rg & T& VPD BS (Rg & T & VPD) & TofD

NRMSE (Ro) Sum (Measured)/Sum(Modelled) NRMSE (R") Sum (Measured)/Sum(Modelled)

a
Flakaliden 0.45 (0.79) 1.17 0.42 (0.83) 1.21
Hyytiala 0.66 (0.75) l.01 0.61 (0.78) 1.00
Loobos 063 (0.75) 1.14 0.58 (0.80) 1.15
Tharandt l.01 (0.51) 0.92 0.94 (0.57) 090
Vielsalm 0.52 (0 85) 0.99 0.51 (0.85) 0.96
Weiden Brun- 0.69 (0.78) 0.84 0.68 (0.80) 0.82

nen
Instantaneous model misfit and mlsfit III summed values of the independent COo-flux predIctIOns by neural networks fitted on
the other five sites (glven are NRMSE and between brackets explamed variance)

SIte Rg & T & VPD& LAI BS (Rg & T & VPD& LAI) & TofD

NRMSE (Ro) Sum (Measured)/Sum(Modelled) NRMSE (R 2) Sum (Measured)/Sum(Modelled)

b
Flakaliden
HyytIala
Loobos
Tharandt
Vielsalm
Weiden Brun-

nen

0.82 (0.65)
0.86 (0.56)
092 (0.45)
0.53 (0.66)

0.85
1.20
1.23
1.25

0.77 (0.72)
0.79 (0.62)
0.89 (0.48)
0.49 (0.70)

0.85
1.09
1.23
1.25
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A.l. NetH'ork architecture

Appendix A. Artificial Neural Network model
parameters

J.M. Verstraten for a critical evaluation of a
previous draft of the manuscript.

(A2)

(A3)

(A4)

First ail values of input x are scaled between 0
and 1 using the formula:

. max(x) - value(x)
mput(x) = 1 - . (Al)

max(x) - mm(x)
These input values (1) are multiplied with the
first connection matrix, AI' which contains the
connections between the input nodes and the sec
ond, hidden, node layer (X):

As neural networks are no conceptual models
that are communicable, we give here the derived
empirical parameters with a short description of
the network architecture.

û=X+Az

~ 2
HN(u) = 1 0.- 1+ e-_U

With the above mentioned network with five hid
den nodes, this gives another five parameters (for
each hidden node one offset parameter).

These scaled values are then multiplied with
the connection matrix (A3). containing the con
nections between the hidden nodes and the out
put node.

The number of input nodes determines the num
ber or columns of the matrix, the number
of hidden nodes determines the number of rows
of the matrix. A neural network with three
input variables and five hidden nodes there
fore has a first connection matrix with five rows
and three columns, containing 15 connection val
ues.

After multiplication of the input values with
the first connection matrix the values of the hid
den nodes are known. These values are scaled
after adding an offset parameter vector (A z):

(NRMSE-values are between 0.44 and 1.13). In
dependent validations of the individual sites
show that the neural networks found mean
ecosystem responses valid for ail sites. For ail
sites neural network predictions of water fluxes
were better than those of the site specific cali
brated one parameter model Makkink. The LAI
effect of the neural network describing COz
fluxes is probably overfitted because of the low
variability of this input. Independent predictions
of the COz fluxes, however, showed that the LAI
effect is reliable and that the neural network
model can be used as first estimate of the net
ecosystem carbon exchange.

The variable Time of Day' is used in this
article as a model mismatch analysis factor by
using the best simulations achieved with the
physical driving variables 'global radiation', 'tem
perature', 'vapour pressure deficit' and 'leaf area
index' together with TofD' as input for the neu
ral networks. The results show a clear optimum
curve for 'TofD' with a maximum around noon.
This effect is probably due to changes in the
fraction of sunlit leaves. At high sun elevations
radiation can penetrate deeper into the canopy.
This explanation is supported by the time-shift of
the maximum of the optimum curve for both Lh
and COz fluxes of the Weiden Brunnen site, a
site located on a slope with south-west exposi
tion.
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(A5)

In the case of five hidden nodes and one output
node this will also give another five parameters.
After this multiplication another offset parameter
is added to this output node value. This final

A - [ - 0.25 2.42J
1 - 0.78 2.78

A3 = [195.94 - 180.34]

A.5. C02 fluxes mode! 3:

A = [-0.69J
2 1.96

A4 = [- 10.5]

max (Rg):
max (T):
max (VPD):
max (LAI):

929.0 W/m2

27.97°C
23.3 hPa
6.5 m2/m2

min (Rg):
min (T):
min (VPD):
min (LAI):

-4.0 W/m2

-4.2°C
0.0 hPa
2.41 m2/m2

[input node 1]
[input node 2]
[input node 3]
[input node 4]

value is the definitive neural network output value
(aV):

The parameter values of four models are given
here (see Table 2): for Lh fluxes models 5 and 9,
and for CO2 fluxes models 3 and 10.

- 3.49]
3.72

0.11

A4 = [34.40]

- 3.24

2.93
- 1.02

2.52
-2.22
1.12

AI = [~~.~4
-2.88

[

2.42 ]
A2= - 2.56

3.96

A3 =[81.67 81.23 -43.43]

(A6)OV= O+A4

A.2. Parameter values

A.6. C02 fluxes mode! 10:

max (BS): 7.7 Ilmol/m2/s min (BS): -20.6 W/m2 [input node 1]
max (TofD): 1.0 [-] min (TofD): 0.0 [-] [input node 2]

A.3. Lh fluxes mode! 5:

A.3.l. Scaling parameters

max (Rg): 929.0 W/m2 min (Rg): -4.0 W/m2 [input node 1]
max (T): 27.97°C min (T): -4.2°C [input node 2]
max (VPD): 23.3 hPa min (VPD): 0.0 hPa [input node 3]

[

0.54

AI = -3.96
-0.59

2.58

1.72

3.83

-2.32 ]
1.13

-5.38
[

-0,06]
2.75
2.73

_ [0.06
Al - 0.07

- 2.58J A2= [2.9lJ
- 1.84 2.14

A3 = [ - 132.0 62.0 82.1] A4 = [-18.0] A3 = [ - 73.96 65.35] A4 = [12.39]

A.4. Lh fluxes mode! 9:

A.4.l. Scaling parameters:

max (BS):
max (TofD):

176.9 W/m2

1.0 [-]
min (BS):
min (TofD):

-7.1 W/m2

0.0 [-]
[input node 1]
[input node 2]
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Abstract

Two modelling approaches, dynamic ecological simulation and neural network analysis, were used to describe and
predict the main patterns of primary production temporal variability in a coastal embayment affected by upwelling
(Ria de Arousa, Western Spanish Coast). A one dimensional, carbon based, size-dependent dynamic simulation
model physically forced by solar radiation, temperature, upwelling index and mixed layer depth was developed using
object-oriented programming. The model is defined by six biological compartments: nanophytoplankton, microphyto
plankton, microzooplankton, mesozooplankton, bacteria and cultured mussels, was tuned with a 3-year data series
(1992-1994) from the region and validated using data collected in the same area in 1995 and 1996, The mode!
reproduces both seasonal and interannual patterns and magnitudes of nutrient concentration and phytoplankton
biomass, Neural network models were also deve!oped using backpropagation networks with one or two hidden layers
and sigmoid and sinusoidal activation functions. The correlation between observed and modelled phytoplankton
biomass from 1992 to 1994 were 0.99 and 0.71 for daily and weekly predictions, respectively. Both modelling
approaches yield valuable infornlation. The dynamic simulation mode! contributes to a better understanding of
cycling of matter through planktonic food webs but, although reproducing the main patterns of large-scale variability,
its predictive potential is low due to the large uncertainty associated with parameter estimation. By contrast, the
neural network modeL although not providing information on ecosystem functioning, has demonstrated to be a
powerful predictive tool for short (daily to weekly) time scales. © 1999 Elsevier Science B.Y. Ali rights reserved.

KeYll'ords: Ecosystem mode!; Neural network; Primary production; Temporal variablhty: RIa de Arousa

1. Introduction
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Diverse modelling approaches have been devel
oped in order to gain understanding on the dy
namlCS of planktonic marine ecosystems,
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Probably, the most intensively adopted approach
was based upon a compartmental structure, each
compartment representing a trophic level or taxo
nomic group and the interactions expressed by the
different flows occurring among them (Odum,
1971). These models evolved from simple ones,
only considering nutrients-phytoplankton
zooplankton interactions (Steele, 1974), to more
complex ones, where components such as dis
solved organic matter, detritus, bacteria are taken
into account and size-based models are imple
mented (e.g. Fasham et aL, 1990; Moloney and
Field, 1991; Baretta et al., 1995).

An alternative modelling approach, based on
neural network analysis, is currently in progress
as a valuable predictive tool in ecological sciences
(e.g. Lek et al., 1996; Scardi, 1996). The most
important conceptual advantage of neural net
works over conventional dynamic ecological mod
els is probably the possibility of collating
heterogeneous information in a single computa
tional framework, even though no theoretical
guidelines were provided. Artificial neural net
work systems are known for their capacity to
process nonlinear relationships (Hornick et al.,
1989; Chen et aL, 1990) especially for regressions
(Specht, 1991). In this regard, networks with at
least one hidden layer can accurately model non
linear systems even though the underlying casual
links were unknown or not fully understood. Neu
ral networks thus represent an approach for pre
dicting mass of compartments from
environmental variables, aithough not providing
any insight on its functioning.

The aim of this investigation was to model
primary production in an embayment affected by
upwelling (Ria de Arousa, NW Spain) in order to
predict aiterations in carbon incorporation rates
by phytoplankton in response to changing envi
ronmental conditions by using two different mod
elling approaches: a dynamic ecosystem model
and neural network analysis. The studied region is
affected by a wind-driven upwelling where
northerly winds prevail from May to October
(Blanton et al., 1987), giving rise to the input of
dissolved inorganic nutrients into the photic zone
and, thereby, to enhanced primary production
rates (Àlvarez-Salgado et aL, 1996) that are the

basis of massive culturing of rafted mussels. As a
result, a considerable amount of investigation has
been carried out in the region (e.g. Fraga and
Margalef, 1979; Tenore et al., 1982; Vare1a et aL,
1984; Hanson et aL, 1986; Penas and Vare1a,
1986; Àlvarez-salgado et al., 1996; Roson et al.,
1997; Zdanowski and Figueiras, 1997, among oth
ers). The only biological model1ing investigation
previously attempted in the Iberian Shelf was
developed in the past decade by Penas and Varela
(1986). This model, however, was not formulated
in quantitative terms and therefore, could not be
validated.

2. Dynamic ecosystem model

In this study, a ID, carbon based, size-depen
dent compartmental model is presented. The
model is physically forced by solar radiation, tem
perature, vertical advection and mixed layer depth
and has two layers: the upper mixed layer and the
bottom layer. The upper mixed layer receives
nutrients from the bottom layer by physical pro
cesses such as vertical advection, mixing and dif
fusion. In the bottom layer, only the temporal
variation in nitrogen concentration was consid
ered. Incoming solar radiation was calculated us
ing equations dependent on declination, latitude,
time and atmospheric and oceanic albedo
(Peixoto and Oort, 1992). Photosynthetically
available radiation (PAR) was calculated as in
Baker and Frouin (1987). Vertical extinction co
efficients were calculated according to Taylor et
al. (1991).

Sea-truth temperature data were used in the
model. Upwelling indexes were calculated as in
Bakun (1973) and mixed layer depth, defined as
the depth where the thermal gradient exceeded
0.2°C m - l, estimated from vertical thermal distri
butions (Fig. 1).

The abiotic compartments of the model in
cluded dissolved inorganic nitrogen (DIN) and
labile dissolved organic carbon (LDOC). Six bio
logical compartments were defined: bacteria (B)
(0.2-2 /lm); nanophytoplankton (PN ) ( < 20 /lm);
microphytoplankton (PM) (> 20 /lm); micro
zooplankton (ZMc) « 200 /lm) and meso-
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Fig. 1. Temperature (isopleths) and mixed layer depth (dots)
variability from 1992 to 1994.

zooplankton (ZMe) ( > 200 Ilm). Cultured mussels
(M) were also included in the heterotrophic com
partment due to their relevance for nitrogen circu
lation in the area (Fig. 2).

The model simulates the behavior of the plank
tonic ecosystem where phytoplankton growth de
pends on nitrogen, considered as the sum of both
nitrate and ammonium; bacterioplankton activity
IS limited by labile dissolved organic carbon,
mesozooplankton consumption is limited by mi
crophytoplankton biomass, microzooplankton by
nanophytoplankton and bacteria, and cultured
mussels growth is based on particulate organic
matter, although they appear to be more efficient
filtering phytoplankton than other forms of par
ticulate organic carbon (Cabanas et al., 1979).

2.1. Dissolved inorganic nitrogen

Nitrogen is generally regarded as the limiting
nutrient for primary production, and therefore,
the ability to mode! seasonal concentration
changes is an essential prerequisite for under
standing carbon cycling in the ocean (Fasham et
al., 1990). The temporal variation of dissolved
inorganic nitrogen (DIN) concentration was modo.
elled according to the equation:

dDIN/dt = DINadv + DINdJf+ DINreg - DINphy

(1)

where DINadv represents the increase in nitrogen
concentration in the mixed layer due to vertical
advection, DINd'f due to turbulent vertical diffu-
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Fig. 2. Diagram of the dynamlC ecosystem mode!.
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DINreg was calcu1ated as:

DINreg = DINre + DINz+ DINB + DINM (5)

(11)

(14)

(12)

SRP = (SCP/Pc)

where SCP represents the sinking coefficient and
Pc is the mixed layer depth. Respiration rate,

2.2. Autotrophic module

JlmaxQ is the maximum phytop1ankton growth rate
at ooe, Q 10 the temperature rate constant, T and
Tma" are the dai1y temperature and annua1 tem
perature maximum, 1 is the dai1y irradiance, I h is
the irradiance ha1f- saturation constant, DIN is
the nitrogen concentration and DINh is the nitro
gen half-saturation constant. Natural mortality
rate, MRP, was modelled as a function dependent
on nutrient concentration (Raillard and Ménes
guem, 1994):

MRP = MRmmf1.DIN + MRmax(1- f1.DIN) (13)

J1max = f1.maxo exp[(1n Q10/10)Il
and

f1.DIN = DIN/(DIN + DINh)

Modelled phytop1ankton growth was dependent
on temperature, irradiance and nitrogen avai1abil
ity. The losses considered were natural mortality,
sinking, respiration, exudation, Iysis, zoop1ankton
grazing and musse1s filtration rates. The equations
for nanophytop1ankton (PN ) and microphyto
plankton (PM) growth were:

dPN/dt = PN (Jlp - MRP - SRP - RRP - ERP

- LRP - GRZMC - FMRp ) (7)

dPM/dt = PM (flp - MRP - SRP - RRP - ERP

- LRP- GRZMe - FMR p ) (8)

where f1. p is the daily phytop1ankton specifie
growth rate expressed as in Taylor et al. (1991):

~=~f1.~ ~

f1.IT = f1.ma, 1O[(T- Tmax)log(2),lOV/(I + I
h

)) (10)

where f1.max was defined as in Aksnes et al. (1995):

where MRmm and MRmax are minimum and maxi
mum natura1 and dai1y mortality rates.

Phytop1ankton sinking rate, SRP, was calcu
1ated as suggested by Taylor et al. (1991), and
Garnier et al. (1995):

(2)

(4)

(3)

(6)

M z = [(2Kprea)/(zVol)]

where DINre refers to the amount of nitrogen
remineralized, DINz is the amount of nutrients
re1eased by zoop1ankton which is reminera1ized
in the mixed layer, and DINg and DINM nutri
ents re1eased by bacteria and musse1s, respec
tive1y.

DINphy was calcu1ated as:

where area refers to the extension of the studied
zone in m2

, z is the average depth of the area
and Vol, is the volume of the area considered.
M z was used to calculate the amount of nutri
ents entering the upper mixed layer (DINd1f) as
in Àlvarez-Salgado et al. (1996):

Where flmax is the phytop1ankton maximum
growth rate (see Eq. (11) in the text) and JlDIN

represents nitrogen uptake by phytoplankton
(see Eq. (12) in the text).

where Vup represents the amount of water up
welled in the region and DINf nitrogen concen
tration in the bottom layer. DINf was calcu1ated
from a function obtained using data collected
from a 9 year time series study carried out in
the Ria de Vigo. The terms of the function are
Fourier terms which depend on total inorganic
nitrogen concentration in the bottom layer and
bottom temperature (Nogueira, 1998). DINdIf
was calculated in several steps. First1y, vertical
mixing (VmJ was calcu1ated as in Taylor et al.
(1991) and used to derive vertical mixing coeffi
cients (Kz ) according to the expression suggested
by À1varez-Sa1gado et al. (1996). Turbulent dif
fusion rates (Mz ) were then calcu1ated from the
expression:

sion and DINreg is the biological regeneration
term. DINadv was calculated from upwelling in
dexes (Bakun, 1973):
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RRP, was considered as a constant fraction of
phytoplankton growth, whereas exudation rate,
ERP, was modelled as in Fasham et al. (1990):

(15)

where OMP represents the percentage of photo
synthetically incorporated carbon released as dis
solved organic matter.

It was assumed that lysis rate, LRP, is propor
tional to the difference between maximal and
actual growth rate (Baretta et al. 1988; Varela et
al. 1995):

2.3. Heterotrophic module

The bacterial component of the model is as
sumed to be formed by free-living organisms
that take up labile DOC (LDOC) and release
ammonium. Other losses considered were natu
raI mortality, sinking, respiration, zooplankton
predation and bacterial filtration rates by mus
sels. The bacterial equation can be written as:

dB/dt = B(J1.B - MRB - RRB - GRZMcB - BFMu

- ERB - SRB (21)

where LRPDIN is the nitrogen dependent lysis
rate. Zooplankton consumption on phytoplank
ton was modelled using a Michaelis- Menten ap
proach (Fasham et al., 1990; Moloney and Field,
1991 ):

The dynamic ecosystem model uses variable
phytoplankton chlorophyll:carbon and nitro
gen:carbon ratios as suggested by Cloern et al.
(1995) and Ietswaart and Flynn (1995), respec
tively.

(23)

where fiB represents bacterial daily growth rate,
MRB natural mortality rate, RRB respiration
rate, GRZMCB grazing rate by microzooplank
ton, BFMu bacterial filtration rates by mussels,
ERB nitrogen excretion rate and SRB sinking
rate.

Microzooplankton (ZMJ and mesozooplank
ton (ZMe) and growth was dependent on grazing
rates on phytoplankton while the losses consid
ered were respiration, predation by carnivorous
zooplankton, filtration by mussels, excretion, fe
cal pellets sedimentation and sinking.

Zooplankton growth was modelled according
to the following equations:

dZMc/dt = ZMc(GRZMc+GRZMcB - RRZMc

-FRMuMc-RAEMc-RFEMc-SRMJ (22)

dZMc/dt = ZMe(GRZMe - RRZMe - DOMRMe

- CMR - FRMuMe - RAEMe - RFEMe

where GRZMe, GRZMC and GRZMcB are
zooplankton grazing rates on microphytoplank
ton, nanophytoplankton and bacteria respec
tively, RRZ is the respiration rate and DOMR
represents dissolved organic matter released by
sloppy feeding, CMR is a constant predation
rate by carnivorous zooplankton, FRMu is the
filtration rate due to mussels, RAE is the rate of
ammonium excretion, RFE is the excretion rate
of fecal pellets and SR zooplankton sinking
rate.

(16)

(17)

(18)

(20)

GRZMC = GRm<lx[PN/(PN + PNh)]

GRZMe = GRmax[PM/(PM + P Mh)]

GRo is the maximum predation rate at O°C and
PMh and PNh are microphytoplankton and
nanophytoplankton half-saturation constants,
respectively.

Filtration rate by mussels, FRMp, was mod
elled as a logarithmic function dependent on tem
perature (as constants values change according to
mixed layer temperature) and mussels size (L) as
suggested by Peréz Camacho and Gonzalez
(1984).

where GRZMC and GRZMe are microzooplankton
and mesozooplankton grazing rates, respectively
and GRmax represents the maximum rate of phyto
plankton consumption (Kremer and Nixon,
1978):

GRmax = GRoexp{[(ln QlO)/lO]T} (19)

FRMp=a+b 10gL
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Daily Neural Network

FI

Weekly Neural Network

FI F2

F2

F2

F3

F3

3.

3b

2.4. Tuning and validation

Tuning and validation of the model were un
dertaken using data collected weekly at a station
located in the Ria de Arousa (42°29'86"N and
08°58'81 "W) from May 1992 to December 1996.
The different parameters in the equations were
chosen from the literature for obtaining the best
fit to a set of 3-year empirical data, correspond
ing to the 1992-1994 period, which was the
mode! tuning. Then, the model simulation was
performed by running the mode! for another 2
years. The data obtained from the simulation
were compared with a set of 2-year empirical
data corresponding to the 1995-1996 period for
the model validation to be carried out.

Upwelling indexes were ca1culated for Cape
Finisterre according to Bakun (1973). Cloudiness
was obtained from Vigo airport Meteorological
station. Vertical profiles of temperature and
salinity were recorded with a SBE-25 CTD.
Sigma-t was calculated according to UNESCO
(1983). Water samples where collected at 5, 10
and 15 m for determining nutrient concentration
(nitrate, nitrite, and ammonium) using an auto
analyzer and chlorophyll-a was measured by the
spectrophotometric method of Neveux and Pa
nouna (1987).

InterannuaJ Neural Network
3e

Fig. 3. Structure of the neural network used in this study T.
temperature; 1. irradiance. ML, mixed layer depth; VI, up
welling index, N, nitrogen; DChl-a. daily chlorophyll-a;
WChl-a, weekly chlorophyll-a; Chi-a, chlorophyll-a. FI. mput
layer of neurons comprising as many neurons as variables at
the entry of the system; F2, hidden number of neurons whose
number is deterrnmed empirically; F3. output layer of neurons
wlth a single neuron correspondmg to the single dependent
variable.

3. The artificial neural network model

An error back-propagation neural network
(Rumelhart et al., 1986) was developed in order
to match the same 3-year data series of chloro
phyll-a used for tuning the dynamic ecosystem
model (1992-1994). Three different networks
were trained with the aim of obtaining the best
fit to the empirical data for different time scales
(daily, weekly, seasonal). Five variables were se
lected for the daily and weekly network: temper
ature, irradiance, mixed layer depth, upwelling
index and nutrients, while phytoplankton feed
back was also considered for the annual net
work.

The number of hidden layers and their neu
rons were selected by comparing the perfor-
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mance of different networks. The daily neural
network (Fig. 3a) consisted of six neurons in the
input layer (coding the five variables of the envi
ronment and phytoplankton biomass from the
previous day) and 30 neurons in the hidden
layer that had a sigrnoid activation function.
The weekly neural network (Fig. 3b) was
forrned by six neurons in the input layer (coding
the five variables of the environment and phyto
plankton biomass corresponding to the week be
fore) and two hidden layers with ten and six
neurons each. The ten-neuron layer and the six
neuron layer had a sinusoidal activation func
tion and a sigmoid activation function,
respectively. The annuai neural network (Fig.
3c) consisted of six neurons in the input layer
(coding the five variables of the environment
and phytoplankton feedback) and 40 neurons in
the hidden layer that used a sigrnoid activation
function. Ali the neural networks had only one
neuron in the output layer representing phyto
plankton biomass (Lek et al., 1996) and used
sigmoid activation functions.

Different learning rates (1'/) were used. At the
beginning, the neural networks used a learning
rate (1'/) of one until no further improvement
was observed between neural network results
and real data, then the learning rate was re
duced to 0.2 in order to gain a better approxi
mation to real data. Momentum terms were not
considered. As the neural networks have sig
moid activation functions, data were scaled by
dividing them by arbitrary maximum values
slightly larger than the maximum observed val
ues.

Training of neural networks was carried out
according to the following procedure. Firstly, ail
summer patterns corresponding to the 1992 data
base were selected and randomly introduced into
the networks. Winter data were not used due to
the noise added by the presence of poleward
slope currents in the region (see Section 4 be
low). After each training cycle or epoch, correla
tion coefficients between network output and
measured data were calculated in order to select
the synaptic weights between nodes providing
the best fit for each case.

4. Results and discussion

4.1. Dynamic ecosystem model

The annuai variation of in situ temperature and
mixed layer depth at the sampling station during
the 1992-1994 period is shown in Fig. 1. The
water column was vertically mixed from Septem
ber-October to May-June, whereas during the
rest of the year, thermal stratification prevailed.
In accordance with this pattern, measured dis
solved inorganic nitrogen concentration was 10w
during summer and increased progressively as ver
tical mixing became established (Fig. 4). Modelled
nutrients reproduced reasonably weil the seasonal
trends obtained at sea, being the correlation be
tween both sets of data rather similar for the 3
years studied ('1992 = 0.63, n = 31; '1993 = 0.63,
n=47; '1994=0.57, n=45). The best fits were
found in Autumn 1992 and 1993 ('1992 = 0.81,
11=13; '1993=0.71, n=12). By contrast, the
model significantly overestimated nitrogen con
centrations in winter and spring, special1y in 1993.
This major disagreement is likely to be a conse
quence of the presence of warm and saline water
of subtropical origin on the shelf in these seasons
(Frouin et al., 1990; Pingree and Le Cann, 1992),
that would eventually enter into the model1ed
area, a physical process not considered in the
formulation of the mode!. In support of this idea,
average winter values of temperature and salinity
were higher in 1993 as compared to 1994 (13.4°C
and 35.6 in 1993 vs. 12.6°C and 35.2 in 1994).
Furtherrnore, remotely sensed observations of sea
surface temperature showed that the pool of
warm and salty water fiowing poleward was spe
cially intense in 1993 (Pingree, pers. corn.). It
should be also taken into account that freshwater
infiows could be important during this part of the
year.

The model reproduces the main patterns of
seasonal variability in chlorophyll a concentra
tion, as weil as the timing of phytoplankton
blooms (Fig. 4). The correlation coefficients calcu
lated for 1992, 1993 and 1994 where '1992 = 0.30,
n = 31; '1993 = 0.32, n = 47; '1994 = 0.48, n = 45,
respectively. The best seasonal fits were observed
in summer with correlation coefficients ranging
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from r = 0.64, Il = 13 in 1992 to r = 0.80, Il = Il in
1994. Significant disagreements between real and
modelled chlorophyll a concentrations are likely
to be explained by the same arguments mentioned
for nitrogen, given the strong dependence of phy
toplankton growth on nutrient availability. The
dynamic ecosystem model yielded daily values of
phytoplankton carbon biomass, thus enabling an
nuaI rates of primary production to be calculated.
These rates ranged from 345 to 606 gC m - 2 Y- l,

values of the same magnitude although slightly
higher than those previously reported in the litera
ture. Thus, Vare1a et al. (1984) measured rates of
250 gC m - 2 Y- 1 in the same area, Fraga (1976)
and Prego (1993) estimated carbon incorporation

rates of 260 and 350 gC m - 2 Y- 1 for the Ria de
Vigo, and Casas (1995) of 300 gC m - 2 Y-- 1 for
the Bay of A Corufia. The relatively high values
generated by the model are, however, likely to be
typical of the studied area. The lack of primary
production data is notorious in the region and,
when they exist, do not take into consideration
neither interannual nor spatial variability. More
over, annual primary production data sets avail
able in the literature derive from the integration
of monthly observations whereas modelled rates
were calculated from hourly values of phyto
plankton biomass. Thus, relevant differences are
expected to take place as a result of the different
time scales involved.
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Table 1
Sensitivlty analysls"

------------

std + 5(~;) -SIX) +10 -1011
11 +20 -20

~- --- --- - ---

Nanophytoplank ton

l.lm<lx() 1992 91 25 -24 b -47 101 -56
1993 81 42 -21 179 -35 189 -50
1994 56 II -7 405 -12 65 -24

RRD 1992 91 -17 21 -37 47 -51 Hl
1993 81 -18 32 -29 77 -44 182
1994 56 -7 10 -12 23 -21 63

Ih 1992 91 -3 4 -8 10 -14 -19
1993 81 -3 4 -7 10 -12 19
1994 56 -1 1 -2 3 -4 5

DINh 1992 91 -1 1 -2 2 -4 4
1993 81 -1 2 -3 4 -6 9
1994 56 0 0 0 1 -1 2

OMP 1992 91 0 0 0 0 0 0
1993 81 1 1 1 1 1 1
1994 56 0 0 0 0 0 0

Microphytoplankton

flmax.o
1992 515 -5 3 -72 7 -21 12
1993 352 -13 9 -94 13 -62 18
1994 289 -3 1 -98 [ -9 4

RRD 1992 515 2 -4 5 -7 8 -18
1993 352 6 -9 12 -24 15 -50
1994 289 0 -3 1 -3 1 -9

Ih 1992 515 0 -1 0 -2 1 -3
1993 352 1 -2 3 -4 5 -7
1994 289 -1 -1 0 -[ 0 -2

DINh 1992 515 0 -1 0 -1 0 -1
1993 352 1 -1 1 -2 2 -4
1994 289 -1 -1 -1 -1 -1 -1

OMP 1992 515 0 0 0 0 0 0
1993 352 0 0 0 0 0 0
1994 289 -1 -1 -1 -1 -1 -1

a Standard values (std) are shawn in gC m- 2 y-l, ail ather values are presented as a percentage af vanatlOn In relatIOn ta the
standard parameter value. DIfferences larger than 50% with respect ta the standard run appear in baldface.

The dynamic ecosystem model was mn itera
tively in order to test its sensitivity to changes in
parameter values. A total of five parameters were
chosen: nitrogen haIf-saturation constant (DINh)'

irradiance half-saturation constant (lh), respira
tion rate (RRP), maximum phytoplankton growth
rate at O°C (flma-. ) and the percentage of photo-

o
synthetically incorporated carbon released as dis-
solved organic matter (OMP). The standard
values, chosen from the literature and used for
tuning the mode!, were increased or decreased by
5, 10 and 20% and the effect on annual nano- and
microphytoplankton primary production rates

evaluated as shown in Table 1. Changes in /lmdX
o

strongly affect model output. Low values of this
parameter causes sharp reductions in nanophyto
plankton biomass whereas microphytoplankton
production displayed a slight increase. Enhanced
flmn induced drastic increases in nanophyto-

o
plankton production of up to 100-400'%. Modifi-
cation of respiration rates also generated
significant changes in phytoplankton biomass.
Thus, increases in RRP gave rise to reduction or
increase of primary production depending on phy
toplankton size. Changes in the Michaelis
Menten limitation terms or in OMP induced
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hardly noticeable effects on phytoplankton annuai
production rates.

Validation of the model was performed using a
2-year (1995 and 1996) nutrient and chlorophyll
data set collected at the same station mentioned
above (Fig. 5). The model reproduced the main
seasonal trends in dissolved inorganic nitrogen
and chlorophyll concentrations. The seasonal cor
relation between modelled and sea-truth nitrogen
concentrations was rather low during winter
(r 1995 = 0.10, Il = 10; r 1996 = 0.27, Il = 8), due to
model limitations discussed above. The highest
correlation coefficients for nutrients were ob
tained in spring 1995 (r = 0.84, Il = Il) and au
tumn 1996 (r = 0.81, Il = 12), whereas for
chlorophylL the best fit was observed in winter
and autumn 1995 (r = 0.84, Il = Il; r = 91, Il = 12,
respectively).

4.2. Neural Iletll'orks

The results generated by the neural networks,
as well as measured chlorophyll values are shown

in Fig. 6. The daily neural network yielded excel
lent results as it was able to reproduce the ob
served values over the whole temporal period
considered, as shown by the very high correlation
coefficients presented in Table 2. The weekly neu
ral network also showed good agreement between
observed and modelled chlorophyll-a values, al
though not reproduced accurately the increase in
chlorophyll measured in summer 1994. The an
nuai network provided the lowest interannual cor
relation coefficient.

5. Conclusion

The prediction power of the two model types
tested, dynamic ecosystem models (DEM) and
neural networks (NNM) was determined by calcu
lating interannual and seasonal correlation coeffi
cients between observed and modelled values. The
dynamic ecosystem mode! provided a poor predic
tion of real primary production whereas the neu
ral networks developed showed a better

Nutrients Chlorophyll

-t-- ~ - t -

..-----,-,-----,--,--,....----,--r----,--,.---r----.--,.,.,.."B
,1995

b

6 3
cc
n

4 2:
3

10 :', ~ .... ~

co: 8' - .&-;~.~-" 7~ ~'-' ",:--'--' .- ~

E
Z 6 --- r'--- -;--- - . - --:- ---.-

~ 4
E

1-

;
i

3
cc

--: --- 4 ~
! 3

i,- -

..---,...-,-----,-,--..---,...-,-----,-,--..----.-:,'-=-=99::1
6

B

, d

12..---,...-.-----,-,----,..---,--.-----,--r----,---r:=

ëi
E
E

Monlh
-Roel
...... Modelled Month

-Roel
.. .... Modelled

Flg_ 5 Dynamlc ecosystem model valIdatIOn (a, c) Real and modelled nutnents in 1995 and 1996. respecttvely. (b, d) Real and
modelled chlorophyll in 1995 and 1996, respectively.



R.M Barciela el al. / Ecological Modelling 120 (/999) 199-211 209

performance (rmter,mnudl = 0.36 vs. rmterannu,d =

0.99, rmterannudl = 0.71, rmter,mnudl = 0.32 for the
daily, weekly and annual neural networks, re
spectively). In conclusion, the results emerging
from this investigation indicate that dynamic
simulation models contribute to a better under
standing of cycling of matter through planktonic
food webs but, although reproducing the main
patterns of large-scale variability, its predictive
potential is low due to the large uncertainty as
sociated with parameter estimation. This uncer
tainty is due to the difficulties in estimating
parameter values. Sorne parameters, such as
phytoplankton and bacterial growth rates or
zooplankton grazing and excretion rates, can be
measured experimentally at sea. Others, includ
ing phytoplankton natural mortality rate are, at
present, almost impossible to measure accu
rately. So, the approach of most modellers to
this problem has been to use experimentally de
termined parameter values where available or
values chosen among a set of determined
parameter values that provide a good agreement
between the real and the observation sets of
data. By contrast, the neural network model, al
though not providing information on ecosystem
functioning, can be successfully employed for
modelling very complex and non-linear ecologi
cal phenomena and has demonstrated to be a
powerful predictive tool for short (daily to
weekly) time scales.
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Table 2
CorrelatIOn coefficients between chlorophyll-a concentrations resultmg from the dlfTerent types of neural networks developed and
real chlorophyll-a values

Type of neural network

Daily neural network Weekly neural network Annual neural network

'mterannual

'summer92

'summer93

r~ummer94

0.99
0.99
0.99
0.99

0.71
0.72
0.64
0.05

0.32
0.76
o 37
0.23
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Abstract

We describe the development of a neural network mode! for estimating primary production of phytoplankton. Data
from an enriched estuary in the eastern United States, Chesapeake Bay, were used to train. validate and test the
mode\. Two error backpropagation multilayer perceptrons were trained: a simpler one (3-5-1) and a more complex
one (12-5-1). Both neural networks outperformed conventional empirical models, even though only the latter, which
exploits a larger suite of predictive variables, provided truly accurate outputs. The application of this neural network
model is thoroughly discussed and the results of a sensitivity analysis are also presented. © 1999 Elsevier Science B.V.
Ali rights reserved.

KeYIi'Ords: Artificial neural networks; Empirical models; Phytoplankton; Primary production; Chesapeake Bay

1. Introduction

Estimates of phytoplankton primary produc
tion based on empirical models are increasingly
used as an alternative to direct data acquisition
that can be both expensive and time consuming.
This is particularly true in the era of satellite
oceanography because remote measurements of
ocean color that provide global coverage of phy
toplankton biomass can serve as inputs to models
that estimate production. Although empirical
models of primary production are usually based
on simple linear relationships (e.g. Cole and Clo
ern. 1987), the estimates they provide are reason-

* Corresponding author Fax: + 39-81-7641355.
E-marl address: mscardi@mclink.lt (M. Scardl)

ably accurate because primary production is
largely regulated by variables that are simple to
measure, i.e. downwelling irradiance and phyto
plankton biomass,

Despite the usefulness of linear relationships for
estimating Pl,v::\uction, other factors that affect
photosynthetic carbon assimilation are related to
production in a non-linear manner, such as pho
tosynthetic efficiency of the phytoplankton cells.
Therefore, more flexible empirical models that are
both simple and capable of reproducing these
relationships can theoretically play an important
role in improving our ability to estimate
production.

Conventional models that attempted to address
this problem by means of multiple linear regres
sion (e.g. Eppley et al., 1985). or the use of

0304-3800/99/$ - see front matter © 1999 Elsevier SCience B.V. Ali nghts reserved.
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semi-analytic fonnulations (e.g. Ba1ch et al..
1989), did not perform significantly better than
much simpler empirical models. An alternative
approach, involving the use of neural networks
has recently generated significant improvement in
estimating production (Scardi, 1996) or other
complex non-linear ecological processes (Lek et
al., 1996) where sufficient training data were
available. Moreover, neural networks are also
able to exploit the heterogeneous information that
is provided by other variables that may be corre
lated to primary production on a regional scale
only, and to use this information to achieve refin
ement of primary production estimates.

The first neural network that was trained as an
empirical model of phytoplankton primary pro
duction (Scardi, 1996) was essentially a toy model,
because of the limited number of training pat
terns. It was developed with a small data set that
was reported in a comprehensive study of phyto
plankton photosynthesis in Chesapeake and Dela
ware Bays (Harding et al., 1986). These data were
used in initial efforts because the data on perti
nent variables were assembled and readily usable,
and comparisons with linear models could be
made rather easily. The main purpose of that
work was to show that a simple error back-propa
gation neural network had the potential to out
perfonn conventional empirical models of
phytoplankton primary production. Since that ini
tial report, further research has been carried out
on primary production and ancillary data for
Chesapeake Bay spanning over a decade (Harding
et al., in prep.) and on the application of neural
networks both to phytoplankton production mod
elling (Scardi, in prep.) and to other related topics
(Recknagel et al., 1996; Recknagel, 1997).

In this paper, we present new results of a case
study that focused on developing a reliable mod
elling tool for Chesapeake Bay. Contemporary
studies of trophic dynamics and remotely sensed
observations providing synoptic biomass fields in
the Bay are components of ongoing research that
entail a need for accurate estimates of phyto
plankton primary production. Beyond the specific
use of neural network analysis to estimate pri
mary production in Chesapeake Bay, however.
this approach has general ecological relevance. If

successful with data from this very complex estu
arine ecosystem in which the principal variables
regulating primary production are characterized
by variability on a wide range of time and space
scales, the likelihood of a broader application to
other marine systems is enhanced.

2. Materials and methods

The 1982-1983 data that were used in the
initial attempt to develop a neural network model
of primary productivity were collected on a series
of five cruises in Chesapeake and Delaware Bays.
Further development of this model, however, was
focused on Chesapeake Bay only. Chesapeake
Bay, in Maryland and Virginia, is the largest bay
on the Atlantic coast of the US (Fig. 1). It is
about 320 km long from north to south and from
5 to 40 km wide. The Susquehanna and the
Potomac are the largest of its many tributary
rivers and creeks. The bay is a shipping artery,
and the bay cities of Norfolk, VA.. and Balti
more, MD., are among the nation's leading ports.
Waterfowl, fish, oysters. and crabs. long abun
dant. have been threatened by pollution in recent
years. Chesapeake Bay is characterized by strong
gradients in salinity, turbidity, dissolved nutrients
and chlorophyll as a measure of phytoplankton
biomass.

Integral, daily primary production was mea
sured using 14C assimilation in simulated in situ
sunlight incubations. Neutral density screens were
used to attenuate sunlight and generate a light
series, and surface seawater was circulated for
cooling. Downwelling irradiance was measured
continuously with a LiCor quantum sensor posi
tioned in an unobstructed location on the ship.
and vertical profiles were made throughout the
day using an underwater LiCor quantum sensor
to ascertain the diffuse attenuation coefficient for
photosynthetically available radiation (PAR).
Further details of the methods are contained in
Harding et al. (1986).

Measurements of chlorophyll concentrations
were made using standard fluorometric methods
(Strickland and Parsons, 1968), nutrient concen-
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trations were determined by wet chemistry on a
Technicon AutoAnalyzer IL and ancillary data on
other properties were collected at the same times
and locations as samples were collected for mea
suring primary productivity. The reference to the
original data source (Harding et al., 1986), con
tains most of the detailed methods and other
aspects of the data collection are presented by
Fisher et al. (1988).

Measurements of primary production made
from 1987-1996 used the same methods as were
used in the 1982-1983 cruises. Stations were pre
dominantly located within Chesapeake Bay along
the mainstem axis from the limit of salt to the
mouth and plume regions nearly 300 km seaward.
Approximately ten stations were occupied on each
cruise, with the exception of 1995-1996 when
more than double this number of stations was

n.O 76.5 76.0

Longitude
Fig. 1. Chesapeake Bay is the largest bay on the Atlantic coast
of the US. Il is about 320 km long and from 5 to 40 km wide.

occupied per cruise and included sampling lateral
to the mainstem axis. Each measurement of pri
mary production was accompanied by collection
of a full set of ancillary data.

The most recently collected data used in this
analysis were from 1995-1997 and were collected
on a series of cruises addressing Trophic Interac
tions in Estuarine Systems (TIES) sponsored by
the US National Science Foundation. Of these
data, the 1997 measurements were used to test the
NN model and not to develop it.

Ali the neural networks we used as empirical
models were multilayer perceptrons with one hid
den layer and only one neuron in the output layer
(i.e. phytoplankton primary production). This is
by far the most common and flexible kind of
neural network and it provides good perfor
mances in a wide range of applications.

Our applications aimed at training the most
generalized neural network, rather than the one
that optimally fitted the training test. Therefore,
the error backpropagation training algorithm was
used in its simplest version, as learning rate, set to
a unit value, was not allowed to vary during
training and no momentum term was used.

The training procedure was based on a subset
of the 1982-1996 data set. which consisted of 326
patterns. In fact, in the case of our final model,
only 100 patterns were randomly selected and
used as training set, whereas the remaining 226
patterns were used as validation set. Even though
a large validation set usually prevents overtrain
ing, other techniques were also applied in order to
obtain the most generalized model.

In particular, a small amount of Gaussian noise
(Il = 0, (J = 0.01) was added to the input patterns
(Gyôrgyi, 1990) and only a subset (n = 50) of the
training set was randomly selected for each train
ing epoch. The random selection of the training
subset was also needed because a learning per
pattern strategy was chosen and therefore it was
necessary not to always submit the training pat
terns in the same order. Moreover, an early stop
ping strategy was used in the training procedure
(i.e. training was stopped as soon as the valida
tion set error started to increase).

The best structure of the neural network models
was determined on the basis of empirical tests,
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Table 1
Neural network input and output variables'

Variable units mm max

irUf

Cn'da
y

) ] None
0.0 1.0

- cos -- +1
2 365

I[ . Cn'da
y

) ] None
0.0 1.0

- sm -- +1
2 365

Latitude Degrees 36.8 395
Longitude Degrees 75.6 76.6
Station depth m 0.0 45.0
Water temperature oC 00 32.0
Salimty PSU 0.0 32.0
Surface chlorophyll concentratIOn (loglO) mg m- 3 -08 1.9
Total chlorophyll in the photic zone (lOglO) mg m -, -0.3 2.7
Surface downwelling irradiance E m-~ day-l 0.0 80.0
Light extinction coefficient m- 1 0.0 6.0
Photic zone depth m 0.0 25 a
Output
Phytoplankton primary production (log lO) mg C m-2 day-l 0.9 3.9

• Umts and the minimum and maximum values that were used to scale raw data to [O. 1] intervals are also shown. Variable names
followed by (lOglO) mdlcate that raw values have been log-transformed before scahng them to a [0, 1] mterval.

where hidden layers with three to 15 neurons were
used. The best performance was obtained with
five neurons in the hidden layer both in the case
of the simpler model (three inputs) and in the case
of the more complex one (12 inputs). However,
the differences among neural networks with dif
ferent structures were not dramatic and only the
performance of the 3-x-l model was perceivably
degraded when more than ten hidden neurons
were used.

The simpler 3-5-l model used surface chloro
phyll concentration, surface downwelling irradi
ance and depth of the photic zone as input
variables, whereas nine more variables were se
lected as additional inputs for the more complex
neural network. Input and output variables of this
neural network are listed in Table l, where the
units and values that were assumed as limits to
scale variables into [0, 1] intervals are also given.
Inputs for both phytoplankton biomass and pri
mary production were 10glO-transformed before
scaling them to a [0, 1] interval. The log transfor
mation was performed on the basis of both a
theoretical assumption and an empirical test. The
theoretical assumption was that the mean square

error of the neural network output will be biased
when raw data are used. This pertains because
training patterns containing high values for
biomass and primary production, containing pro
portionately greater sampling and measurement
errors, may unduly dominate the output. The
empirical test was carried out by comparing the
performance of neural networks trained with
transformed data to performance with raw data.
In the case of the final 12-5-1 neural network,
training on log-transformed data outperformed
training on raw data, as it allowed the neural
network to explain almost 20% more variance (the
determination coefficients were R 2 = 0.546 and
R 2 = 0.353, respectively).

The seriaI number of the day of the year was
transformed using sine and cosine functions (see
Table 1) that map the date ante a circle. Two
inputs-the total chlorophyll in the photic zone
and the photic zone depth-were computed on
the basis of other input variables. The total
chlorophyll in the photic zone (Table 1) was
obtained as the product of surface chlorophyll
concentration and photic zone depth, assuming
that the phytoplankton biomass is homogeneously
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distributed in the upper water column. The photic
zone depth (Table 1), i.e. the depth where the
available downwelling irradiance is the 1% of the
surface downwelling irradiance, was obtained as
4.605 (i.e. In 0.01) divided by the light extinction
coefficient (Table 1). If the resulting value was
larger than the station depth (Table 1), then the
latter was assumed as photic zone depth.

3. Results

The toy mode! presented by Scardi (1996) per
formed weil using the 1982-1983 data set on
which it was trained (R 2 = 0.940). When used
with a much larger data set spanning 1982-1996
and encompassing a wide range of environmental
conditions, this model did not perform nearly as
weil (R 2 = 0.156), as shown in Fig. 2. This re!a
tively simple approach was based on a 3-5-1 neu
ral network that used surface downwelling
irradiance, surface chlorophyll concentration, and
photic zone depth as inputs. We found that the
toy mode! was unable to reproduce primary pro
duction values that were larger than the ones on
which it was trained, and that large errors were
also obtained even within the range of observa
tions contained in its own training set (0-3 g C
m- 2 day-l).

30.,---------------"

..
.' ...

0.0~-~-~-~-~-~_
00 0.5 1.0 1.5 20 2.5 30

observed velues (g C m'zdey")

(a)

To ascertain the performance of the toy model
compared to other, more conventional ap
proaches, we also used a common model based on
linear regression of primary production on a com
posite variable obtained from the product of the
same three variables used as neural network in
puts (see Cole and Cioern, 1987). Despite what we
term poor performance of the toy model with the
larger data set from Chesapeake Bay, the esti
mates of primary production were significantly
better than those obtained using conventional lin
ear models that returned a mean square error
almost twice as high.

To overcome the shortcomings of the toy
mode!, a new 3-5-1 neural network was trained on
the basis of the entire 1982-1996 data set. Two
training procedures were carried out, one on raw
data and the other on log-transformed biomass
and primary production data, but none produced
a synaptic weight set that showed a significant
improvement over the toy mode!.

As in the case of the toy model, these networks
were not able to cope with high primary produc
tion values, even though they were trained on a
quite large data set. This result was not unex
pected because primary production in Chesapeake
Bay is clearly not regulated by phytoplankton
biomass, irradiance and photic zone depth alone;
there is a strong landward to seaward gradient in

7.0,----------------"

";;- 6.0

""1
E 5.0
o
.!!
~ 4.0

t
~ 3.0

!.. 2.0
c
!i 1.0
c

1.0 2.0 3.0 4.0 5.0 6.0 7.0

observed velues (g C m'Zdsy")

(b)

Fig. 2. Scatter plots of neural network outputs versus observed values for the toy model described III Scardi (1996) The 1982-1983
training subset was accurately fitted (a), whereas the whole 1982-1996 data set showed poor generahzation (b).
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Fig. 4. Error distribution of the corrected neural network
outputs. The labels on the error axis indicate the upper limit of
each c\ass.

·1 0 -08 -0.6 -0.4 -0.2 0.0 0.2 04 06 08 1 0 >1 0

output error (g C m'2 day")

bias was detected (merror = - 0.14248, in the vali
dation set). Obviously, this systematic error de
pended on the different impact that very large and
very small values exerted with or without log
transformation.

In order to obtain unbiased primary production
estimates, a simple linear correction was defined by
least square optimization and applied to the neural
network output. The corrected estimates were then
computed by multiplying neural network outputs
by 1.15575 (this correction could be visualized as
a small vertical shifting of aIl the points in the
log-log plot in Fig. 3) .

The resulting error distribution was virtually
unbiased (mellOI = - 0.00174, in the validation set)
and almost symmetrical, as shown in Fig. 4. It
should be noted that more than 80% of the errors
of the primary production estimates in the valida
tion set were within the ±0.6 g C m - 2 day - l, i.e.
less than 1/10 of the observed data range. More
over, the accuracy of the model was also slightly
improved, as corrected outputs explained 3% more
variance (R 2 = 0.578) than the uncorrected ones
(R 2 = 0.546).

The accuracy of the neural network model and
its generalization capabilities were also tested on
an independent data set (n = 52), which was col
lected during 1997 and therefore was not available
during the training phase. In the scatter plot in Fig.
5 predicted versus observed values are shown for
both this new testing set (large black circles) and
the original training and validation sets (small

10

o

o

0.1

observed values (g C m'2 day'1)

0.01 -1'-----!--------.,-------1

0.01

dissolved nutrients and much of the Bay is nutrient
limited for at least part of the year. Accordingly,
we surmised that additional information was
needed to improve the mode\.

The neural network model using a 12-5-1 struc
ture, i.e. a larger suite of predictive variables,
shows improved estimates over previous ap
proaches (Fig. 3). This finding pertains both to the
training set shown as black diamonds, and to the
validation set shown as white diamonds. Primary
production values are predicted with greater accu
racy (R 2 = 0.546) than in the case oflinear or other
simpler models. The neural network also showed
good generalization properties, in that the valida
tion set was fitted even better than the training set
(R 2 = 0.614 and R 2 = 0.420, respectively).

Although data for phytoplankton biomass and
primary production were log-transformed before
training, the model outputs need to be transformed
back to raw data in most applications. Therefore,
the error distribution of the model. which was
unbiased in log units, was also checked after
back-transforming data to raw units and a small
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Fig. 3. Scatter plot of the neural network outputs versus
observed values for the 12-5-1 model Both training and
validatIOn data are shown. The overall agreement between
observed and simulated data was satisfactory (R 2 = 0.546).
The validation set values (white diamonds. R 2 = 0.614) were
reproduced even better than the trainmg set ones (black dla
monds. R 2 = 0.420).
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Fig. 5. Scatter plot of the neural network outputs versus
observed values. Both the new independent testing set (1997,
large black circles) and the onginal training and vahdatlOn sets
(1982-1996, small white circles) are shown.

• 1982-1996 data set

o 1997 testing set

-10 -oa -06 -04 -0200020406 Da 10 >10
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Fig. 6. Error distnbutIon of the corrected neural network
outputs. The labels on the error aXIs Illdicate the upper limIt of
each c1ass.

distribution of the original data set. Even though
the latter is more regular and symmetrical, the
differences between the two distributions are mi
nor and are probably influenced by the smaller
number of patterns in the new testing set.

Finally, a sensitivity analysis was carried out
using the whole 1982-1996 data set to assess the
effect of small changes in each input on the neural
network output. The results of this analysis
provide a useful insight into the neural network
mode!, but they also he!p to understand the un
derlying ecological processes, i.e. the relative
importance of the predictive variables to
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white circles). The new primary production values
were reproduced by the model with the same
accuracy as original data and were almost unbi
ased, as their mean error was negligible (m error =
0.082).

The error distribution of the new testing set is
shown in Fig. 6, where it is compared to the error
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Fig. 7. Percentage variation of the mean square error of the neural network output at increasing levels of input perturbation. White
noise ranging from [ - 0.1, 0.1] to [ - 0.5, 0.5] was added to each input variable in the whole 1982-1996 data set and the resulting
increase III mean square error was expressed as a percentage of the original mean square error.
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input variables are ranked according to their sensitivity.

phytoplankton primary production in Chesapeake
Bay.

In the sensitivity analysis, the mean square
error of the neural network output is expected to
increase as a larger amount of white noise is
added to the selected input variable. The mean
square error variations that were observed after
white noise additions varying from [ - 0.1, 0.1] to
[ - 0.5, 0.5], i.e. from 20 to 100% of the input
range, are shown in Fig. 7.

The minimum level of input perturbation was
similar in magnitude to the measurement error of
the oceanographic data and so were the changes it
induced in the mean square error of the neural
network output « 5%). Increasing white noise
additions caused increasing mean square errors in
the output, even though this relationship was not
absolutely monotonic, because less sensitive vari
ables, that did not affect the neural network out
put very much, showed a few negative increments.
However, the relative sensitivity of the input
variables did not vary significantly when very
large amounts of white noise were added. These
results suggest that the primary production model
that was embedded in the neural network
was probably consistent with the ecological pro
cesses as it was not misIed by unlikely input
patterns.

The most influential variable among the neural
network inputs in affecting output was by far the
total chlorophyll in the photic zone. It was the
only input variable that caused an increase in the
mean square error larger than 100% when [
0.5,0.5] white noise was added, as it is clearly
shown in Fig. 8. As expected for a primary pro
duction model, the predictive variables that were
related to light availability and phytoplankton
biomass had the largest effects on output among
the remaining variables. The least influential vari
able was salinity, despite that it may be viewed as
a proxy for freshwater inflow and often covaries
with nutrient concentrations.

4. Discussion

The neural network provided accurate and un
biased estimates of phytoplankton primary pro
duction for a system that is characterized by high
spatial and temporal variability. This is a satisfy
ing result, given the shortcomings of linear models
that fail to perform acceptably with the same data
and that contain biases that are particularly pro
nounced at low and high primary productivity
rates. In most cases, the error of primary produc
tion estimates obtained with the neural network
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was within the range of the measurement error.
We believe the neural network approach outper
formed conventional empirical models because it
is inherently much more flexible in dealing with
the influences of a number of variables that regu
late phytoplankton primary productivity In

estuaries.
Our results were obtained using a very conser

vative approach as far as generalization is con
cerned, because most of the available data were
used for neural network validation and only a
restricted subset, i.e. less than one third of the
en tire data set, was used for neural network train
ing. We also tested our neural network model
using an independent data set that was not avail
able during development of the mode!. The suc
cess of this approach implies that the present form
of our mode! is probably less than optimal and
that further improvements are stiJl possible. A
further consideration is that the training proce
dure was not optimized (a constant learning rate

4c
o
i3
;j

] 3
O-;=--

~>.
ro ."
E"U

'i:; ~

0- E 2
co
~~
c
roa.
o
>,
..c.
Cl..

o

23-28 J uIy 1995

Fig. 9. An example of application of the neural network. The
phytoplankton primary production was estimated over the
whole Chesapeake Bay mainstem area using interpolated input
data. Each pixel in the image corresponds to a 1 km 2 square.

and no momentum were used), and improvements
in this area may refine the model further.

The neural network model of Chesapeake Bay
phytoplankton primary production can play an
important role in monitoring and research activi
ties, because it may permit reduction of the num
ber of direct primary production measurements
that are needed to reconstruct large scale spatial
patterns or high frequency time series. An exam
pIe of such an application is shown in Fig. 9, in
which the distribution of phytoplankton primary
production in the mainstem area of Chesapeake
Bay is presented as a grayscale image. These
estimates were based on discrete data collected
during a summer cruise (23-28 July 1995) that
were interpolated to generate complete input
grids. In future applications sorne of these input
grids cou Id be replaced with remotely sensed data.
An aircraft remote sensing program (cf. Harding
et al., 1992, 1994, 1995) provides high resolution
estimates of chlorophyll for the estuary, using
sensors designed to replicate band of the satellite
ocean color instrument, SeaWiFS, that is now
providing global coverage. Data from this source
can be substituted for shipboard observations and
fill time and space gaps that accompany more
routine sampling. Given that the most influential
variables on model output are related to the accu
racy of biomass inputs, we envi sion improved
performance of the neural network model when
remotely sensed data are used.

We believe the principal explanation for the
superior performance of the neural network
model to that of more conventional approaches is
that the complexity of factors that regulate phyto
plankton primary production are better captured.
From a purely theoretical viewpoint, other empir
ical models might also obtain this result, provided
that their formulation is carefuJly defined and
sufficiently complex to incorporate the data struc
ture. However, in these cases the model formula
tion has to be explicitly defined by the modeler,
who usually opts for an empirical approach when
his/her understanding of the processes to be mod
eled is not complete or he/she thinks that accu
racy can be traded for simplicity.

An example of the degree of complexity of the
relationships that can be reproduced by a neural
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Fig. 10. Neural network output versus total chlorophyll in the photic zone in different seasonal scenarios: summer (a) and fall (b).
More than 7000 points, corresponding to pixels in images similar to Fig. 9. are shown in each plot. The position of each point
depends on the photosynthetic efficiency of the whole water column and a steeper overall slope implies a higher photosynthetic
efficiency, as in the summer 1997 plot (a). It is mteresting to notice that the neural network model was able to reproduce a range
of different area-speclfic non-linear relationships.

network model is shown in Fig. 10. The neural
network outputs (i.e. estimates of phytoplankton
primary production) that were obtained for more
than 7000 input patterns were plotted against one
of the inputs, the total chlorophyll in the photic
zone. Therefore, the position of each point is
determined by the photosynthetic efficiency of the
whole water column. It is very clear that the two
seasonal scenarios that were considered were com
pletely different because the overall photosynthetic
efficiency varies in time. However, it is also clear
that the biomass/production relationship is also
variable within each sub-plot, because aIl the points
are arranged as to form a set of curves, each one
having a different slope, that reproduce the spatial
variation of the biomass/production relationship in
Chesapeake Bay. Even though the sensitivity anal
ysis showed that the total chlorophyll concentra
tion was probably the most relevant input variable,
plots obtained with other variables also showed
similar patterns.

FinaIly, it has to be stressed that sensitivity
analysis might play an important role in both the
optimization of the neural network models and in
understanding the processes to be modeled. Sensi
tivity analysis is not a simple and straightforward
task when analytical models are taken into account,
but it is even more challenging when neural net-

works are considered. However, the procedure we
used was able to analyze the first-order effects of
input perturbation on the neural network output
and the results provided a useful insight both into
the neural network mechanics and primary produc
tion processes. The neural network outputs were
almost invariant when small perturbations, similar
to those that depend on sampling errors, were
introduced. On the other hand, when more noise
was added to the inputs, the role of each variable
could be defined in terms of relative importance in
determining phytoplankton primary production.

The total chlorophyll in the photic zone, i.e. the
total biomass that is photosynthetically active, was
clearly the most important predictive variable.
Other variables, such as salinity, were less sensitive
to the addition of white noise and therefore seem
to play a less important role. Of course, excluding
these variables might help prune the neural network
structure. This kind of optimization is not very
important from a computational point ofview, but
could reduce the cost of data acquisition without
a significant loss in accuracy of the mode!.

The neural network model of Chesapeake Bay
phytoplankton primary production has been imple
mented in Java and can be tested at the following
URL: http://www.mare-net.com/mscardi/work/
nn/cbjavann.htm.
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Abstract

We discuss the use of supervised neural networks as a metamodelling technique for discrete event stochastic
simulation in order to reduce significantly the computational burden involved by discrete simulations. A sophisticated
computer model, coupling a geographical information system with a stochastic discrete event simulator, has been
developed to anticipate the propagation of the green alga Caulerpa taxifolia in the north-western Mediterranean sea.
The simulation model provides reliable predictions, a couple of years in advance, of: (i) the local expansion patterns
of the alga; (ii) the increase of C. taxifolia biomass and (iii) the covered surfaces. However because the algorithmic
model accounts for spatial interactions and anthropic dispersion/activities such as eradication, introduction of specifie
predators etc., simulations are extremely time and memory consuming. Therefore, to reduce the computational
burden, a neural network was successfully trained on artificially generated data provided by the simulation runs to
provide accurate forecasts 12 years in advance along with associated confidence intervals. The ability of the neural
networks to capture the underlying physics of the phenomena is clearly illustrated by several preliminary experiments
on a large coastal area. The neural network is able to construct, on this site, estimates of the Caulerpa taxifolia
expansion 12 years in advance in good agreement with the simulation trajectories. © 1999 Elsevier Science B.V. All
rights reserved.

Keywords: Metamodelling; Neural networks; DIscrete event; Simulation; Caulerpa taxi/oUa; Invasive species

1. Introduction

In 1984, the French coast of the Mediterranean
sea near Monaco was the initial site of the devel
opment of Caulerpa taxifolia, a green alga of

* Correspondmg author. Tel.: + 33-4-734050039; fax: + 33
4-7340500 1.

E-mail address:alex@sp.isima.fr (A. Aussem)

tropical ongm introduced by mistake (Meinesz
and Hesse, 1991; Belsher and Meinesz, 1995).
After 12 years later, this species had colonized
several thousand hectares of the French and Ital
ian coasts and was detected in numerous places of
the north-western Mediterranean coast, from
Croatia (Adriatic sea) to the Balearic islands
(Spain). This surprising development may locally
induce an intense and irreversible alteration of the

0304-3800/99/$ - see front matter © 1999 Elsevier Science B V. Ali rights reserved.
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coastal ecosystems, such as endogenous species
distributions (alga, cnidaria, sponges, echino
derrns, fishes, etc.) as well as ecosystem function
ing (trophic levels relationships). Indeed, the
progressive elimination of the benthic flora and
fauna is observed at stations heavily occupied by
C. taxifolia. Though the social and economic
repercussions of such damage on the ecosystems
are considerable, the precise incidence on fisheries
and tourism is difficult to estimate.

With a view to understanding the underlying
rules governing the development of C. taxifolia,
an interdisciplinary joint venture between marine
ecologists, biologists and computer scientists was
undertaken (Hill et al., 1997, 1998). They con
curred on the observation that spatial effects like
currents, spatial heterogeneity, fragments spread
ing etc., are major parameters influencing the
colonization process and should therefore be inte
grated into a sophisticated discrete-event simula
tion model. The major goals are to provide
quantitative results associated with the alga ex
pansion several years in advance, e.g. biomass,
production, contaminated surfaces and residual
biomass of competing species (especially the pro
tected seagrass Posidonia oceanica), given various
environmental parameters, e.g. bathymetry, sub
strates and biocenosis on different sites (Hill et
al., 1997). To provide forecasts with sufficient
accuracy, the model had to take into account
spatial effects as well (heterogeneity of the sites,
long and short distances interactions between or
ganisms, etc.).

Unfortunately, one of the major drawbacks of
discrete-event simulation is the amount of compu
tational resources required to fully explore numer
ous possible trajectories of the ecosystem several
years ahead according to distinct experimental
scenarios, e.g. pattern of currents, anthropic dis
persion, etc. Clear1y, performing multiple replica
tions for selecting optimal decision variables or
policies becomes swiftly inhibitory when dealing
with large scale ecosystems.

To supplement the computationally intensive
(stochastic) discrete-event simulation software, we
developed a so-called metamodel, based on super
vised multilayer neural networks, to provide di
rect forecasts several years in advance in terrns of

covered surface levels (Coquillard and HilL 1997).
Once trained with artificially generated data pro
vided by the simulation runs, neural networks are
shown to be reliable approximations of the under
lying biological system that perform satisfactorily
and are significantly more computationally effi
cient than the simulator itself. In addition, such
techniques promise insights into the biological
mechanisms that discrete simulation alone cannot
provide.

This paper first presents the different modelling
constraints which were kept in mind while design
ing the model, as well as the technical choices and
the first results. Neural networks are then dis
cussed and applied towards the prediction of the
covered surface 12 years in advance.

2. The Caulerpa taxifoUa simulation model

As discussed above, a sophisticated stochastic
discrete-event simulation model was developed
few years ago, in collaboration with marine ecolo
gists, biologists and computer scientists, in order
to better understand the parameters influencing
the colonization of Caulerpa taxifolia along the
French coast of the Mediterranean sea, and to
explore distinct experimental scenarios (Hill et al.,
1997, 1998). The major goals were to provide
quantitative results associated with the alga ex
pansion several years in advance, given various
environmental parameters. For completeness, we
briefly detour to present the simulation model
before we discuss the metamodelling approach
and the experiments.

2.1. The Caulerpa taxifolia settlements

First, a thorough study of C. taxifolia settle
ment and development on precise locations was
carried out to facilitate the validation of simula
tion results. Three settlement sites have been
mapped yearly by marine ecologists since the be
ginning of 1990. AlI the experiments presented in
this paper focus the first zone, namely Ville
franche-sur-Mer. This site was mapped at a deca
metric scale. In spite of the absence of exhaustive
mapping, enough data were available in that area
to run simulations on a large scale (Hill, 1997).
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As discussed above, spatial effects like cur
rents, spatial heterogeneity, fragment spreading,
etc, are considered major parameters influencing
the colonization process and were therefore inte
grated in the simulation modeL The modelling
technique is based on discrete-event simulation
used in the last decade for ecological modelling
purposes (Hill, 1996), Consequently, the model
is no only specified by a mathematical formal
ism but also by an algorithm describing the sys
tem functioning. This required the development
of simulation software able to handie any lit
toral site by interfacing it with a geographical
information system (GIS), Part of the simulation
model input was initialized with digitized maps
created in the GIS software MapGraphix, For
each studied site, two maps were used: one for
substrates and one for bathymetry, In the same
way, the spatial simulation results are provided
in GIS format in addition to traditional curves
and statistics,

The outputs are composed of means along
with confidence intervals obtained by bootstrap
ing techniques (Bradley, 1982), Independence,
common mean, variance and normal distribution
of the responses were evaluated by a Kol
mogorov test applied on results obtained from
both 1000 and 10 000 replications, With 1000
replications, the Kolmogorov never rejected the
null hypothesis, namely that the observed distri
bution is normally distributed, for a level of sig
nificance of 95%, see (Hill et aL, 1997) for more
details),

22 Modelling elements

The simulation model relies on a set of holis
tic variables which are estimated and changed
with the occurrence of discrete events, The site
under study are divided into cells whose size is
an important model parameter. The cell size
varies from 16 cm2 up to 370 m2 depending on
the scale of the studied site, Each cell possesses
substrate and depth attributes (provided pre
cisely by the GIS), The probability that C taxi
folia grows in each cell is linked to a set of
evolution mies depending on (i) the depth; (ii)
the kind of substrate; and (iii) the number of

fragments arriving in the cell. The growth dur
ing a simulation session is based on a list of
active cells (i,e, those containing C taxifolia in
dividuals), An exploratory approach allowed us
to determine the best parameters for each site,
Simulations are initialized from experiment files
(with 98 parameters), The experiment files con
tain:
• simulation control parameters (duration, num

ber of replications, GIS map specification etc,)
• model initial values (distribution rate of the

fragments, current direction and strength, etc,),
• settlement probabilities as a function of

bathymetry, substrate, season, etc,
• monthly parameters for stolon growth, spread

of fragments, biomass, and degeneration,

2,], Model validation

The calibration and the sensItlvlty analysis
have demonstrated that the model is robust
enough and the conceptual model is consistent.
Numerous replications-up to 100000-were
done for verification purposes (the random num
ber pseudo-period being long enough), The
modifications of internai data flow never lead
the model to exhibit abnormal behaviour or bi
ased statistical results, Under such conditions
the model could be considered as reliable ac
cording to the definition in use in the simulation
community, Different techniques (Coquillard
and Hill, 1997) were used for validation pur
poses: (i) comparison of results from site to site;
(ii) confrontation with empirical knowledge of
marine ecologists; and (iii) graphic visualization
and animation to make use of the human ability
to comprehend spatial relationships,

For this kind of simulation study, the spatial
auto-correlation is strong since C taxifolia con
taminated zones tend to form aggregated spots,
However, from one replicate to the other, pe
ripheral spots distribution is totally different
without apparent correlation, Thus, a large
number of replicates were carried out and the
results combined to perform a discrete spectral
analysis, This analysis is useful to point out ar
eas which have a high probability of invasion
by C taxifolia although such plots are not al
ways easily interpreted,



228 A. Aussem, D. Hill,' Ecological Modelling 120 (1999) 225-236

3.1. Metamodelling principles

A simulation model usually integrates only the
input variables which lend themselves to the
observation,

where y is the additive noise, with zero mean and
is independent of the inputs ~. It is well known
that the minimum mean squared error predictor is
then given by

(1)

(2)y = E[YIXj , ... , X,,] = f(X1, ... , X,,)

To define more explicitly a stochastic simula
tion metamodel, let ~, j = l, ... , n denote the
variables influencing the response, Y, of the phys
ical system. Assume that the system is subject to
sorne additive random fluctuations, then the un
known relationship between Y and the inputs ~
may be written as:

The main issues in metamodelling are:
• the choice of the underlying functional form,
• the choice of the inputs and their correspond

ing response variables to be used,
• selection of the appropriate samples from the

simulation to construct the metamodel,
• validation of the mode!.

2.4. Computational burden

The basic objective of this modelling approach
is the quest for a deeper understanding of the C.
taxifoUa expansion phenomena which manifests
itself along the Mediterranean coast. Unfortu
nately, in order to better understand the parame
ters influencing the colonization process, an
exploration of distinct experimental scenarios is
required, which in turn translates into a great
number of simulation replications. Moreover,
many environmental parameters (bathymetry,
substrates, biocenosis, etc.) on different sites, have
to be varied according to distinct experimental
scenarios, e.g. pattern of currents, anthropic dis
persion, etc.

Unfortunately, one of the major drawbacks of
discrete-event simulation is the amount of compu
tational resources required to fully explore system
responses. Under these circumstances, performing
multiple replications for the selected values of the
decision becomes swiftly inhibitory when dealing
with large scale ecosystems, hence the idea of
using a so-called metamodel to provide direct
forecasts of the relevant variables with sufficient
accuracy.

3. The metamodel
(3)

denote the error term accounting for the simula
tion error, owing to the excluded variables and
model miss-specification. Now, a metamodel, h, is
a further simplification of the previous mode!,
adjusted to output the optimal simulation re
sponse. The metamodel may be written as:

where p s n and b is sorne additive noise, with
zero mean and is independent of the inputs ~,

and represents the random fluctuation of the sim
ulation model, which was shown, in our case, to
be normally distributed.

Now the minimum mean squared error predic
tor for the simulation model is given by:

To overcome the limitations of discrete-event
simulation models, researchers and practitioners
in the environmental, management, industrial and
production sciences have developed so-called
metamodels, which are approximations that per
form satisfactorily and are significantly more
computationally efficient. Metamodelling tech
niques can be traced back to the early 1970s,
although the term was developed more recently
(see Kleijnen, 1987; Kilmer 1994) and references
therein. Applications in the literature mainly
cover industrial and production applications, such
as production planning and control, facilities stor
age and design and shop floor control (Pierreval
and Huntsinger, 1992; Kilmer, 1994). Most of
these articles concur in the observation that meta
models are easier to manage and provide more
insight than simulation alone.

""Y = g(Xj , ... , Xp )

Let

y- Y=e,

(4)

(5)
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3.2. Neural netll'ork metamodels

where m ::;; p ::;; n. Since the metamodel is adjusted
from the simulation mode!, let:

Now, several metamodelling techniques exist,
e.g. kernel-based regression models, neural net
works, genetic algorithms, etc. As far as we are
concerned, they are distinguished by their trade
offs, e.g. between accuracy and computational
expense, between local and global fitting tech
niques, that must be dealt with when developing a
metamodel. The next section aims at introducing
the reader to the very basic knowledge of neural
networks, making it suitable to readers with inter
ests in non-technical areas.

The training set and the test set of a supervised
neural network are made up from a number of
input-output patterns. The test set is used to
assess the performance of the neural network. The
target value is the estimate from the simulation of

3.3. Measure of.fit and confidence intervals

tion capability (Cybenko, 1989). Such a mode!
can accommodate a combination of continuous
(usually interval-scaled) and discrete numeric vari
ables, as will be the case in our experiments
even if, in practice, they have severely
heterogeneous certainties (Zheng et al.. 1997;
Murtagh et al., 1998). Additionally, classical neu
ral paradigms are global models. that is. a single
neural model is trained to model the entire simu
lation response surface. This differs from polyno
mial regression metamodelling. where the
regression surface is fitted locally. Finally, the
parallel architecture provides robustness to in
complete or erroneous data sets and offers fault
tolerant, real-time performance.

It is important to stress that neural networks
are deterministic models, meaning that the opti
mal mean-squared predictor is nothing else than
the conditional mean of the desired output, given
the input. This intuitive result represents the
closed-form optimal solution for a neural network
trained using least squares. It should be under
stood, however, that a neural network of fixed
size can only approximate the optimal function
thus introducing an effective bias in the solution.
Furthermore, training on limited data results in
an effective variance over the possible converged
solutions. A larger network has smaller bias but
requires more samples to train and so has an
effective!y larger variance. This trade-off is typical
in regression theory (Geman et al., 1992). What
makes neural networks better at finding solutions
than splines for instance is a far more difficult
problem to answer and requires thorough statisti
cal understanding of the notions of consistency
and generalization. But it is weil beyond the scope
and purpose l,f this paper to delve deeper into
statistical theory of optimal predictors. Readers
interested in more theoretical material are encour
aged to consult the literature.

(7)

(6)

(8)y - y = em + es + }'

Y- Y=em

be sorne additional error accounting for the meta
modelling error, owing to the further excluded
variables and the metamodelling error of fitting
the metamodel to the simulation mode!.

The identification of the optimal metamodel is
the identification of the parameters of hO. In
other words, the metamodel can be viewed as a
simplified mode! of the simulation model acting as
a surrogate for the study of the physical system.
The metamodelling error is therefore the sum of
three terms, namely:

It is difficult to present the connectionist net
work, especially when the audience consists of a
mixture of meteorologists, and ecologists, sorne of
whom will know a great deal about connectionist
approaches to modelling and prediction, while the
knowledge of others is limited in scope. However,
we have tried to highlight the specifies in a brief
review in which neural networks are analyzed as
regression models.

In this paper, we experiment with a multi-layer
neural network (also calied preceptron or feed
forward network): a simple, well-known and in
depth studied input-output (i.e. static) model
(Rumelhart et al., 1986), with non-linear transfer
functions, offering universal function approxima-
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(11 )

(10)

(9)

(13)

(12){
+ ex if !J.E ~ 0

n = _ Bn if !J.E > 0

so that the connections disappear unless rein
forced (Weigend et al., 1990; Hertz et al., 1991).
For small w,/s to decay more rapidly than larger
ones, we made B dependent on w'] by

normal distribution. Simulation runs were inde
pendent so that the necessary statistical assump
tions held. The confidence intervals constructed
from the neural network predictions were com
pared to those constructed from the simulation
responses, using the same formula.

3.4. Training set-up

where ex and fJ are appropriate time constants. In
this paper, we took ex = 10- 3 and f3 = 0.9.

In order to prevent data overfitting, a topologi
cal reduction approach was adopted in these stud
ies. The approach consists in pruning
appropriately non-useful connections during
training. This is achieved by giving each connec
tion a tendency to decay to zero, such that

A traditional multilayer perceptron trained with
a standard back-propagation algorithm was used.
Before we turn to the experiments, we detour to
review two (very basic) techniques we found to be
useful for networks to run optimally. In an at
tempt to optimize the learning rate 1] automati
cally, we allow the '1 to vary in the course of
training since the best values at the outset of
training may not be so good later on. Our ap
proach is to check whether the weight updates at
each iteration actually decrease the cost function.
If not then the process is overshooting and '1
should be reduced. On the other hand, if several
steps in a row have actually decreased the cost
function, then 1] is increased. It appears best in the
literature (Hertz et al., 1991; Aussem et al., 1995;
Aussem, 1998, 1999) to increase '1 by a constant
and to decrease it geometrically to allow rapid
decay when necessary. This gives the overall
scheme

;:; 8
Interval = Y ± r:. tll ].y 2

v n

where Y stands for the neural network forecast of
the average simulation response; t ll _ 1., 2 is the
Student t-value for a level of significance of ex =
95'/';, and 11 = 10, the number of replications of the
simulation (Gordon, 1978). Note again that the
normality of the simulation responses was statisti
cally tested on results obtained from more than
1000 replications. Therefore, we implicitly consid
ered that the ten values above were drawn from a

1 ~ k)2NMSE = --, L.- (B m
(rNk~l

where B~, is the modelling error, i.e. the difference
between the average simulation value, at iteration
k, and the neural network prediction, and (72 is
the empirical variance of the simulation values
calculated over ail the N training patterns. A
value of the N M SE = 1 thus corresponds to pre
dicting the unconditional mean.

In addition, to gauge the practical relevance of
the neural network metamodels, the neural net
work forecasts were combined to form confidence
intervals. Intervals took the form of:

the conditional mean. We implicitly assume that
the average system output is the correct answer,
and thus any deviation of the simulation from the
actual system is disregarded. On the other hand,
for the research presented in this paper, two target
outputs were used: the average simulation re
sponse and its estimated variance calculated over
n = 10 simulation replications:

1 Il -

8 2 =--I(Y,- Yf
n-I'~l

Using a single network for simultaneous predic
tion of both targets can be regarded as detrimen
tal rather than beneficial, because it creates added
complexity, and thus increases the risk of overfit
ting, given the limited number of training pat
terns. Therefore, two distinct neural networks
were used separatelY in this paper for the predic
tion of the mean Y and the variance IF.

A standard measure of fit (Weigend et al., 1990;
Aussem et al., 1995) for the neural network is
given by the normalized mean-squared error:
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(14))'17
G =----

1) (1 + (J)~)2

where )' was varied in the course of training. We
found out that to it is usefuI to begin with y
= 10- 3 until performance reaches a minimum
and then to decrease the value up to 10 - 4 so the
error continues to decrease at a slow rate.

We just stress that more sophisticated and pow
erful topological reduction approaches exist. They
consist in appropriately pmning (or penalizing)
non-useful connections as training proceeds, pre
venting the network from overfitting the data. For
further details, the reader is directed to the
references.

ConlarTllnated surface (average
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4. Experiments

This section discusses sorne preliminary experi
ments performed with neural network metamod
els, Given concerns about the rapid, intense and
irreversible alteration of the coastal system, and
the computational burden of discrete-event simu
lation over periods spanning several months, we
mainly focused on predictions of C. taxifoUa con
tamination on the long-term (12 years in ad
vance). In this regard, our objective was to
forecast the C. taxifoUa expansion in terms of
undersea contaminated surface over a 12-year pe
riod according to most of the available biological
parameters.

4.1. Contaminated surface analysis

Visual inspection of the simulation mns is an
important first step towards intuitively under
standing how neural networks could help in mod
elling and forecasting the C. taxifolia expansion,
One way to assess this effect of the initialization
parameters is by visually inspecting different plots
obtained after a simulation mn. Therefore, we
have plotted the most informative curve, namely
the contaminated surface versus time, with plausi
ble parameters (Fig. 1), Visual inspection of the
same curve but in log-scale (Fig. 2) clearly reveals
yearly growing cycles with rapid increases during
summer and stagnation during winter seasons.
Indeed, the C. taxifoUa expansion requires light

Fig. 1. Contaminated (normallzed) surface versus tIme ex
pressed In mon ths.

and heat. A second and maybe more subtle point,
is that the alga expansion exhibits three distinct
regimes: (i) during the first 50 months, a regular
growth is observed; (ii) then, a temporary stagna
tion occurs, corresponding to the bathymetric
limit and the coastal edge; and (iii) a new expan
sion phase takes place, not as strong as the first
though, corresponding to the expansion along the
coast and in deep water. An easily interpreted plot
of C. taxifoUa expansion shows the variation rate
(x, - x,_ 1)/X,_ 1 versus time (Fig. 3). The three
regimes are more apparent. As expected, the

la'

la'

la'

la'

la'
'" la'u

~
';; la'

10'

10'

10'0
50 100 150

Month

Fig. 2. Contaminated (normalized) surface in log scale versus
tIme expressed In months.
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4.2. Input parameter selection

Fig. 3. Contaminated surface growmg rate. (x, - x, _ l)/Xt _ l'

versus bme expressed in months.

biomass increase is more or less proportional to
the covered surface, therefore, we limit ourselves
to the analysis and prediction of the contaminated
surface.

To gauge the effects of the C. taxifolia micro
scopic description parameters on the subsequent
evolution of the contaminated surface, sorne trial
replications were run. The simulation initializa
tion parameters were ail arbitrarily varied within
biological plausible ranges. Interestingly, no sensi
ble change on the global shape of the curve,
representing the contaminated surface coverage
versus time, was observed.

Consequently, instead of trying to reconstruct
the overall curve by performing iterated predic
tions severa1 steps ahead, we decided first to fore
cast the final value and then fit a prototype curve
between the first and the final points.

4.3. 12-year contaminated surface forecasts

Coming up with good data sets addressing
parameters of interest is tricky. The practical ex
perience of the ecologists has limitations, which
points to the inherent difficulty of selecting the
best training set. Therefore, a uniform discretized
lattice over the allowable ranges was used for the
selection of the neural network training tuples.
Afterwards, these values were linearly range-nor
malized onto the interval [0, 1].

Insufficient time and resources were the major
stumbling blocks. For research reported in this
paper, the number of replications per training pair
was kept constant. Due to the expensive computa
tional effort incurred in conducting each simula
tion run for obtaining 12-years contaminated

parameters are required by the regression model,
and thus the higher the risk of overfitting. There
fore, it is best for a small number of input vari
ables to be inserted at the input of the neural
network.

According to the experimental knowledge of
the ecologists we are collaborating with, a very
restricted subset of parameters was selected from
the overall simulation initialization parameters for
the prediction of the final contaminated surface
level, namely:
• the ground projection surface of the cuttings,
• the ground projection surface of the stolons,
• the yearly maximum growing rate of C.

taxifolia,
• the number of new cuttings per year.

Table 1 shows their respective plausible range
of variation. The key parameters being identified,
we now proceed to the training set construction.

150100
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The objective being set, we now proceed to the
selection of the relevant parameters influencing
the contamination process. A relevant representa
tion can make useful information exp1icit and
strip away obscuring dutter. Different representa
tions can be equivalent in terms of expressive
power but differ dramatically in the efficiency to
solve problems (Aussem et al., 1995). AIso, the
more parameters to be considered, the more

Table 1
Selected parameters and their corresponding range

Parameters/range Default Min Max

Cutting ground projection (cm2
) 10 3 18

Stolon ground prOjectlOn (cm2
) 0.5 0.2 0.8

MaXimum annual growing rate 300 200 500
(%)

No. of new cuttmgs per year 2 3
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surface values (from a few minutes up to a few
hours for a single simulation run on a bi-process
sor IBM work station), only ten replications per
input tuple were carried out. A total of 6000
simulation replications were run.

The contaminated surface 12-year forecasts ob
tained by simulation were not found to vary
drastically over the training tuples. Aiso instruc
tive is the following observation: although each
simulation run-for the same input parameters
yields a somewhat distinct trajectory, they ail
converged to the an almost identical contami
nated surface value (the variance is negligible,
below 10 - 2).

Finally, the data set is made up from 600 pairs
consisting of the four selected input parameters
and the two target values, namely the average
contaminated surface level 12 years in advance,
provided by the simulation software, and its vari
ance. Both targets were afterwards range-normal
ized in the unit interval.

To assess the generalization ability of the meta
models, 5 distinct training + test sets were con
structed. The training set (strictly speaking) were
made up from 80% randomly selected patterns
and the test set made up from the 20% remaining
patterns for validation purposes.
4.4. Intermediate results

Preliminary tests have indicated diminishing re
turns beyond five nonlinear units for both tasks.
The two networks used to learn the series have a
total of 26 links. The networks were stopped
when the minimum of the mean-squared error in
the training set was reached and their perfor
mance were afterwards tested on the test set.

Predictions of the average surface on the test
set are shown in Fig. 4 for a particular test set.
Results were far above our expectations. As can
be seen, the task was perfectly learned by a rela
tively small neural network. The five independent
trainings performed with the five data sets yielded
the same result, in terms of NMSE over the test
set, here 10- 27 The predictions did not degrade
from one test set to the other, indicating very
good generalization ability. Predictions of the
variance (not shown) yielded comparable perfor
mance with a NMSE= 10- 24.

Predictions on the test set

12

• forccast 0

actual value + •

•• • ••08 •
~ • • • ••••06 •• • •• •04 • •• • •• •

• •• • •02 .. ". • • • • • •• • ." ••• • • • •• ...
0

0 10 20 30 40 50 60
pattern

Fig. 4. A 12-year forecasts of the normalized surface contami
nated by C. taxi/oUa on the test set.

4.5. Reconstructing the overall curve

With a view towards reconstructing with rea
sonable assuredness the overall curve-and not
only the final value-, ail 6000 surface curves
obtained by intensive simulation runs were nor
malized and afterwards averaged to obtain a pro
totype curve. Unfortunately, our attempts to
reconstruct the overall curve by stretching out the
prototype curve up to the predicted final surface
point, were not as successful. Indeed, as discussed
previously, three distinct regimes are observed:
existence of these regimes is closely related to the
bathymetry.

F or the same input parameters, the three
regimes occur at the same time. AIso, we decided
to forecast the month, the magnitude and its
variance of the two breakpoints (i.e. the X-coordi
nate, the Y-coordinate and Var ( Y)) using the
same four input parameters. With this in mind,
six training + test sets were constructed from 600
patterns each. Six distinct neural networks were
trained separately in order to infer the exact loca
tion of these two breakpoints.

The resulting networks had between 20 and 50
links including bias. No more than five nonlinear
units were used. Selection of these dimensions
were mostly by trial and error, along with various
heuristics. In performing these preliminary simu
lations, we stress that we have made no effort to
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obtain an optimal architecture. Instead, we fo
cused on these configurations and tried to obtain
the lowest mean-squared error on the training
set, and assessed the performance on the test set.
Note that in general, selection of dimensions for
neural networks remains a difficult problem in
need of further research.

Final results are encouraging. The neural net
works have learned to infer the month and the
average surface with very good accuracy: NMSE
varied between 10- 1 6 and 10- 3. Predictions of
the surface variance were not as good though:
NMSE = 0.2 for the first point and 0.3 for the
second. We believe that predicting the variance
of the surface at these points depends on further
parameters that were not taken into account in
our approach.

Therefore, we constructed basic confidence in
tervals for each testing tuple, given the estimate
of the average surface at the first point, at the
second point, and at the last point 12 years
ahead, and their variance. Again, simulations
runs were independent and the normality of the
responses were verified so that the necessary as
sumptions held.

To gauge the practical relevance of our meta
models, we ran the neural networks and the sim
ulation model with randomly selected input
parameters within their respective range (see
Table 1) and compared the curves. Comparisons
were done between the 95'% confidence intervals
provided by the simulator and the neural net
work metamodel. As seen in Fig. 5, very encour
aging resuIts were obtained. The 95% confidence
interval of the covered surface reconstructed
from the neural network overlaps the confidence
interval given by the simulation model. Signifi
cant reduction in computational time can thus be
achieved without a sacrifice in prediction accu
racy.

4.6. Discussion

Our approach may be criticized on two ac
counts. First, few replications were run for each
input tuple: the number of replications (10) was
set by balancing the computation cost with the
desired accuracy of the estimate. This raises the

question of whether our confidence intervals of
the covered surface are statistically reliable.

Second, the results presented in this paper only
relate to a single site. Though not discussed here,
a topic of considerable interest would be to ana
Iyze the differences in terms of performance be
tween several metamodels trained at different
sites to find out whether the contaminated sur
face 12 year forecasts is also deterministically
related to the same limited set of parameters.
This needs further substantiation through more
experiments and analysis. We are also interested
in assessing the usefulness of the neural network
metamodelling approach for other variables and
C. taxifoUa local expansion patterns.

Third, the training and generation of confi
dence intervals requires several replication of the
same process. Therefore, because the actual data
about the colonization process only reflect a sin
gle trajectory of the process (moreover over a
period of time less than 12 years), actual data
cannot be used for training purposes. As far as
validation is concerned, the simulation model
runs were already shown to be in good agree
ment with the observations (not only in terrns of
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Fig. 5 C taxifo/Ia expansIOn curves m log scale versus time in
months: in plain hne, the 95% confidence mterval output by
the 'lmulator, in grey lme, the 95'1" confidence interval recon
structed from the neural network forecasts.
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the contaminated surface but also the two-di
mensional maps). Actual data collected on differ
ent sites will be used when the neural network
will take in to account bathymetric and substrate
information in order to be able to extrapolate to
new sites. Resu1ts will be reported in due course.

5. Conclusion

In this article we discussed work carried out
with supervised neural networks, as a metamod
elling technique for discrete event stochastic sim
ulation, with a view to dramatically reducing the
computational burden involved by the simula
tions. The studies currently being undertaken are
aimed to be incorporated later into a prediction
package for exploring numerous possible trajec
tories of C. taxifolia, a green alga provoking
intense and irreversible a1teration of the coastal
ecosystems, including endogenous species distri
bution. The preliminary work presented in this
paper addressed the prediction of the covered
surface 12 years in advance. A neural network
was successfully trained on artificially generated
data provided by the simulation runs to provide
reliable forecasts. The overall expansion curve
was also reconstructed with reasonable accuracy.
Future work will address other variables. such as
expansion patterns at different sites.
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Abstract

Artificial neural networks (ANN) are widely used as continuous models to fit non-linear transfer functions. In this
study we used ANN to retrieve chlorophyll pigments in the near-surface of oceans from Ocean Color measurements,
This bio-optical inversion is established by analyzing concomitant sun-light spectral reflectances over the ocean
surface and pigment concentration, The relationships are complex, non-linear, and their biological nature implies a
significant variability. Moreover, the sun-light reflectances are usually measured by satellite radiometers flying at 800
km over the ocean surface, which affect the data by adding radiometric noise and atmospheric correction errors. By
comparison with the polynomial fit usually employed to treat this problem, we show the advantages of neural
function approximation like the association of non-linear complexity and noise filtering, © 1999 Elsevier Science RV,
All rights reserved.

KCY'l'Ords: Ocean color; Inversion; Noise filtenng: Artificial neural networks

1. Introduction

Quantitative assessment of oceanic primary pro
duction and its role in the global carbon cycle is a
critical environmental and scientific issue (JGOFS,
1987; Abbot et al., 1994; Falkowski, 1994). Knowl
edge of primary production is necessary to deter
mine the biomass variability of the ocean, derive the
effect of biological processes on the partial pressure
of carbon dioxide (C02), and therefore, better
understand how phytoplankton carbon fixation
affects the net COz flux across the air-sea interface

* Corresponding author. Fax: + 33-1-44277159.
E-mail address·lgr@lodyc.jussieu.fr (L. Gross)

(Behrenfeld et al., 1998), Primary production de
pends on light availability and other environmental
factors (temperature, nutrients), and on the amount
of phytoplankton present for photosynthesis
(Morel, 1991). The amount of phytoplankton and
their optical properties (absorption, scattering) af
fect the spectral diffuse reflectance of the ocean,
defined as the ratio of upwelling to downwelling
irradiance at a given depth, Since phytoplankton
pigments generally absorb more in the blue than in
the green, the greener the water, the more phyto
plankton (Clarke et al., 1970), Thus by measuring
ocean color, i.e. the spectral reflectance at zero
depth, Rj),), one can obtain estimates of phyto
plankton pigment concentration.

0304-3800/99/$ - see front matter © 1999 ElseVier Science B.V. Ali rights reserved.
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A variety of optical transfer functions (bio-opti
cal models) have been proposed to quantify the
influence of chlorophyll pigments on spectral
reflectance. The bio-optical relationships are gen
erally established by analyzing concomitant reflec
tances and pigment data (concentration, inherent
optical properties). They are complex and non-lin
ear, making inversion difficult for phytoplankton
content retrieval. In remote sensing, the most
popular algorithms to estimate phytoplankton
pigment concentration utilize simple ratios of
reflectances in the blue and green or combinations
of ratios (Aiken et al., 1995; D'Reilly et al., 1998).
Standard algorithms are based on the ratio of
reflectances at 443 and 555 nm, Rw (443)/Rw (555),
or 490 and 555 nm, Rw(490)/Rw (555) (denoted
hereafter RR443 and RR490). The logarithm of
the pigment concentration, C, is computed from
the logarithm of the reflectance ratio using a third
order polynomial fit (Andre and Morel, 1991;
D'Reilly et al., 1998).

Blue-green ratios, when applied to satellite
derived marine reflectances, are affected by atmo
spheric correction errors. Atmospheric correction
is difficult to be done accurately, because typically
80% of the signal measured at satellite altitude
originates from the atmosphere (Viollier et al.,
1980). Typical errors of 5-10% on the reflectance
in the blue are expected with current atmospheric
correction schemes, but they may be much larger
in the presence of dust or pollution-type aerosols
(Gordon and Wang, 1994; Gordon, 1997). Even
though atmospheric correction errors are corre
lated spectrally, they may not cancel in a ratio,
yielding significant, even unacceptable errors on
phytoplankton pigment retrievals. Estimates ob
tained with the Coastal Zone Color Scanner
(CZCS) had errors of about 40-50% at 10w pig
ment concentrations (Gordon et al., 1980, 1983),
but part of the errors might be due to phyto
plankton type variability.

As shown in Thiria et al. (1993), artificial neu
ral networks (ANN) are good candidates for
modeling geophysical transfer functions for they
can approximate a wide range of non-linear con
tinuous functions (Bishop, 1995). This property
and the ability of ANN to model noise can be
exploited, in certain conditions, to filter measure-

ment noise during a model calibration, which is
interesting when dealing with real data. They have
been used in a number of geophysical applica
tions, but it is only recently that attempts have
been made to retrieve ocean color variables with
the help of ANN (Schiller and Doerffer, 1999;
Keiner and Brown, 1999). In the present study,
we propose a multi-layered perceptron (MLP), to
compute phytoplankton pigment concentration
(chlorophyll-a plus phaeophytin) from satellite
derived marine reflectances. We examine the dif
ferences between this function approximator and
the cubic polynom that is usually employed to do
this task, and the contribution of additional spec
tral bands in the case of the use of MLP. We
perform a formaI analysis of the capability of
ANN to filter noise, thus we focus mainly on
methodology. To calibrate our models, we use
simulated datasets which take into account radio
metric noise and residual atmospheric correction
errors. This procedure allows us to verify the
importance of the presence and nature of simu
lated noise when calibrating the ANN, since we
show that taking into account noise is necessary
to extract the inherent information of the
geophysical signal and obtain an operational
function. We choose a particular ocean color ra
diometer, the sea-viewing wide field-of-view sen
sor (SeaWiFS) onboard the SeaStar satellite,
which measures reflected sunlight in five spectral
bands centered at 412, 443, 490, 510, and 555 nm
(Hooker et al., 1992), but the same type of analy
sis could be performed for any other ocean color
radiometer.

2. Datasets used for ANN calibration

Since it is difficult to gather the necessary
amount of data to educate ANN properly, we
used simulated datasets (pairs of marine reflec
tances and pigment concentration). By contrasting
results obtained using clean (i.e. non-noisy) and
noisy data, we expected to gain information on
the applicability of the theoretical model to real
observations. We only considered Case 1 waters,
i.e. waters for which optical properties depend
mostly on phytoplankton pigments, since these
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Table 2
NotatIOn of the dIfferent lllyerSe mode!:'

Type 2 data, includes simulated SeaWiFS
derived reflectances. These reflectances were ob
tained by adding a three-component noise. ~atm'

to the Type 1 reflectances. The noise is due to
(1) radiometric performance; (2) imperfect atmo
spheric correction; and (3) passage from bi-di
rectional reflectance just above the surface (the
SeaWiFS product after atmospheric correction)
to irradiance reflectance just below the surface
(the variable related to C in Morel's model).
When computing ~dtm' we assumed that the at
mospheric correction is performed according to
Gordon and Wang (1994), that is by obtaining
aerosol information in the near-infrared where
the ocean is 'black' and extrapolating the infor
mation to the visible.

In order to have statistically significant re
sults. we dealed with a large amount of data.
The inverse models (ANN, RR443 and RR490)
were calibrated using the same 5000 vectors of
simulated pairs of {Ck

, R~'n(A,), i= l...5} (n = 1
or 2, k = 1, 2, ... 5000) and tested with indepen
dent test sets of 10 000 simulated vectors with
same characteristics called Test-l for n = 1 or
Test-2 for n = 2. We obtained consequently two
different neural inverse models and four differ
ent classical inverse models denoted as described
in Table 2. We estimated models performance
using different index, RMS error and relative
RMS error which allows to free from absolute
values:

Artlflclal neural Polynomial lits
networks

RR443-\ and
RR490-1
RR443-2 and
RR490-2

ANN-\

ANN-2

Ensemble used for
calibration

Type 2

Type 1

waters constitute more than 90'% of the world
ocean (Morel, 1988).

We calculated spectral marine reflectance. Rw ,

as a function of phytoplankton pigment concen
tration, C, using the bio-optical model of Morel
(1988). This model incorporates average bio-op
tical parameters determined by regression analy
sis on in-situ measurements. Those parameters
like absorption and scattering coefficients. on
the other hand, vary with the type of phyto
plankton population (natural assemblages) and
biological cycles (Bricaud et al., 1995; Garver
and Siegel, 1997). In the simulations, however,
we did not take into account variability due to
phytoplankton type. The modeled marine reflec
tances, therefore, depend only on C. We varied
C from 0.03 to 30 mg m - 3, the domain of
validity of the mode!. The simulations were
made for the SeaWiFS spectral bands centered
at wavelengths of 412, 443, 490, 510, and 555
nm (A,. with i = 1, 2, .... 5, respectively). We
used new values for the absorption coefficient of
optically pure sea water reported by Pope
(1993). Consequently, we adjusted the Morel
(1988) diffuse attenuation coefficient for phyto
plankton, since this coefficient was computed by
subtracting the contribution of pure oceanic wa
ters based on previous estimates.

Two types of data were generated, they are
summarized in Table 1. The first type of data,
hereafter referred to as Type 1 data, was ob
tained using the Morel (1988) model, modified
as indicated above. No noise was added to the
modeled reflectances, nor to the pigment con
centrations. These non-noisy data will be used
to demonstrate the ability of the MPL network
to inverse a complex bio-optical function; they
will also serve as a reference in the study of the
effects of noise on the performance of the MLP.
The second type of data, hereafter referred to as

Table 1
Statistical ensembles for models calibration

Ensemble Description
RMS= (1)

Type \
Type 2

R~I(A,)=g(C, mg m- 3
) l'rom Morel (1988)

Rw2(A,) = RwIV,)+L1dlm(À,) re!.RMS = (2)
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3. Artificial neural network methodology

where N,est is the number of patterns in the test set
and F(R~;, W) refers to the inverse mode!.

In this section we provide a basic description
of the multi-layered perceptrons (MLP), and of
the properties they offer for non-linear regres
sion. Then we discuss the numerical methodol
ogy employed to optimize the parameters of
such non-linear models.

A neuron is an e1ementary transfer function
which calculates an output S when an input A is
applied:

F(R,W)

Rw(SIO)~r-I!-~f\\)<\

Rw(SSS) _

Rw(490) __~I~{:;:~[~

Rw(443)~~-W'VI">J

Fig 1 Archttecturc of the ML? whlch models the lllverse
problem of ocean colar for the case of SeaWiFS data. thc
Rw ().,) are the five spectral reflectances and F(R~.,W) IS the
output of the network glving the estlmated pigment concentra
tion C.

Rw(412)~

the inputs and the output. Our problem was
then to determine the architecture of the
MLP, i.e. to decide the number of neurons and
the way they are connected, which represents
choosing a function's family in which we
seek the best multidimensional real function al
lowing us to approximate the transfer function
between the vector {Rw ().,), i = 1...5} and the
scalar C. We determined the best architecture
using a constructing methodology which makes
intensive use of cross validation (Bishop, 1995).
For inverting the Morel (1988) model (Type 1
data), we set a completely connected MLP with
five inputs (the five spectral in-waters reflec
tances), two hidden layers of six and four sig
moid neurons, and one Iinear output which
gives the concentration C. This network, de
noted ANN-I hereafter, has 69 parameters to be
adjusted (see its structure Fig. 1). We used the
same architecture to invert the noisy reflectances
(Type 2 data) and denoted ANN-2 the MLP
obtained when trained on those data (see Table
2).

We then solved a regression problem since we
had to optimize the network's weights to obtain
the best estimated mode!. The I\'lfr values were
computed by a calibration process (calied learn
ing phase) in which the inputs and output of
the MLP were well-defined data sets, and the
Il'lh values were the control variables. This learn-

(3)S = f(A)

where f is called the transltlOn function and is
usually non-Iinear. An artificial neural network
is formed by interconnected neurons, each neu
ron receiving and sending signaIs only to the
neurons to which it is connected. Multi layered
perceptron (MLP) is a particular c1ass of artifi
cial neural networks in which neurons are orga
nized in several layers. The state SI of a neuron j
is computed by Sj = j(A), where A, is the total
information received from the other neurons Sh

computed as a weighted sum AJ = Lh IIj/,s". The
transition function f can be Iinear, i.e. j{u) = u
for the exit layer, or a sigmoid with

. exp(xu) - 1
f(u) = a (4)
. exp(xu) + 1

We dealt with a = 1.7159 and rx = 1.3333 so that
f was quasi-linear in the range [- 1, 1], f(
1) = - 1 and f( 1) = 1. The IIjh are the connec-
tion weights from h to j; they are real numbers
parameterizing the influence of the connected
neurons. The weight matrix W = [lI'lh] defines the
MLP specificity.

Theoretical considerations show that MLP's
are universal function approximators (Bishop,
1995). Given the flexibility of ANN, we chose to
take into account ail the available information,
so we related the five SeaWiFS spectral reflec
tances to the pigment concentration. In order to
avoid numerical saturation, we used a logarith
mic coding for C and then we normalized both
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ing process was based on a minimization where
the cost function is:

where N is the number of observations in the
learning ensemble, Ck is the desired concentra
tion of the observation k, and F(R k

, W) the cor
responding concentration computed by the
neural mode!, which is a function of the reftec
tance vector and internaI parameters set by the
weight matrix W. A necessary condition to min
imize J is to find the neural weight matrix W *
so that:

ANN-1 tested with TEST-1

-210 "'---- ~ _____.J

10-2 10° 102

desired C (mg m-3)

2
10

'"1 1
E 10
Cl
E

~ 10°
'lii
:;
u
'iii
u -1
Z 10
z
<

(a)

(5)
N

f( W) = l [C k
- F(Rk

, W)F
k~l

(6) ANN-2 tested with TEST-2

To approach the mllllmum of this multi-di
mensional cost function, we used a classical gra
dient descent technique which is an iterative
optimization method, adapted to MLP by the
mean of the gradient backpropagation (Bishop,
1995). The weights of the MLP were first ran
domly initialized between - 1 and 1 according
to a uniform probability distribution (matrix
Wo). Then, each step of the algorithm modified
the whole weight matrix by the equation:

éf"1
E 10
Cl

~

] 10°
III
:;
u
'iii
u -1
Z 10
z
<

W,+ 1 = W, - e'\7f(W,) (7)
(b)

-210 "'---- ~ _____.J

-2 ° 210 10 10
desired C (mg m-3)

where e, the learning rate, was set in our case to
the same value for the whole MLP (e = 0.01).
Series of cross validation tests allowed us to
control the quality of the minimum estimation
and of the generalization. The theory shows
that, if the architecture of the MLP is well-cho
sen and the learning phase is weIl achieved, the
MLP gives an approximation of the mean field
of the variable C, more precisely the conditional
average of the concentration C for each point
{Rw{À.}, i = l.oo5}. When the calibration is done,
the MLP inverse model does algebraic opera
tions only, leading to fast computation. The
three order polynoms RR443 and RR490 were
also calibrated using a least square method, so
that the performance of classical approaches and
ANN were comparable.

FIg. 2. (a): Test of ANN-l on Test-l ensemble. (b): Test of
ANN-2 on Test-2 ensemble.

4. Performance of the ANN-l and ANN-2 models

This section is a formaI study using simulated
data. We explore the ability of ANN to take
into account the problem of residual atmo
spheric correction. We discuss the performance
of ANN-l and ANN-2 models after calibration
on two independent test sets related to the two
different data type. In the following, the restitu
tion of pigment concentration by ANN inverse
models is controlled by mean of scatter plots.
Fig. 2a shows the good neural inversion ANN-l
on Type 1 data, and so the ability of ANN to
invert complex mathematical functions. Fig. 2b
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Fig. 3 (a): Test of AN'N-2 on Test-! ensemble. (b): Test of
ANN-! on Test-2 ensemble.

5.48

0.730

21.90

0.926

Test-2

2.85

0.135

ANN-I ANN-2 ANN-l ANN-2

0.14

0.024

We can enlighten the results we get by com
paring the neural models performances to those
of the classical polynomial inverse fits of ocean
color. We ealculated the performances of the
polynomial fits based on band ratio RR443-1
and RR490-1 calibrated on Type 1 data and of
RR443-2 and RR490-2 calibrated on Type 2
data (see Table 2). The inversion of Type 1 data
is correct for both ANN and polynomial fits
(Figs. 4a and 4b). While the ANN-I inversion is
quasi-perfeet from small to large values of con
centration, the aecuraey given by the polynomial
fits deereases (in a oseillating way) with the aug
mentation of concentration value (from ± 2 to
± 10% for RR490-1 and ± 5 to ± 14% for
RR443-1, but those performances stay reason
able. The scatter plots for the two methods
RR443-2 and RR490-2 given in Figs. 5a and 5b
are to be compared with Fig. 2b. The fit is less
pigment concentration dependant for ANN-2 in
verse model than for RR443-2 and RR490-2
whieh present diffieulties in recovering small and

RMS error (mg
m- J )

rel. RMS ("lu)

5. Comparison with band ratios

mance (Fig. 3b). Table 3 gives the different
quality index obtained for the four different ex
periments. Clearly, the performance of 5.48%
reached by ANN-2 when dealing with Test-2 in
dicates a good fit of the data. ANN-I and
ANN-2 exhibit a similar behavior showing the
ability of ANN-methodology to take into ac
count noise effect. We give in the following an
extensive study of this result.

Table 3
Performance of ANN-I and ANN-2 tested on Test-I and
Test-2 ensembles

Statlstical parame- Test-!
ter

2 ANN-2 tested with TEST-1
10

c;;-
I 1
E 10
Cl
E

1; 10
0

....
<Il
"3
u

Cii
u -1
Z 10
Z
<:

-2
10

-2 0 2
10 10 10

(a) desired C (mg m-3)

2 ANN-l tested with TEST-2
10

c;;-
11

E 10
Cl.s
u
11 10

0

<Il
"3
u

Cii
u -1
Z 10
Z
<:

-2
10

2-2 0
10 10 10

(b) desired C (mg m-3)

shows the performance of ANN-2, the neural
inverse mode! calibrated with atmospherically
noisy data (Type 2). The curve is scattered by
the simulated uncertainty of the measurements
but there is no bias. Further investigations using
cross tests allow to understand the properties of
the two ANN inverse models. We first test
ANN-2 on Type 1 data (i.e. data with no
noise). The scatter plot of Fig. 3a proves that
ANN-2 is a generalization of ANN-l. On the
contrary, ANN-I cannot deal with noisy data:
the scatter plot of ANN-I when testing with
noisy data shows a degradation of the perfor-
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Fig. 4. (a): Test of RR443-1 on Test-l ensemble. (b): Test of
RR490-1 on Test-l ensemble.

high pigment concentration. Ali the perfor
mances are summarized in Table 4.

Fig. 6 shows the relative RMS error of the
three inverse models, ANN-2, RR443-2 and
RR490-2, plotted for different ranges of C.
When dealing with atmospheric correction error,
the polynomial fits have great difficulties to give
a sufficient accuracy. For small values of con
centration, the most usual values, relative errors
arise between ± 30 and ± 50%. Those results
correspond to reality when satellite data are
treated with band ratios. On the other side,

2 RR443-2 tested with TEST-2
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Fig. 5. (a): Test of RR443-2 on Test-2 ensemble (b): Test of
RR490-2 on Test-2 ensemble

ANN-2 gives an accuracy around ± 3%, when
staying under 10 mg m - 3.

6. Discussion and conclusion

In the present paper, we propose an artificial
neural network methodology to solve Ocean
Color inverse problem, e.g. to retrieve the ocean
chlorophyll pigment concentration from satellite
derived in-water reflectances. We calibrated sev
eral models using two different type of simu
lated data. The first artificial neural network

10-2 IL- ~ _

10-2 10° 10
2

desired C (mg m-3)(b)
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Table 4
Performance of RR443-1, RR490-1, RR443-2 and RR490-2 tested on Test-I and Test-2 ensembles

Stalisllcal parameter Test-I Test-2

RR443-1 RR490-1 RR443-2 RR490-2

RMS error (mg m- 3 )

rel. RMS (%)
1.245
8.59

0809
5.14

2 lOS
18.59

1.693
23.29

INVERSION USING NOISY REFLECTANCES
60 ,-----~-----,--------____,---____,

Fig. 6 Compared relative RMS error between ANN-2,
RR443-2 and RR490-2 ail tested on Test-2 ensemble

(ANN-l) inverts a mathematical model which is
the bio-optic model of Morel (1988) while the
second (ANN-2) was designed to invert satellite
derived refiectances. To simulate the data corre
sponding to ANN-2, we added to the in-water
refiectances calculated by the bio-optic mode! an
estimation of the radiometric noise and the at
mospheric correction errors resu1ting from atmo
spheric correction algorithms (we took the case
of SeaWiFS). The performance of each neural
mode! were compared to those of the classical
three order polynomial fits based on band ratio
usually employed to retrieve pigment concentra
tion. These experiences allow us to understand
when ANN improve the restitution of chloro
phyll and to show the importance of simulating

the appropriate noise when the data sets used to
calibrate the models are simulated.

The ANN-1 model gives a quasi-perfect inver
sion of the model of Morel ( ± 0.14% of relative
RMS error), and the polynomial fits gives also
reasonable resu1ts for biological studies (Jess
than ± 15% of error). We a1though denote the
instability of the accuracy given by the polyno
mial fits on the whole range of concentration C,
which is probably due to the intrinsic oscilla
tions of the polynomial family. The ANN is by
definition a very soft function approximator,
which is here an obvious quality.

The performance of the ANN-2 model are
much better than the polynomial fits (ANN-2
gives a ± 3% accuracy and the polynomial fits
are between ± 30 and ± 50% for small concen
tration values). This shows that ANN-2 is able
to fi1ter atmospheric correction errors using the
information given by the five channels of SeaW
iFS.

ANN are complex and stable function ap
proximators able to deal with noise measure
ment and very adaptive systems. If the neural
models are calibrated with simulated data as in
the present experiments, the quality of the simu
lation of the measurement noise is fundamental.
Using a model 1ike Morel (1988) to simulate
in-waters refiectances and adding a simple esti
mation of atmospheric correction noise allowed
us to accomplish an accurate inverse transfer
function between satellite-derived marine refiec
tances and chlorophyll concentration. This for
mai experiment made only on simulated data
allows us to envisage ANN to deal with satellite
refiectances. A more realistic data simulation in
cluding the biologic variability of phytoplankton
type should lead to real application. We can

o
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also envisage the use of real measurements in
the calibration process to improve the ANN
performance.
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Abstract

The artificial neural network (ANN) was used in this work for modelling the abundance and diversity of
hydrophilous Collembola on the microhabitat scale. The procedure was applied to a Collembolan assemblage of the
northern Pyrenees. Six variables were retained to describe its structure: abundance of the three dominant species,
species richness, overall abundance of Collembola, and Shannon index. Seven environmental variables were selected
as explanatory variables: distance to water, soil temperature, water content, and proportion of mmeral soil, moss,
litter and rotten wood in the substrate. Correlations between observed values and values estimated by ANN models
of the six dependent variables were ail highly significant. The ANN models were developed from 83 samples chosen
at random and were validated on the 21 remaining samples. The raie of each variable was evaluated by inputting
fictitious configurations of independent variables and by checkmg the response of the mode!. The resulting habitat
profiles depict the complex influence of each environmental variable on the biological parameters of the assemblage,
and the non-linear relationships between dependent and independent variables. The main results and the ANN
potential to predict biodlversity and structural characteristics of species assemblages are discussed. © 1999 Elsevier
Science B.V. Ali rights reserved.

KeYll'ords: Biodiversity, Species richness; Community structure: Artificiai neural network models: Multiple hnear regression: Wet
habitats

1. Introduction

Biodiversity conservation is a growing concern
in western environmental policies. While species
and habitats are disappearing at an a1arming rate,
we are however unab1e to eva1uate, even roughly,
the extent of this biodiversity 10ss, not to mention
predicting il. In fact, estimating biodiversity is a

* Correspondmg author. Fax' + 33-5-61556196
E-mail address:ang@cict.fr (S Lek-Ang)

tedious task when thousands of species may in
habit the same patch of forest, so taxonomist
training wou1d be advantageous1y coup1ed here
with the deve10pment of forecasting techniques
based on habitat characteristics, or on a subset of
the overall biodiversity. Surprising1y, attempts to
predict biodiversity on such grounds are scarce in
the 1iterature, except with a few animal groups
such as birds (McArthur et al., 1966). Converse1y,
a wealth of works dea1 with abundance and
biomass prediction (Verner et al., 1986), obviously

0304-3800/99/$ - see front matter (Ç) 1999 Elsevier SCience B.V. Ali nghts reserved.

PlI: S0304-3800(99)00 106-4



248 S. Lek-Ang el al. / Ecological Modelling 120 (1999) 247-260

in relation to their more direct socio-economic
importance. There are a-priori no specific mathe
matical tools for predicting biodiversity, so the
techniques used for predicting abundance also
should work for biodiversity or any other measur
able biological variable.

A lot of theoretical models have been proposed
in this respect (McArthur et al., 1966; Fretwell,
1972; Tilman, 1982; Schoener, 1983) using a wide
range of multivariate techniques, including several
methods of ordination, canonical analysis, uni
variate and multivariate linear, curvilinear, and
logistic regressions. A thorough and critical re
view by James and McCulloch (1990) shows that
these conventional models, usually based on mul
tiple regression, assume smooth, continuous, and
either linear or simple polynomial relationships
between variables. They are capable of solving
many problems, but also have serious shortcom
ings since the main processes that determine the
level of biodiversity or species abundance are
often non-linear, whereas the methods are based
on linear principles. Such models are for example
not able to adequately reproduce the behaviour of
real systems when very low or high values of the
variables are considered (Lek et al., 1996b). Non
linear transformation of variables (logarithmic,
power or exponential functions) may improve the
results only to a limited extent. The artificial
neural network (ANN) approach as proposed
here emerges as a different and original methodol
ogy which is not constrained by assumptions
about the type of relation between the studied
variables (Rumelhart et al., 1986). The number of
papers using ANN methodology published in eco
logical sciences has grown rapidly in recent years,
e.g. modelling of greenhouse climate (Seginer et
al., 1994), identification of the major goals of
underwater acoustics (Casselman et al., 1994),
prediction of density and biomass of brown trout
redds (Lek et al., 1996a), prediction of density
and biomass of trout (Baran et al., 1996; Lek et
al., 1996b), prediction of the penetration of wild
boar into cultivated fields (Spitz et al., 1996),
prediction of phytoplankton production (Scardi,
1996), prediction of production/biomass (P/B) ra
tio of animal populations (Brey et al., 1996), and
prediction of fish species richness on a global scale
(Guégan et al., 1998), etc.

In the field of soil ecology, multiple linear re
gression (MLR)-based models relating environ
mental variables to community structure have
been proposed by sorne authors (Boudjema et al.,
1991) sometimes using non-linear transformations
of independent or/and dependent variables to im
prove results (Vegter et al., 1988; Cancela Da
Fonseca, 1991). Even so, the results have often
remained insufficient, with a low percentage of
variance explained. On the other hand, it has been
shown that ANN can efficiently model non-linear
systems in ecology (Lek et al., 1996b; Scardi,
1996). In the present study, we apply this method
to relate the structure and diversity of an assem
blage of hydrophilous Col/embola to microhabitat
characteristics. Hydrophilous Col/embola often
constitute the most abundant and diversified
arthropods in a large range of wet habitats (De
harveng and Lek, 1995). As such, and because
their specific richness is relatively constant along
the year as long as water is present, they may
provide an interesting raw material to evaluate
predictive methods in population ecology.
Though it does present sound data on the struc
ture of hydrophilous assemblages of Col/embola,
this case study should be seen first as an attempt
to develop predictive tools that are urgently
needed for the study and the monitoring of
biodiversity.

2. Material and sampling methods

2.1. Study sites and sampling

The studies were undertaken at the site of
Ruau, located in the Northern Pyrenees (Arbon,
Haute Garonne, France) at an altitude of 784 m.
A small permanent spring used for watering live
stock flows at the foot of a steep 3-m high slope
covered with small trees. Above are large mead
ows on deep soils. We selected four transects
perpendicular to the streamlet, each with four
sample points at increasing distance from the
water. The distance was 1.50 m between transects
and 0.20-0.40 m between sample points on a
transect, with the starting points 0-5 cm from the
streamlet. Sampling was carried out every 2
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months at 12-16 points from December 1993 to
December 1994, for a total of 104 samples. The
lowest points were sampled at ail sampling peri
ods, but the distal row was only occasionally
sampled. Each sample was a substrate core of
125 cm3

. Extraction by Berlese technique lasted
2 weeks, until complete drying of the substrate.
The animais were preserved in alcohol and
sorted under the stereo-microscope. The Collem
bolan specimens not directly identifiable were
mounted in Marc-André II after clearing in lac
tic acid, and examined with a Nachet 300 mi
croscope under interferential contrast. After
identification, the adult and juvenile individuals
of each species were counted. After completion
of the faunistic analysis, six variables describing
the community structure were retained for
each sample: abundance of Collembola (total
number of specimens), species richness (total
number of species), relative abundance of the
three dominant species (Isotomurus cassagnaui
[kas], J. prasinus [Ipra] and Brachystomella
parvula [Brp]), and Shannon diversity index
(Table 1). Two of these species are strictly hy
drophilous, while the third one, Brp. has both
hydrophilous populations (Deharveng and Lek,
1995) and merely open habitat populations
(Ponge, 1993).

Seven environmental variables were selected to
describe the studied habitats (Table 1), on the
basis of their known or supposed biological im
portance. Temperature and water content, which
have a strong impact on most insects, including
soil species (Boudjema et al., 1991; Argyropoulou
et al., 1993; Deharveng and Bedos, 1993), both
showed large fluctuations during the year at
Ruau, with patterns varying with the spatialloca
tion of the sample points. The relative importance
of minerai soil, !itter, moss and rotten wood in the
substrate has rarely been investigated so far (De
harveng and Lek, 1995), although it is a long
established fact that specialized assemblages oc
cupy each of these four substrates (Linnaniemi,
1907; Ponge, 1980; Weiner, 1981).

Distance to water and soil temperature were
recorded in situ at the samp!ing points. Water
content ( = fresh weight - dry weight of the sam
pie) was measured in the laboratory. The propor
tion of the different elements of the substratum
(minerai soil, moss, ]itter and rotten wood) was
visually estimated and assigned to five ordinal
classes defined by their upper limits: absent (0),
present up to 25% in volume (1), from 25 to 50%
in volume (2), from 50 to 75% in volume (3),
more than 75% in volume (4). Volumes were
preferred to weights in this estimation because of

Table 1
Independent (1) and dependent (d) studied variables with methods of measurement

Vanable Type Abbreviated Methods of measurement

Distance to water
Temperature
Water content
Miner
Moss
Decaying leaves
Decaying wood
Isofomllrus cassag-

naui
Isotomllrlls prasmllS
Brachysfome/la

pan'ula
Total abundance of

Co/lembola
Species richness
Shannon index

WAT
TEM
HUM
MIN
MaS
LIT
waa

d kas

d Ipra
d Brp

d Nmd

d SR
d SI

In situ, with ribbon centimetre
In situ, wlth digital thermometer
Fresh weight-dry welght of substratum
Proportion of mineraI soil in the substratum (visual estimated)
Proportion of moss in the substratum (visual esltmated)
Proportion of dead leaves in the substratum (visual estimated)
Proportion of rotten wood in the substratum (visual estimated)
Number of Isotomurus cassagnaui in the sample (counted under binocular loupe)

Number of Isofomurus prasinlls in the sample (counted under stereomicroscope)
Number of Brachystome/la parvula in the sample (by counting in stereomicro
scope)
Count by stereomicroscope

Identification by stereomicroscope
SI= -7l'*log(7l')
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Fig. 1. Representation of the structure of the neural network
used. Seven input nodes (1), live hidden layer nodes (H) and
one output node (0) are shown. WAT, distance to water;
TEM. soil temperature; HUM. water content III the substra
tum: MIN, proportIOn of mineraI soil in the substratum;
MOS, proportion of moss in the substratum; LIT. proportion
of litter III the substratum; WOO, proportion of wood III the
substratum.

analyses, MLR procedures were applied. Exami
nation of studentized residuals for normality, in
dependence and homogeneity was used to test the
validity of the models.

For ANN modelling, the c1assic multilayer
feed-forward neural network was used throughout
the analyses. The processing elements in the net
work, called neurons are arranged in a layered
structure (a typical three-Iayer network is shown
in Fig. 1). The first layer, called the input layer,
connects with the input variables. In our case, it
comprises seven neurons corresponding to the
seven habitat variables. The last layer, called the
output layer, connects to the output variables. It
comprises a single neuron which gives the value of
the dependent variable to be predicted. The layers
between the input and output layers are called the
hidden layers. There can be one or more hidden
layers and the number of neurons in each layer is
an important parameter of the network. The net
work configuration is determined empirically by

Diversi1y index

o

I
·k-II:~'I

A processlng element

H1

~.~Xc7t~':t;;:;~

MO~ ~E-i7LA~~~)

2.2. Technique of modelling

the very large differences in density and spatial
structure (i.e. spaces available for animais) of the
substrates.

We analyzed our data set with: (i) the tradi
tional method of multiple linear regression
(MLR), to obtain a predictive model of reference;
(ii) optimal non-linear transformation using the
SAS Transreg procedure (SAS Institute, 1988; this
procedure seeks an optimal transformation of
variables, using a method of alternating last
squares, a B-spline transformation); (iii) an artifi
cial neural network (ANN) method, to evaluate
the performance of this recent method in non-lin
ear modelling. To compare these three methods
the whole set of available data was used. To
justify the predictive capacity of ANN and MLR
methods, modelling was carried out in two steps.
First, to fit the models, the matrix (104 records x
7 environmental variables) was used to perform
the MLR, the alternating last squares and the
ANN methods. The correlation coefficient be
tween observed and predicted values was used to
quantify the capability of models to produce the
right answer through the training procedure. Sec
ond, to test the ANN models, we selected at
random a training set (80% of the records, i.e. 83)
and a validation set (20% of the records, i.e. 21).
This operation was repeated three times giving
rise to test 1, test 2 and test 3 which we studied by
ANN and MLR. For each of the three sets. the
model was determined with the training set and
then validated with the test set. The quality of the
model was judged through the correlation be
tween observed and predicted values in the valida
tion set.

For c1assical statistical analysis, univariate,
bivariate and multivariate analyses were per
formed by the SPSS Software release 6.0 (Norusis,
1993). The univariate analyses estimated the
mean, standard deviation, coefficient of variation,
minimum, maximum, median and quartiles. In
bivariate analyses we studied the correlation be
tween variables using Pearson correlation coeffi
cients (values and probabilities of significance at 5
and 1% of confidence intervals). In multivariate
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testing various possibilities and selecting the one
that provides the best compromise between bias
and variance (Geman et al., 1992; Kohavi, 1995).
In our study, a network with one hidden layer of
five neurons was selected for each of the six
dependent variables studied.

Each neuron is connected to all neurons of
adjacent layers (neurons within a layer and in
non-adjacent layers are not connected). Neurons
receive and send signais through these connec
tions. In feed-forward networks, signais are trans
mitted only in one direction: from input layer to
output layer through hidden layers (no feed-back
connections are perrnitted). Connections are given
a weight which modulates the intensity of the
signal they transmit.

Training the network consists in using a train
ing data set to adjust the connection weights in
order to obtain the best fit between expected and
observed values. This training was perforrned ac
cording to the back-propagation algorithm
(Rume1hart et al., 1986). The connection weights,
initially taken at random in the range [ - 0.3, 0.3],
are iteratively adjusted by a method of gradient
descent based on the difference between the ob
served and expected outgoing signais. Many itera
tions are necessary to guarantee the convergence
of estimated values toward their expectations,
without obtaining an overtit, i.e. incapability of
the model to generalize (Smith, 1994). The com
putational program was realized in Matlab envi
ronment and computed with an Intel Pentium
processor.

Input data have orders of magnitude that differ
greatly according to the variables. So as to stan
dardize the measurement scales, inputs were con
verted into standardized variables. The dependent
variable was also scaled in the range [0... 1] to
adapt it to the demands of the transfer function
used (sigmoid function).

2.3. Sensitivity of independent variables

A disadvantage of ANN in comparison with
MLR models is their lack of explanatory power.
MLR analysis can identify the contribution of
each individual input in deterrnining the output
and can also give sorne measures of confidence for

the estimated coefficients. On the other hand,
there is currently no theoretical or practical way
of accurately interpreting the weights in ANN.
For example, weights cannot be interpreted as
regression coefficients nor easily used to compute
causal impacts or elasticities. Therefore, ANN are
generally suited for forecasting or prediction
rather than for explanatory analysis. But in ecol
ogy it is necessary to be able to explain the impact
of the variables. To illustrate the importance of
explanatory variables inside the ANN, Garson
(1991) and Goh (1995) proposed a procedure for
the partitioning of the neural network connection
weights in order to deterrnine the relative impor
tance of the various input variables. Lek et al.
(1995, 1996a,b) have built an algorithm allowing
the visualization of the profiles of explanatory
variables. In this work, an experimental approach
has been used to deterrnine the response of the
model to each input variable separately by apply
ing the technique described by Lek et al.
(l996a,b).

3. ResuUs

The 104 samples contained a total of 11637
specimens of Col/embo/a of which 11 312 were
identified at species leve1, representing 55 species.
Hydrophilous species were dominant in number
with 1cas, 2658 specimens i.e. 22.8% of the total,
1pra, 1272 specimens i.e. 10.9% and Brp, 1170
specimens i.e. 10%. However, Brp was present in
a higher proportion of samples (66.35% occur
rence) than the two other species (about 30%
occurrence). Large variations in abundance of
these three species were observed between samples
(Table 2), with a high coefficient of variation (188,
237 and 309% for Brp, kas and Ipra,
respectively).

AlI samples contained Col/embo/a. Mean spe
cies richness was 10.64 (SD = 3.75, N = 104). This
is a low diversity compared to forest litter habitats
in the same area where over 15 species are
recorded on average for samples of the same size,
but similar to values obtained in wet habitats at
another Pyrenean site, the Arize mountain (9.2
with SD = 4.50 and N = 60, Deharveng and Lek,
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1995). However, as the sample volume was only
125 cm3 at Ruau, but 250 cm3 in Arize, the former
site is significantly richer, probably in relation to
its lower elevation. Species richness and Shannon
index were relatively stable with coefficients of
variation below 37%. The abundance of Collem
bola, with a coefficient of variation of 84%,
reflects fairly large seasonal and spatial fluctua
tions, but remains weIl under the variation level of
the hydrophilous species of the assemblage.

Among environmental variables, much of the
variation was due to the seasonal cycle (particu
larly temperature: 9.48°C (SD = 3.8), with a mini
mum of 3.9°C in February, and a maximum of
17.8°C in August). The largest variations were
observed for litter and rotten wood content of the
substrate (CV = 122 and 175%, respectively), in
dependently of the season.

3.1. Correlation between assemblage
characteristics and environmental variables

Among the environmental variables (Table 3),
correlation coefficients are significant or highly
significant in most cases but with relatively low
values: only three correlations above \0.51 (P <
0.001) were observed, involving MIN, MOS,
HUM and WAT. Sorne correlations between in
dependent and dependent variables are highly sig-

nificant: !cas with HUM, WAT and MOS; Ipra
with HUM and WAT; Nind with HUM and
WAT; SI with WAT. Water content and distance
to water therefore appear as major determinants
of assemblage characteristics. Other correlations
were significant at a lower level (Brp and TEM,
Nind and MIN, SR and TEM, SI and TEM) and
most (30) were not significant. In particular, spe
cies richness was very poorly related to environ
mental variables.

Among the dependent variables, a high correla
tion was found between Nind and the abundance
of each of the two most abundant species (r =

0.71 for Icas, r = 0.70 for Ipra) indicating the
numerical importance of these species in the com
munity. The correlation was even higher between
SI, the Shannon index, and SR, one of the mea
sures on which it is built (r = 0.76, P < 0.001).
Correlation between !cas and Ipra was relatively
high (r = 0.53, P < 0.001) reflecting their strong
dependence on water. Brp was conversely poorly
related to Icas (r = - 0.10, P = 0.293) or Ipra
(r = - 0.10, P = 0.327). Other highly significant
correlations were between SR and Brp, between
SI and Icas and between SR and Icas. Correla
tions were weaker with the other variables; the
low value of correlation between species richness
and the total number of Collembolan specimens is
particularly noticeable.

Table 2
Summary statisticsa

Minimum QI Median Q3 Maximum Mean SO CV%

TEM 3.9 6.5 8.45 11.95 17.8 9.48 3.8 40.08
HUM 3.6 25.4 34.5 46.55 89.4 36 18.86 52.39
WAT 0 2.5 20 50 100 35.77 31.89 89.15
MIN 0 2 2 2 4 1.9 0.78 41.05
MûS 0 1 1 2 3 1.21 089 73.55
LIT 0 0 0 1 3 0.6 0.73 121.67
WÛÛ 0 0 0 1 2 028 0.49 175.00
Brp 0 0 2 12 113 11.25 21.18 188.27
Icas 0 0 0 4 296 25.56 6069 237.44
Ipra 0 0 0 1 275 12.23 37.79 308.99
SR 1 8 II 13 21 10.64 3.75 35.24
Nind 1 53 74 149.5 561 11189 94.23 84.22
SI 0 1.94 2.45 2.92 3.51 2.26 0.83 36.73

d SD, standard deviation; CV%, coefficient of variatIOn III percentage; QI, Q3, first and third quartIle.
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Table 4
Multiple hnear regression between parameters of Collembolan assemblages and environmental variables"x

Brp Icas Ipra SR Nind SI

TEM -0.279* 0.277** -0.083 -0.212 -0.001 -- 0.276*
HUM -0.157 0.470** 0.187 -0.027 0.307* - 0.123
WAT 0.080 -0.196 -0.296* 0.186 -0.212 0.213
MIN 0.078 0.305 -2.016** -0.917 -0.805 -0.410
MOS 0.300 0375 -2.547** -0.866 -0.942 -0.544
LIT 0.122 0.365 -1.903** -0.652 -0.477 -0.379
WOO 0.120 0.174 -1.251 ** -0.475 -0.437 -0.306

"The models shown the standard coefficients of seven independent variables with thelr slgmficant level
* Significant at 0.05.
** Significant at 0 01

3.2. Multiple linear regression (MLR) analysis

For the 104 samples, the MLR procedure us
ing the 7 independent variables gives the follow
ing coefficients of multiple correlation: with Brp,
R 2 =0.10 (F7. 96 = 1.55, P=0.17); with Icas,
R 2 = 0.32 (F7. 96 = 6.53, P < 0.001); with Ipra,
R 2 = 0.22 (F7. 96 = 3.91, P < 0.001); with SR,
R 2 =0.13 (F7. 96 =2, P=0.07); with Nind, R 2 =
0.24 (F7. 96 = 4.22, P < 0.001); with SI, R 2 = 0.16
(F7. 96 = 2.65, P = 0.02). Low correlation coeffi
cients reflect the low percentages of explained
variance (1ess than 33% for aIl studied vari
ables). With log(x + 1) transformation of vari
ables, we obtained R 2 equal to, respectively
0.29, 0.64, 0.28, 0.31, 0.40 and 0.32 for Brp,
Icas, Ipra, SR, Nind and SI. AlI models were
highly significant (P < 0.001). Values of determi
nation coefficients indicate a clear improvement
of MLR models after non-lïnear transformation
of variables. As this operation improves their
linearity, we can conclude that non-linear rela
tionships exist between the dependent and inde
pendent variables. Thus, a method based on
alternating last squares was used to try to lin
earise the variables. With the Transreg proce
dure in SAS Software after maximum
transformation of variables using the B-spline
function, we obtained a squared multiple corre
lation equal to 0.41, 0.67, 0.47, 0.55, 0.49 and
0.48 for Brp, !Cas, Ipra, SR, Nind and SI, re
spectively, i.e. a significant improvement of
model quality.

Returning to the results of the MLR analysis,
we give in Table 4 the standard coefficients of
seven independent variables for the six depen
dent variables characterizing the Collembolan
assemblage. Except in the SR model where none
of the variables were significant, other models
had at least one significant variable. The maxi
mum was recorded for Ipra with five significant
variables (Table 4).

3.3. Artificial neural network (ANN)

We used an ANN of one hidden layer of five
neurons with seven independent variables, i.e. a
7-5-1 neural network (46 parameters in total: 7 x
5 + 5 + 6). Results after 500 iterations of the
training procedure are presented in Fig. 2. The
correlation coefficient (r) between observed and
estimated values was close to 1 for Icas, Ipra, Brp
and Nind (1' = 0.996, r = 0.965, r = 0.944 and r =

0.914, respectively, P < 0.001). The lowest correla
tion coefficients were observed for SR and SI
(r = 0.847 and r = 0.872, respectively, P < 0.001).
The ANN therefore gave satisfactory results prac
tically over the whole range of values of the
dependent variables (Fig. 2). For the variables
which represent species abundances (Icas, Ipra.
Brp and Nind) most points were weil aligned on
the perfect fit diagonal (coordinates 1: 1). Al
though poorly represented, the strong values of
the output variable are clustered around this same
perfect lïne. Gnly a few points lie far off, with
sorne weak values slightly underestimated (lpra



S. Lck-Ang cl li/ El'O/of{il'lI/ Modcl/lI1g /20 (l'}'}'}) 247--260 255

Fig. 2. Correlation graph between observed values and values
estimated by the modeL The solid line indlcates the perfect fit
line (coordinates 1:1). (a) kas (!solomuflIs cassagnllUl): (b)
Ipra (!solomllflls prasinus), (c) Brp (Bral'ilyslolllel/ll parvu/lI);

(d) Nind (total abundance of Co//embu/lI): (e) SR (species
nehness), (1) SI (Shannon index).
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dance of Col/cmbo/lI), SR (species nchness), SI (Shannon
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independent vanables between their mimmum and their maxI
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• Gaussian contribution: the independent vari
able affects the dependent variable mostly
around its average value, and has little influ
ence at extreme values. This is the case of
HUM for Icas, HUM and WOO for Ipra,
WAT and WOO for Brp, LIT, TEM and
HUM for Nind, and TEM and HUM for SI.

• Increasing contribution: dependent variable is
low for low values of the independent variable
and increases to a maximum at high values.
This was observed for MOS for Brp abun
dance. HUM and WAT for SR, WOO for
Nind, and WAT for SI.

• Decreasing contribution: dependent variable is
relatively high at low values of the independent
variable and decreases gradually afterwards.
This was the case of TEM for Icas, MIN and
LIT for SR, and MOS. MIN, WOO and LIT
for SI.
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and Brp). For the remaining dependent variables
SR and SI, which measure assemblage diversity,
fitting is acceptable in spite of poorer results.

The sensitivity of the seven independent habitat
variables on the six dependent variables obtained
from ANN modelling is illustrated in Fig. 3. The
12 points cover the range of variation of each of
the variables tested, with a class interval which
was modified according to the variables. As illus
trated in Fig. 3, we can distinguished seven sensi
tivity types:
• Exponential contribution: the independent

variables contribute only at their low values.
This is the case of WAT and MIN for !Cas, and
MOS, WAT and TEM for Ipra.
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• Skewed-to-the-left curve: the dependent vari
able is high only for high values of the indepen
dent variable. This sensitivity type was
observed only for MaS to explain the abun
dance of Icas.

• Skewed-to-the-right curve: the dependent vari
able is high for low values of these independent
variables; it decreases more or less rapidly af
terwards to become virtually null thereafter.
This contribution is present only for Brp abun
dance for four environmental parameters
(TEM, HUM, LIT and MIN).

• Weak contribution: the contribution of the in
dependent variable is very low, and not altered
over its range, with a profile represented by a
quasi-horizontal line. This is the case of waa
and LIT for Icas, and TEM, MOS and wao
for SR.

3.4. Test of the models

To test the variability, the prediction power of
the different models determined from three train
ing fractions was tested on three independent test
fractions (Table 5). The lowest correlation be
tween observed and predicted values was obtained
for SR (r = 0.66-0.82, P < 0.001) and SI (r =

0.79, P < 0.001). Correlations for Nind and Brp
(r = 0.80-0.87, P < 0.001 and r = 0.84-0.90, P <
0.001) were higher. The best results were obtained
with Icas (1" = 0.95-0.99, P < 0.001) and Ipra (r =

0.88-0.98, P < 0.001), like in the models based on
the complete set of 104 samples. The same tests

Table 5
CorrelatIon coefficient between predlcted and observed values
bl' ANN models for three mdependent testing sets for the six
studled parameters of Collembolan a>semblages

Trainmg set Testmg set

Set no 2 3 2 3

Icas 0986 0.990 0990 0.990 0.950 0956
Ipra 0.985 0.990 0.990 0.979 0.877 0.889
Brp 0.883 0.938 0.935 0904 0.843 0.854
SR 0.864 0.851 0.834 0.700 0.656 0.823
Nind 0940 0.946 0.906 0.865 0.820 0797
SI 0.865 0.901 0.879 0.796 0798 0.789

Table 6
Correlation coefficient between observed and predicted values
bl' MLR-models for three mdependent testing sets for the SIX

studled parameters of Collembolan assemblages

Training set Testing set

Set no. 2 3 2 3

Brp 0.461 0.413 0464 0.347 0551 0.427
Icas 0.559 0531 0.574 0275 0.566 0.242
Ipra 0.630 0.582 0.610 0.161 0.515 0.287
SR 0.402 0.342 0.331 0.081 0.349 0.473
Nind 0574 0.527 0565 0.301 0.556 0194
SI 0.494 0460 0.426 0.053 0.266 0.511

realized with MLR-models (Table 6) give clearly
inferior results (maximum correlation coefficient
equal to 0.57 for Icas in the second test set).

On the whole, the coefficients in the training set
were nearly identical to those of the models based
on 104 samples. These results indicate a great
stability (small standard deviations) of the predic
tion performance of the ANN models for differ
ent testing sets. The smaIl decrease in
performance in the test set compared to the train
ing set can be related to the small size of the data
set combined with the fact that each sample is
likely to have sorne kind of unique information
that is relevant to the mode!. The correlation
coefficients were clearly not as low when the data
were analyzed by MLR, in particular for Shannon
index and specific richness.

4. Discussion

Two kinds of results emerge from this study:
those related to the artificial neural network
methodology and its ability to predict the charac
teristics of a species assemblage; and those related
to the ecology of hydrophilous Col/emba/a, which
are of interest for Collembologists and wet habitat
ecologists. MLR, spline regression and backprop
agation of the ANN were applied on the same
dataset with the aim to develop stochastic models
of biodiversity prediction, using Collembolan as
semblages and habitat features on a microhabitat
scale. The backpropagation procedure of the
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ANN gave much higher correlation coefficients
than other methods. This may point to the pre
dominantly non-linear relationships between the
studied variables on the one hand, and on the
other hand the ability of ANN to directly take
into account any non-linear relationships between
the dependent variables and each independent
variable (Lek et al., 1996b). These results are in
agreement with literature data, where perfor
mances of ANN have been repeatedly reported to
overpass those of more traditional method such as
MLR (Ehrman et al., 1996; Lek et al., 1996b;
Scardi, 1996). However, the comparison between
the predictive power of MLR and that of ANN is
not quite fair, in particular as the number of
parameters is different. In any case, ANN consti
tutes a new and powerful alternative in predictive
ecological modelling, where poor fitting of biolog
ical characteristics to conventional models (mostly
MLR) is often the rule.

Collembola are often the dominant group of
Arthropods in wet habitats, yet literature refer
ences related to the ecology of hydrophilous spe
cies are scarce. On these grounds, it is hardly
surprising that a large amount of novel informa
tion has been generated by the present study.
Most characteristics of the Collembolan assem
blages studied have been satisfyingly fitted to
measured environmental parameters through
ANN analysis. Variations in abundance among
dominant species (lcas, Ipra, Brp) are in particu
lar strongly connected to a set of environmental
variables: temperature, distance to water, struc
ture of the substratum and type of organic matter.
A second important finding is the complexity of
the response of Collembolan assemblages to
changes in environmental parameters, so far
largely overlooked in the relevant literature (e.g.
Van Straalen, 1994). On the whole, emerging pat
terns of species abundance response to environ
mental parameter fluctuations appear both mostly
non-linear and very heterogeneous, in spite of the
high ecological similarity of the studied species.
Sorne factors are clearly predominant, but they
are not the same for the different measured bio
logical variables. Conversely, sensitivity of species
richness and Shannon index often follow similar
patterns for different environmental variables,

making it difficult to detect which one(s) is (are)
the driving factors (Fig. 3). Nevertheless, there are
sorne positive outcomes of this study, that are
summarized below.
1. An unexpected result is that distance to free

water has more impact than water content of
the substrate for hydrophilous species abun
dance. Distance to water is weakly correlated
to water content on the scale of our study
because of its independence from season, local
microtopography and superficial water circula
tion. Isotomurus species in particular experi
ence an abrupt numerical decrease as soon as
their distance to water increases. Their abun
dance peaks for medium-range water content.
In contrast, B. parvula abundance reaches its
maximum value at medium distance to water
and medium water content, in agreement with
empirical observations suggesting that its
stenohygry is lower than that of Isotomurus
(Deharveng and Lek, 1995). The overall abun
dance of Collembola follows yet another pat
tern which is likely to be explained by the
strong impact of non-hydrophilous species,
not documented in detail in this paper.

2. Distance to water has a slight but positive
impact on biodiversity indices on our study
scale, reflecting a more general trend of in
creasing species richness from water edge to
mesophilous litter (Deharveng and Lek, 1995).
The decreasing saturation of the minerai part
of the substrate on this gradient gradually
gives more micro-voids and new microhabitats
for colonization by terrestrial mesofauna, and
may contribute to the observed patterns.

3. Water content of the substrate is known to
have an overwhelming importance for Collem
bolan populations (Vannier and Verhoef,
1978; Verhoef and Witteveen, 1980) but stud
ies are lacking at the community level. Accord
ing to Vegter et al. (1988), moisture
heterogeneity has a strong influence on the
abundance of epigeomorphic Collembola, but
not on the assemblage structure. In our study,
both abundance and assemblage structure
were clearly affected by variations in water
content of the substrate.
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4. Surprisingly large differences were observed
among species in response to variations of the
studied variables (Fig. 3). The impact of tem
perature, the most documented environmental
variable (Hopkin, 1997) is different on differ
ent ecological categories of Collembola as al
ready stated in the literature (Van Straalen
and 100sse, 1985; Van Straalen, 1994). In the
present study, it further appears that, even
among the same ecological category, species
response may strongly vary between the most
strictly hydrophilous species (!cas and Ipra)
and those less so (Brp). The relationship of
temperature to overa11 abundance of the hy
drophilous Collembola assemblages still fol
lows another pattern which is not that of these
dominant species. The same comments also
apply to other variables, particularly water
content and minerai soil content of the sub
strate for which even the profiles of the two
most hydrophilous species strongly diverge. A
direct implication of these results is that ex
trapolation of ecological information from sin
gle, even dominant, species to communities
may be strongly misleading: communities may
be highly heterogeneous assemblages even at a
relatively narrow functional level.

5. The relationships between environmental vari
ables and biological parameters characterizing
living communities have rarely been evaluated
in the literature related to soil science. Boud
jema et al. (1991) expresses these relations as a
polynomial function, with pH and temperature
as driving variables. Van Straalen (1994) re
ported a correlation between egg development
and a measure of enzyme activity linked to
temperature. But correlations, when measured,
remained fairly low in a11 documented cases.
The ecological profiles obtained from ANN
models (Fig. 3) clearly exhibit the complexity
and non-linearity of interacting processes,
which may account for the difficulty in pre
dicting species and community responses using
traditional methods.

6. Intuitively, soil ecologists are aware of the
prime importance of ligneous material for soil
living assemblages, but this variable is rarely if
ever taken into account in the literature. The

same could be said for decaying leaves or moss
content of the substrate. The classical mea
sures of organic matter do not give any infor
mation on the relative proportion of these
three elements, though it is likely to be of
higher biological significance than overa11
amount of organic matter itself. By introduc
ing these variables in our analysis, we expected
to obtain sorne sound information about their
influence on species abundance and assem
blage structure. The results were, in fact,
difficult to interpret. No influence was detected
on the profiles of Icas, the most water-depen
dent species of the assemblage, and only a
limited one on Ipra. The less strictly hy
drophilous species Brp appeared more sensi
tive to these variables. Unexpectedly, increase
in leaf litter and wood content of the substrate
were associated with decreasing biodiversity,
in apparent contrast to the usual (but again
poorly documented) trend of increasing biodi
versity from open to forested habitats. An
appealing hypothesis is that leaf and wood
litter is less important in wet habitat than in
mesophilous habitats, because decomposition
processes are less active in water or water-sat
urated substrate, providing a lower diversity of
fungal species on which most Collembola feed.

Is it fina11y possible to predict the level of
biodiversity of a living group from environmental
variables? Because they largely control the pres
ence and abundance of individual species. envi
ronmental variables necessarily contribute to the
control of community structure, hence of biodi
versity. Hard data, are however, lacking to sup
port this commonplace statement in soil
ecosystems and previous attempts to detect simple
and linear relationships between edaphic factors
and diversity have failed to give clear-cut results
(for instance in tropical Co11embolan assemblages,
Deharveng and Bedos, 1993). Three reasons (or a
combination of these) may explain this failure: (i)
the pertinent variables have not been identified;
(ii) interactions between species play a major role;
and (iii) relationships between abiotic factors and
biodiversity are non-linear. This last hypothesis
was considered here. The results obtained indicate
that species interaction, or consideration of addi-
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tional variables, is not needed to satisfactorily
predict the characteristics of the observed assem
blage patterns. Several parameters relevant to bio
diversity were efficiently predicted by the
ANN-based models in the studied community.
Additional data sets, experimental manipulations
and repeated mathematical analyses would be
necessary to assess this first result more firmly,
but the ANN has demonstrated here a promising
potential in the field of community ecology, as a
tool to evaluate, understand, predict and manage
biodiversity.
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Abstract

This paper examines the long-term variation in zooplankton biomass in response to climatic and oceanic changes,
using a neural network as a nonlinear multivariate analysis method. Zooplankton data collected from 1951 to 1990
off the shore of northeastern Japan were analyzed. We considered patterns of the Kuroshio and the Oyashio, sea
surface temperature, and meteorological parameters as environmental factors that affect zooplankton biomass. Back
propagation neural networks were trained to generate mapping functions between environmental variables and
zooplankton biomass. The performance of the network models was tested by varying the numbers of input and
hidden units. Changes in zooplankton biomass could be predicted from environmental conditions. The neural
network yielded predictions with smaller errors than those of predictions determined by linear multiple regression.
The sensitivity analysis of networks was used to extract predictive knowledge. The air pressure, sea surface
temperature, and sorne indices of atmosphenc circulation were the primary factors for predictions. The patterns of the
Kuroshio and the Oyashio demonstrated different effects among sea areas. © 1999 Elsevier Science B.Y. Ali rights
rcserved.

KeY\l'ords: Zooplankton, Neural networks; Biomass prediction; KuroshlO-Oyashio, chmatic change

1. Introduction

The northeastern sea area of Japan is weil
known as a highly productive fishing ground un
der the influences of the Kuroshio (western
boundary current of the subtropical gyre) and the
Oyashio (western boundary current of the subarc
tic gyre) dynamics in the North Pacific. Pelagic

* Correspondmg author. Fax: + 81-3-5841-8165.
E-mail address.mail@hongo.eccu-tokyo.ac.jp (1. Aoki)

fishes, such as sardine, mackereL and skipjack
tuna, migrate into this sea area during the sum
mer to feed and store nutrition. In addition, lar
vae and juveniles of small pelagic fish hatched in
winter and spring in the sea area near the
Kuroshio south of Japan are transported and
dispersed widely in the northeastern sea area of
Japan in summer. Zooplankton biomass in this
area is suggested to he an important factor that
affects recruits of the Japanese sardine (Aoki and
Komatsu, 1997). One hypothesis is that the abun-

0304-3800/99/$ - see front matter '0 1999 Elsevier Science B.V. Ali rights reserved.
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dance and distribution of zooplankton are con
trolled by oceanic conditions including the dy
namics of the Kuroshio and Oyashio system.
Meteorological conditions also directly and indi
rectly affect biological processes in the ocean.

Odate (1994) reported on the long-term varia
tions in zooplankton biomass in the Oyashio, the
Kuroshio, and their transition regions in the
northeastern sea area of Japan during 1951-1990.
Based on these data, Tomosada and Odate (1995)
analyzed the interrelationship between zooplank
ton biomass and water temperature and meteoro
logical parameters by the use of the correlation
coefficient.

A number of environmental factors are as
sumed to be associated with the change in
zooplankton biomass. Moreover, these associa
tions may involve non!inear relationships. The
neural network has the advantage of being able to
be applied to a non!inear multivariate analysis
method without loss of accuracy in these situa
tions. Thus, this paper examined a predictive
model relating the long-term variation in
zooplankton biomass to climatic and oceanic
changes using neural networks.

2. Methods

Zooplankton data used in this study were taken
from Odate (1994), which reference provided a
time !ine series of monthly mean zooplankton
densities (wet weight/m2

) between 1951 and 1990
in the northeastern sea area of Japan from 33 to
46°N and from the east coast of Japan to 1600 E
(Fig. 1). Zooplankton samples were collected
most intensively in the area 34-41°N and west of
1500 E. The samples were taken by vertical hauls
from ISO m to the surface using Marutoku net (45
cm diameter, 0.33 mm mesh). Three regions were
defined based on the 100m depth temperature:
< 5°C, Oyashio region; 5-15°C, transition region;
and> 15°, Kuroshio region. The original data of
zooplankton were averaged over the 12 months of
each year and smoothed further by a 5-year run
ning mean (Fig. 2), because the aim of this study
was to examine long-term changes.

We considered the Kuroshio, the Oyashio, sea
surface temperature, and meteorological parame
ters as environmental factors affecting zooplank
ton biomass. These variables were used in analysis
as follows (Table 1).

Pacifie Ocean

Transition region

:/

150 °UOO

LL--'L-__L- --l. .....L. ..l...- ---l --' .'l00

160 0

1:30 0 E

Fig l. Study area. A. Southern limlt of the First Intrusion of the Oyashio current; B. Northern hmit of the Kuroshio Extension;
C, Ishinomaki; D. Nemuro
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OYASHIO

-------- ---

Soulhern hmit of the Oyashio currcnl
(OY)
Northern hmlt of the Kuroshio Extcn
sion (KE)
Sea surface temperature In the northeast
ern sea area of Japan (SST)

Air temperaturc in the northern Japan
(AT)
Sunshme lime m the northern Japan
(SN)
Air pressure at Nemuro (NM)
Air pressure at Ishmomakl (lS)

Far East Polar Vortex Index (PY)

Far East Zonal Index (ZI)
East Sea Index (ES)
Subtropic Index (STI)
Southern Oscillation Index (SOI)

Meteorologlcal
elements

Hydrographlc

Atmospheric
circulation

Table 1
List of Input vanablcs uscd for predictIOn of zooplankton
biomass"

Vanables (AbbreviatlOn)

d See text for full explanatlOn.

anomalies at four locations in Hokkaido and
northeastern Honshu districts published by
JMA (1994) were used.

4. Air pressures at Nemuro (NM) and
Ishinomaki (IS): monthly mean air pressures
data by JMA were used.

5. Atmospheric circulation indices: Far East Po
lar Vortex Index (PV), Far East Zonal Index
(ZI), East Sea Index (ES), Subtropical Index
(STI), and Southern Oscillation Index (SOI)
compiled by JMA were used. These indices
were postulated to affect oceanic circulation
and sea temperature. PV, ZI, ES, and STI
are defined by monthly mean anomaly of
500 hPa height in the Far Eastern area, and
represent the pressure field and the amplitude
of the westerlies. SOI indexes the amplitude
of the trade wind relating to the El Nino in
the equatorial Pacifie Ocean.

These environmental original data, III the
same manner as zooplankton biomass data,
were processed to 5-year running means. Back
propagation neural networks, which have the
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1. Southernmost latitude of the First Intrusion
of the Oyashio (OY) and northernmost lati
tude of the Kuroshio Extension axis (KE):
The data from 1951 to 1988 given in Kawai
(1989) were used. Coordinates from 1989 to
1990 were determined from monthly 100 m
depth temperature charts compiled by the
Japan Meteorological Agency (JMA), accord
ing to the indicative temperature of the Oy
ashio Front defined by Kawai (1972), and
that of the Kuroshio Extension axis defined
by Murakami (1993).

2. Sea surface temperature in the sea area of
35-45°N and 140-150oE (SST): we used ten
day mean sea surface temperature anomaly
data by JMA.

3. Mean air temperature (AT) and mean sun
shine time (SN) in northern Japan: annual
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~
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Fig. 2. Changes in zooplankton biomasses dunng 1951- J990
in the northeastern sea area of Japan. Dotted lines, yearly
average; solid lines, 5-year runnmg mean. Thin honzontallmes
mdicate total averages of each sea reglOn.
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fo11owingthree types of layers, were used: an in
put layer, one or more hidden layers, and an
output layer. Neural networks were constructed
for each of the three sea regions. Dnits in the
input layer corresponded to the 12 variables
shown in Table 1. One unit was assigned to the
output layer to represent the zooplankton
biomass in a given sea region. Here, we com
pared the performance of neural network mod
els by varying the number of input variables or
units. The object of neural network learning is
to generalize from a training set to the systems
as a whole. There is a danger that too many
input variables lead to an overfit model and
subsequently lower the ability to yield accurate
generalization. Therefore, we first trained the
network (one hidden layer and four hidden
units) using ail 12 input variables and data
(1953-1988), and determined the mean connec
tion weight of each input variable. The mean
connection weight was defined as L7~ 1 lI'l)ltjo/n,

where lI'l) is the weight between the input unit i
and the hidden unit j; 1t',O the weight between
the hidden unit j and the output unit; and n the
number of hidden units. Then we considered
two additional models with different input vari
ables selected according to the absolute mean
connection weight (Table 2). Further, different
numbers of layers and units in the hidden layers
were also tested.

The effective data set consisted of 36 pairs of
input and output vectors for each year ranging
from 1953 to 1988. The data set was divided
into four subsets of 9 years: (1) 1953-1961; (2)
1962-1970; (3) 1971-1979; and (4) 1980-1988.
Then, we trained the network, leaving out one
of the subsets, and after training, ran the net
work using the omitted subset as a test set. We
define Case-i in which the subset (i) was left out
from training and used to generate a test predic
tion. Therefore, this training and test operation
was repeated four times. The resulting estimate
of generalization error on test sets was used for
evaluating different network models. The gener
alization error was estimated by using the mean
absolute error of predicted values for test sets.

We used a commercial neural network simula-

Table 2
Input varIables mcluded in each model C

Variables Sea region

OyashlO TransItIOn Kuroshio

OY @a Ob 0

KE @ @

SST 0 @ @

AT 0 @

SN @ 0

NM @ 0

IS @ @ @

PV @ @

ZI 0 0

ES 0

sn @

SOI @ @

a Absolute value of the mean connectlOn welght > 1 O.
b Absolute value of the mean connection weight >0.5.
C See Table 1 for abbrevlatlOn of variables Model l' ail 12

variables, Model 2:@) + 0 . Model 3: ® .

tor, RHINE (CRC Inc.) with a personal com
puter. In computations, input values for each
variable were linearly normalized with max = 1
and min = 0, and initial values for the weights
of the connection were set at random in the
range of ±0.3. The number of learning cycles
was 5000. The learning error decreased as the
number of learning cycles increased, and showed
scarcely any changes after 5000 cycles.
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Table 3
Comparison of errors m predictIOn test among different sets of mput variables and layer structures

Network model No. of Ulllts per layer Mean error

Input Hidden-I Hidden-2 Absolute (g/m2) Relative ('1.,)

OyashlO region
Model I-a 12 4 1.72 9.86
Model I-b 12 8 1.80 1031
Model I-c 12 4 4 1.75 10.03
Model2-a 8 3 1.34 7.69
Model2-b 8 6 172 9.85
Model2-c 8 3 3 2.05 11.75
Model3-a 5 3 1.44 8.28
Model3-b 5 5 1 41 8.10
Model3-c 5 3 2 1.65 9.43

Transition region
Modell 12 4 0.621 7.89
Model2 9 3 0.591 7.51
Model3 6 3 0.546 6.94

Kuroshio region
Modell 12 4 0.397 696
Model1 8 3 0.387 6.80
Model3 5 3 0.589 10.3

Ovashio reg;on

E Actuel • Model 1. .. Model 2-• ..... Model 3-8 1

Fig. 3 The actual zooplankton biomass in the Oyashio region
and the outputs of test predictions by the neural networks.
The test predictions were based on four tramed networks by
different subsets of data. Vertical lines mdicate penods of
subsets of data.
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did not improve the performance of the networks.
The neural net model reproduced the fluctuation
in zooplankton biomass in the transition region
with satisfactory accuracy except in the case of a

3. Results

For the Oyashio region, networks were trained
and tested varying the hidden layer structure. As
a result, the simple structure in the hidden layers
minimized the error for each model (Table 3).
Among them, Model 2-a best minimized error.
Predicted changes in zooplankton biomass by test
sets are illustrated in Fig. 3 for the three models
each of which had the simplest configuration in
the hidden layer. Model 2-a provided good pre
diction of zooplankton biomass in the 1970s and
1980s, though it reproduced less successfully the
peak and trough in the late 1950s and mid 1960s,
respectively.

Because conditions of one hidden layer and few
hidden units proved satisfactory, the following
networks for the transition and the Kuroshio
regions were trained with one hidden layer and 3
or 4 hidden units. For the transition region,
Model 3 with 6 input variables resulted in the
smallest error during prediction tests (Table 3).
Additional input variables to these six variables
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Kuroshio r"eg1on

Actu.1 ..• -" Modell ...... Model2 . .~

Fig. 4. The actual zooplankton blOmass m the transItion
reglOn and the outputs of test predictions by the neural
networks The test predIctIOns were based on four trained
networks by different subsets of data. Vertical lmes mdicate
penods of subsets of data.

other input variables at mean values. For every
input variable, output values increased or de
creased monotonously with input values. Fig. 6
shows the ratios of the range of output values to
the range of the actual changes in zooplankton
biomass.

Four input variables, OY, SOI, KE, and IS,
heavily impacted on zooplankton biomass in the
Oyashio region (Fig. 6a). The first two variables
demonstrated positive relations and the latter two
inverse relations to biomass. The other four vari
ables contributed little to the prediction, based on
the negligible difference in errors for Model 2a
and Models 3a and b (Table 3). In the transition
region. SST and AT were most effective, and IS
and SOI were also important factors (Fig. 6b),
which findings were similar to those in the Oy
ashio region. In the Kuroshio region, KE, SST,
STI, and IS showed greater impact on zooplank
ton biomass (Fig. 6c). The variable STI which was
the most significant constituted a characteristic
factor in this region. The effects of SST and IS
were common to the other two regions, while KE
demonstrated a positive relation to zooplankton
biomass only in the Kuroshio region.

The prediction errors were compared with lin
ear multiple regression models using the same
input variables as those used in the neural net
models (Table 4). In ail network models but
model 3 for the Kuroshio region, generalization
errors were smaller than in corresponding multi
ple regression models. In linear multiple regres
sion, the error increased when many input
variables were used. On the other hand, the neural
net maintained stability against the larger number
of input variables. When the 12 input variables
were used in the network. errors were smaller
than those that occurred with linear multiple re
gression models using fewer variables.

1980

Year

1970

.
:.",

Transition reg;on

Actual· ... Model1 Il MO~fJl 2 .... -.~

1960

10

low level that occurred in the mid-1950s (Fig. 4).
For the Kuroshio region, the predictive perfor
mance of the network lowered when the number
of input variables was reduced to 5 (Table 3).
Predictions generated by Models 1 and 2 were
very close to the actual biomass (Fig. 5).

A way to study the influence of each input
variable on the output is to vary input values and
see the result on the output. In this sensitivity
analysis, we used four trained networks (Cases 1
to 4), selecting the best model for each sea region.
Then we varied the values of a given input vari
able among nine levels with eight equal intervals
over the variable range, fixing the values of ail

1960 1970

Year

1980

4. Discussion

FIg. 5. The actual zooplankton blOmass in the Kuroshio
region and the outputs of test predIctIons by the neural
networks. The test predictions were based on four trained
networks by dlfferent subsets of data. VertIcal lines mdicate
periods of subsets of data.

This study showed that the long-term variation
in zooplankton biomass can be predicted by gen
erating mapping functions between environmental
variables and zooplankton biomass. In the predic-
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Fig. 6. The influence of each input variable on the output. Relative range is ratio of the range of the output value to the range of
the aclUal change. The results were derived from Model 2a, Model 3, and Model 2 for the Oyashio, the transition. and the Kuroshio
regions, respectively. The plus and minus signs indicate positive and inverse relation to the output, respectively.

tion tests, the neural network yielded predictions
with smaller errors than those generated by the
linear multiple regression.

Changing the number of hidden units controls
the complexity of the function represented by a
neural network (Ripley, 1996). To retain the net-
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Table 4
Comparison of mean errors III prediction test between neural
networks and multiple linear regresslOn a

a Input variables included in each model are shown III Table
2. The results of the neural networks for Oyashio reglOn are by
Model-a (Table 3). Numerals in parenthesis are relative errors
in%.

work's ability to generalize, it may be not an
optimal strategy to train it to perfection (Haykin,
1994). The neural net risks overfitting data, and
one way to avoid this overfitting is limiting the
number of hidden units (Smith, 1996). For our
data, one hidden layer and 3 or 4 hidden units
were sufficient to achieve good results. The simple
structure of the hidden layer proved better for
generalization.

The number of input units is also important to
prevention of overfitting. In cases of the Oyashio
and the transition regions, selection of input vari
ables slightly improved the predictive perfor
mance. On the other hand, in the case of the
Kuroshio region, a limit of five variables in Model
3 reduced the capacity to predict. This is probably
because sorne primary factors were removed.
Model 1 with 12 variables provided a prediction
close to the actual values, as did Model 2 with
eight variables. In the linear multiple regression,
too many input variables resulted in a poor pre
diction. The neural network, however, maintained
better stability than the linear multiple regression
when ail 12 variables were included. Input values
are transformed to compound variables in hidden
units, and a selection of input variables is made in

Kuroshio region
Model 1 0.397 (6.96)
Model 2 0.387 (6.80)
Model 3 0.589 (10.3)

the form of the interconnecting weights in the
network. This process can be viewed as a joint use
of non-linear principal component analysis and
multiple regression analysis (Hirafuji et al., 1988).

The neural net predictions were not fully satis
factory, for several of the years surveyed, for
regions of the transition and the Oyashio. Since
the trained network deals with new data by inter
polation, predictions derived from the new data
become inaccurate in the case of extrapolation.
Zooplankton biomass in the transition region was
at a low level in the 1950s. The actual values in
the mid-1950s were below the range of training
data (1962-1988). Consequently, the estimates
stayed within the range of training data. It is
difficult to predict an unknown event that has not
occurred in training data. In other words, the
values of training data should cover as wide a
range as possible.

For the Oyashio region, the neural net pro
duced less successful predictions for the mid and
late 1950s. The actual values of zooplankton
biomass at the peak (1958) and trough (1963)
were within the range of training data (Casesl
and 2). The poor prediction is likely due to the
exclusion sorne factors from this study; factors
that contribute to the change of zooplankton
abundance. One possible factor is the wind on the
sea surface. The wind can affect biological pro
cesses through turbulence and vertical mixing.
Brodeur and Ware (1992) reported a positive cor
relation between the intensity of winter winds and
summer zooplankton biomass in the subarctic
Pacific Ocean. Although air pressure and atmo
spheric circulation indices represented by 500 hPa
height were included in the neural net models, a
direct measure of the intensity of the wind may be
in order.

Correlation analysis of zooplankton biomass
among three regions showed that there was a
significant correlation between the Oyashio and
the transition regions (R = 0.411, P < 0.05), and
between the transition and the Kuroshio regions
(R = 0.625, P < 0.01), though not between the
Oyashio and the Kuroshio regions (R = 0.163,
P> 0.05). The transition region mediates between
the Oyashio and Kuroshio waters. The contribu
tion of environmental factors in the transition
region were common with the Oyashio and/or the

2.83 (16.22)
1.75 (10.02)
1.71 (9.81)

Multiple regression (g/m2

(%))

0.716 (9.10)
0.846 (10.76)
0.670 (8.52)

0.815 (14.29)
0.423 (7.42)
0.467 (8.19)

Neural network
(g/mc (%))

Model

TransitIOn region
Model 1 0.621 (7.89)
Model 2 0.591 (7.51)
Model 3 0.546 (6.94)

OyashlO reglOn
Model 1 1.72 (9.86)
Model 2 1.34 (7.69)
Model 3 1.44 (8.28)
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Kuroshio reglünS: SST, PV, and NM with the
Kuroshio region; SOI with the Oyashio region;
and IS with both regions. Environmental factors
may affect zooplankton production in a given sea
area directly and/or through that in other regions.

Among environmental parameters, the air pres
sure at Ishinomaki (IS) consistently had a strong
negative correlation with zooplankton biomass in
the three regions; that is, the lower air pressure
led to a higher zooplankton biomass. This resuIt
agrees with the findings of Tomosada and Odate
(1995). It is probable that the disturbance of sea
surface layers by low air pressure causes vertical
mixing and subsequent nutrient enrichment.

Kotani and Odate (1992) reported a significant
negative correlation between zooplankton
biomass and sea surface temperature off the shore
of northeastern Japan. Our results also showed
that zooplankton abundance in the transition and
the Kuroshio regions increased as SST lowered.
This is probably due to the southward advection
of the Oyashio water, which is rich in plankton
and nutrients.

The behaviour of the Kuroshio and the Oy
ashio currents had different respective effect on
zooplankton abundance in these regions.
Zooplankton in the Oyashio region becomes
abundant when the Oyashio is confined north and
the Kuroshio Extension south. On the contrary,
zooplankton in the Kuroshio region increases
when the Kuroshio Extension shifts northward.
Plankton and nutrients are rich in the Oyashio
region, poor in the Kuroshio region, and interme
diate in the transition region. It seems possible
that the Oyashio water is subject to a negative
effect when it shifts southward and that the
Kuroshio water is subject to a positive effect when
it extends northward.

It has been suggested that the southward intru
sion of the Oyashio is associated with the ENSO
(El Nifio-Southern Oscillation) phenomenon, dur
ing which the value of SOI becomes negative
(Nitta and Yamada, 1989; Hanawa, 1991; Sekine,
1993). The contributions of OY and SOI were
consistent in the Oyashio region, and SOI influ
ences in the transition region similarly.

It is difficult to explain the positive correla
tion between zooplankton and air temperature

(AT) for the transition region, since sea surface
temperature (SST) had an inverse correlation.
The variable AT may represent a mechanism
other than the effect of temperature. An inter
pretation of the connection between the Sub
tropical Index (Sn) and zooplankton biomass
in the Kuroshio region as strong is speculative.
sn indicates the intensity of the westerlies at
low latitudes (Nomoto and Chiba, 1986). The
strong westerlies may be presumed to promote
zooplankton production through a change of
behaviour and sea surface disturbance of the
Kuroshio, which is a subtropical gyre. The asso
ciations of zooplankton abundance with envi
ronmental factors were modelled in the form of
the trained neural network, and the sensitivity
analysis of the nets demonstrated an ability to
extract predictive knowledge.

In this study, original data were smoothed by
using 5-year running averages. This process was
Iikely to eliminate complex relationships from
the data, which may be why improvement in
prediction by using neural networks was slight
compared with the resuIts of Iinear multiple re
gression. The advantage of neural networks may
become more evident in the case of predicting
annual changes of zooplankton biomass using
original data. In such an analysis, we would
need to consider the time lag between changes
in zooplankton biomass and driving environ
mental variables. The time lag probably differs
among variables, and a number of combinations
of input variables with different time lags are
assumed. Based on this study, further ana1ysis
will promote a c1earer understanding of
zooplankton dynamics in relation to oceanic
changes.
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Abstract

The assessment of properties and processes of running waters is a major issue in aquatic environmental
management. Because system analysis and prediction with deterministlc and stochastic models is often limited by the
complexity and dynamic nature of these ecosystems, supplementary or alternative methods have to be developed. We
tested the suitability of various types of artificial neural networks for system analysis and impact assessment in
different fields: (1) temporal dynamics of water quality based on weather, urban storm-water run-off and waste-water
effluents; (2) bioindication of chemical and hydromorphological properties using benthic macroinvertebrates; and (3)
long-term population dynamics of aquatic insects. Specifie pre-processing methods and neural models were developed
to assess relations among complex variables with high levels of significance. For example, the diurnal variation of
oxygen concentration (modelled from precipitation and oxygen of the preceding day; R 2 = 0.79), population dynamics
of emerging aquatic insects (modelled from discharge, water temperature and abundance of the parental generation;
R 2 = 0.93), and water quality and habitat characteristics as indicated by selected sensitive benthic organisms (e.g.
R 2 = 0.83 for pH and R 2 = 0.82 for diversity of substrate, using five out of 248 species). Our results demonstrate that
neural networks and modelling techniques can conveniently be applied to the above mentioned fields because of their
specifie features compared with classical methods. Particularly, they can be used to reduce the complexity of data sets
by identifying important (functional) inter-relationships and key variables. Thus, complex systems can be reasonably
simplified in clear models with low measuring and computing effort. This allows new insights about functional
relationships of ecosystems with the potential to improve the assessment of complex impact factors and ecological
predictions. © 1999 Elsevier Science B.V. Ali rights reserved.
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1. Introduction

The physical and chemical properties of running
waters and their effects on the community are
driven by llumerous environmental variables such
as c1imatic conditions, production-respiration ra
tio, urban storm-water run-off and waste-water
effluents. The underlying interactions and depen
dencies are only partially understood. Further
more, data for the calibration of theoretical
models often are qualitatively or quantitatively
insufficient. Because the knowledge of species
habitat interrelations remains insufficient, an inte
grative and, in consequence, prognostic
assessment of ecosystem properties is not presently
available (e.g. Vannote et al., 1980; Statzner et al.,
1988; Townsend, 1989; Statzner et al., 1994;
Townsend and Hildrew, 1994; Bayerisches Lande
samt für Wasserwirtschaft, 1998).

Ecosystem analysis and prediction with empiri
cal statistical and analytical methods are often
Iimited by the spatially complex and temporally
dynamics of ecological processes. This is one rea
son for the typically non-linear interrelations of
variables and species with data being not normally
distributed. Therefore, alternative mathematical
methods have to be developed. Artificial neural
networks (ANNs) provide an attractive alternative
tool for analysing ecological data and for mod
elling due to their specific features such as non-Iin
earity, adaptivity (i.e. learning from examples),
generalisation and model independence (no a-pri
ori model needed).

ANNs have been applied to various fields of
aquatic sciences and engineering, such as mod
eIling water quality (e.g. Daniell and Wundke,
1993; Maier and Dandy, 1993, 1994, 1996a,b;
Lachtermacher and Fuller, 1994; Schizas et al.,
1994; Maier, 1995a; Winkler and Voigtliinder,
1995; Kaluli et al., 1998; Wen and Lee, 1998) and
relating community characteristics with environ
mental variables (e.g. Chon et al., 1996; Lek et al.,
1996; Recknagel, 1997; Recknagel et al., 1997.
1998; Guégan et al., 1998; Lee et al.. 1998; Maier
et al., 1998). Additional articles are found in this
issue and in a review by Maier (1995b), focusing
on the prediction of environmental. hydrological
and water resources data.

In this paper we present results of the appli
cability of ANNs in the following fields: (l) dy
namics of water quality as influenced by
meteorology, urban storm-water run-off and
waste-water effluents; (2) bioindication of chemi
cal and hydromorphological habitat characteris
tics with benthic macroinvertebrates; and (3)
prediction of population dynamics of aquatic
insects.

The general objectives of this paper are to
demonstrate the potential and limitations of
ANNs and other modelling techniques for data
analysis, impact assessment and ecological predic
tion in running waters, and to specify the general
conditions for applications of ANNs, such as
selection of relevant input variables, training con
ditions, network type and forecasting period.

2. Material and methods

We used multi-layer-perceptrons based on the
Backpropagation (BP) algorithm (Rumelhart et
al.. 1986) and two-dimensional, motoric feature
maps (FM; Ritter et al., 1994). A special variant of
the BP-network type, the so-called senso-net
(Dapper. 1998). was also used to determine the
most important input variables (scnsitivity analy
sis). Senso-nets include an additional weight for
each input neuron representing the relevance (sen
sitivity) of the corresponding input parameter for
the neural model. The sensitivities are adapted
during the training process of the network. Appro
pria te subsets of potential input variables can be
selected according to these sensitivities. In contrast
to most statistical methods, the dimension-reduc
ing techniques based on neural networks have the
ability to map non-linear coherences (in this appli
cation. between species abundance and environ
mental variables). The neural networks and
modelling techniques used for our experiments are
described in Werner et al. (1999). The generalisa
tion performance, E, of the networks was calcu
lated as:

(1)
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Table 1
Main charactenstics of the River Lahn at Llmburgd

where n is the number of samples in the test set· c
is the number of output neurons; Yl

i
is the m~a

sured values; and .v,! is the modelled values.
For each variable and network type, we trained

a nu.mber of networks and calculated E (minima,
maXima, mean and median). We used the determi
nation coefficient R 2 between measured and mod
elled data as a second standard measure of model
quality. Unless otherwise specified, the results in
dicate Emm and R;'ax'

Prediction of water quality variables at the river
Lahn (topic 1) was based on both on data from
studies on a small running water body (Kuhbach
(Germany); Borchardt et al., 1997) and a larger
stream (Lahn at Limburg (Germany)), using dif
ferent ~NNs. Basic data were daily meteorologi
cal vanables (precipitation, radiation), discharge
and water quality data (oxygen, conductivity, pH,
water temperature) obtained above and below the
waste water treatment plant of Limburg (main
ch~racteri~tics summarised in Table 1). Modelling
dmly maxima and minima was based on routine
government data in 1995 (365 day-sets), whereas
for modelling the diurnal fluctuation was based
on ~ata from a scientific study (150 day-sets) from
Apnl to October 1996. The data were used with
out pre-processing either as compact time inter
vals or as alternating days distributed into a
training and a test data set at a ratio of 1: l, 2: 1
and 3: 1, respectively. Different network types

Catchment Annual precipitatIOn (mm)
Area (ha)

River Lahn Mean annual discharge O/s)
Mean low discharge O/s)

Limburg city Number of mhabltants
Channelized catchment (ha)
ImpervlOus area (ha)
Specifie water consumptlOn
O/(Inh. -d))
N umber of storage tanks (-)
Specifie storage volume
(m3/ha)
Discharge WWTP (l/s)

a From Mang et al. (1998), modified.

675
42998

47000
10000

44051
1522.4
765.0
151.1

40
23.7

304.0

wer.e trained with several combinations of input
vanables and histories of varying lengths (see
Table 2).

F~nctional relationships between water quality.
habitat characteristics and colonisation patterns
of benthic macroinvertebrates (topic 2), were
based on measurements of ten chemical and seven
hydromorphological variables (Table 3), and the
abundance of 248 species from eight small streams
in Central Hesse (Germany). The experiments
used the daily maxima of each variable over a one
year period, except for oxygen where the mini
mum was used. The data were analysed with
Pearson correlation and stepwise forward regres
sion analysis (SPSS, 1997), and sensitivity analysis
on Senso-nets. The pre-processing was used to
identify those species which have significant inter
relations with the variables in question, and thus
may be used as bioindicators. The chemical and
morphological variables were modelied with BPN
FM and senso-nets, respectively, using the abun~
dance of the five most relevant species which were
identified by stepwise forward regression analysis.
here calied predictors. The use of the best five
predictors (input variables) provided the best
~odels (lowest generalisation error) when testing
dlf~erent procedures for the selection of input
van~~I~s (correlation, regression, factor analysis,
sensltIvlty analysis on senso-nets, reduction of
trained BPN, bottleneck nets) modelling four
chemical variables: oxygen, conductivity, BODs,
NH4--~ (Dapper, 1998; Schleiter et al., in prep.).
The R- values of these neural models, calculated
on unknown test-data, were nearly as high as
those of the regression models with the best five
predictors as input, ca1culated on the whole data:
R 2 - 089 R 2

(BPNj - • , (regresSlOn) = 0.90. For the neural
~odellin~, ail variables were standardised linearly
mto the mterval [0, 1] and in circulation divided
into a training-set and a test-set in a ratio of 2: 1.

Long-term population dynamics (topic 3) are
based on monthly data of aquatic insect emer
gence and environmental variables from 1969 to
1994 for the small stream Breitenbach (Central
Germany; Wagner and Schmidt, 1999). The data
were collected by the Limnologische Flu13station
Schlitz. We compared the accuracy of the abun~
dance prediction of Apatania fimhriata (Pictet,
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Table 3
CorrelatIon matrlX of water quahty (ten parameters), habitat structure (seven parameters) and benthlc macro-mvertebratesJ.

NH4- N COD BDD 5 Conductlvny NO:,- -N PWt üxygen NHrN NO]-N pH Dischdrge Dlversltyof Fme Wldthldepth DI... ersltyof El:tenslOn of Structure of Average ~core 5 Averdge score 2 Average score 7

reglme substrate !>edlment fdtlO habltal npandn zone nver bank bed-pdrameters npdfldn morphologJcal

fealures pdrdmeters parameters

Chlronomus lnumflll-Gr 035 05' 052 05. 063 055 0 52 048 042 050 061 049 051 057 051

Gummurus puln 035 oJ5 0.3 064 042 050 067 054 056

Boel/..\ rhoJun/ 042 036 042 048 040 043 055 04û 052

Elnlls sp 036 036 035 038 036 0.0 04û

lfl'&IUS fuhf{masus (1) o.B 066 065 046 043 042 04û

Tublft'..\ sr 039 044 055 0.8 046

Enstulmoe mdel 058 041 042 04û 046 ~

Smlu/ium orna/um-Gr 056 038 052 0.0 ~
Sm/u/mm aUrl'um-Gr 059 041

Tunyrarsml mdet 0.3 041 VJ
"Ecdyonums t'enasus-Gr 036 046 041
;,..
;;;-

Amphm<'mura ~p 039 oJ7 049
~

SJphlonurus lacusrns 0.7 064 071 051 OBI ....
Hydroblus (usnpel 048 055 055 HI 053 ~
He1eraceros 5p oJ6 045 056 044 069

'"Chlrunamus plumasu~-Gr 042 057 052 053 :-
Anacaena hmbara (I) 042 037 o4J "-
Llmnephllus bma1alus 036 042 t>l

"Lunnadnluy sp 041 035 '"
Ha1Jplus lamma/us (Il oJ6 035 è'

""Slgura larerahs 048 ;::;
Dwmesmae lIIdt!1 0.8 !?..
Cope/alu.> haemorrholdalls 048

~Siphlanurus sp 040

Culn sp oJ9 f}
DaphnlO pulel 039

~LmmephdU.> n1Krl( eps 038

Dohchupudldae Indel 037

Erpubdella O( lo( ulala 037 i:;
He/(lbdella ,laKnahs 036

a
~

SII!;ura sp 036 .....
LlmnephJ!ldae mdel oJ6

\Cl
\Cl

Be==w sp 036 ~
Clomn dlplt!rum 035 N
Chlronon/us ~p 035 ~
Anacaena fr/ubulus 03. 1

frunoqulG dubw oJ.
N
00

Nepa rubra oJ4 0,

PolanwnClICS dt'prt'ssus oJ.

Oreod} les sonmarkll (I) 035 0.1 051 051 057

Rhvacnphrla jasClaia 063 053 048 062 059 067 060 062 065 070

H.drnpsvche sp 053 039 050 057 058 049 054 060

Gammarus (ossarum 0.1 039 041 057 043 o5J 0.9

Rada Dl'ata 0.5 044 053 051 042 053 061

SerHOflOma iip 051 050 066 065 041 067 066

ChaeloplerYl" /llllosa 042 058 049 o5J o5J 054

Ltmlllw, pen/sI (1) 0.9 042 050 045 049

Poramophylal" laf/penm.'> 042 0J9 055 042 052

Elnlls aenea (1) 07. 058 060 061 070

Leuclra m~ra 049 0.8 0.0 048

PIS/d,am caserlanum 041 O.J 044 045

Tan.podmae Indel 058 050 055 050
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1843), (lnsecta, Trichoptera) based on canonical
correspondence analysis (CCA, ter Braak, 1988,
1990) and ANNs. A ..fimbriata \S a dominant
species in the Breitenbach. Environmental vari
ables inc1uded into the models were maximum
monthly water temperature (T) and discharge
(D), both measured at the Breitenbach, and
monthly precipitation (P) determined close to the
catchment. Further variables had marginal or no
influence on species abundance (individuals/m2

)

and were thus omitted from the models (Bor
chardt et al., 1997). Environmental variables and
populations were related with correlation, regres
sion (SPSS, 1997) and ordination (Wagner and
Schmidt, 1999). We calculated and tested the sig
nificance of abundance differences between
groups of years with different discharge patterns.
ANNs used ail available data of P, D, T, and
abundance (A) of preceding periods to predict
species abundance in the target month (training
set: test set ratio was 4: l, n = 300). Modelling with
the entire database was compared with methods
of a preceding reduction of vector dimensions by
correlation, regression or sensitivity analysis (see
below), to reduce computing time. Reduction of
dimension in this case means the deletion of vari
ables with evidently low or no influence on the
target variable, and not a loss of information due
to the computation of a mean and a variability
measure (Dapper, 1998).

3. ResuIts

3.1. Temporal variability of water quality

The daily maxima and minima of ail target
variables could be modelled successfully using the
data of the previous day as network input (Table
2). The generalisation performance of BPN was
higher than those of FM. As can be seen from the
generalisation error in Table 2, the performance
of both network types could be increased clearly,
when specifying the nets to one output variable
(maximum or minimum). Furthermore, an im
provement of the generalisation performance was
reached by increasing training effort. The accu
racy of the network predictions decreased with
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Table 2
Summary of generalisatlOn errors for dlfferent combinations of target-oxygen concentrations, conductlVlty and pH and input
parameters·

Target

al-min/max (1+
1)

a,-min (1 + 1)

al-min (1+ 1)
O2 min (1+2)
0 0 mm (1+3)
O2 mm (1+4)
A, min (1+5)
02-mm (131 - ( 60 )

a,-min (1+1)

conductlvity-min/
max (1+1)

Conductivity-max
(t+I)

pH-mm/max (1+
1)

pH-max (1+ 1)

Input-parameters

al-min/max (I)+discharge (1)

0 , - diurnal vanalion (1)
02-mm (1), 200 days m the traimng set
Oz-mm (1), 212 days in the training set
Oo-mm (1), 320 days in the traimng set
a,-min (1), 300 days m the traming set
a,-min (l), 300 days in the training set
a,-min (1), 300 days m the trammg set
a,-min (1), 300 days m the trammg set
a,-min (l), 300 days in the training set
02-min (Il -130 ), 30 days m the training set
Oo-mm (I)+dlscharge (I)+water temperature (1)+rainfall (1)
02-min (I)+rainfall (I)+rainfall (1+ 1)
al-min (1)+ dlscharge (1) + discharge (1 + 1)

Water temperature (1)
Water temperature (I)+discharge (I)

Water temperature (I)+dlscharge (I)+ramfall (1)
Water temperature (1)+ discharge (1) + rainfall (1)+ pH-value (1) + conductivity (1)
Conductivity-min/max (1)

Conductivity-max (1)

Conductivity-max (1), 320 days m the traimng set
Conductivity dIUrnal variation (1)
Conductivity(l) + discharge (1) + water temperrature (1) + ramfall (I)

Conductivity (1) + pH-value (1) + discharge (1)+ water temperature (1) + ramfall (1)
pH-mm/max (il)

pH-mm/max (1), 212 days in the training set
pH-max (1), 212 days m the trammg set
pH-max (1), 320 days in the training set
pH-values dIUrnal variation (1)

pH-max (I)+discharge (1)
pH-max (I)+ramfal! (I)

pH-max (1) + dlscharge (I) + water temperature (1) + ramfall (I)

pH-max (I)+conductlvity (I)+discharge {I)+water temperature {I)+rainfall (1)

GeneralisatIOn error
BPN FM

0.00463 0.01427

0.00571 001460
0.00270 0.00410
000227 0.00313
0.00185 0.00283
0.00199 0.00159
0.00225 0.00185
0.00303 0.00443
0.00515 000733
0.00677 000881
0.01064 0.01049
0.00035 000035
0.00193 0.00338
0.00235 0.00270
0.00234 0.00329
0.00861 0.00948
0.00793 0.00863
000754 0.00570
0.00726 0.01009
0.00599 0.00431

0.00143 0.00369

0.00341 0.00379
0.00495 0.00620
0.00331 0.00627
0.00346 0.00520
0.01661 0.01853

0.00198 0.00199
0.00067 0.00065
0.00020 0.00020
0.00180 0.00280
0.00090 000092
0.00075 0.00064
0.00091 0.00137
000113 0.00182

a Unless otherwise specified, 200 trammg-sets were utilized and 60-min-average of 5-min-measurements, except for dlscharge (daily
maXimum), were used; 1= , days.

increasing forecast period. The daily mInIma of
oxygen for the fol1owing month could be pre
dicted with low error by both network types using
the oxygen minima of the previous month.

The water quality at the time t proved to be the
most important input variable, predicting water
quality at the time t + 1 with different input

modalities (Table 2). The inclusion of other or
supplementary input variables caused no improve
ment of the generalisation performance of the
networks.

While the daily maxima and minima of oxygen
and other water variables could be predicted with
relative low error, the forecast of the diurnal
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vanatlOn appeared to be more difficult. This is
shown by predictions of the diurnal variation of
oxygen with a simple model using the sum of
precipitation and the oxygen values of the previ
ous day (Fig. 1). The generalisation power of the
25-8-24 BPN was slightly higher than those of a
15 x 15 FM (EBPN =0.05307, R~PN=0.79 versus
EFM = 0.071021, R}M = 0.75).

A series of experiments on network training
with variations of data length, histories and dif
ferent measurement modes (60- and 30-min mea
surements of oxygen, daily sum and 5-min-values
of precipitation) showed no general trend and
could therefore be considered to be of minor
importance for model performance (Borchardt et
al., 1997).

3.2. Colonisation patterns of benthic
macro-invertebrates

A correlation analysis provided high signifi
cance levels (IX < 0.01) for 40 out of 248 species
with at least one of the chemical variables, and for
47 species with at least one of the morphological
variables (Table 3). The number of highly signifi
cant species for chemical variables varied between
3 (pH) and 16 (NH4-N), whereas those for hydro
morphological variables varied between 9 (exten
sion of riparian zone) and 27 (discharge regime)
(compare Table 3). Most species showed highly
significant relationships with only one type of
variables, either chemical or hydromorphological.

The stepwise regression analysis provided more
or less complex models for the different chemical
variables: the number of predictors were 10 for
BODs, Il for COD, 16 for oxygen and total
phosphorus, 17 for NH4-N, 21 for conductivity
and N02-N, 23 for NH3-N and N03-N, and 25
for pH-value.

U sing the abundance of only the five best pre
dictors for each variable. the 10 chemical factors
could be modelled with good agreement between
measured and modelled values (E < 0.01, R 2 >
0.8; Table 4). This indicates functional relation
ships between the chemical variables and the
selected species groups. The generalisation perfor
mance of BPN was higher than those of FM
(average EBPN = 0.00558. EFM = 0.01225; Table

4), except for NHcN (EBI'N = 0.01634, EFM =
0.00970. R 2 < 0.35). This is because modelling
NHcN on sampling site 8, provided a high gener
alisation error, particularly with BPN (EBPN =
0.13268, E FM = 0.11006).

The generalisation performance of the reduced
networks was clearly higher than those based on
ail potential input variables (average EBPN(S) =
0.00316 via EBPN (24R) = 0.02088 comparing four
models: oxygen, conductivity. BODs, NH4-N).
The calculation effort decreased to 2°1<, for FM
and 0.9'Y<, for BPN compared with those based on
ail 248 input variables.

Even for the seven morphological variables sim
ple neural models could be generated (Table 5).
The average performance of senso-nets based on
the abundance of the five best predictors was
E = 0.0074, R 2 = 0.85. The best generalisation
was reached for the average score of the seven
hydromorphological variables-in Germany, the
assessment used for the morphological structure
of streams is called Gewasserstruktur-Güteklasse
(Fig. 2).

3.3. Population (~vnmnics of aquatic insects

The results of CCA-ordination indicated a
strong dependence of the population density of A.
fimbriata on the discharge pattern (Wagner and
Schmidt, 1999). Abundance was highest at high
discharge with low flow variability (D), was lower
at winter and spring floods (E), and lowest during
periods of low flow (F) or after seasonally unpre
dictable discharge events (E in Fig. 3). Based on
monthly data, no significant dependence of D-P
was detecte(' A.bundance between patterns was
significantly different. However, predictions could
only be made with an error of hundreds of speci
mens per year.

The precision of the ANN model with the
original data was quite high (R 2 = 0.63).
Ali months with any abundance were predicted
correctly. The abundance magnitude differed
between prediction and actual data (Fig.
4a). Pre-selection of five variables (abundanceo,

abundance 11 , temperature 1• temperature6 , temper
ature7 ) with correlation analysis increased



Table 4
GeneralisatIOn error of 5-3-I-BPN and 5 x 5-FM for predictIOns of chemlcal parameters from the abundance of five macromvertebrates at each case identlfied wlth
regression analysls

'J-.J
00

Target parame- Oxygen Conductivlty BODs NH4-N pH
ter
Network type BPN FM BPN FM BPN FM BPN FM BPN FM

Errol'
Milllmum 0.00278 0.00836 0.00465 0.00631 0.00290" 001029 0.00229 0.01227 b 0.01851 :--

Maximum 0.01232 001006 0.01645 0.01089 0.00971 0.01726 001678 0.03063 0.02241 0.02117 ~

Mean 0.00611 0.00887 0.00834 0.00943 0.01247 0.00710 0.01479 0.01915
V)

0.00682 0.01770 ":::;-
Median 000562 0.00872 0.00745 0.01013 000742 0.01159 0.00493 0.01524 0.01374 0.01851 ~
Standard devla- 3.49E-06 3.76E-07 8.48E-06 2.95E-06 5.64E-06 6.00E-06 1.86E-05 4.33E-05 I.7IE-05 1.07E-06 '"..,

tion ~

Species Ch,rolloll/us thWIlII/I-Gr Lilllnius l'olekll/an Agabus sp. Sigara lateralis Glossiphonw eomplanata ~

Do!tchopodidae indet. EIIIlIS sp Dol/cJlOpodidae mdet Dolichopod/{/ae indet Radlx peregra hl
GOl'ra pilosa Goera pilos Lilllnodrilus sp. Lill/nophila sp. Seneostomatldae //Idet "aa
H.l'l/roporus sp. Oreod)'tes sanmarkll Caloptan splendens Tanl'tarsini indet. Sigara fossarwH ~.
Anamena !tll/bata Chmll101llllS pillmosus-Gr Nell/oura ut'icl/lans Chironollllls plU/HOSU.\ -Gr Daphma pl/lex s...

~
Target parame- COD NH,-N N02-N NO,-N P lOl

It-
§=

ter ci<;
......

Networktype BPN FM BPN FM BPN FM BPN FM BPN FM
1...,
a
~

::c
Errol' §
Minimum 0.00292 0.02624 0.01634 0.00970 0.00731 0.00899 0.00369 0.01212 0.00552 0.00970 '"Maximum 0.05646 0.03338 0.02264 0.01037 0.01566 0.02873 0.01830 002657 001412 0.02017 :::::!

1

Mean 0.02708 0.03054 0.01930 001016 0.01103 0.01518 0.00793 002312 0.00890 0.01564 Nco
Standard devia- 1.24E-04 6.70E-06 2.2IE-06 5.58E-08 3.70E-06 4.89E-05 1.57E-05 3.IIE-05 4.94E-06 1.54E-05 '"

tion
Specles I/yblus fl/ligmosl/s I/ybius fuligmosl/s CI/lex sp ChironOlmdae mdet. Gammarus pl/lex

Enallagll1a cyat/lIgeruII/ Bathyolllphaills contortus Chironolllus sp. Goera pdosa Limnephilus rizomb/cus
Doltchopod{(lae indet Lill1nophila sp Rhyacop/lIla sp. RadL.': aurieularia Erpobdella octoculata
Pyrrhosollla nymphula Sigara sp. Lill/nephilus rllOmbicus Tanytarsmi indet. Helobdella stagnalis
Bathyompltall/s cantor tus Culex sp Tubifex sp. Hvdropsvche angustipennis Chaetopteryx l'illosa

d Bold, lowest error
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the accuracy of the model to R 2 = 0.86 (Fig. 4b).
Cross correlation indicated almost no influence of
precipitation on A. fimbriata abundance. Pre-se
lection by regression analysis found other vari
ables relevant (abundanceQ , abundance lO,

abundance j b temperature j , precipitation!2) and
increased the accuracy of the mode! to R 2 = 0.86
(Fig. 4c). The best of three different sensitivity
analyses selected the variables abundanceQ ,

abundance!l' temperatureQ , temperature6,
discharge6' and had an accuracy of R 2 = 0.93
(Fig. 4d). An overview of these experiments indi
cates the best mode!s were computed with a pre
selection of the best five variables by sensitivity
analysis or regression. The models with variables
pre-selected by correlation or without any pre-se
lection resulted in lower measure of accuracy
(Table 6). ANN mode!s generally explained much

more variability (20-30'1<,) than linear regression
models.

4. Discussion

The corresponding chemical data of the previ
ous day proved to be the most important network
input, when modelling water quality of the river
Lahn. Using other or supplementary input vari
ables, we achieved no significant improvement of
the generalisation performance of the networks.
This result is attributed to the strong autocorrela
tion of the values at the time t and t + 1.

In our experience, the most important basis for
successful neural modelling is a sound and repre
sentative data base. For example, from our data it
was not possible to predict the temporal variation
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Fig. 1. Companson of measured and modelled temporal patterns of oxygen based on datly sum of precipitation and oxygen (24
60-mm-values) of the previous day with 25-8-24-BPN (151 dally data sets for training and test).
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Table 5
Modelling morphological habItat characteristIcs wlth 5-3-1
senso-nets from the abundance of five macroinvertebrates at
each case IdentIfied with regresslon analysis

Target Errorm1n R 2 Species

DIscharge regime 0.0067 0.87 Gammarus plilex
Gammarus roeseli
Nemoura cinerea
Dolichopodidae
indet.
Agablls gllttatus
(1)

Widthfdepth ratIo 0.009 0.83 Rhl'acoph/la fasc/-
ata
Dugesia gono-
cephala
Tanypodinae in-
det.
Ehllls aenea (1)
Agabus guttatlls
(1)

Diverslty of substrate 0.0132 0.82 Tan)'podmae mdet
Gammarus pulex
Agabus didymus
Tub(fex sp.
Prlaria sp.

Fine sediments 0.0137 0.64 Chironomus
thWI/IIII-Gr
Gammarus pulex
Tanypodinae in-
det.
Pi/aria sp.
Agabus d/d)'mlls

Diversity of habItat 0.0096 0.83 Gallllllarus plilex
features

Pi/ana sp.
Gyrallilis albus
Gynnlls sp.
H)'dropsyche sp.

Extension of riparian 0.0048 0.90 RIr)'acop/lIla fasc/-
zone ata

Electrogena sp.
Ephemerella ignita
Lrmnodnlus sp.
Slgara sp.

Structure of rIver 0.0048 0.95 Sericostolllatidae
bank mdet.

Pi/aria sp
Hydropsyche an-
gustrpennis
Plectrocnemia
conspersa
Dytisc/dae indet.

of water quality as a function of meteorological
data. For this purpose, precise data gathering or a
spatial-temporal allocation of the input (radia
tion, precipitation) and target variables (e.g. oxy
gen) are necessary on compatible time scales.

Generally, whether the temporal dependence of
output data is derived on a specific time scale or
integrated over an indefinite period of time is
decisive. Accordingly, different network ap
proaches, either (non-linear) auto-regression or
(partial) recurrent networks (e.g. Jordan-nets;
Pham and Oh, 1992), are more suitable for suc
cessful modelling. The time dependent integration
of previous states and events/processes is a major
problem when modelling time series. We expect
better modelling with specific time-dependent net
works with feedback onto specific neurons storing
internai network states.

Due to their specific features, particularly the
ability to handle non-linearities, ANNs combined
with specific procedures for the selection of input
variables provide an attractive tool for modelling
species/species traits and habitat relations. A se
ries of chemical and hydromorphological proper
ties could be modelled with low error from the
abundance of only a few specific macroinverte
brates identified with regression analysis. This di
mension-reducing, pre-processing caused an
increase of the genera!isation performance of the
networks and a considerable reduction of the
calculation effort. The results c1early indicate
functional relationships between colonisation pat
terns of benthic macroinvertebrates and chemical
and hydromorphological habitat characteristics
within lotic ecosystems. Furthermore, a hierarchy
of factors determining the community structure of
invertebrates may be identified from theoretically
numerous impact variables.

The species groups selected for each chemical
and morphological model showed no or !ittle
congruence (see Tables 4 and 5). Even for related
variables, different species groups were detected.
Sorne species were selected by several models (e.g.
Gammarus pu/ex: discharge regime, diversity of
habitat features, Ptat , diversity of substrate, fine
sediments), whereas others appeared in only one
mode!. Because of restrictions in the basic data set
due to the narrow geographical region and !imited
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abiotic gradients, the selected species groups in
our examples may not be generalized. The resuIts
obtained here need further analysis with ecologi
cal information and validation based on addi
tional data. Thereby more approaches have to be
tested as genetic algorithms (Goldberg, 1989) to
detect relevant predictors for non-Iinear models
based on general regression neural networks
(Specht, 1991), equation synthesis (e.g. Road
knight et al., 1997), weight analysis (Bal1s et al.
1996,) and correlated activity pruning (Wiersma et
al., 1995). Based on more comprehensive data, we
would expect it to be possible to verify if key
species or species assemblages for definite abiotic
environmental states can be identified indepen
dently and reproduced for different sites. This
may also be possible using the species traits hy
pothesis (Resh et al., 1994).

Discharge and water temperature are two main
abiotic factors controlling the structure and dy
namics of stream invertebrate populations (Ward
and Stanford, 1979, 1982), as weil as the variabil
ity of habitats and the reproductive success of
lotic species through metabolic processes (e.g.
Feminel1a and Resh, 1990; Céréghino and La
vandier, 1998). However, many interdependencies
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between the environment and the species remain
less weil known. The long-term population dy
namics of aquatic insects could be meaningfully
described with ANNs in addition to c1assical
statistics. Regression and correlation models have
repeatedly been used to explain patterns in com
munities and they provided useful insights on
environmental control of ecosystems, but their
predictive power is low (ter Braak and Verdon
schot, 1995; Paruelo and Tomasel, 1997; Wal1ey
and Fontama, 1998). With c1assical statistical
methods and ordination (CCA; ter Braak, 1988,
1990), the variability between year abundance of
individual species was attributed mainly to the
discharge pattern during larval development
(Wagner and Schmidt, 1999). Due to the necessity
to recognise patterns and not single discharge
events, ANNs are an alternative method to model
species abundance (Colasanti, 1991; Lek et al.,
1996).

Larvae of A. fimbriata are grazers that avoid
sandy substratum, they undergo a dorrnancy from
November to the next February underneath larger
stones (Aurich, 1992). Concerning the life history
traits, pattern D (Fig. 3) provided low discharge

E=O.0039 R2=O.92

sampllng alte

Fig. 2. Modelling average score of seven hydromorphological parameters with S-3-1-senso-nets from the abundance of five
macroinvertebrates at each case ldentified wlth regression analysis.
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Fig. 3. Discharge patterns of the BreItenbach discnminated wlth CCA: (A) 25-years mean of monthly maximum discharge; (E) years
wlth non-seasonal events; (C) the seasonal pattern; (D) permanent, good dlscharge. (E) winter and spring f1oods; (F) long-tenn low
f10w [mean of withm group monthly maximum Oine) ± 1 SD (raster)]. and the density (indj5m2 ) of A. fimbriata at patterns D. E.
F and B (top left).

variability for almost an entire year at high mean
flow. Strongly increased discharge in winter and
spring disturb larval populations in dormancy,
and low flow conditions over almost the entire
year are disadvantageous for the development of
eggs in summer, larvae in dormancy, and the
pupae in early summer. due to increased deposi
tion of organic or inorganic material. Lowest
success at the non-seasonal pattern is interpreted
as the interaction of the magnitude and the dura
tion of floods. Most other aquatic insects, with
the exception of the mayfly Baetis vernus (Curtis).
have their lowest abundance at these discharge
pattern (Wagner and Schmidt, 1999).

In ANN models the best pre-selection method
was a sensitivity analysis, whereas other methods
were less accurate in the prediction of A. fimbriata
abundance. B. vernus was also best modelled by
sensitivity pre-selection, but in B. rhodani pre-se
lection by correlation was optimal (Wagner et al.,
1999). Variables selected for the best models of aIl
three species were abundance of the parent gener
ation and temperature during the emergence or
oviposition period of the parents. In addition, in

A. jimbriata temperature and discharge 6 months
before emergence are among the most relevant
predictors. During this period larvae are in winter
dormancy, and higher temperature or discharge
may have disturbed the larvae or their habitat.
This demonstrates the potential of precise abun
dance predictions sorne months before emergence
of the adults, and of the preselection methods, in
particular sensitivity analysis, that detected sensi
tive conditions or periods in the life cycle of A.
jimbriata.

5. Conclusion and perspectives

The results show that ANNs can successfully
and meaningfully be applied in the analysis of
effect-relations (e.g. species/species traits with
habitat) including the identification and assess
ment of complex impact factors and for the pre
diction of system behavior (e.g. critical water
states with an early-warning-system and long
term population dynamics depending on environ-
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mental variables) having specifie features com
pared with conventional methods (see Werner et
al., 1999). Particularly, they have advantages if
the relationships are unknown, very complex or
non-linear. Combined with specifie procedures for

the selection of the most important impact vari
ables, they can be used to reduce the input dimen
sion and therefore the complexity in a reasonable
way. This causes an increase of the generalisation
performance and a simplification of the model
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Fig. 4. Abundance predictIOn of A. fimbriala. (4a) Model, ail mput-variables, best generalisation (Iowest error): 51-10-I-senso-net;
(4b-d) Model, pre-selection by different methods, best generalisation: 5-3-)-senso-net. (Model, fulllme, diamond; observed data,
dolied lme, square).



284 I.M. Sch/elter et al. " Ecolog/cal Modellmg 120 (/999) 271-286

Acknowledgements

Table 6
Overvlew of sorne ANN models with different network input
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Individual-based modelling of fishermen search behaviour
with neural networks and reinforcement learning
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Abstract

A model to mimic the search behaviour of fishermen is built with two neural networks to cope with two separate
decision-making processes in fishing activities. One neural network deals with decisions to stay or move to new fishing
grounds and the other is constructed for the purpose of finding prey within the fishing areas. Sorne similarities with
the behaviour of real fishermen are found: concentrated local search once a prey has been located to increase the
probability of remaining near a prey patch and the straightforward movement to other fishing grounds. The artificial
fisherman prefers areas near the port when conditions in different fishing grounds are simtlar or when there is high
uncertainty in its world. In the latter case a reluctance to navigate to other areas is observed. The artificial fisherman
selects areas with higher concentration of prey, even if they are far from the port of departure, unless a high
uncertainty is related to the fishing ground. Connected areas are preferred and followed in orderly fashion if a higher
catch is expected. The observed behaviour of the artificial fisherman in uncertam scenarios can be described as a
risk-averse attitude. The approach seems appropriate for an individual-based modelling of fishery systems, focusing
on the learning and adaptive characteristics of fishermen and on interactions that take place at a fine scale. © 1999
Elsevier Science B.V. Ali rights reserved.

Keywords: Fishermen; Fleet dynanllcs; Neural networks; Q learnmg; Search behaviour; Modelling; Remforcement learning

1. Introduction

Understanding fleet dynamics helps us to de
scribe and ana1yze fisheries, as weIl as the implica
tions that management regu1ations will have on a
fishery due to changes in the behaviour of the fleet
or individua1 vessels adjusting to the new mIes.
Consequent1y, it is an important factor to account

• Corresponding author. Fax: + 52·561745637.
E-mail address:dreyfus@clcese.mx (M. J. Dreyfus-Leon)

for in decision making. The spatial allocation of
fishing effort is a variable driven by human be
haviour, related to the spatial distribution of fish.
It is an important component of the dynamic
behaviour of fishing fleets which shou1d be a major
part of fisheries research (Hilborn, 1985). The
know1edge of how fishermen allocate their fishing
effort in space is essential to understand how a
fishery develops and the re1ationship between catch
rate and abundance (Hilborn and Walters, 1987),
and in the formulation of management policy.

0304-3800/99/$ - see front matter © 1999 ElsevIer Science B.V. Ali rights reserved.
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Although many technological advances aid in
the finding and catching of fish, open ocean fisher
men are fundamentally hunters. The search for
fish may occupy a considerable amount of time
(MangeL 1981). Therefore, the search behaviour
of fishermen should be incorporated in spatial
models of fishery systems in order to understand
the implications of management regulations,
which are to be applied in the future with biolog
ical, social and economic objectives and conse
quences. Knowledge or understanding of search
activities should improve representations of
fisheries, since the search is a basic and substantial
element of fishing effort. Simulation models,
which are necessary because of our scarce knowl
edge and the uncertainty related to aIl fishery
systems, can help us understand the relationship
between fish and fishermen. They give us the
opportunity to experiment and assess our knowl
edge and understanding of the real system and
hopefully guide in the never-ending quest to as
semble new improved models of this class of
complex systems.

There has been sorne theoretical and applied
work on spatial distribution of effort, varying
from qualitative anthropological observations to
simulation modelling and quantitative studies
(Gillis et al., 1993). Those representations tend to
model fishing effort in an aggregate manner from
the effort or the space perspective (Mangel and
Clark, 1983; Mangel and Beder, 1985; Allen and
McGlade, 1986; Mangel and Clark, 1986; Hilborn
and Walters, 1987; Anganuzzi, 1996). Further
more those representations establish a priori
movement rules for effort distribution between
areas, and few works relying on observations of
movement dynamics in specific fisheries have
yielded sorne assumptions on behavioural patterns
of movement (Hilborn and Ledbetter, 1979;
Hilborn and Walters, 1987; Gillis et al., 1993).
However, analysis on a fine scale of searching
effort by individual vessels has seldom been done
(Kleiber and Edwards, 1988; Polacheck, 1988)

In this work the approach is focused at an
individual level and at a fine scale of spatial
search. The purpose is to assign information to an
artificial fisherman, called from now on fishermat,
in relation to the term animat that is frequently

used in the behaviour-based artificial intelligence
field (Maes, 1993). The fishermat is assembled with
the sole purpose of learning a spatial search strat
egy to find fish; It is constructed with the tools to
improve its search methods in a simulated world
through learning mechanisms. Artificial neural
networks inspired by the neuronal structure of the
brain have been widely used since the 1980s
(Thagard, 1996), and form the basic information
processing system of the fishermat. Many neu
ronal representations and learning mechanisms
exist, although their neurological plausibility is
doubtful. They are extremely simple compared to
real brain neurons, nevertheless, they have proven
to be useful for many purposes. The neural net
works' learning abilities let us use a bottom-up
approach, which expects the emergence of new
behaviours rather than assuming movement pat
terns.

Learning in neural networks is frequently
achieved by supervised learning, from examples
provided by a knowledgeable external supervisor
(Sutton and Barto, 1998). On the other hand,
reinforcement learning appears to be a good strat
egy to mimic human behaviour when combined
with the rewarding actions of neural networks that
promote higher fitness (Bonarini, 1997). Reinforce
ment learning is tantalizing because learning occurs
through trial and error experimentation within the
environment. Feedback is a scalar payoff, hence no
explicit teacher is required, and little or no prior
knowledge is needed (Whitehead and Lin, 1995).
Reinforcement learning allows the acquisition of
adapted behaviours by interacting with the envi
ronment. A positive or negative feedback can be
given to the fishermat in relation to costs and
benefits that drive fisheries activities. Besides, learn
ing is the essential adapting tool for humans, and
in complex and variable environments learning
allows the possibility of prompt adjustment.

2. The model

2.1. World description and experiment

The world is a 200 x 200-square space, divided
into 16 toroidal areas of 50 x 50 pixels (Fig. l).
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Fig. 1. Fisherrnat's world.

The reason for the areas to be of toroidal na
ture is for the fisherrnat to stay within a partic
ular area while searching, until he decides to
change to another area. Five of those toroidal
areas are considered potential fishing grounds
(areas 4, 6, 7, 14 and 16) in four of the scenar
ios considered, and the number is reduced to
four fishing grounds in the remaining scenarios
(Table 1), where the fishermat interacts with the
environment seeking for a fishing strategy. The

port of departure is in area l, area 6 is neigh
bouring it and area 7 is close to the former as
weil as to area 4. These three areas are consid
ered close to port or at least connected to port.
Areas 14 and 16 are at a longer distance from
port and are not close to other fishing grounds.
Scenarios differ from homogeneous to very un
certain environments in relation to prey pres
ence, taking into account fishing ground
locations.

Fish are allocated in patches at random in all
the fishing grounds. Up to 2000 fish are allo
cated in total to each epoch and the prey re
main motionless. An epoch consists of 160
movement decisions between areas by the fisher
mat. When the fishermat is located in the same
position as a fish, the prey disappears (catch has
occurred) until the next epoch when the initial
abundance of fish is redistributed. The fish unre
alistically remain motionless. However, this is
not a problem for the focus of the study. The
fishermat perforrns 40 search motion steps
within an area before deciding to stay or change
to another sector to continue its exploration.
When the decision to change to a different area
is made, movement is directed to the centre of
the new chosen zone.

Table 1
Scenarios considered as learning environments for adaptive searching skills by the fisherrnat

Scenarios

SI
S2

S3

S4
SR20

SR40

SR60

SR80

Characteristics

Five slmilar fishing grounds (same initial amount of prey), in areas 4, 6, 7, 14 and 16
Areas near the port of departure (area 1) have the same initial prey concentration. Areas 14 and 16 have
a hlgher density
In sorne epochs fish are distributed only in areas close to port and in other epochs they are excluslvely
present in areas 14 and 16, far from port
In every epoch fish may be distributed or not in any of the five potential fishlng grounds
Area 14 is no longer a fishing ground. Fish are always present in lower density in areas 4. 6 and 7, close
to port. Area 16 has a 0.2 probability of being a desert environment ln a particular epoch, but has a
higher density of prey otherwise
Area 14 is no longer a fishing ground. Fish are always present in lower denslty in areas 4. 6 and 7, close
to port. Area 16 has a 0.4 probabihty of being a desert environment in a particular epoch, but has a
higher density of prey otherwise
Area 14 IS no longer a fishing ground. F1Sh are always present ln lower density in areas 4, 6 and 7, close
to port. Area 16 has a 0.6 probability of being a desert environment in a particular epoch, but has a
higher density of prey otherwise
Area 14 IS no longer a fishing ground. Fish are always present in lower denslty in areas 4, 6 and 7. Area
16 has a 0.8 probability of being a fishing ground in a particular epoch, but has a higher density of prey
otherwise
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within an area. NN2 has a short memory of the
last three movement decisions triggered by this
neural network and each is represented with two
bits (01, 10 or II) that constitute part of the input
to NN2 in six neurons. Three more neurons keep
a performance success record of prey encounter (0
or 1) in the last three time steps within the local
search. The hidden layer consists of ten neurons.
In the output layer three neurons represent differ
ent types of movement: (a) no change of direction;
(b) slight relative change of direction to the right
or left from current track; and (c) a more abrupt
change in direction. In each case turning right or
left is kept as a random event.

Both neural networks represent the whole deci
sion system of the fishermat, receiving informa
tion through interaction with its world and
modifying the environment with each action (Fig.
3). The neural networks are used alternately since
they are not required at the same time, although
both networks influence each other's perfor
mance. Modelling the fishermat's brain with two
separate processing networks was chosen to har
monize with the plausible idea that real fishermen

Fig. 2. Fishermat's neural networks structure. (a) NNl; (b)
NN2.

2.2. Fishermat description

Two neural networks represent the fishermat,
each with a three-Iayer structure. One neural net
work (NNI, Fig. 2a) is designed to accomplish the
task of learning a strategy of decisions to move or
stay in a particular area under the circumstances
in which the fishermat is involved. This neural
network keeps track of the fishermat's area-Ioca
tion in binary code representation in four neu
rons, and with 16 other input neurons keeps a
knowledge of the relative value of each area, with
a measure of catch per unit effort over its past
experience. The hidden layer consist of 40 neurons
and the output layer has 16 neurons, each repre
senting an area. The highest output defines the
next area where the fishermat will search for prey.

The second neural network (NN2, Fig. 2b) has
the aim of learning search patterns, confined

~ ~

~

rl~:-1 ~

Fig. 3. Fishermat-World model.
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get to learn where potential fishing grounds are
found, even though they vary in extension. Never
theless, once in the fishing ground, exact position
of prey is unknown. The predator's precise posi
tion might not be relevant when a search is done
in this space scale, with scarce or no dues to prey
whereabouts. Different information and skills are
needed to perform at both levels, and two neural
networks might improve performance without in
terfering with each other, and avoid sending con
fusing and deceiving signais to the networks.

2.3. Learning

Reinforcement learning algorithms solve goal
directed problems by determining a behaviour for
the agent that maximizes its total positive and
negative rewards. Reinforcement learning al
gorithms specify such behaviours as state-action
mies, called policies. Q-Iearning is used as a rein
forcement learning technique, which seems appro
priate because the agent experiences different
actions in different circumstances and in the pro
cess of learning, predicts the reward or penalty of
future actions in a different state of affairs
(Watkins and Dayan, 1992). It can also learn
from raw experience and without a mode! of the
environment's dynamics (Sutton and Barto,
1998). The aim is to maximize the discounted
cumulative reward (Whitehead, 1991). The objec
tive of learning is to predict which action maxi
mizes the agent's performance (Lin, 1991). Output
neurons should signal an estimated utility func
tion Q(s, a), over states s and actions a. Each
output neuron, representing a particular action or
policy to perform, signaIs the expected Q value or
utility for that action-state pair. The utility is a
numeric value, which is the predicted future re
ward that will be achieved for that action-state
pair (Madin and Shavlik, 1996). The neuron with
the highest expected reward triggers the specific
behaviour that it represents. This means that each
output neuron predicts the reward to be obtained
by performing the action it represents under the
world status. To avoid premature convergence
(Mahadevan, 1994), random exploration of the
environment is allowed 10% of the time for the
first 40 epochs, instead of the action with maxi-

mum Q. This diminishes the probability of finding
a local maximum. After each action the corre
sponding utility estimate is adjusted by calculating
the difference between the output from the win
ning neuron and the real utility of the action in a
particular state with the following algorithm,
from (Sutton and Barto, 1998):Initialize Q(s, a)
arbitrarily by randomly choosing the initial con
nection weightsRepeat for each epoch:
• Initialize the state (condition) s of the world
• Choose action a for state s using policy derived

from Q, but allow sorne random exploration of
actions.

• Repeat for each step of the epoch:

(l) Take action a, observe r (reward),
s' (next state)

(2) Q(s, a) <- Q(s, a) + a[r + ymaxa'Q
(s', a') - Q(s, a)];

(where a is the learning rate and y is the
discount rate)

(3) s<-s';

• Until the final epoch
The difference between the real and predicted

utility of the action taken is used with standard
backpropagation as a measure of error. Standard
backpropagation training is a gradient descent
method to minimize the total square error of the
output computed by the net (Fausett, 1994) and
during training distributes the error between pre
diction and performance to ail the connections
between neurons involved in that decision.

Positive or negative rewards for NN2 appear at
each time step it performs, with or without prey
item encounter. Reward for NNI is re!ated to the
cumulative reward achieved by NN2 after the last
NNI decision (Fig. 3) and decisions to navigate to
a different area indude costs proportional to dis
tance travelled. Neuron output is scaled between
- 1 and + l, using the binary sigmoid function,
and costs and benefits to be gathered from move
ment decisions are adjusted so as not to pass these
values. Ali the neural networks and simulations
are programmed in C + +.
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ground (area 16) has a high concentration of prey
and a 0.2 probability of being uninhabited and is
preferred for fishing activities. When this proba
bility increases area 16 ceases to be an option for
the fishermat (Fig. Sb).

With respect to the conditions that trigger a
decision to change to another fishing ground,
negative rewards are highly associated with explo
ration when the environment is more uncertain
(Fig. 6), as shown by scenarios SI to S4 and SR20
to SR80. In the yellow fin tuna fishery in the
eastern Pacific Ocean, the decision to either con
tinue searching in a particular area or navigate
after having explored is made in relation to the
catch per day. In purse seine vessels of 1000 tons
of carrying capacity of the Mexican fleet in 1997,
decisions to continue exploiting a particular area

Fig. 5. (a) Search time per lishing ground in four scenarios
with live lishing grounds, SI, S2, S3 and S4. (b) search time
per lishing ground in the scenarios with graduai increase in
uncertainty, SR2ü, SR4ü, SR6ü, SR80.
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Fig. 4. Variations in weight connections during the learning
process.

3. Results

After setting initial values to the neural net
works connections, the Jearning process begins.
Differences between old and new weights are
higher at the beginning of the learning process
and exponentially decrease over the experiment,
as shown (Fig. 4) by several connections between
the hidden layer and output neurons in NNI. The
strategies to cope with this artificial fishing space
vary with the scenarios. In relation to area prefer
ence (Fig. 5), in SI the fishermat prefers to search
for prey in areas 4, 6 and 7 in orderly fashion, and
avoids any exploration in zones 14 and 16. In S2,
denser prey areas 14 and 16 are visited, with a
preference for the latter, while areas 4 and 7 are
neglected. When good qua lity habitat for fishing
shifts back and forward from areas 4, 6 and 7 to
areas 14 and 16, preference is for the foremost,
but there is exploration and exploitation of the
distant areas. When ail the fishing grounds ran
domly change between a desert-type environment
and an inhabited one, the fishermat explores ail
the five zones, with preference for those doser to
port, i.e. area 6 and area 7 neighbouring it (Fig.
Sa). In the SR20 scenario, the distant fishing



M. Jules Dreyfus-Leon / Ecologica! Modelling 120 (/999) 287-297 293

100
p

90
r 80
c 70

60
50

• 40
9 30
e 20
% 10

0
'" <'? ... 0

~ :il iCii III III III '"lI: lI: lI: lI:
III III III III

Scenarios

Fig. 6. Percent of decisioDs to change to another fishing
ground in relation to negative rewards (r).

came after having higher catches (a mean of 33
tons per day), whereas decisions to navigate after
a day of searching appeared after lower success
(with a mean of 14 tons per day). Since the
frequency distribution of catch per day for each
policy is skewed toward low values (Fig. 7), the
median is more representative and the contrast is
large (from 25 tons to 1 ton, respectively). Figs. 8
and 9 show the frequency distribution of decisions
to navigate in relation to the relative level of catch
per unit time that the fishermat senses and the
frequency distribution for searching decisions in
ail scenarios, respectively. Ali frequency distribu-

tions for shifting area determinations are skewed
toward low catch per day values. Judgement to
keep searching in the same area is biased in
particular towards high values of catch per unit
time, in especially for S2, S3, SR20, SR40. Skew
ness toward low values is also part of the distribu
tions, particularly for S4 and SR80.

Part of the NN2 strategy can be seen compar
ing the degree of movement direction change after
finding a prey item (Fig. 10). When no catch is the
most recent event, maintaining the same track is
preferred around 80% of the time. When catch is
the most recent experience, both low and high
degree of shift in direction are experienced more
frequently, and in the same proportion. One way
to holistically understand the search patterns of
the fishermat is with a graphic description of its
course track. Those tracks can be compared with
real vessel paths, in this case from the tuna fishery
(Fig. Il). Coordinates and the continental con
tour are eliminated to keep the information pri
vate and make a better comparison between them.

4. Discussion

The fishermat seems to cope with the world,
avoiding risky or uncertain decisions. In the ho-
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q
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Fig. 7. Decisions to keep searching or navigate to a different area in the tuna fishery, in relation to catch after a day of searching
activity.
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Fig. 8. Decisions made by the Fishermat to navigate in ail scenarios.

mogeneous SI scenario, near-port fishing grounds
were chosen instead of the distant areas, which
were excluded from further exploration. In S2,
basically area 6 was adopted as an intermediate
fishing ground towards the high concentration
areas where it resolved to stay longer time inter
vals. In both scenarios, as expected, the fishermat
chose the most profitable areas, thus eliminating
the cost of long-distance travel. When sorne un
certainty was incorporated into the S3, S4, SR20,
SR4ü, SR6ü and SR8ü scenarios, a risk-averse
attitude can be interpreted from the results. Un
der risky situations the fishermat sometimes pre
ferred areas close to port and avoided as much as
possible movement between areas. The behaviours
described are linked to the particular structure of
the scenarios as weil as to costs and benefits.

The fishermat was built with sorne information
about its surrounding world and its performance
within il. The type of information that was explic
itly incorporated for neural network processing
appears to be logical information that would be
analyzed by real fishermen. The relative value of
the fishing grounds was incorporated as part of

the knowledge of the fishermat. This has been
discussed in the analysis of the spatial distribution
of effort in fisheries (Hilborn and Ledbetter, 1979;
Abrahams and HeaJey, 1990; Gillis et al., 1993)
and of foragers getting information of potential
forage patches (Clark and Mangel, 1984). The
artificial fisherman was banned from having com
plete information of the world, similar to real Iife
circumstances that fishermen deal with. Neverthe
less, the neural networks incorporated from their
experience sorne knowledge and adopted be
haviours related to situations that they did not
explicitly know. Neural networks go through a
classification process, which is incorporated into
their structure. Experience is locked within the
connection weights, through experience in the sce
narios. This can be seen when decisions do not
seem to relate to the particular input that they use
as inquiry for the next determination, i.e. expect
ing higher payoffs after a bad experience in an
area, the fishermat sometimes decides to stay.

Similar outcomes showed up between real and
artificial fishery decisions. Frequency distributions
of decisions to navigate in ail scenarios are shifted
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Fig. 10. Degree of movement sinuosity in relation to prey item
encounter success in the last time step.

(Pyke, 1978). Since a predator or a fisherman does
not know the extension of a patch or their relative
position within it, this strategy improves the
chances of remaining in or near the patch. In the
same manner moving straightforward in higher
proportion will certainly drive a predator toward

to the relative low catch per time values compared
to those found in searching decisions. Scenario
S4, with high uncertainty incorporated into ail the
fishing grounds, has frequency distributions for
navigation and searching resolutions that match
the ones found in the tuna fishery in particular. In
both cases, reJiable decisions do not always result
in high rewards. This is caused by the uncertainty
related to the dynamic system and the fact that
fish location remains unknown until detected by
the crew or technological equipment. Fisherrnen
sometimes have dues with respect to prey where
abouts but they remain as tools only for enhanc
ing the probability of finding fish.

The local search strategy that emerged in NN2
is one that has been widely described with preda
tors in patchy environments. A higher sinuosity of
movement once a prey item has been found might
improve the possibility of finding another one
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Fig. 11. (a) Real track of a fishing vesse!; (b) track of a fishing
tnp made by the fishermat.

new areas. The fishermat's local posItIOn is not
sensed by NN2 because it does not seem relevant
due to the above. Lack of knowledge of areas of
high prey concentration and of vessel's position
within them seems to be the pattern in pelagie
fisheries, causing search to be described as a ran
dom walk (Clark and Mangel, 1979; Mangel and
Clark, 1986). Also in NN2 a short memory of
failure or success in movement decisions was in
corporated which can be viewed as a success
variable comparable to a perception of fish den
sity (Kleiber and Edwards, 1988).

The whole movement path left by the fisher
mat resembles real vessel tracks and could be
used as a Turing test to determine whether the
fishermat's behaviour is intelligent if a human
observer can not differentiate between the real

and the artificial behaviours. Apart from that
test, similarities exist between the tuna vessel and
the fishermat's track, i.e. more or less straightfor
ward paths followed by sorne extensive local
search paths. The result of the latter is that a
greater distance is searched within clusters of
prey than outside them, as described in tuna
purse seine cruises (Polacheck, 1988). From an
other perspective of the modelling framework,
the use of two or more neural networks to cope
with different but related processes seems a rea
sonable scheme to follow, and in this way to
avoid sending misleading signaIs to the neural
networks.

Furthermore, since discovery and exploitation
are key elements in hunting and fishing and in
volve aspects of adaptiveness, creativity and
learning (Allen and McGlade, 1986), there is a
potential benefit of applying neural network
methodology as weIl as reinforcement learning
techniques. They permit a more flexible and dy
namic modelling due to the emphasis on learning
and adaptation instead of the fixed behaviours
proposed in mathematical representations. Incor
porating decision making as an internaI process
into the model results in very different and more
complex model behaviour (Smith et al., 1982).
To use this framework in a specifie fishery, re
wards should be proportional to economic costs
and benefits, which are the main driving forces
of the activity.

The approach used in this model is intended to
focus on individual components of the system as
weil as in a local spatial scale, neglected in tradi
tional fishery models, instead of on higher hierar
chical leve1s. Traditional models assume that aIl
individuals are the same and interact homoge
neously within the system (Kawata and Toque
naga, 1994). This mode1 can be extended to
represent not only an individual but also fleets,
in an individual-based manner, with the emer
gence of new behaviours to cope with the inter
action among vessels. In this manner complex
spatio-temporal patterns can appear. This is a
shift in the way modelling is done in ecology
(Judson, 1994) and should incorporate more dy
namics into the system being represented.
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Abstract

The present work describes a comparison of the ability of multiple linear regression (MLR) and artificial neural
networks (ANN) to predict fish spatial occupancy and abundance in a mesotrophic reservoir. Models were run and
tested with 306 observations obtained by the sampling point abundance method using electrofishing. For each of the
306 samples, the relationships between physical parameters and the abundance and spatial occupancy of various fish
species were studied. For the 15 fish species occurring in the lake, six main fish populations were retained to perform
comparisons between ANN and MLR models. Each of the six MLR and ANN models had eight independent
environmental variables (i.e. depth, distance from the bank, slope of the bottom, flooded vegetation cover, percentage
of boulders, percentage of pebbles, percentage of gravel and percentage of mud) and one dependent variable (fish
density for the considered population). To determine the population assemblage, principal component analysis (peA)
was performed on the partial coefficients of the MLR and on the relative contribution of each independent variable
of ANN models (determined using Garson's algorithm). The results stress that ANN are more suitable for predicting
fish abundance at the population scale than MLR. In the same way, a higher level of ecological complexity, i.e.
community scale, was reliably obtained by ANN whereas MLR presented serious shortcomings. These results show
that ANN are an appropriate tool for predicting population assemblage in ecology. © 1999 Elsevier Science RV. All
rights reserved.

Keywords: Artificial neural networks; Multiple linear regression; Pnncipal component analysis; Population assemblage; Fish ecology;
Lake

1. Introduction

Interactions between organisms and their biotic
and abiotic environmental characteristics strongly

• Correponding author. Fax' + 33-5-61556096.
E-mail address:brosse@cict.fr (S. Brosse)

influence the habitat use, the spatial occupancy of
species, the proportion of each species within the
community and, thus, the community composi
tion and structure (Schoener, 1989; Eklov, 1997).
Modelling and simulation are useful tools to
roughly mimic the ecosystem structuration and
functioning but their ability to model individual
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distribution, populations and ecosystems depends
on the available modelling techniques and com
puting power (Giske et al., 1998). For example,
Ricker (1975) used correlation analysis to assess
the influence of the environment on recruitment
using abundance data. Canonical correspondence
analysis (ter Braak and Verdonschot, 1995) and
multiple least-square regression (Binns and Eiser
man, 1979) have frequently been used as qualita
tive methods to explore the relationships between
biological assemblages of species and their habitat
preferences. The MLR method is now a statistical
tool which is used in routine in ecology, but it
suffers from sorne drawbacks in that the relation
ships between variables in environmental sciences
are often non-linear (James and McCulloch,
1990), while the method used is based on linear
principles. Transformation of non-linear variables
by logarithmic, power or exponential functions
can appreciably improve the results, but have
often failed to fit data (Lek et al., 1996b). The
artificial neural network (ANN), with the error
back-propagation procedure, is at the origin of an
interesting approach comparable with regression
analysis, but particularly efficient for non-linear
data (Rumelhart et al., 1986). Up to now, ANN
have been used in ecology for modelling phyto
plankton production (Scardi, 1996), fish species
richness prediction (Guegan et al., 1998), and
prediction of density and biomass of various fish
populations (Baran et al., 1996; Lek et al.,
1996a,b; Mastrorillo et al., 1997). Nevertheless,
ANN have scarcely been applied at the commu
nity scale, and the work of Tan and Smeins (1996)
is probably the only study at this scale which used
ANN performance to predict grassland commu
nity changes. Moreover, their work only predicted
the density of each species taken one by one, and
did not deal with the existence of interactions
between species.

The aim of the present study is to model the
spatial distribution and abundance of six fish
populations according to measurable environmen
tal characteristics. Here, we use two distinct mod
elling methods and we compare their respective
capacities to fit observed patterns: (1) multiple
linear regression (MLR); (2) artificial neural net
works (ANN). Then we quantified the influence of

the eight environmental variables on the spatial
distribution and habitat use of each population,
leading to an approach of the spatial assemblage
of the six fish populations studied.

2. Materials and methods

2.1. Study site and sampling

Lake Pareloup is located in the southwest of
France, near the city of Rodez. It covers a total
surface area of 1350 ha for a volume of about 168
106 m3

• The maximum depth is 37 m and the
average depth is 12.5 m. It is a warm monomictic
lake, which therefore undergoes a summer ther
mal stratification, with a low oxygen content be
low the thermocline (located at about 10 m depth
from early June to mid-September) preventing the
fish from colonising deep water during this pe
riod. Fish sampling was performed weekly from
late June to late August in a restricted littoral
zone of the lake providing a wide range of topo
graphical characteristics. Point abundance sam
pling by electrofishing (Nelva et al., 1979)
modified for young fish (Copp, 1989) was em
ployed to evaluate the microhabitat of the main
fish populations. Each week, 30-40 sampling
points were investigated in the same area of the
lake. For each of the resulting 306 sampling
points, nine habitat variables were taken into
account: distance from the bank (DIS) in metres,
depth (DEP) in metres, local slope of the bottom
at each sampling point (SLO) expressed in four
classes from zero (nil slope) to three (sheer slope),
percentage of flooded vegetation cover (VEG) and
percentages of five substrata: boulders (BOU),
pebbles (PEB), gravel (GRA), sand (SAN) and
mud (MUD). Fishes collected were preserved in
4% formaldehyde solution. In the laboratory, 0 +
roach (Rutilus rutilus, L. 1758), 0 + perch (Perca
fluviatilis, L. 1758), 0 + rudd (Scardinius ery
thraphthalamus, L. 1758), 0 + gudgeon (Gabia
gabia, L. 1758), 0 + pike (Esax lucius, L. 1758)
and adult perch were identified and numbered for
each sampling point.



S. Brosse el al. / Ecological Modelling 120 (/999) 299-311 301

Fig. 1. Typical thrce-Iayered feed-forward artificial neural
network. Eight input neurons corresponding to eight indepen
dent environmental variables (DEP = depth, SLO = slope,
DIS = distance from the bank, BOU = boulders, PEB = peb
bles, GRA = grave!, MUD = mud, VEG = flooded vegeta
tion), ten hidden layer neurons and one output neuron for
estimating one fish population density. Each of the six fish
populations was predicted in tum. Connections between neu
rons are shown by solid Imes: they are associated to synaptic
weights that are adjusted during the training procedure. The
bias neurons are also shown; their input value is one.

of the eight environmental variables on each fish
population. The network configuration is ap
proached empirically by testing various possibili
ties and selecting the solution that provides the
best compromise between bias and variance
(Geman et al., 1992; Kohavi, 1995). Training the
network consists of using a training data set to
adjust the connection weights in order to min
imise the error between observed and predicted
values. This training was performed according to
the back-propagation algorithm (Rumelhart et al.,
1986). The computational program was written in
a Matlab® environment and computed with an
Intel Pentium® processor.

The modelling was carried out in two steps:
first, model training was performed using the
whole data matrix. This step was used to estimate
the performance of the ANN to learn data. Sec
ond, we used the 'Ieave-one-out' bootstrap cross
validation test (Efron, 1983; Efron and
Tibshirani, 1995), where each sample is left out of
the model formulation in turn and predicted once,

2.2. Modelling techniques

Modelling was carried out after 10glO(x + 1)
transformation of the dependent variables. This
transformation was applied to avoid an undue
influence of outliers on the models (ter Braak and
Looman, 1995). The Pearson correlation matrix
showed a strong correlation between SAN and
MUD (r = - 0.98) and therefore, the variable
SAN was removed from the data matrix in order
to deal with colinearity. MLR and ANN models
were set up using the same dataset (i.e. 306 sam
pIes x (eight environmental variables + six fish
populations)) with the aim of comparing the two
methods.

For MLR, models were set up using ail the
variables simultaneously. Calculations were done
using SPSS software (Norusis, 1993). For 0 +
pike, which is a top-predator fish with low den
sity, we considered its absence (coded 0) and
presence (coded 1). To process these categorical
variables, a logistic regression was used to model
0+ pike distribution. For each of the six models,
final values of the partial standardised regression
coefficients of MLR were retained to define the
influence of environmental factors at the popula
tion scale. Then, they were used to perform prin
cipal component analysis (PCA) in order to assess
the spatial occupancy of fish populations within
the entire fish assemblage.

For ANN modelling, a multilayer feed-forward
neural network was used. The processing elements
in the network, calIed neurons, are arranged in a
layered structure. The first layer, called the input
layer, connects with the input variables. In our
case, it comprises eight input neurons correspond
ing to the eight environmental variables, respec
tively. The last layer, calIed the output layer,
comprises a single neuron which corresponds to
the dependent variable to be predicted (fish den
sity for the population considered) (Fig. 1). The
layer between input and output layers is called the
hidden layer. We could have used a single neural
network with six output neurons (one for each of
the six fish populations), but we preferred to use
six networks with the same architecture, each one
predicting the abundance of one fish population,
as to easily extract from the models the influence

DEP - - 1."--' L.~ HI

DIS 
SLü 
BüU-

PEB 

GRA

MUD-

Bias

o Bias

0+ mach
0+ perch
0+ rudd- 0+ gudgeon
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to validate the models. This procedure is appro
priate when the amount of data is quite small
and/or when each sampie is likely to have 'unique
information' (Efron and Tibshirani, 1995; Ko
havi, 1995). This step allows the prediction capa
bilities of the network to be assessed.

One disadvantage of ANN is their lack of
explanatory power. Classical analyses, like MLR,
can identify the contribution each independent
variable (i.e. input) has on the dependent variable
(i.e. output) and can also give sorne measures of
confidence about the estimated coefficients. On
the other hand, current1y, there is no theoretical
or practical way of accurately interpreting the
weights attributed in ANN. For example, weights
cannot be interpreted as regression coefficients.
Therefore, ANN are generally better suited for
forecasting or prediction than for explanatory
analysis. Sorne authors have proposed methods
for interpreting neural network connection
weights to illustrate the importance of explana
tory variables in the ANN (Garson, 1991; Dimo
poulos et al., 1995; Goh, 1995; Lek et al.,
1996a,b). These studies have demonstrated the
potential of ANN approaches to explain non-lin
ear interactions between variables in complex sys
tems, and have proposed a procedure for
partitioning the connection weights to determine
the relative importance of the various input vari
ables. In the present work, Garson's algorithm
(Garson, 1991), modified by Goh (1995), was used
to determine the influence of the environmental
variables. Ten models were set up for each of the
six fish populations studied. Then the influence of
environmental variables was defined for the ten
models and used to assess the spatial distribution
of the six populations within the entire commu
nity using PCA. In this case, each model was
considered as a statistical unit. Thus, PCA was
performed on a data matrix containing 60 units
(ten units per population x six populations) and
the eight environmental variables. Finally, to sep
arate fish population spatial occupancy within the
community, cluster analysis was performed on the
PCA results using the coordinates of the 60 units
on the first two PCA axes.

3. Results and discussion

3.1. Performance of the models

3.1.1. Multiple linear regression models
Examination of Fig. 2 shows sorne pitfalls

which may exist when developing MLR models.
Two of the six models were not significant to fit
the relationships between fish density and the
eight environmental variables: 0 + pike (r = 0.15,
P=0.54) and adult perch (r=0.19, P=0.22). In
both these models, the predicted values showed
only nil or close-to-nil values (except one point
for adult perch) (see Fig. 2). Overall, we obtained
94% of correct performance estimated using a
performance index (PI), based on the proportion
of responses within plus or minus 10% of the
actual value, but samples with fish were never
well-predicted. For the four significant models,
correlation coefficients were quite low. Only two
models gave a correlation coefficient higher than
0.5 (0.59 for 0 + rudd and 0.70 for 0 + gudgeon),
furthermore, the best of these two coefficients was
biased as this high value was due to only one
non-nil sample well-predicted. Moreover, for the
six models, most of the high values of fish abun
dance were always underestimated and sorne low
predicted values were aberrant, i.e. negative fish
densities. The points were not well-distributed
along the line of perfect prediction (coordinates
1: 1). The residuals tended to increase with esti
mated values, and their distribution was far from
normal. To determine the optimal predictive ca
pacity of traditional methods, we used a non
parametric regression technique: generalized
additive models (GAM) (Hastie and Tibshirani,
1990), using the locally-weighted smoother of
Cleveland (1979) current1y called 'Iowess', were
set up for the six populations. With this method,
the six models were significant (P < 0.01) and we
obtained a clear improvement of the correlation
coefficients: r = 0.54 for 0 + roach, r = 0.38 for
0+ perch, r = 0.74 for 0 + rudd, r = 0.74 for 0 +
gudgeon, r = 0.27 for 0 + pike and r = 0.37 for
adult perch. These improvements of the quality of
the model's predictions testifies to the non-linear
behaviour of the relationships between dependent
(i.e. fish populations) and independent (i.e. envi-



observed values

Fig. 2. Recogmtion performance of the MLR models for the six fish populations. Scatter plots of predicted values vs observed
values. The solid line mdlcates the perfect fit Ime of prediction (coordinates 1:1)

ronmental variables) variables. In addition, it
justifies the use of ANN, which are known to be
able to deal with non-linear relationships between
dependent and independent variables when com
pared with classical MLR methods.

3.1.2. Artificial neural net\\'ork models
The ANN structure used was a three-layered

(8 --> 10 --> 1) feed-forward network with bias (Fig.
1). There were eight input neurons to code the
eight different independent variables. The hidden
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layer had ten neurons, determined as the optimal
configuration giving the lowest error in the train
ing and testing sets of data with minimal comput
ing time (Geman et al., 1992; Lek et al., 1996b,c).
The output neuron computed the value of the
dependent variable (fish density). We thus had a
total of 101 parameters: (eight input neurons x

ten hidden neurons) + (ten hidden neurons x one
output neuron) + II bias parameters.

The ANN with back-propagation gave much
higher correlation coefficients between observed
and predicted values (Fig. 3) than MLR. Fig. 3
shows that both low and high values of fish
densities were well-predicted even for scarce pop-
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Table 1
Performance index (PI) and sum of squared errors (SSE) m ANN trammg and testmg and m MLR training for the six populatIOns"

ANN MLR

Traimng Testmg Training

PI SSE PI SSE PI SSE

0+ Roach 66 7.32 63 1198 50 70.74
0+ Perch 72 6.23 69 14.02 65 29.46
0+ Rudd 69 9.26 61 13.46 46 65.27
0+ Gudgeon 97 0.66 96 2.65 98 1.04
0+ Pike 90 2.26 91 1.80 90 5.50
Adult Perch 94 7.74 91 8.25 95 1 18

a PI is the percentage of well-predicted values with an error rate lower than 10'/0.

ulations such as for 0 + gudgeon, for 0 + pike
and for adult perch. For these three fish popula
tions, non-ni! values were rarely predicted as nil
values by the network (only two samples for 0 +
gudgeon and for adult perch) and a large propor
tion of the high values were weIl or perfectly
predicted. For 0 + roach, 0 + rudd and 0 +
gudgeon, points were well-distributed along the
diagonal of best fit. 0 + perch, adult perch and
o+ pike abundances were underestimated, but
the results remained clearly better than those ob
tained using MLR. Moreover the distribution of
residuals was close to normal with a mean value
of 0.007 (S.D.= ±0.152) for 0+ roach,0.017
(S.D. = ± 0.128) for 0 + perch, 0.006 (S.D. = ±
0.183) for 0 + rudd, - 0.004 (S.D. = ± 0.056) for
0+ gudgeon, -0.001 (S.D. = ± 0.172) for 0 +
pike and 0.001 (S.D. = ± 0.010) for adult perch.

A cross-validation testing procedure (i.e. leave
one-out bootstrap) was performed to validate the
ANN models. Models could have been evaluated
using the determination coefficients (r 2

) or corre
lation coefficients (r), but because of the scarcity
of high values of fish densities (especially for 0 +
gudgeon, 0 + pike and adult perch), we preferred
to use performance index (PI) and sum of squared
errors (SSE) to assess model prediction perfor
mance. The PI was based on the proportion of
responses within plus or minus 10% of the actual
value.

The PIs obtained after the testing procedure
were very close to those obtained after training

for each of the six species (Table 1). SSE of the
test were low and close to those obtained during
the training procedure. MLR gave high PIs due to
the abundance of nil values; however the SSE
values were clearly higher than for ANN, except
for 0 + gudgeon and 0 + perch due to the
scarcity of non-nil values. Thus, compared with
MLR, ANN gave better results both in training
and testing procedures.

3.2. Importance of the enviromnental variables in
population abundance

In MLR, the influence of each variable can be
roughly assessed by checking the final values of
the partial standardized regression coefficients.
Each coefficient of a linear model is the partial
derivative of the response of the model with re
spect to the variable of that coefficient. The stan
dardized coefficients of MLR therefore generally
give a way to compare the relative influence of
each independent variable on the dependent vari
able, when aIl other independent parameters have
been kept constant in the models. Table 2 shows
the MLR standardised partial coefficients of the
eight variables for each population. Few among
these coefficients were significant (5 for 0 +
roach, 3 for 0 + perch and 0 + rudd, 2 for 0 +
gudgeon, 1 for 0 + pike and adult perch). More
over, three of the eight variables are usually con
sidered as essential for 0 + fish microhabitat
choice: distance from the bank (DIS), depth
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(DEP), and flooded vegetation (VEG), but MLR
considered only distance from the bank (DIS) as
significant (except for adult perch). MLR shows
that 0 + fish abundance was significantly corre
lated to low values of distance from the bank
(DIS) (i.e. negative coefficients), this is in accor
dance with ecological studies (Haberlehner, 1988;
Copp, 1992). Nevertheless, according to MLR
models, 0 + roach and 0 + gudgeon abundance
increase with depth (DEP), which seems illogical,
as deep littoral areas are usually avoided by 0 +
fish. Finally, the flooded vegetation (VEG) was
never considered as a significant variable, whereas
it is logically one of the most important variables
for 0 + fish (Persson and Ekl6v, 1995; Ekl6v,
1997).

For ANN, the results of Garson's algorithm
stress the importance of environmental variables
in the model (Fig. 4). Standard errors calculated
for each variable after ten training procedures
were very low, showing the stability of the net
work models. The contribution of each environ
mental variable to the model for the six
populations was in accordance with previous eco
logical studies (Holland and Huston, 1984;
Haberlehner, 1988; Copp, 1992; Mastrorillo et al.,
1996): 0 + roach, 0 + perch, 0 + rudd and 0 +
pike are closely linked to the flooded vegetation
(VEG) and the distance from the bank (DIS)
whereas 0 + gudgeon is indifferent to the flooded
vegetation (VEG) but strongly influenced by the
distance from the bank (DIS). Finally, adult perch

habitat is known to be largely governed by the
depth (DEP) and the distance from the bank
(mS) (Persson, 1983; Persson and Ekl6v, 1995).
Moreover, fish microhabitat is defined by several
variables showing that microhabitat results from a
complex combination of different habitat charac
teristics (only 0 + gudgeon show a quite simple
diagram, with only one important variable, the
distance from the bank (DIS), which contributes
more than 50%). The main processes that deter
mine fish habitat and distribution can be approxi
mated by linear functions only to a limited extent.
Even when simple (e.g. logarithmic) transforma
tions of variables to linearize their distribution are
used, the results remain unsatisfactory. The use of
complex transformations of the variables (e.g.
GAM) improves the results, but they remain
lower than those obtained by ANN. On the other
hand, ANN with only one hidden layer can model
non-linear systems in ecology without complex
transformations of the data (Goh, 1995; Lek et
al., 1996b; Scardi, 1996). The microhabitat of the
six fish populations studied here was reliably fitted
by ANN to the measured environmental charac
teristics of the points sampled in the lake. The
ANN models clearly show the influence of each
variable on the microhabitat of each population
whereas MLR gives aberrant values which are
irrelevant from an ecological point of view. Thus,
MLR models are unable to represent ecological
reality due to non-linear relationships such as
those which probably exist between the densities

Table 2
MLR partial standardlsed coeffiCients for the six fish populations studieda

0+ Roach 0+ Perch 0+ Rudd 0+ Gudgeon 0+ Pike Adult perch

DEP 0.117* -0.050 -0.011 0.689** -0.016 0.003
DIS -0.418** -0246** -0.167** -0213** -0.126* 0.008
SLO 0.054 0.180** -0.294** 0.033 -0.033 0.075
BOU -0.033 -0019 -0.073 -0.013 -0.014 0.123*
PEB -0.112* -0.061 -0.031 -0.019 -0.ül8 -0.021
GRA 0.184** -0047 -0049 -0.014 -0.013 -0.013
MUD 0.263** 0.144* -0.256** -0.073 0.094 0.067
VEG -0.098 -0.087 0044 -0.066 0.025 -0.037

a Environmental variables were lettered as follows' DEP = depth. SLO = slope. DIS = distance from the bank, BOU = boulders.
PEB = pebbles, GRA = gravel, MUD = mud, VEG = flooded vegetation.

* Significant coefficient (P < 0.05J.
** Highly significant coefficient (P<O.OI).
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of the six fish populations considered and sorne
environmental variables.

3.3. Population assemblage studies

To visualise the spatial distribution of the six
fish populations studied within their environment
(i.e. population assemblage), on the basis of the
information provided by the models, PCA tech
niques were used.

On its first and second axes which accounted
for 49.2 and 29.5% of the total information, re
spectively (Fig. 5a), the PCA performed on the
partial coefficients of the MLR revealed a signifi
cant correlation (P < 0.01) between distance from
the bank (DIS), pebbles (PEB), flooded vegetation
(VEG) and 0 + pike and 0 + roach; gravel

(GRA), mud (MUD) and 0 + perch and 0 +
roach; slope of the bottom (SLO), distance from
the bank (DIS), boulders (BOU) and adult perch.
We can notice, on the first axis, an opposition
between (0 + pike, 0 + rudd) and (0 + roach,
o+ perch). The second axis shows an opposition
between adult perch, and 0 + rudd (Fig. 5b).
These results based on MLR models conflict with
general agreement on habitat use by both 0 +
roach and 0 + perch individuals since, during the
larval and juvenile periods, they are generally
located close to shelters such as flooded vegeta
tion (Haberlehner, 1988; Persson and Eklôv,
1995).

Concerning ANN, the PCA performed on the
contribution factors (Goh's algorithm results) al
lowed the microhabitat of the six fish populations
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to be taken into account simultaneously to better
define their spatial occupancy and thus to ap
proach the population assemblage. On its first and
second axes, which accounted for 43.1 and 20.6%
of the total information, respectively (Fig. 6a), the
PCA revealed a significant correlation (p < 0.01)
between flooded vegetation (VEG) and 0 +
roach. 0 + rudd and 0 + pike; between depth
(DEP) and adult perch; between distance from the
bank (DIS) and 0 + gudgeon. We can see, on the
first axis an opposition between 0 + gudgeon
individuals and the other fish species individuals
except for 0 + pike. The second axis shows an
opposition between adult perch and the group
o+ roach, 0 + rudd, 0 + pike and 0 + perch
(Fig. 6b). The representation of the ten statistical
units for each population reveals the range of
microhabitat variation for each fish population.
Moreover, the c1uster analysis distinguishes sev
eral groups and enables an approach to be made
to the spatial range of microhabitat characteristics
for each population (Fig. 6c). The separation of
sorne fish populations such as 0 + gudgeon or for
top-predators (i.e. 0 + pike and adult perch) has
already been observed in natural environments,
and the spatial occurrence of 0 + roach, 0 +

O+rudd

rudd and 0 + perch, as illustrated by the c1uster
analysis, is well-known by ichthyologists. The fish
assemblage visualised in the PCA was in accor
dance with various ecological studies concerning
the microhabitat of these species (Persson, 1983;
Haberlehner. 1988; Copp, 1992; Hosn and Dow
ing, 1994; Persson and Eklôv, 1995; Mastrorillo et
al., 1996). As a consequence, the fish assemblage
was reliably predicted using ANN. This predicted
spatial occupancy can be easily visualised on a
PCA plane. Thus, ANN are more suitable than
MLR to reproduce the operation of real complex
multispecies systems (i.e. population assemblage)
on the basis of the ecological variables introduced
in the model.

4. Conclusion

The back-propagation of ANN constitutes a
more efficient tool than MLR to predict fish
abundance and spatial occupancy from the envi
ronmental characteristics of the littoral area of a
lake. The selection of input variables introduced
into the modelling procedures, their ecological
significance and the constitution of testing sets of

b

O+roach

-4.00

49.2 a

Axis 1
5.00

0+ perch

~.9 J
adult perch ,

w

8
--~---

FIg. 5. Principal component analysis (PCA) perfonned on MLR results using the standardlsed partial regression coefficients for the
six fish populations. (a) Histogram of eigenvalues; (b) dlstnbution of the six samples (i.e. populations) and the eight envlronmental
vanables (DEP = depth, SLO = slope, DIS = dIstance from the bank, BOU = boulders, PEB = pebbles, GRA = gravel, MUD =
mud, VEG = flooded vegetation) on the FI x F2 plane.
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Fig. 6. Pnncipal Component AnalySIS (PCA) performed on ANN results using Garson', algorithm for the SIX fish populations. For
each population, the statistical units (samples) were the results of the ten ANN modeb (a) Histogram of eigenvalues; (b) distributIOn
of the 60 samples and the elght environmental vanables «DEP = depth, SLO = slope, DIS = distance from the bank, BOU = boul
ders, PEB = pebbles, GRA = gravel, MUD = rnud, VEG = flooded vegetation) on the FI x F2 plane. (0) adult perch; (_) 0 +
roach; (0) 0 + perch; (e) 0 + pike; (6) 0 + gudgeon; C") 0 + rudd; (c) cluster analysis of the first two coordinates of PCA
showmg a separation between adult perch, 0 + pike and 0 + gudgeon, the three other populatIOns are dispersed across the sirnllanty
gradient.

data to assess the performance of the model are
important elements for this type of approach
(Faush et al., 1988). The ANN modelling ap
proach used here is a fast and flexible way to
incorporate multiple input parameters into a sin-

gle mode!. In addition to the predictive value of
the model, the combination of ANN and multi
variate analysis simultaneously visualise the re
sults provided by several ANN models with the
same data matrix at the input. It is this ability to
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deal with multiple information sources that pro
vides the power of this approach, resulting in a
significant improvement in ANN modelling over
conventional techniques. These results on the use
of ANN for population assemblage analyses are
promising and open new fields for their applica
tions to ecology.
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Abstract

Artificial Neural Networks (ANN) were applied to microsatellite data (highly variable genetic markers) to separate
genetically differentiated forros of brown trout (Sa/mo trutta) in south-western France. A classic feed-forward network
with one hidden layer was used. Training was performed using a back-propagation algorithm and reference samples
representing the different genetic types. The hoId-out and the leave-one-out procedures were used to test the validity
of the network. They were chosen according to the populations and the questions analysed. The informative content
of the different variables used for the distinction (the alleles of the different loci) was also evaluated using the
Garson-Goh algorithm. The results of learning gave high percentages of well-classified individuals (up to 95% for the
test with the hold-out analysis). This confirms that ANNs are suitable for such genetic analyses of populations. From
a biological point of view, the study enabled evaluation of the genetic composition and differentiation of different
river populations and of the impact of stocking. © 1999 Elsevier Science B.V. Ali rights reserved.

KeYll'ords: Artificial Neural Network; Classification; Microsatellites; Stockmg; Brown trout

1. Introduction

Salmonids are extensively studied fishes both
from a practical point of view (fisheries manage
ment) and for sorne more theoretical aspects
(ecology and evolution). The brown trout (Salmo
trutta L.) displays sorne interesting biological
characteristics for the study of genetic intraspe-

* Corresponding author. Fax: + 33-467-144-554..
E-mail addres.;aurelle@crit.ulllv-montp2.fr (D. Aurelle)

cific differentiation: brown trout lives in the upper
part of the rivers and is philopatric. Genetic stud
ies have shown that the species S. trutta includes
several genetic entities. For example, in the west
ern part of the French Pyrenees, two wild forms
are present naturally: ancestral Atlantic and mod
ern Atlantic (the first one was called ancestral
according to Hamilton et al., 1989). Moreover,
stocking practices led to the introduction there
(and more generally in most French rivers) of a
third form, the domestic modern Atlantic trout,

0304-3S00/99/$ - see front matter Ig 1999 Elsevier Science B.V Ali rights reserved.

PlI: S0304-3S00(99)00111-S
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which does not originate from these rivers (Au
relle and Berrebi, 1998). The three forms may be
found in the same river and can hybridise.

Nevertheless, the classification of individuals
among the different forms is a prerequisite for the
study of genetic interactions. Allozymes separate
modern and ancestral forms, but no diagnostic
markers are available to distinguish between do
mestic and wild modern Atlantic trout. However,
microsatellites have shown that the distinction is
justified as the populations of some rivers appear
to be genetically different to hatchery strains (Au
relle and Berrebi, 1998). Because of microsatellite
properties, distinction between individuaIs of the
different forms remains difficuIt. These loci usu
ally display a high mutation rate and are subject
to retention of ancestral polymorphism and ho
moplasy phenomena (Jarne and Lagoda, 1996).
There are numerous shared alleles between wild
and domestic modern populations and only some
differences in allelic frequencies. Tt is, therefore,
necessary to use powerful statistical classification
tools to appraise the genetic composition of the
populations studied and at the same time to sepa
rate natural migration and human manipulations
(stocking).

Artificial neural networks (ANNs) seem weIl
suited to the problem. They have already been
used for a wide range of different studies and
situations. They are commonly used in physics
and chemistry but less so in ecology and popula
tion genetics. However, preliminary studies have
shown that ANNs are suitable for these topics
(Guégan et al., 1998) and more effective than
classic discriminant analysis Cornuet et al., 1996;
Mastrorillo et al., 1997). Moreover, no particular
assumptions are required concerning the data
used for classification. ANNs have proven to be
effective in population genetics, at several differ
ent taxonomie levels and with highly variable
markers such as microsatellites (Cornuet et al.,
1996). They are, therefore, expected to be capable
of classifying individuals in populations belonging
to the same sub-species and genetically relatively
similar (e.g. wild and domestic modern trout).
Until now, neural networks have been tested with
some weil separated and genetically differentiated
groups (such as bees in Cornuet et al., 1996). In

the work reported here, we applied them to mixed
populations where samples may contain several
genetic units; this raises the question of the refer
ence samples necessary for training the network
(see Section 2) and that of the validation proce
dures (how can we know if the resuIt is right?).
Several training and validation procedures were
tested depending on the situation.

Analyses were performed with different pur
poses. Firstly, we wished to verify using indepen
dent markers (microsatellites), the distinction
between modern and ancestral fishes which is
shown by allozymes at only one locus (LDH5*);
this also enabled us to test the method in a clear,
weIl known situation. We then sought wild mod
ern populations (with no or almost no stocking
influence). This enabled us to evaluate the genetic
composition of the different populations analysed
here. The importance of the different alleles in the
classification (and their informative content) is
also discussed for the different microsatellite loci
used.

2. Materials and methods

2.1. The populations analysed

The populations from nine rivers and three
hatchery strains were analysed. The origins and
sizes of the samples are provided in Table 1. The
numbers refer to Fig. 1, and the percentages of
allele LDH5*90 provide some information about
the genetic composition of the populations. The
ancestral form is characterised by allele 100 at this
locus whereas the two modern forms possess allele
90. A population with 100% LDH5*9ü is then
considered as modern, but we do not know
whether these fishes are wild or domestic (there is
no diagnostic allele for this distinction). Sorne
populations consisting of only a few individuals
were analysed because they were genetically and
morphologically original (Andurentako) or be
cause they seemed to be mixed (Marcadau which,
according to local managers is heavily stocked;
moreover hatchery fishes are often easy to recog
nise thanks to coloration) but we kept in mind the
problems of small samples.
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According to allozymic data (unpublished)
sorne river samples consisted mainly of modern
fishes (Chiroulet, Oussouet and Luz) and certain
other samples were almost completely ancestral
(Dancharia, Andurentako, Béhérékobentako and
Bastan). According to local managers, these pop
ulations have not been stocked for several years.
Moreover, the morphological characteristics
would tend to show that Chiroulet, Oussouet and
Luz fishes are mainly wild. Marcadau and Béhér
obie contain both modern and ancestral fishes.

The morphology of Marcadau fishes tend to show
that the population is quite heavily restocked.

2.2. Mierosatellite loci

Four microsatellite loci were analysed. Strutta
58 has been cloned by Poteaux (1995). MST 73
and MST 15 have been cloned by Estoup (Estoup
et al., 1993). MSU 4 has been published in Gen
bank under accession number U43694; it was
submitted directly by P.T. O'Reilly and has been

Table 1
Ongin and charactenstlcs of the samples; bold names refer to the samples names used in the text

No. (map)

1
2
3
4
5
6
7
8
9

Locality

La Canourgue
Brassac
Suech
Cauterets
Sare
Dancharia
Herboure
Bidarray
Béhérobie
Cbiroulet
Bagnères de Bigorre
Argeles

ATLANTIC
OCEAN

SPAIN

River

hatchery
hatchery
hatchery
Marcadau
Beherekobentako
Nivelle
Andurentako
Bastan
Nive de Béhérobie
Adour de Lesponne
Oussouet
Luz

Basin

Adour
Nivelle
Nivelle
Untxlll
Adour
Adour
Adour
Adour
Adour

FRANCE

.....

Sample size

50
30
36
15
24
30

5
29
25
86
86
88

1 Marcadau
2 Beherekobentako
3Dancharia
4 Andurentako
5 Bastan
6 Béhérobie
7 Chiroulet
8 Gussouet
9 Luz

30km

% LDH5*90

95
100
99
33
o
2
o
4

27
89
82
95

Fig. 1. Location of the sampling points.
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Each neurone is connected with the neurones of
the neighbouring layers; it receives and sends sig
naIs through these connections and always from
input to output (Fig. 2). Each connection is
weighted according to the signal intensity. Each
neurone integrates the signaIs received from the
former neurones and sends a new signal to the
next ones. This signal is delivered according to a
non-linear transfer function applied to the sum of
the weighted signaIs of the former neurones (see
Cornuet et al., 1996; Mastrorillo et al., 1997). Let
W, and XI be the weight and the signal outgoing
from the former neurone i (layer n); the incoming
signal for one neurone in the layer n + 1 will be:

--4 mlcrosatellite
locI ---...~\-"'-.--

H o

z =" w·*xL. 1 1
(1)

A processlng element

Fig. 2. Structure of an Artificial Neural Network (ANN).

The outgoing signal for this neurone in layer n + 1
will then be:

For the input layer, incoming signaIs correspond
to the variables used to classify individuals (the 71
alleles). The outgoing signaIs of the output layer
designate the category where the studied individ
ual will be assigned by the network. The decision
is made in the light of the highest score. Neverthe
less, as is mentioned in Section 2.4, absolute out
put values can and should be discussed. For
example, individuals with a score of one in a
group can be considered as quite accurately
classified in this category but the interpretation of
individuals with intermediate scores (0.5 for ex
ample) is not as easy. On the other hand, individ
uals with scores of zero to 0.1 in their original
category can be considered to be incorrectly
classified.

The network must be trained in order to clas
sify individuals correctly. A training data set (ran
domly chosen in the global data set) is used to
modify the weights of the different connections in
order to maximise the percentage of well-classified
individuals. We used a 'back-propagation' al
gorithm. First, the initial weights are randomly
distributed. They are then modified iteratively de
pending on the differences between expected and
observed output signaIs (assignation scores; see
Cornuet et al., 1996; Mastrorillo et al., 1997).

identified in salmon (Salmo salar). Two of these
four loci were highly variable (Strutta 58 and
MSU 4 with 38 and 18 alleles respectively). The
two others displayed only a few alleles in com
parison with the usual microsatellite variability
(seven alleles for MST 73 and eight for MST 15).
PCR and analyses procedures are described in
Aurelle and Berrebi (1998).

2.3. Artificial neural netll'orks

A classic feed-forward network (Rumelhart et
al., 1986) was used in the study. This network had
three layers: an input layer, a hidden layer and an
output layer. The input layer was connected with
the variables used for discrimination; in our
study, these variables were the 71 alleles coded as
follows: for each allele, each individual was noted
zero if it did not possess it, one if the fish was
heterozygotic for the allele and two if it was
homozygotic for it. The hidden layer was reduced
to two neurones to avoid too large a number of
parameters; this choice did not reduce the net
work efficiency beyond reasonable limits. The
number of neurones in the output layer corre
sponds to the number of categories in which
individuals should be classified (depending on the
analyses, see Section 2.4).

fez) = [1 + exp( - .:)] - 1 (2)
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Numerous iterations are usually necessary to ob
tain a good percentage of well-classified individu
aIs without an over-fit to the training data set.
Effectively, if the percentage of weil classified
individuals is much higher for the learning data
than for the test data (see below), we can deduce
that the network has learned the training data
particularities and cannot be applied to a more
general situation.

A hold-out procedure (Kohavi, 1995) can be
used to test the validity of the network. For this
purpose, a data set with sorne known categories is
divided into two parts. The first part is used for
training the network. When the training proce
dure has been completed, the network is then
applied to the second part and we can evaluate
the percentage of weil classified individuals for
data not used for learning. This second part is
then used as a test. Once it has been verified that
the network is well suited and does not over-fit
the learning data, it can be applied to unknown
data (application stage).

If the data set is too small to be divided into
two parts or if its composition is not weil known
and possibly heterogeneous, one can use the
leave-one-out procedure (Kohavi 1995). For ex
ample, for a data set with N individuals, training
is performed with N - 1 individuals (by assuming
that their categories are known) and the network
is applied to the Nth individual, which is then
classified according to its proximity to one of the
previously learned categories. This analysis is re
peated for the N individuals which are ail assigned
to one group. Given the high number of training
stages (N steps), the number of iterations for each
training is limited to 500.

For analysis of the resu1ts, each individual was
assigned to the category where it showed the
highest score. At the population level, it is inter
esting to study the individual score distributions
for the various categories. In order to analyse the
contributions of the different alleles to classifica
tion, we used the Garson-Goh algorithm (Gar
son, 1991; Goh, 1995; Lek et al., 1996a,b). This
algorithm determines the relative importance of
the various input variables by taking into account
the weights of the hidden layer neurones con
nected with these input. Briefly, for each hidden

neurone, the weight of the connection from one
input variable to this neurone is multiplied by the
weight of one output connection; these products
are summed for ail the output connections and
then expressed relatively as a percentage for the
comparison of ail input variables. These percent
ages are intended to express the informative con
tent of each variable.

2.4. Analysis protocols

(1) First, we tested the effectiveness of the
method for a situation in which sorne genetic
markers different from microsatellites were able
to distinguish between several categories. Here,
modern and ancestral individuals can be separated
with allozymes (especially with the LDH-5* lo
cus). The training set consisted of four ancestral
populations (Bastan, Béhérékobentako, Dan
charia and Andurentako) versus four modern
populations (the three hatcheries and Luz). This
distinction was analysed using a hold-out (la) and
then a leave-one-out (l b) procedure.

2) We then analysed the hatchery populations.
The different strains are assumed to be genetically
quite similar so the sample analysed should be
representative of the different hatchery strains
used in the country. We tried to verify these
assumptions by using a leave-one-out procedure
(for the analysis of ail individuals and because one
strain may be heterogeneous) with three cate
gories corresponding to the three strains analysed.

3) We also sought wild modern Atlantic popula
tions. As a modern population may be heteroge
neous and contain wild and domestic fishes. we
decided to use a leave-one-out procedure with two
classes comparing each modern river population
to hatcheries which were pooled (according to the
results of analysis two showing the genetic homo
geneity of these strains). Three tests were per
formed: Chiroulet versus hatcheries,
Oussouet/hatcheries and Luz/hatcheries.

4) The other river populations (ancestral and
mixed) were also compared to hatcheries by the
leave-one-out method to examine the potential
influence of domestic fishes in these samples. The
leave-one-out procedure is useful for this com
parison because each fish is analysed individually
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and the presence of a foreign fish (a domestic
fish in a river) can theoretically be detected. We
compared Bastan with the pooled hatcheries,
Béhérobie versus hatcheries and Marcadau ver
sus hatcheries.

3. Results

For each analyses we will give sorne percent
ages of so-called 'incorrectly classified individu
aIs': this indicates individuals which were not
classified by the network in the population
where they were sampled. Nevertheless, they can
either be classified in the population from which
they originate (as for example sorne domestic
fishes classified in the hatchery category but
sampled in one river) or they can effectively cor
respond to sorne errors of the network.

3.1. The ancestral-modern distinction

(la) The percentage of incorrectly classified
individuals by leave-one-out is 2% in the global
comparison between ancestral and modern. This
proportion is 1% among supposedly modern in-

dividuals and 7% for populations expected to be
ancestral. Analysis of the distribution of the
scores within the ancestral category for ancestral
populations (Fig. 3) shows that most individuals
(65%) score between O.S and one; 26% are be
tween 0.5 and O.S, corresponding to less sharp
and correct assignation, like the 2% scoring be
tween 0.3 and 0.5. FinaIly, 7% should really be
classified in the other group (score between 0.1
and 0.3). Conversely, more than SO% of modern
individuals scored between zero and 0.1 and
were then weIl classified in their original cate
gory. 1% scored between 0.9 and one and were
assigned to the ancestral type whereas they were
in a modern sample.

(l b) With the hold-out procedure, we ob
served 1% of incorrectly classified fishes in the
learning stage and 5% in the test. When this
network is applied to new populations, the per
centage of modern individuals can be evaluated
and compared to the frequency of the LDH-5*
modern allele (Table 2). There is a reasonably
good correlation between the two sets of vari
ables.

For this analysis, the contributions of the dif
ferent alleles to the network are shown in Fig.
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Fig. 3. Score distribution in the ancestral category for the leave-one-out comparison between ancestral and modern. The first
category corresponds to scores of between zero and 0.1 and the second to scores of between 0.1 and 0.2.....
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Table 2
Percentage of modern mdlVlduals m four populations as pre
dlcted by artificial neural network compared with the fre
quency of modern LDH5* alleJe

than those that are fairly rare, but with sorne
exceptions. Sorne rare alleles can be useful or not,
depending on the analysis.

4. On the x axis, alleles are c1assified by increasing
abundance in the overall data set. The more fre
quent alleles usually contribute more to analysis

Neural network Allo.lyme predictions
predictions ("l" mod- ('/,,, modern alleJes)
ern mdlVlduals)

Population>

BéhérobIe
Marcadau
Chiroulet
Oussouet

32
53
73
73

27
33
89
82

3.2. The dijferenl halchery slrains

(2a) In the leave-one-out analysis with three
categories corresponding to the three hatchery
strains, 19% of the individuals were found to be
incorrectly c1assified, which is high compared to
the previous analyses. The score distribution of
each strain in its corresponding category (Fig. 5)
shows that only a very srnall proportion of indi
viduals scored between 0.8 and one (2.6%; none
for Brassac and Canourgue); most scores are be-

~
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1 0 Canourgue
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FIg. 4. ContnbutlOns of the dlfferent alleJes to the leave-one-out ancestral/modern. AlleJes are set out on the x aXIs accordlllg to thelr
frequency in the overall data set (allioci are included). Contnbutions are computed wüh the Garson-Goh algonthm (Garson. 1991;
Goh, 1995; Lek et al., 1996a,b)

1.0 -,--------------------------------,

0.9

0.8

0.7
>-g 0.6
QI5- 0.5

~ 0.4

0.3

0.2

0.1 l •
0.0 +-"...L-1l4------+---+---+---r-IL...l--'--f-J----.---'---t-'......----'------+----+-------1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Scores in each category

Fig. 5. Scores of the different hatcheries individuals m thelr own category for the leave-one-out wlth three groups correspondmg to
the three hatchery strains: Canourgue, Brassac and Suech.
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Table 3
Percentage of incorrectly asslgned mdlVlduals for each of the three comparisons between modern nver and hatchery populations.
Such individuals are asslgned to the opposite category, e.g. 6'1., of Chiroulet indivlduals are classlfied m 'hatcheries'

Companson Chlroulet/hatcheries Oussouet/hatchenes Luz/hatcheries

river populatlOns

hatchenes

6

5

-- --- -------~------~--------~

8

3

5

3
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g 0.4
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Scores in the hatchery category

Fig. 6. Distribution of the scores in the hatchery class for the comparison between Oussouet (modern nver population) and
hatcheries (the three domestlc strains analysed have been pooled). 1 = hatchery. 0 = Oussouet

tween 0.5 and 0.6 (75%) and a large proportion of
fishes scored between zero and 0.1 (18%, corre
sponding to incorrectly classified individuals).

(2b) In the hold-out procedure, 2% of the indi
viduals in the training set were not correctly
classifled, but the test showed 17% errors. This
would tend to show that the network was suited
to the features of the learning data set but not
weIl suited to new data. There may be too small
an overall difference between the different strains,
preventing good application to new data.

3.3. The 'wild' modern populations

The percentages of incorrectly classified individ
uals for each of the three leave-one-out compari
sons with hatchery samples (Luz, Chiroulet and

Oussouet compared with domestic fishes) are
given in Table 3. In the three river populations,
the percentage of individuals assigned to domestic
types varied from 5 (Luz) to 8% (Oussouet).

In the Oussouet/hatcheries comparison, the
score distribution of Oussouet individuals in the
hatchery category placed most individuals be
tween 0.1 and 0.2 (Fig. 6), but with a large
proportion between 0.2 and 0.5. Individuals with
a result higher than 0.5 were aIl in the 0.9-one
range and were then weIl assigned to hatcheries.
Almost 80% of domestic individuals, scored be
tween 0.8 and one. Individuals with a score lower
than 0.5 were aIl in the 0-0.1 range and were then
classified as Oussouet. It appeared to be more
difficult to classify wild trout than domestic ones
in this analysis.
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3.4. Comparison of the other river populations
with hatcheries

In the leave-one-out comparison between an
ancestral population (such as Bastan) and hatch
eries, we obtained 1% 'errors' in the domestic
strains and 3% in the ancestral population. How
ever, analysis of the score distribution in the
hatcheries category (Fig. 7) shows that 97% of the
Bastan fishes scored between 0.4 and 0.5; the
remaining 3% corresponded to fishes classified as
domestic (score between 0.9 and one in this
group). In contrast, hatchery individuals are ail
weil classified with scores between 0.6 and one in
the hatchery category. The computation proce
dure may perhaps explain why no Bastan individ
ual displayed a high score (between 0.8 and one)
in its own category: as the time required by this
technique is quite long, the number of iterations
for the learning of each individual was limited to
a maximum of 500. However, there must be a
phenomenon making learning more difficult for
this comparison than for the former ones. The
same analysis was performed with Béhérobie
(with sorne similar results to Bastan) and with
Marcadau.

For Marcadau (Fig. 8), 40% of the individuals
displayed a hatcheries category score of between
0.4 and 0.5; 60% scored between 0.9 and one and
were then assigned to domestic type. These results

agree weil with morphological observations and
with information from local managers, which tend
to show that this population is quite heavily
stocked. In this set of analyses, the scores of wild
trout are limited to 0.5. However, if we agree that
individuals with scores of between zero and 0.5 in
the hatcheries category are wild trout, we can
deduce that Marcadau is the population analysed
that has been most modified by stocking.

4. Discussion

When the trout classes had been previously weil
defined using allozymes (comparison of ancestral
and modern, tests (1 a) and (l b», the first analyses
confirm that neural networks give good results
when applied to microsatellite data despite ail the
problems usually associated with these markers,
and especially the presence of rare alleles, ances
tral polymorphism and homoplasy which means
that sorne alleles of the same size are not always
identical by descent (Jarne and Lagoda, 1996).
Because of the high mutation rate of microsatel
lite loci (particularly for loci with a high number
of alleles), and because of a possible relatively
recent coancestry of the populations analysed
(both natural and domestic), it is difficult to find
diagnostic alleles separating wild and hatchery
Atlantic populations and which could be used for
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Fig. 7. DIstribution of the scores in the hatchery category for the leave-one-out Bastan/hatcheries. 1 = hatchenes. 0 = Bastan.
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several river drainage basins. For this reason,
multilocus analysis is more useful and particulady
ANN which can probably take into account quite
small differences in allelic frequencies. Cornuet et
al., (1996) have aheady obtained good results in
the classification of certain bee (Apis mellifera)
lineages with microsatellite data and ANN.

4.1. Efficiency and utilisation of artificial neural
netIVorks

Homoplasy does not appear to drastically re
duce the learning capacities of the neural network.
For rare alleles, the graph showing the contribu
tions of the different alleles according to their
frequencies indicates that the most informative
alleles are also often quite frequent; nevertheless,
less frequent alleles may provide more informa
tion in sorne comparisons. In ail cases, learning
appears to be able to recognise the most discrimi
nant information (for a particular comparison)
among ail the input variables, and this technique
does not require any particular adaptation of the
data. Neural networks gave sorne better results
than classical discriminant analysis, as is shown
by Cornuet et al. (1996).

For the first analysis (ancestral/modern com
parison), the application of the network to popu
lations other than those used for learning gave

good results. The percentages of modern individu
aIs predicted by the network agree weil with the
frequencies of modern alleles of LDH-5*. The
differences between these two parameters may be
caused by different behaviour of the two markers,
with randomly different introgression rates. The
four supposed neutral microsatellite markers
probably give a better description than a single
allozymic (possibly selected) LDH-5* marker.
Moreover, one should keep in mind that these are
a different type of information (allelic frequencies
versus percentage of individuals).

Caution was required in this study because of
the sample characteristics. Sorne samples (espe
cially river populations) are or might be heteroge
neous. Wild and domestic individuals may be
found in the same sample of sorne of the 'modern'
populations. For this reason, it was decided to
test the leave-one-out procedure. It gave good
results for the first comparison (ancestral/mod
ern), and was then used for other comparisons.
The technique appears weil suited for the study of
heterogeneous samples.

With both the leave-one-out and the hold-out
procedures, neural networks associated with mi
crosatellites confirm the distinction between mod
ern Atlantic (wild or domestic) and ancestral
Atlantic trout, which had previously only been
analysed using allozymes.
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4.2. Application to hatchery strains

Hatchery samples are needed as reference for
assessing the proportion of domestic individuals
in rivers. Analysis of these strains is necessary to
evaluate the genetic diversity of domestic fishes;
this shows whether the domestic samples analysed
can be considered as representative of those used
for stocking or if there is too much variability
among hatcheries. Several studies have shown
that these domestic strains were genetically quite
similar (Guyomard, 1989; Garcia-Marin et al.,
1991), but we tried to verify this assumption using
microsatellites and ANN. The high number of
incorrectly c1assified individuals (both in the
leave-one-out and hold-out results) underlines this
homogeneity. The lack of differences may prevent
good learning. It also shows that ANN can indi
cate when there is not enough differentiation be
tween the categories used for learning as the
network will not always give good percentages of
correctly c1assified individuals, whatever is pre
sented for learning. In our study, this homogene
ity of domestic samples enabled us to pool them
for the next analyses.

4.3. Characterisation of wild modern populations

Discriminating between wild and domestic
modern Atlantic trout is an important objective.
The identification of populations not or almost
not affected by stocking is useful for the protec
tion and management of the genetic diversity of
this species as this is threatened by stocking (Fer
guson et al., 1995). The use of the leave-one-out
procedure for the comparison of each of the
modern populations with hatchery populations
gave low percentages of domestic individuals
(from 5 to 8%) within the three modern popula
tions (Chiroulet, Oussouet and Luz) which
seemed to be mainly wild according to the mor
phological characteristics of their fishes. This
would tend to show that these rivers are only
modified by stocking slightly or not at ail. Apart
from this practical aspect, these results also show
that neural networks are efficient even for geneti
cally quite similar (but differentiated) entities.

The comparison of other samples with hatchery
populations did not always give such c1ear results.
For example, a large number of Bastan individu
ais had intermediate scores. This is probably
linked with microsatellite properties and shared
alleles, which in this case required more time for
learning. However, individuals with intermediate
scores could also be hybrid individuals and this
raises the problem of how they are c1assified by
the network. For example, in the Marcadau popu
lation (known to be heavily stocked), 40% of
individuals displayed intermediate scores. This is
probably the consequences of hybridisation of
wild and domestic fishes; the strong impact of
stocking on this population is confirmed by the
percentage of individuals assigned to the domestic
type (60°;',). This shows that when such individu
ais are present in a river population, the network
is able to recognise them. There may be sorne
hybrids in the Bastan population, (Fior individu
ais resulting from backcrosses) even if allozymes
indicate that it is a pure ancestral population;
effectively, different markers can give different
results because of selection and genetic drift.
Moreover, as has already been explained. the
training procedure may also cause this high pro
portion of intermediate scores. It should be noted
that hardly any individuals in this population are
c1early c1assified in the domestic category, as
would have been expected in case of a high stock
ing impact (e.g. Marcadau). This population is
probably not highly introgressed by domestic
alle1es.

Although the interpretation of these results is
not as c1ear as for the former analyses, ANNs
provided important information about the genetic
composition of these populations.

5. Conclusion

From a technical point of view, our results
confirm that ANNs are weil suited to population
genetics data. Effective analysis requires reference
populations weil chosen for the study, relatively
balanced sample sizes and an appropriate valida
tion procedure (hold-out or leave-one-out). For
example, the leave-one-out procedure seems weil
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suited for mixed populations whereas the hold-out
procedure gives a more precise idea of the predic
tion capability of the model. From a more funda
mental point of view, this study confirms the
presence in this area of several trout forms: two
wild types (modern and ancestral) and one domes
tic form, which can coexist in the same river.
Moreover, we identified certain pure or almost
pure wild populations. This raises the problem of
their management and protection and is a new
example of low stocking effectiveness. It is also an
example of practical application of ANNs in ecol
ogy and population genetics.
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Abstract

Artificial neural network (ANN) approaches to modelling and prediction of fish yield as related to the environmen
tal characteristics were developed from the combination of six variables: catchment area over maximum area, fishing
effort, conductivity, depth, altitude and latitude. For a total of 59 lakes studied, the correlation coefficients obtained
between the estimated and observed values of abundance were significantly high with the neural network procedure
(r adjusted = 0.95, P < 0.01), The predictive power of the ANN models was determined by the leave one out
cross-validation procedures, This is an appropriate testing method when the data set is quite small and/or when each
sample is likely to have 'unique information' that is relevant to the model. Fish yields estimated with this method were
significantly related to the observed fish yields with the correlation coefficient reaching 0.83 (P < 0,0l). Our study
shows the advantages of the backpropagation procedure of the neural network in stochastic approaches to fisheries
ecology. Using the specific algorithm, we can identify the factor influencing the fish yield and the mode of action of
each factor. The limitations of the neural network approaches as well as statistical and ecological perspectives are
discussed, © 1999 Elsevier Science RV. All rights reserved,

Keywords: Predictive modelling; Multiple regression; African lakes; Fish Yield, Fisheries

1. Introduction

Understanding and predicting biological pro
ductivity is considered a key question by lake
fisheries scientists. Several ecologists and fisheries
managers have tried to determine the abundance
of living stocks or the specific biodiversity in
aquatic ecosystems using some of their character-

• Corresponding author. Fax: + 33-2-\>8224514.
E-mail addresses:lae@ird.fr(R.Lac).lek@cicl.fr (S. Lek),

moreau@ensal.fr (J. Moreau)

IStICS, i.e. surface of the river drainage basin,
surface area of lakes, flood plain areas, morpho
edaphic index, depth, coastal lines, primary pro
duction, etc. (Henderson and Welcomme, 1974;
Ryder et al., 1974; Melack, 1976; Crul, 1992; Lae,
1992). In developing countries, the economical
importance of fish and as a food source makes
this topic particularly relevant.

Diverse multivariate techniques have been used
to investigate how the various richness of fish is
related to the environment, including several
methods of ordination and canonical analysis,
and univariate and multivariate linear, curvilin-
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ear, and logistic regressions (Rawson, 1952; Han
son and Legget, 1982; Ryder, 1982; Schlesinger
and Regier, 1982; Youngs and Heimbuch, 1982;
Bernacsek and Lopes, 1984; Marshall, 1984; Wel
comme, 1985, 1986; Payne and Harvey, 1989; De
Silva et aL 1991; Moreau and De Silva, 1991;
Payne et al., 1993). Complete and critica1 statisti
cal methods reviewed by James and McCulIoch
(1990) assume that relationships are smooth, con
tinuous, and either Iinear or invo1ving simple
po1ynomials. However, for quantitative ana1ysis
and more particularly for the deve10pment of
predictive models of fish abundance, multiple lin
ear regression and discriminate ana1ysis have re
mained, the most frequent1y used techniques
(Fausch et al., 1988; Jowett, 1993). These conven
tional techniques (based notably on multiple re
gression) are capable of solving many problems,
but show sometimes serious shortcomings. This
difficulty is that relationships between variables in
sciences of the environment are often non-linear
whereas methods are based on 1inear princip1es.
Non-linear transformations of variables (logarith
mie, power or exponential functions) allow to
significantly improve results, even if it is still
insufficient. However, the neural network, with
the error backpropagation procedure, is at the
origin of an interesting methodology which could
be used in the same field as regression ana1ysis
particu1arly with the non-linear relations (Rumel
hart et al., 1986). Neverthe1ess, few applications
of this new techno10gy in eco10gica1 sciences were
published in contrast with the physical or chemi
cal sciences (Smits et al., 1992; Lerner et al., 1994;
Albiol et al., 1995; Faraggi and Simon, 1995).

Artificial neural networks (ANN) may be ap
plied to different kinds of prob1ems, e.g. pattern
classification, interpretation, genera1ization or cal
ibration. ln this paper, neural networks have been
used for multiple regression prob1ems. The aim of
this study was to analyze the level of relationships
between sorne physical environmental parameters
and the fish yield on African lakes, and a1so to
propose the basis of the development of predictive
too1s using neural network methodology. We pro
pose in order that, to analyze the level of relation
ships existing between sorne continuous physica1
environment variables and the fish yie1d.

2. Material and methods

2.1. Study sites and data

The 59 studied 1akes are distributed all over
Africa and Madagascar (Fig. 1). Currently avail
able data on these 1akes are insufficient. Most of
them are old and/or just deal with survey periods
sometimes Jess than 1 year. They came mainly
from 'the source book for the inland fishery re
sources of Africa' (Burgis and Symoens, 1987;
Bayley, 1988; Vanden Bossche and Bernacsek,
1990a,b, 1991; Cru1, 1992; van der Knaap, 1994;
Cru1 and Roest, 1995; Laë and Weigel. 1995a,b;
Laë, 1997).

AlI data 1isted in the above quoted books have
been used. When there were several annual sur
veys on one 1ake, we gave preference to the most
recent data that had been controlled and updated.
The choice of 1akes focused on ecosystems the
surface area of which was more than 10 km2 in
order to exc1ude too small or shallow water bod
ies that present specifie modes of functioning and
seanty data on fishing effort and catches.

For the 59 selected lakes, the characteristics
were expressed in terms of latitude, altitude, mor
phometric parameters inc1uding catchment area/
area ratio and average depth, physica1 and
chemical parameters as conductivity. The produc
tivity were expressed as annua1 fish yield (kg ha - 1

year - 1) and the fishing effort as number of fisher
men per km2

, that is the on1y relevant index for
these lakes where fishing tack1es and techniques
can vary considerab1y.

2.2. Statistical analysis of data

Univariate, bivariate and multivariate ana1ysis
of data were performed by the SPSS Software®
re1ease 8 for Windows. The univariate ana1ysis
consisted of the determination of parametric
(mean, standard deviation and coefficient of vari
ation) and non-parametric (minimum, maximum,
median and quartiles) statistical parameters. In
the bivariate analysis, we studied the correlation
between variables using Pearson's coefficients
(values and probabilities of significance at 5 and
1% of confidence interva1s). In the multivariate
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analysis, the relationships between environmental
characteristics and the fishing yield were studied
with multiple regression analysis. Stepwise multi
ple linear regression procedures were applied. The
diagnosis of the student residuals (normality and
independence) was used to test the validity of the
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Depth-_~-,LLK IX

Altitude -_--H--"-

Lat,tudo-

Bias

H o

A processmg elamenl

• 24 .58 58 Fig. 2. Typical three-layered feedforward artificial neural net
work. Six input nodes corresponding to six independent envt
ronmental vanables, five hldden layer nodes and one output
node corresponding to the estimate of fish yield. Connections
between nodes are shown by sohd Illles: they are associated
with synaplic weights that are adJusted during the trainlllg
procedure. The bJas nodes are also shown, with 1 as their
output value. The sigmoid activation functions are plotted
withlll the node

determination coefficient obtained (Weisberg,
1980; Tomassone et al.. 1983).

Fig. 1. LocatIOn of the 59 studied lakes, distnbuted in Africa
and Madagascar. l' Alaotra (Madagascar), 2: Albert (Zaire).
3: Ayame (Ivory coast), 4: Bangweulu (Zambia), 5: Baringo
(Kenya), 6: Cahora Bossa (Mozambique), 7: Chad (Chad), 8:
Chilwa (Malawi/Mozambique), 9: ChlSl (Zambia), 10: Chiuta
(Malawi/Mozambique). II: Edward (Zaire), 12: George
(Uganda), 13: GUIers (Senega\), 14: Ihema (Rwanda), 15: Itasy
(Madagascar), 16: lebel Aufia (Sudan), 17: llpe (Kenya), 18:
Kafue Flats/gorge (Zambia), 19: Kainji (Nigeria), 20: Kariba
(Zambia), 21: Kinkony (Madagascar). 22: Kitangin (Tanza
nia), 23: KIVU (Zaire). 24: Kossou (Ivory coast), 25: Xyle
(Zimbabwe), 26: Kyoga (Uganda), 27: Lagdo (Cameroon), 28:
Maji Ndombe (Zaire), 29: Malawi (MalawI), 30: Malombe
(Malawi), 31: Manantali (Mali), 32: Mantasoa (Madagascar),
33: Massingir (Mozambique), 34: Mtera (Tanzania), 35:
Mugesera (Rwanda), 36: Mujunju (Tanzania), 37: Mwadin
gusha (Zalfe), 38: Mweru (Zaire), 39: Mweru wa Nt (Zaire),
40: Naivasha (Kenya), 41: Nasho (Rwanda), 42: Nasser
(Egypt), 43: Nyumba Ya Mungu (Tanzallla), 44: Nzilo (Zaire),
45: Pool Malebo (Congo/Zaire), 46: Robertson (Zimbabwe),
47: Rugwero (Burundi), 48' Rukwa (Tanzania), 49: Sake
(Sake), 50: Sehngue (Mali), 51: Sennar (Sudan), 52: Tana
(Ethiopia), 53: Tanganyika (Zaire/Burundi), 54: Tumba
(Zaire), 55: Turkana (Kenya), 56: Upemba (Zaire), 57: Victo
ria (Kenya), 58: Volta (Ghana), 59: Ziway (Ethiopia).

2.3. Artificial neural netlVork (ANN) processing

The multilayer feedforward neural network is
one of the most popular network structures
among aIl the ANN diagrams. The processing
elements in the network are called neurons (or
nodes or units). Ali the neurans in a multilayer
feedforward neural network are arranged so that
they have a layered structure. A typical three
layer feedforward ANN is shown in Fig. 2. The
first layer connects with the input variables and is
called the input layer. Here, it comprises six neu
rans (six independent variables). The last layer
connects to the output variables and it is called
the output layer of only one neuron (the depen
dent variable). Layers in-between the input and
output layers are called hidden layers; there can
be more than one hidden layer. The number of
neurons of the hidden layer is an important
parameter of the network. The empirical ap
proach for the selection of the network consists of
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a test for the number of different possible configu
rations and the selection of that which provides
the best compromise between bias and variance
(Geman et al., 1992; Kohavi, 1995), which is the
training that gives a good generalization. In our
study, a network with one hidden layer of five
neurons has been retained (network with two
hidden layers have also been tested, but the results
do not differ significantly).

Each of the neurons is connected to the neu
rons of neighboring layers. The parameters associ
ated with each of these connections are calIed
weights. AlI connections are fed forward; that is,
they allow information transfer only from an
earlier layer to the next consecutive layers. No
feed-back connections are permitted in these
'feed-forward' networks. Neurons within a layer
are not interconnected, and neurons in nonadja
cent layers are not connected. Considering an
input vector XI = (xia' Xl!, ... , x IP ) for ith record,
with Xia always equal 1 which corresponds to the
bias. The vector linking the input units to hidden
units can be noted as 11'" = (lI'ilO, Il'hb ... , II'hp)' The
incoming signal of the hidden layer for the hth
neuron is the linear projection z = II'"X I • The effec
tive incoming signal z, is passed through a non
linear activation function (called a transfer
function or activation function) to produce the
outgoing signal yh of the hidden neuron, J''' =

f(lI'hXI) with f a transfer function yh = f(::) = 1/
(l + exp( - ::)). In this study, the sigmoid function
is preferred as compared to linear or threshold
type functions. The same operation is repeated for
the output layer, with values for the sigmoid
function derived from the sum of the product of
the outgoing signaIs from the hidden layer and
the weight binding the hidden layer with the
output layer. The outgoing signal of the output
layer provides the predicted values of the net
work, i.e. the fish yield in this study.

ANNs are generally trained by the backpropa
gation algorithm (Rumelhart et al. 1986). The
training is a method that determines values of
network parameters which allow a good estima
tion of y, values of the outgoing signaIs from the
y network. The backpropagation algorithm as
sesses y repeatedly by a method of gradient de
scent. The training of the network starts with

weights stemming from a random selection be
tween - 0.3 and 0.3. Adjustment of these weights
is made according to the importance of the error
(y - y). Several repetitions of data are necessary
to guarantee the convergence of estimated values
(weak error as compared to observed values),
without obtaining an overfit. The number of itera
tions was limited to 500. The compact form of
feedforward ANN made the programming of the
algorithm much easier, especially when using
sorne matrix based software packages, e.g. Mat
lab® for Windows®.

In order to compare the results obtained with
multiple linear regression and with neural net
work, an application was made on the whole
database (59 units). Then, to justify the predictive
quality of the ANN models, a leave one out
procedure (Efron 1983; Jain et al. 1987) was used.
The principle of this validation was to assess the
assignment of each of the 59 individuals, the
learning phase being performed with the other 58.
It concerned in fact a cross-validation with the
number of records reserved for the test limited to
a unit at each time. This procedure is useful in
cases where one has a weak quantity of
observations.

2.4. Sensitivity of input variables

A disadvantage of ANN in comparison with
MLR models is their lack of explanations regard
ing the relative importance of each independent
variable considered. MLR analysis can identify
the contribution of each individual input in deter
mining the output and also can give sorne mea
sures of confidence about the estimated
coefficients. In addition, there is currently no the
oretical or practical way of accurately interpreting
the weights in ANN (Smith, 1994). For example,
weights cannot be interpreted as a regression co
efficient nor can difficulty be used to compute
causal impacts or elasticity. Therefore, ANN are
generalIy better suited for forecasting or predict
ing rather than for policy analysis. In ecology,
however, it is necessary to know the impacts of
each explanatory variable. Sorne authors have
proposed methods which allow the determination
of the impact of variables initially applied to the
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Table 1
Statistical parameters of the variables studleda

Min QI Median Q3 Max Mean SD CV

Catchrnent area/area ratio 0.97 91 43.8 170 6813 337.2 983.2 292
Fishing effort 0.1 0.5 1.4 29 28.6 2.7 4.1 155
Conductivity 1 80 165 379 3300 358 588 164
Depth 0.3 3.0 5.0 157 570.0 29.3 949 324
Altitude 1 300 663 1160 1890 727 492 68
Latitude 0 2 8 14 24 8.5 6.2 73
Fish yield 1.2 22.4 52.1 77.3 252.9 59.1 51.8 88

a QI, Q3, first and third quartile; SD, standard devlation; CV, coefficient of vanatlOn expressed as a percentage.

300,---------------------

Fig. 3. Descriptive statistics of the variable Fish Yield: Box
plot representation. A circle designates an outlier values (val
ues more than 1.5 box-Iengths from 75th percentile), and an
asterisk indicates extreme values (values more than three box
lengths from 75th percentile).

latitude and altitude and even these variables
reach values of around 70%. These results
confirm the heterogeneity and the diversity of
the studied lakes.

The dependent variable (i.e. yield) varies from
1.2 to 253 kg ha - 1 year - l, with an average of
59 kg ha - 1 year - 1. Such yields depend both on
biotic capacities of the different ecosystems stud
ied and fishing pressure. Low fishing effort
mainly explains a low yield since the variable
studied only gives information on the level of
catches and not at aIl on the actual abundance
of fish. The coefficient of variation (88%) confi
nns a large variability in yield. Fig. 3 shows
that very high values of yield are rare, which is
a very usual result in ecology (Verner et al.
1986).

o

N=59

~I
200

o

-100 1

3.1. Statistical parameters of variables

model (Dimopoulos et al. 1995; Garson 1991;
Goh 1995; Lek et al. 1996a,b). In this work, an
experimental approach has been used to deter
mine the response of the model to each of the
input variables separately by applying a typical
range of variation of a single 'free' variable to
the model, while the other ('blocked' variables)
are held constant. The contribution of each en
vironmental variable to fishing yield estimation
was calculated using 12 values evenly spaced
over the range between the minimum and the
maximum that appeared in the set of data. The
remaining 'blocked' variables were provisionaIly
set at an arbitrary level. Because this level influ
enced the results, we set the remaining variables
simultaneously together at their minimum value,
first quartile, median, third quartile and maxi
mum successively. Five responses were thus ob
tained for each of the 12 'free' variable values.
They were further reduced to their median
value. The operation was repeated for aIl of the
environmental variables.

3. Results

Table 1 shows a very large variability within
the data. The coefficients of variation are high
ranging from 100 to 200% for fishing effort and
conductivity, 292% for the catchment area/area
ratio, and 324% for mean depth. Among ex
planatory variables, the only ones that have co
efficients of variation smaIler than 100% are
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Table 2
Pearson correlation matnx between studied vanable with two-tail significance of probabilityd

Catchment area/area Flshmg effort

Catchment area/
area

Fishing Effort
Conductivity
Depth
Altitude
Latilude
Fish yield

0.183
-0,139
-0,085
-0,245
-0.098

0.043

Ns

-0,140
-0132

0,007
0111
0.569

Conductlvlty Depth Altitude Latitude Fish yield

Ns Ns Ns Ns Ns

Ns Ns Ns Ns ••
Ns Ns Ns Ns

0.098 Ns Ns Ns
0.068 0.013 Ns Ns

-0.208 -0.030 -0.107 Ns
-- 0.102 -0.212 -0.112 -0.037

aNs. not significant. P> 0.05 .
•• Highly slglllficant. P<O.OOI.

3.2. Relationship between fish yield and
environmental variables

Fish yield was significant1y related to only one
variable (Table 2): Fishing Effort (r = 0.57; P <
0.01). With other variables, the correlation coeffi
cient is weak, negative values with conductivity,
depth, altitude, latitude (Ir1< 0.21; P> 0.05) and
positive only with the catchment areajarea ratio
(r = 0.04; P > 0.05). The relationship between
yield and fishing effort explains only a low per
centage of variance (32%). Among independent
variables, the correlation was not significant for
ail of variables (P > 0.05).

3.3. Multiple regression analysis

The comparison between MLR predictive
power and ANN is not quite fair, unless the
number of parameters (coefficients) of the MLR
model is almost the same as ANN. A MLR was
performed in order to check if a significant corre
lation could be obtained with this c1assical linear
method. For the 59 samples, the stepwise proce
dure performed with SPSS selected only one vari
able at one step: Effort (r = 0.57, FU7 = 27.33,
P < 0.001). With ail of the six environmental vari
ables, we obtained a correlation coefficient of only
0.62 (F6•52 = 5.45, P < 0.001). Low correlation co
efficient testify the low percentages of explained
variance (32% in stepwise regression). The supple
mentary variable addition as compared to the
stepwise regression contributes only very !ittle to

the improvement of results (38% of explained
variance).

In order to completely full file the requirement
of MLR method (i.e. a normal distribution of
variables considered) the fish yield and the six
independent variables were transformed to their
10g10. The result of MLR show a correlation
coefficient of 0.81, i.e. higher than before log
transformation.

3.4. Neural netll'ork

In a first step, we developed a model with the
59 available lakes. In order to avoid possible
overfitting, several tests were carried out with
different configurations of the neural network
(change in the number of neurons of the hidden
layer). The configuration that had a minimal di
mension and which gave satisfying results was
retained. In this study, the number of neurons in
the hidden layer of the network was fixed at five.
To avoid again overfitting, the number of itera
tions was limited to 500, which is quite low in
neural network modelling. The resulting correla
tion coefficient was 0.95 for the regression be
tween observed and estimated values (Fig. 4),
indicating that the ANN provided satisfactory
results over the whole set of values for the depen
dent variable. The points are weil aligned on the
diagonal of the perfect fit line (co-ordinatel: 1).
The linear adjustment between observed and esti
mated values gives a slope practically equal 1
(y = 0.8981 x + 4.82). Although weakly repre-
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sented, the strong values of the output variable
are aligned around this same perfect fit line, with
a few outliers (Fig. 4a). Sorne weak values were
slightly overestimated.

Residuals have an average of 1.2 and a stan
dard deviation of 16 with the minimum value of
- 55.7, and the maximum 39. In order to test the
norrnality of model residuals, the statistical test of
Lilliefors (1967) was applied. With 59 observa
tions, the limit values of the test for the rejection
of the hypothesis of norrnality were 0.115 for
IX = 0.05 and 0.134 for IX = 0.01. LiIliefors test of
normality gave a maximum difference of 0.099,
P = 0.15. The study of the relationship between
residuals and values estimated by the model
showed complete independence (Fig. 4b). The co
efficient of determination was negligible (r 2 =

0.0004) and the slope of correlation between
estimated values and residuals close to 0 (y =

0.0067x + 0.8171); the residuals were weIl dis
tributed on either side of the horizontal line
(ordinate) representing the residual mean.
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Fig. 4. Results of fitting the model with 59 observations and a
6-5-1 network. (a) Scatter plot of estimated values vs. pre
dicted values. The sohd line mdlcates the perfect fit line. (b)
Relationship between reslduals and estimated values.

3.5. Neural Ilefll'ork sensitivity

The influence of the six independent environ
mental variables on the fish yield in the ANN
modelling is illustrated by six curves (Fig. 5):
• Catchment area/area ratio (Fig. Sa): The rela

tionship between yields and catchment area/
area ratio is monotonously growing. It appears
that smaIler lakes situated in larger catchment
areas are more productive.

• Number of fishermen (Fig. Sb): There is an
increase of fishing yield in relationship with
fishing effort. First, fish yield increases rapidly
with the fishing Effort. After that, it stabilizes
over level of 200 kg ha - 1 year - 1 from 15
fishermen km - 2 characterized by a practically
horizontal line.

• Conductivity (Fig. Sc): there is an increase
contribution: the fish yield increases rapidly
when the value of the independent variable
increases. Beyond 2000 Jls cm - l, it stabilizes for
Conductivity. This profile is similar to the one
of previous case with a lower amplitude.

• Depth (Fig. 5d): There is a linear decrease
between fish yield and depth from 230 kg ha - 1

year - 1 for very shallow lakes to 50 kg ha - 1

year - 1 for deeper ones (500 m). The profile is
represented practicaIly by a line of almost con
stant slope.

• Altitude (Fig. Se): Fish yield versus altitude
displays a skewed-to-the-right profile. The max
imum of contribution is situated at around 500
m of altitude, and decreases at higher altitudes.
Altitude interacts weakly with fish yield despite
the temperature differences which can reach
11°C between sea level and the highest lake.

• Latitude (Fig. St): Variations of fish yield with
latitude are linearly growing. When the latitude
increases from equator to 25° north or south,
the increase in fish yield is only about 100 kg
ha - 1 year - 1.

3.6. Testing of the network

The predictive power of the ANN models was
deterrnined by the leave one out procedures.
Leave-one-out cross-validation is appropriate
when the data set is quite smaIl and/or when each
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Fig. 5. Sensitivity profiles (or 'responses') of the predicted value of fish yield to each of the six independent variables. Each
mdependent variable lS tested versus the five other variables placed at one of five standard levels (mimmum, Ist quartile, median.
3rd quartile, maximum).

sample is likely to have 'unique information' that
is relevant to the regression mode!. For the leave
one out procedure, the predictive performance
was shown in Fig. 6a. By testing one record at
each time on a model established from 58 remain
ing records, very good results were observed: the
correlation coefficient was 0.831. This coefficient
does not reflect entirely the result. The graph of
correlation between observed and predicted values
showed the majority of records were aligned on
the diagonal of co-ordinatel: l, despite the slope
significantly different to 1 (y = 0.6389x + 22.249).
Sorne overestimates of sorne weak values were
possibly observed. The three high values were
slightly underestimated. This was the consequence

of the scarcity of high values in the database for
an effective learning of the mode!.

Residuals have an average of - 0.9 and a stan
dard deviation of 29 with the minimum value of
- 92, and the maximum 100. Lilliefors test of
normality gave a maximum difference of 0.337,
P < 0.001. The study of the relationship between
residuals and values estimated by the model
showed complete independence (Fig. 6b). The co
efficient of determination was negligible (r~ =
0.01) with the slope of correlation coefficient
between predicted values and residuals close to 0
(y = 0.0806x - 5.7405); the residuals were weIl
distributed on either side of the horizontal line
(ordinate) representing the residual mean.
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(1991), Goh (1995) have proposed the methods
for interpreting neural networks connection
weights to il1ustrate the explanatory variable im
portance inside the ANN. These studies demon
strated the potential of ANN approach for
capturing non-linear interactions between vari
ables in complex engineering systems and propose
the procedure for partitioning the connection
weights in order to determine the relative impor
tance of the various input variables. Dimopoulos
et al. (1995) propose the study of the first partial
derivatives of the ANN's output with respect to
each input is used to identify of the factors influ
encing the dependent variable and the mode of
action of each factor. In ecology, Lek et al. (1995,
1996a,b) proposed an algorithm al10wing the visu
alization of the profiles of explanatory variables.
Aside from the predictive value of the model, an
attempt was made to detect by a simple simula
tion method the sensitivity of the different
variables.

The main processes that determine biodiversity
indices can be approximated by linear or simple
non-linear (e.g. logarithmic) functions only to a
limited extent. Therefore, such models are not
able to reproduce the behaviour of real systems
when very low or high values of the variables are
considered (Lek et al. 1996b). In fish ecology,
several models, based on MLR principle were
proposed by several authors (Fausch et al. 1988).
To improve the results, non-linear transforma
tions of independent or/and dependent variables
were frequently used. However, despite these
transformations of variables, resuits obtained re
mained often insufficient. Moreover, ANN with
only one hidden layer can model non-linear sys
tems in ecology whatever is their complexity
(Goh, 1995; Lek et al., 1996b; Scardi, 1996).
Complex systems obviously need complex net
works (more units in the hidden layer or more
than one hidden layers), adequate training and a
large data set to be modelled.

Multiple regression analysis and back propaga
tion of the ANN were both used to develop
stochastic models of fish yield prediction using
habitat features on a macrohabitat scale (Lek et
al. 1996b). This stochastic approach required an
extensive database and care to obtain reliable
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Yield fish studied here have been reliably fitted
to the easily measured environmental characteris
tics. Thus. variations in fish yield are strongly
connected to a set of six environmental variables.

The theoretical advantage of conventional
MLR models over ANN is that their parameters
provide information about the relative importance
of the independent variables (aithough this is not
true when composite variables are used). How
ever, the same resuits can be obtained by perform
ing a sensitivity analysis of the ANN. Garson

Fig. 6. Result of testmg the model with 59 observations and a
6-5-1 network by the leave-one-out procedure. (a) Scatler plot
of predleted values vs. observed values. The solid line mdleates
the perfeet fit line. (b) Relationship between reslduals and
predieted values.
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models. The selection of input variables, their
ecological significance and the use of a test data
set to assess the mode! precision and accuracy are
important elements of this type of approach
(Fausch et al. 1988). The advantage of ANN over
MLR models is the ability of ANN to directly
take into account any non-linear relationships
between the dependent variables and each inde
pendent variable. Several authors have shown
greater performances of ANN as compared to the
MLR (Ehrman et al. 1996; Lek et al. 1996b;
Scardi 1996). The backpropagation procedure of
the ANN gave very high correlation coefficients
comparing to the more traditional models, espe
cially for the training calculation. In the test set,
correlation coefficients were lower than in training
but still remained clearly significant. This differ
ence between training and testing sets is more
amplified when the data set is smalL and when
each sample is likely to have 'unique information';
this is relevant to the mode!.

Through the present example taken in fish
yield, we show that ANN models are viable when
compared to traditional statistical methodologies.
The ANN has demonstrated here a promising
potential in ecology, as a tool to evaluate, under
stand, predict and manage African open fisheries.
In any lakes, not already included in our data
base, the yield will be computed by introducing
the six independent variables for these lakes in the
model.

References

AlblOl, J., Campmajo, c., Casas, c., Poch, M., 1995. Biomass
estimation m plant cell cultures: a neural network ap
proach. Biotechno!. Prog. II, 88-92.

Bayley, P.B., 1988. Accountmg for effort when comparing
tropical fisheries in lakes, river-floodplams, and lagoons.
Limno!. Oceanogr. 33. 963~~972.

Bernacsek, G M., Lopes, S, 1984. Mozambique. Investiga
tions into the fisheries and hmnology of Cahora Bassa
Reservoir seven years after dam c1osure. FAO Mozam
bique, GCP-006-SWE, Field Document. 9, Rome, p. 145.

Burgis, M.J., Symoens, 1.1., 1987 African wetlands and shal
low water bodies. Travaux et Documents 211, ORSTOM
Pans, p. 651.

Crul, R.C.M.. 1992. Models for estlmating potential fish yields
of African inland waters. FAO, CIFA Occasional Paper
16, p. 22.

Crul, R.C.M., Roest, F.C., 1995. Current status of fisheries
and fish stocks of the four largest African reservolrs Kam]l,
Kariba, Nasser/Nubia and Volta. FAO, CIFA Technical
Paper 30, p. 134

De Silva, S.S., Moreau, J., Arnarasmghe, U.S.. Chooka]orn,
T, Guerrero, R D.. 1991. A comparative assessment of the
fisheries m lacustrine inland waters m three Asian countries
based on catch and effort data. Fish. Res. II, 177-189.

Dimopoulos, Y, Bourret, P.. Lek, S., 1995. Use of sorne
sensltivity criteria for choosing networks with good gener
alization ablhty. Neural Process. Lett. 2 (6), 1-4.

Efron. B., 1983. Estimatmg the error rate of a prediction rule:
improvement on cross-validation. J. Am. Stat. Assoc. 78,
316-330.

Ehrman, J.M., Clau, TA, Bouchard, A., 1996. Usmg neural
networks to predlct pH changes in acidified Eastern Cana
dian lakes. Artlf Intell. App!. 10, 1-8.

Faraggi, D., Simon, R, 1995. A neural network model for
survival data. Stat. Med. 14, 73-82.

Fausch, K.D., Hawkes, c.L., Parsons, M.G.. 1988. Models
that predict the standmg crop of stream fish from habitat
variables. U.S. Forest Service General Techmcal Report
PNW-GTR, p. 213.

Garson, G .D., 1991. Interpreting neural-network connection
welghts. Artlf Intel!. Expert 6, 47-51.

Geman. S., Blenenstock, E.. Doursat, R., 1992. Neural net
works and the bias/vanance dilemma. Neural Comput. 4,
1-58.

Goh, A.TC., 1995. Back-propagatlOn neural networks for
modelling complex systems. Artlf. Intel!. Eng. 9, 143-151.

Hanson, lM., Legget, W.c., 1982. Empirical prediction of fish
biomass and Yleld. Can J. Fish. Aquat. SCI. 39, 257-263.

Henderson, HF. Welcomme, R.L., 1974. The relationship of
Yleld to morpho-edaphlc mdex and numbers of fishermen
in Afncan mland fisheries. FAO, CIFA OccaslOnal Paper
l, p. 19.

Jain. A.K.. Dube, R.C , Chen, c., 1987. Bootstrap techniques
for error estimation. IEEE Trans. Patt Ana!. Mach. Intell.
PAMI 9, 628-633.

James, F.C., McCulloch, C.E.. 1990. Multivanate analysls m
ecology and systematics. panacea or Pandora's box? Ann.
Rev Eco!. Syst. 21, 129-166

Jowett, 1993. A method for objectively identlfying pool, run.
and nffle habitats from physical measurements N.Z.. J.
Mar. Freshw. Res. 27, 241-248.

Kohavi, R., 1995. A study of cross-validation and bootstrap
for estimation and model selectIOn Proceeding of the 14th
International Joint Conference on Artificial Intelhgence,
Morgan Kaufmann Publishers, pp. 1137-1143.

Laë, R.. 1992. Influence de l'hydrologie sur les pêcheries du
Delta Central du Niger de 1966 à 1989. Aquat. LlVlng
Resour. 5, 115-126.

Laë, R., 1997. Estimation des rendements de pêche des lacs
Africains au moyen de modèles empiriques. Aquat. Living
Resour. 10, 83-92.

Laë, R, Weigel, lY.. 1995a. Diagnostic halieutique et propo
sitions d'aménagement: l'exemple de la retenue de Séhnguè
(Mali). FAO-PAMOS, p. 73.



R. Lw; el al. / EcoloK/CilI ModelhnK 120 (1999) 325-335 335

Laë, R., Weigel. J.Y., 1995b. La retenue de Manantah au
Mali, diagnostic halieutique et propositions d'aménagc
ment FAO-PAMOS, p. 65.

Lek. S., Belaud. A., Dimopoulos, I.. Lauga. 1.. Moreau. 1..
1995. Improved estimatIOn, usmg neural networks, of thc
food consumption of fish populations. Mar Frcshw. Res
46, 1229-1236.

Lek, S., Belaud. A., Baran, P.. Dimopoulos, 1.. Delacoste. M.,
1996a. Role of sorne envlronmental vanables in trout
abundance models using neural networks. Aqual. Liv. Res.
9, 23 -29.

Lek, S., Delacoste, M . Baran. P.. Dimopoulos, 1., Lauga, J..
Aulagnier, S., 1996b. ApplicatIOn of neural networks to
modelling nonlinear relationships in ecology. Ecol Model.
90, 39-52.

Lerner, B.. Gutennan, H.. Dinstein, L, Romem, Y., 1994.
Feature selectIOn and chromosome classification using a
multilayer perceptron neural network Proceedings of the
IEEE International Conference on Neural Networks. Or
lando, FL, pp. 3540- 3545.

Lilhefors, 1967. On the Kolmogorov-Smirnov test for nor
mality with mean and variance unknown, J. Am. Stal.
Assoc.. 62. 399-402.

Marshall, RE., 1984 Towards predicting ecology and fish
yields in African reservoirs from pre-Impoundment
physico-chemlcal data. FAO, CIFA Technical Paper 12,
p. 36.

Melack, J.M., 1976. Pnmary productivity and fish yields in
tropicallakes. Trans. Am. Fish. Soc. 105, 575-580.

Moreau, J., De Silva, S.S., 1991. Predictive fish yield
models for lakes and reservoirs of the Philippines, Sri
Lanka and Thailand. FAO, Fishenes Technical Paper, 319,
p.42.

Payne, A.L, Harvey, M.J., 1989. An assessment of the
Prochilodus plalensls Holmberg population in the Pilco
mayo river fishery, Bolivia usmg scale-based and com
puter-asslsted methods. Aquac. Fish. Manag. 20, 233-248.

Payne, A.L, Crombie, J., Halls, A.S., Temple, SA., 1993.
Synthesis of simple predictive models for tropical river
fisheries, London, MRAG Lld, p. 92.

Rawson, D.S., 1952. Mean depth and the fish production of
large lakes. Ecology 33, 513-521.

Rumelhart, D.E.. Hinton, G.E., Williams. R.J., 1986. Learn
ing representations by back-propagatmg error. Nature 323,
533-536.

Ryder, R.A. Kerr, S.R., Loftus, K.H., Regier, H.A., 1974.
The morpho-edaphic mdex, a fish Yleld estimator

Revtew and cvaluatlOn J Fl,h. Rcs. Board Cano 31,
663-688.

Rydcr. R.A. 1982 Thc morpho-cdaphlc mdcx--use, abuse
and fundamental concept, Trans Am. FISh Soc Ill.
154-164.

Scardt, M., 1996. ArtlficJaI neural nctworks as cmplflcal mod
els for estlmating phytoplankton production. Mar. Eco!.
Prog. Ser. 139, 289-299.

Schlesmger, D.A .. Regier, H.A., 1982. Climatic and morpho
edaphlc mdlces of fish yields from natural waters Trans.
Am. Fish. Soc. III, 141-150.

Smith, M., 1994. Neural networks for statlstlcal modelhng.
Van Nostrand Reinhold. New York. p. 235.

Smits, J.R.M., BreedveId, L.W .. Derksen, M W.1.. Katerman.
G., Balfoort, H.W., Snoek. J.. Hofstraat. J.W.. 1992. Pat
tern classificatIOn with artltJclal neural networks: classifica
tion of algae, based upon flow cytometer data. Ana!.
Chim. Acta 258, 11-25.

Tomassone, R, Lesquoy, E., Miller, c.. 1983. La régression,
nouveaux regards sur une ancienne méthode statlstlque.
INRA (Activités scientifiques et agronomique no. 13),
Paris, France, p. 188.

van der Knaap, M , 1994. Status of fish stocks and fishenes of
thirteen medium-sized Afncan reservOlrs FAO, CIFA
Technical Paper, 26, p. 107.

Vanden Bossche, J P., Bernacsek, G.M., 1990a. Source book
of the inland fishery resources of Africa. F AO, CIFA
Technical Paper 18jl, p. 411

Vanden Bossche, J.P., Bernacsek, G.M, 1990b Source book
of the inland fishery resources of Afnca, FAO, CIFA
Technical Paper 18/2, p. 240

Vanden Bossche, J.P. and Bernacsek, G.M., 1991. Source
book of the inland fishery resources of Africa. FAO, CIFA
Technical Paper 18/3, p. 219.

Verner, J., Mornson, M.L., Ralph, C J, 1986. Wlldlife 2000:
modelling habitat rc1ationships of terrestrial vertebrates.
UillV. Wisconsm Press, Madison, WI. p. 470.

Weisberg, S., 1980. Applied linear regression. Wlley. New
York, p. 324

Welcomme, R L., 1985. River fisheries. FAO Fisheries Tech
nical Paper 262, p. 330.

Welcomme, R.L.. 1986. The effects of the Sahelian drought on
the fishery of the central delta of the Niger nver. Aquac
Fish. Manag. 17, 147-154.

Youngs, W D., Helmbuch, D.G.. 1982. Another consideratIOn
of the morpho-edaphlc mdex Trans. Am. FISh Soc. III,
151-153.





ELSEVIER Ecological Modelling 120 (1999) 337-347

E[OlOIiI[Al
mODElUnli

www.elsevier com/locate/ecomodel

Comparing discriminant analysis, neural networks and
logistic regression for predicting species distributions: a case

study with a Himalayan river bird

Stéphanie Manel a.*, Jean-Marie Dias b, Steve J. Ormerod c

A UPRES 159. Université de Pau et des Pays de l'Adour. UFR SCiences et Technologie, 1 rue de Donzac, 64100 Bayonne, France
b UPRES-A-5033, Umversité de Pau et des Pays de l'Adour, UFR Sciences et Technologie. 1 rue de Donzac.

64100 Bayonne, France
C Ca/chment Research Group. School of Biosciences, Cardiff University. PO Box 915. Cardiff CFI 3TL. UK

Abstract

We assessed the occurrence of a common river bird, the Plumbeous Redstart Rhyacornis fuliginosus, along 180
independent streams in the Indian and Nepali Himalaya. Wc then compared the performance of multiple discrimant
analysis (MDA), logistic regression (LR) and artificial neural networks (ANN) in predicting this species' presence or
absence from 32 variables describing stream altitude, slope, habitat structure, chemistry and invertebrate abundance.
Using the entire data (= training set) and a threshold for accepting presence in ANN and LR set to P ~ 0.5, ANN
correctly c1assified marginally more cases (88%) than either LR (83%) or MDA (84%). Model performance was
assessed from two methods of data partitioning. In a 'Ieave-one-ouf approach, LR correctly predicted more cases
(82%) than MDA (73%) or ANN (69%). However, in a holdout procedure, ail the methods performed similarly
(73-75%). Ali methods predicted true absence (i.e. specificity in holdout: 81-85%) better than true presence (i.e.
sensitivity: 57 -60%). These effects reflect species' prevalence ( = frequency of occurrence), but are seldom considered
in distribution modelling. Despite occurring at only 36% of the sites, Plumbeous Redstarts are one of the most
common Himalayan river birds, and problems will be greater with less common species. Both LR and ANN require
an arbitrary threshold probability (often P = 0.5) at which to accept species presence from model prediction.
Simulations involving varied prevalence revealed that LR was particularly sensitive to threshold effects. ROC plots
(received operating characteristic) were therefore used to compare model performance on test data at a range of
thresholds; LR always outperformed ANN. This case study supports the need to test species' distribution models with
independent data, and to use a range of criteria in assessing model performance. ANN do not yet have major
advantages over conventional multivariate methods for assessing bird distributions. LR and MDA were both more
efficient in the use of computer time than ANN, and also more straightforward in providing testable hypotheses
about environmental effects on occurrence. However, LR was apparently subject to chance significant effects from
explanatory variables, emphasising the well-known risks of models based purely on correlative data. © 1999 Elsevier
Science B.V. Ali rights reserved.
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1. Introduction

With clear relevance to resource assessment,
environmental conservation, and biological moni
toring, models of species presence and absence are
of undoubted importance (Jongrnan et al., 1995;
Fielding and Bell, 1997). Increasing focus on
global and regional patterns of biodiversity
prompt the need for modelling of this type at
broad spatial scales, but methods are still evolving
(Ricklefs and Schluter, 1993; Gaston, 1998). Tra
ditionally, models used in ecology to predict spe
cies abundance have been based on linear
relationships with environmental variables. Data
in turn are assumed to have normal errors, appro
priate for example in linear regression, multiple
regression and multiple discriminant analysis.
Difficulties in satisfying these assumptions have
often raised statistical and theoretical concerns
(Austin and Meyers, 1996; Lek et al., 1996a), so
that new modelling paradigms are now being
promoted (Venables and Rip1ey, 1997). They in
clude linear methods such as logistic regression,
which accommodates binomial error, and is al
ready in wide use (Osborne and Tigar, 1992;
Green et al.. 1994; Austin and Meyers, 1996). By
contrast, artificial neural networks, characterised
by their ability to model non-linear relationships,
are more novel in ecology (see Mastrorillo et al.,
1997).

With such a range of approaches available for
modelling, it is potentially difficult for practising
ecologists to choose appropriate methods. More
over, methods for comparing model performance
are also evolving. This applies even to the rela
tively straightforward need to model species' pres
ence or absence, where methods are often
evaluated solely on prediction error-the number
of cases in which species presence or absence is
correctly assessed (e.g. Buckton and Ormerod,
1997; Fielding and Bell, 1997).

Clearly one of the greatest needs at present is
for clear conclusions from comprehensive studies
which compare model performance. but surpris
ingly few are available (e.g. Mastrorillo et al.,
1997). In this paper, we therefore provide such a
comparison illustrated from the distribution of
one species of river bird, the Plumbeous Redstart,

using data collected from a large area of the
Himalayan mountains during 1994-96 (see be
low). We derived algorithms which modelled and
predicted their distribution from sub-sets of 32
possible environmental variables, and compared
the performances of multiple discriminant analy
sis (MDA), logistic regression (LR) and artificial
neural networks (ANN). Our comparison largely
follow recent protocols proposed by Fielding and
Bell (1997).

The work is realistic, forming part of a larger
study which aims to assess natural and anthropo
genic influences on Himalayan river systems, in
turn developing biological indicators of change
(Ormerod et al., 1994, 1997; Jüttner et al., 1996;
Rothfritz et al., 1997).

2. Materials and methods

2.1. Study area and sampling method

Our data came from seven regions of the Hi
malaya stretched over 1000 km between the Ku
maon range (Uttar Pradesh) in the west and
Kanchenjunga in eastern Nepal, in general an
area recognised for its global significance to biodi
versity. River birds here are more species rich
than anywhere else on earth (Buckton and
Ormerod, unpublished), but we have chosen one
species-the Plumbeous Redstart-to investigate
model performance. This species is a partial mi
grant, moving to lower altitudes in winter and
higher altitudes during the summer monsoon. As
a member of the diverse guild of Himalayan chats
(Turdidae), it feeds by aerial flycatching directly
in the river corridor, and often over the water
surface. It is both abundant and conspicuous,
being easily recorded where it occurs.

The field data were collected in winter (Octo
ber-November, 1994-1996) from 180 study sites
(n = 19-32 per region); aIl were second to fourth
order streams in independent catchments. This
regional pattern of visits was randomised as far as
logistically possible to avoid spatio-temporal au
tocorrelation in the resulting data; streams in each
region were sampled opportunistically when en
countered by field teams trekking over long dis-
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tances ( < 200 km), thus representing as varied a
range of altitude and physico-chemistry as possi
ble (e.g. altitude 350-4695 m; channel width 0.4
60 m; siope 1-35°; conductivity 9-413 ilS/cm).

At each stream, chemical samples were col
lected for full ionic analysis, and habitat structure
was recorded over a 200 m reach using the UK
Environment Agency's River Habitat Surveys
(RHS). This survey records over 120 variables
describing the stream channel, flow character,
banks in addition to measurements of altitude and
slope, respectively by altimeters and clinometers
(Raven et al., 1997). Such a large array of vari
ables is necessary to capture the complex structure
of rivers that arises from local geomorphology,
natural variations in vegetation, and river man
agement. The results provide significant and
meaningful corre!ates with the distribution of
river birds (Buckton and Ormerod, 1997;
Ormerod et al., 1997). Prior to any further analy
sis, habitat and chemical variables from RHS
were reduced to major variates using principal
components analysis on the correlation matrix
(PCA). For RHS, this involved separate sets for
variables describing flow character (FlowPCI-5),
channel structure (ChanPCI-5) and riparian char
acter (RiparPCI-5).

The presence of Plumbeous Redstarts was
recorded using 8X or lOX binoculars over the
same 200 m reaches involved in habitat surveys in
the early moming (07.00-11.00) or late aftemoon
(15.00-18.00). This survey method had previously
been validated along 46 streams in the Langtang
region of central Nepal by comparing the detec
tion of Plumbeous Redstarts on contiguous 200
and 400 m reaches; over 75% of occupied rivers
were correctly detected using the 200 m reach
alone (Buckton and Ormerod, unpublished data).
As potential indicators of prey density, the abun
dance of benthic macroinvertebrates was assessed
contemporaneously with the bird surveys.

2.2. MDA

In general, multiple discriminant analysis is well
known, and often applied to omithological data
(e.g. Buckton and Ormerod, 1997; Buckton et al.,
1998). Here, the procedure involved creating lin-

ear combinations of variables with normal errors
that best discriminate between site groups defined
a priori by the presence or absence of Plumbeous
Redstarts. MDA was performed with SPLUS4
software release 3 (Ida function, Mass library of
Venables and Ripley, 1997), in which combina
tions of explanatory variables were selected to
maximise the ratio of group means discriminant
scores to within-group variance (Venables and
Ripley, 1997).

2.3. Logistic regression

Presence and absence of Plumbeous Redstart
were related to altitude, slope, transformed inver
tebrate abundance and to the habitat and chemi
cal principal components using a generalized
linear model: multiple logistic regression with a
logit link and binomial error distribution (McCul
lagh and Nelder, 1989; Jongman et al., 1995). The
logit transformation of the probability of pres
ence/absence (p) was modelled as a linear function
of thirty two possible explanatory variables (x"
i = 1,32):

(1)

in which ho and hl, are the regression constants.
Model were fitted using a maximum likelihood
method (McCullagh and Nelder, 1989). We used
backwards elimination to se!ect the variables in
the final mode! (Green et al., 1994; Austin and
Meyers, 1996). The step function, used in the
statistical package SPLUS4, provides a procedure
for this purpose using Akaike's information crite
rion (AIC); this is a penalized version of the
likelihood function in which the best mode! is
given by the lowest value (Splus, 1997). Signifi
cant variables at each step had to significant1y
reduced the scaled deviance. The change in scaled
deviance as each variable is e!iminated is approxi
mately distributed like xî (McCullagh and
Nelder, 1989; Collett, 1991). Although all ex
planatory variables are potential predictors, only
those selected by these criteria were used in the
final solutions.



340 S. Manel et al. / Ecologlcal Modelling 120 (1999) 337-347

2.5. Global modelling approach

This was necessary to allow use of the backpropa
gation algorithm and allow an output between 0
and 1. The third layer, or output layer, consists of
one neurone responsible for prediction of pres
ence or absence (y, see Fig. 1) from the explana
tory variables.

vector X = [X" i = l, 32] which is directly related
to the magnitude of the observation at each site
(see Fig. 1). This dot product provides a non-lin
ear activation function which, if larger than a
given threshold (b). see Fig. 1), produces an outgo
ing signal; in our application, the activation func
tion was sigmoidal,

2.5.1. Good recognition
For our first assessments of the performance of

each of the three model types we used the entire
data, and calculated the percentage of sites at
which the presence or absence of Plumbeous Red
starts was correctly predicted. The entire matrix
(180 sites x 32 environmental variables) was used
to perform MDA, LR and ANN, with explana
tory variables optimally selected as described
above. In LR and ANN, the output variables for
each case have a value within the range 0 and l,
and presence is usually accepted at a threshold of
0.5. For MDA, classification of each case is

(2)
1

F(x) = .
1+ exp( - x)

2.4. Artificial neural networks

The presence or absence of Plumbeous Red
starts was predicted throughout the exercise using
the back-propagation algorithm (Rume1hart et al.,
1986) with a multi-layered feed-forward neural
network of three layers (Fig. 1). This choice
reflects the recognised quality of this method in
fitting presence-absence data; it can approximate
any continuous function from Rn (the departure
set with a dimension of n) to [0; 1] (Comon,
1992).

The architecture of the layering has been de
scribed by other authors (Baran et al., 1996; Lek
et al., 1996a) and is shown in Fig. 1. The first
layer, called the input layer, comprises 32 cells
representing each of the environmental variables.
The second layer, or hidden layer, is composed of
a further set of neurones whose number depends
on the reliability required, and on the structure
that best optimises bias and variance (Geman et
al., 1992). We determined the number of second
layer neurones in our application through a series
of iterations, in which the number of neurones
varied between one and eight. In each case, we
calculated the error sums of squares (Fig. 2A) and
assessed model performance from good recogni
tion (Fig. 2B). A network with one hidden layer
of five neurones resulted in a stable fit and
avoided overtraining. Each neurone in the hidden
layer calculates the dot product between its
weighting vector Wj = [wJ• j = 1,5] and a data

-~y

55

Details of neurone 5

Input Layer Hidden Layer Output Layer

Fig. 1. The structure of the neural network used in this study. The tnput layer comprises 32 cells representing each of the 32
environmental variables x, (i = 1,32). The hidden layer comprises 5 neurones which calculate the dot product between its vector of
weights W} = [11',/, i = 1. 32] and X = [x,. 1 = 1,32]. This dot product is compared to a threshold (b) and then was passed through a
non-linear activation functlOn F. to produce an outgoing signal (S) (see detall of neurone 5) The output layer consists of one
neurone. similar of the one of the hldden layer. responsible for predIction of presence Or absence. y.
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derived from Euclidean distances to the cen
troids of the 'positive' and 'negative' groups,

In aIl approaches scores for correct assign
ment were expressed as percentages of the total
number of cases. We also derived matrices of
confusion, after Fielding and Bell (1997), in
which true positive (a) and true negative (d) val
ues were identified. These values could be used
to give us, respectively, measures of sensitivity
( = percentage of true presences correctly iden
tified) and specificity (= percentage of true ab
sences correctly identified).

2.5.2. Model testing: prediction performance
In addition to the assessment of good recogni

tion, we needed to test each modelling proce
dure on independent case which were derived by
partitioning data into training sets and test sets.
For comparison, we chose two special cases of
the k-fold partitioning technique, since there are
currently discussions about how different
methods of partitioning influence model error

rates (Fielding and Bell, 1997). These were as
follows:
• Leave-one-out: This jack-knife method allowed

the separation of a test site from the entire
suite of 180, so that 179 sites formed the train
ing set. Presence or absence was predicted in
the isolated site and compared with the true
value. We iterated this operation for aIl 180.

• Holdout partition: In this 2-fold partitioning
method (Kohavi, 1995), we made a random
selection iLto a set of training sites (4/5 i.e. 144
sites), and an independent test set (1/5, i.e. 36
sites); selection was weighted so that it always
reflected the true proportion of presences and
absences. This entire operation was repeated
five times to provide tests 1-5, and ANN, LR
and MDA calibrated from the training set to
predict the presence or absence of Plumbeous
Redstarts in the test set. In each case, we
compared predicted presence at each site with
true presence, and calculated sensitivity and
specificity as above.
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2.5.3. The problem of threshold selection
Both LR and ANN require an arbitrary

threshold probability (often P = O.S) at which to
accept species presence from model prediction,
but the exact threshold chose will clearly influence
model outcome. Moreover. the selection of a
given threshold can interact with species' preva
lence (i.e. frequency of occurrence) to influence
positive and negative prediction error: decreasing
frequency of occurrence can increase positive pre
diction error (Fielding and Bell, 1997). Sorne
methods-notably logistic regression-are consid
ered more sensitive to these effects than others.

We examined these possible influences on
model comparison as follows. First, we used ROC
plots (received operating characteristic) to com
pare LR and ANN across a range of thresholds
(Zweig and Campbell, 1993). The plots are
derived by plotting sensibility (i.e. the true posi
tive fraction) against l-specificity (i.e. false posi
tive fraction) across different thresholds
probabilities (0.1, 0.2, 0.3, 0.4, O.S, 0.6, 0.7, 0.8,
0.9). Second. we simulated the effects of varying
species prevalence on model performance by selec
tively removing at random increasing proportions
(S, 10, 20% etc.) of sites at which Plumbeous
Redstarts were present. We repeated the exercise
by removing sites from which Plumbeous Red
starts were absent. In each case, we used only
altitude as a predictor variable, and examined
changes in the value of altitude at which P = O.S.
Our reasoning was that this exercise should assess
threshold sensitivity to prevalence, but would not
affect the relationship between presence/absence
and altitude since site removal was made at
random.

recognition (7S% correct), but in this case perfor
mance varied more strongly between methods: LR
produced correctly classified more cases overall
(82%) than either MDA (73%) or ANN (69%). As
expected from the overall prevalence of
Plumbeous Redstarts, occurring at 36% of sites.
aIl the methods predicted true absences (i.e. spe
cificity: 78-86%) better than true presences (i.e.
sensitivity: 48-74%; Table 1). In this case, LR
correctly classified substantially more positive
cases (74%) than either of the other models which
helps to explain its better performance overall. In
the holdout procedure, general results for good
recognition (73-7S%) were similar to the jack
knife, but with the following important contrasts.
First, aIl the modelling methods performed on
average to near identical levels in good recogni
tion, sensitivity (S7-60%) and specificity (73
7S%; Table 2). Second, there was marked
variation in the results between random data sets
(i.e. tests l-S), particularly in sensitivity. Coeffi
cients of variation between tests in sensitivity were
much greater for LR (34%) than either ANN
(26%) or MDA (9%).

In keeping with the apparently random varia
tion in model performance between runs, there
was also sorne variation in the detection of signifi
cant effects by different explanatory variables
(Table 3). Significant effects on Plumbeous Red
start distribution always arose from altitude and
channel PCl, while there were significant effects
by f10w PCS and ephemeropteran abundance in 4
out of S test runs. By contrast, effects by riparian
PCS, f1owPC4, riparian PCI and chemistry PC2
were less consistent.

Table 1
A Comparison of three methods (MDA = multiple discrimi
nant analysis; LR = logIstIC regresslOn. ANN = artIfical neural
networksl. for predicting the presence-absence of Plumbeous
Redstarts on 180 Himalayan nvers Sensltivity and specificity
were estimated from a 'leave-one-out' jack-knivmg repeated
180 times

MDA LR ANN DFA LR ANN
44 74 48 78 86 82

3. Results

3.1. Fitting and testing models

From the complete data set, mean percentage
good recognition varied only slightly between
models from 83'Y" with LR, and 84% in MDA, to
88% with ANN; performance in aIl cases was
clearly high. Jack-knife application to test data
gave only a marginal average reduction in good

Model
PR

Sensitivity SpecIficlty
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Table 2
As for Table 1, but InvolvIng a holdout procedure repeated live times (test 1 to 5)"

---"-~--------------

Model MDA LR ANN
--------

Sn Sp pp Sn Sp pp Sn Sp pp

Testl 62 70 67 77 61 67 69 70 69
Test2 46 78 67 77 78 78 34 90 70
Test3 69 83 78 69 83 78 71 79 76
Test4 62 91 81 46 96 78 55 92 79
Test5 54 83 72 31 96 72 54 96 74
Mean 57 81 73 60 83 75 57 85 74
SD 88 7.7 6.4 20.6 14.5 4.9 14.8 10.6 9.4

a Overall good recognition (= prediction performance; pp in%) and sensitivity (Sn) and specilicity (Sp) from MDA, LR and ANN
were calculated usmg a model derived from a calibration set of 80% of the sites (23 absences and 13 presences) In turn applied to
the remaining test sites. Mean and standard deviation (SD) were derived for the live tests.

3.2. Threshold effects on LR and ANN

ROC plots were drawn from the jack-knife
results. They illustrated, for this application, that
LR outperformed ANN in correctly classifying
new cases irrespective of the threshold value of
probability chosen ta accept presence (Fig. 3).
However, the sensitivity analysis confirmed the
Fielding and Bell (1997) view that LR threshold
probabilities are potentially at risk from varying
prevalence. Artificial variations in prevalence
showed that the altitudes predicted from LR at
which P = 0.5 varied strongly with the size of
both the 'absent' and 'present' group (Table 4).
This is despite the selective removal of sites at
random across the entire altitude range of the
species. ANN was less sensitive. These results
show that effects by threshold selection and
prevalence must be treated with caution.

4. Discussion

Solely on the criteria of correctly predicting the
presence or absence of Plumbeous Redstarts, ail
these modelling procedures performed weil in ail
the tests we carried out: working either with the
entire data, or with partitioned data sets, good
recognition exceeded 69-88%. This result con
trasts with recent studies that have suggested
ANN out-perform more conventional methods of
modelling ecological data (Baran et al., 1996; Lek

et al., 1996a,b; Mastrorillo et al., 1997). Indeed,
one of our major conclusions is that ANN do not
currently have major advantages over logistic re
gression and discriminant analysis in modelling
species distribution providing these latter methods
are correctly applied. In fact, we found sorne clear
disadvantages: with our optimisation procedure.
neural networks require much more computing
time than conventional statistical methods. At
present, also, possible causal relationships be
tween species distribution and environmental data
are not immediately identified in ANN. Instead,
such identification requires further procedures
such as weight analysis (e.g. Roadknight et al.,
1997), equation synthesis (Balls et al., 1996) or
correlated activity pruning (Wiersma et al., 1995).
Thus, the conventionallinear methods allow more
direct straightforward development of testable
and falsifiable hypotheses. It should be noted that
our comparison between modelling methods in
volved correctly applying logistic regression and
discriminant analysis: we ensured, for example
that explanatory variables were linearised and
normalised by transformation and incorporation
into principal components analysis prior to fur
ther analysis. We were also careful to collect our
data from sites on independent rivers.

Although many ecologists assess species distri
bution models solely from 'good recognition' (i.e.
overall predictive power), our study reaffirms the
well-known value of testing models with parti
tioned data (Kohavi, 1995). More interesting in
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Table 3
Significant explanatory vanables indicated by logistic regression (standardised regression coefficient) dunng each run of the holdout
procedure illustrated in Table 2 are glven

o Logistic regression

• Neural networks

Ait ChanPCI Flowpc5 Ephem

Overall -5.22 3.04 294 2.81
Train 1 -3.298 3.622 2.02
Train 2 -4.98 2.91 2.644
Train 3 -4.62 3.364 2.26 2.61
Train 4 -4.74 2.52 2.45 3.89
Train 5 -4.68 2.42 2.21 2.77

view of recent discussion in the literature (Field
ing and Bell, 1997), this work illustrates the im
portance of using a range of criteria in assessing
performance - sensitivity and specificity, and per
formance across a range of probability thresholds.
Finally, it illustrates the importance of consider
ing a range of procedures for model testing-for
example jack-knife sampling and holdout.

Particularly in the holdout method, our tests
revealed how chance can be responsible for large
variations in sensitivity and model accuracy, with
ANN and LR apparently much more sensitive to
these effects than MDA (see Table 2). Not only
were ANN and LR prone to large variations
between test runs in sensitivity, but also LR was
prone to variation in detecting significant effects
by different explanatory variables. Thus, not only
can models appear weil fitted by chance, but also
they can produce potentially spurious explana
tions of distribution pattern. Chatfield (1995)
questioned the use of data-partitioning for model
testing, suggesting that splitting data arbitrarily is
not the same as collecting new data. However, at
the geographical scale over which this work was
carried out-essentially the entire Himalayan
mountains over much of the range of our model
species-independent data sets would be pre
cluded by time, cost and opportunity. Moreover,
the lesson from this exercise was clear: any one of
the five test runs in the holdout procedure might
have represented a real attempt to model species
distribution at new sites, with a wide array of
possible outcomes apparent from the coefficient
of variation in sensitivity: clearly there is a need
for caution in interpreting real data and real
model applications. We will return to this theme

RiparPC5 FlowPC4 RiparPCI ChemPC2

-2.78
-2.34

-2.22
-2.96 -2.40
-2.07 -2.34

in another paper involving regional-scale applica
tions to modelling the Himalayan distribution of
a wider range of species (Manel, Dias and
Ormerod, unpublished data).

With a data set comprising 180 independent
cases-each an individual river-it was possible to
simulate potentially important influences on mod
els of species distribution. Fielding and Bell (1997)
discussed potential effects by prevalence and
probability thresholds on such models, and their
effects were confirmed here. Effects by threshold
probabilities did not appear to affect the compari
son between ANN and LR, since LR outper
formed ANN in one test across aIl thresholds (see
Fig. 3). By contrast, LR was more sensitive than
ANN to effects by species prevalence (see Table
4). However, prevalence affected aIl the modelling

sensitivity
1T 0 0

0.8 000 ••

0.6 0 •
0.1

04 or
02
o-fL-----+----~

o 0,5 1 l-speficity

Fig. 3. ROC (Recelved operating charactenslic) plot to com
pare LR and ANN across different threshold probabilities for
the Plumbeous Redstart. The y-axis shows sensllivity defined
as the fraction of [number of true positive]/[number of true
positive + number of false negative]. The x-axIs shows l-spe
cificity defined as [number of false positive results]/[number of
true negative + number of false positive]. The relative POSt

lion of the plots indicates the relative accuracy of the tests.
The posllion of the points from LR above and to the left of
the ANN plot lndlcates greater observed accuracy ln the
former.
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Table 4
Simulatmg the effects of varying species prevalence, at a threshold P = 0.5, on the predictIOn of the presence or absence of
Plumbeous Redstarts by ANN and LR a

Percentage of random reduced (%)

o
5
10
20
30
40
50
60
70
80
90

Positive occurrence Negative occurrence
------

LR ANN LR ANN

1595.2 1850 1595.2
1561 1840 1644.7 1850
1521.4 1800 1665.7 1850
1441.5 1750 1775.2 1930
1317.6 1730 1829.5 1940
1204.9 1400 1954.9 2000
1072.4 1660 2080.6 2140
965.7 2206.6 2180
801.6 2321.3 2320
599.0 2604.2 2700
104.8 3572.7 2900

a The co1umn headed 'positive occurrence' illustra tes the effects on the value of altitude at whlch the probability of occurrence =

0.5 from reducing the number of sites wlth Plumbeous Redstarts; the column headed 'negative occurrence' illustrates the effects of
the reducing the number of sites wlthout P1umbeous Redstarts.

procedures by causing much lower sensitivity than
specificity. This is despite the occurrence of
Plumbeous Redstarts at 36% of our study sites-as
one of the commonest species in the whole guild
of Himalayan river birds. The prevalence effect on
predictive power is often overlooked in distribu
tion models developed by ecologists, but clearly it
warrants careful consideration, It will be particu
larly important in instances where the distribution
of scarce species is predicted for conservation
purposes-for example in identifying areas for
legal protection or species re-introduction.

5. Overview: aims of modelling determine the
choice of models?

We began this work wishing to compare three
different approaches for modelling species' distri
butions, and for assessing how distribution might
be influenced by environmental features. In sorne
respects, the recommendations that follow our
resuIts will depend on the aims of any particular
programme (Fielding and Bell. 1997; Venables
and Ripley, 1997). In instances where models are
intended to be explanatory, any of the approaches
used here might be suitable, since aIl produced

good overall fit to the data. LR and MDA cur
rently have clear advantages in developing
testable hypotheses, since they provide the clearest
indications of possible causal effects on distribu
tion. For example, Edwin et al. (1998) recently
illustrated the advantages of LR in describing the
optimum habitat ranges, and hence suitability in
dices, for aquatic species.

The robust field testing of aIl model predic
tions-irrespective of the algorithm used-is a partic
ularly important consideration given the
well-known difficuIties that arise when investiga
tors rely solely on correlative data to interpret the
causes of field pattern. AlI our modelling ap
proaches require support from appropriate experi
mental tests but this, in turn, is a major challenge
at the spatial scales involved in the work (Gaston,
1998). In many respects, the experimental valida
tion of any large-scale model represents poten
tially greater problems than the choice between
modelling methods. Due to the difficulties of ex
perimentation at large scales, the testing of mod
els by application in new locations provides one
of the few robust procedures. In our work, the
holdout procedure approximated such a testing
method, revealing MDA to be more preferable
over LR or ANN in sorne respects. Nevertheless,
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in instances where there are complex or non-linear
influences on species distribution, ANN may weil
turn out to be advantageous, but clear illustra
tions are required.
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Abstract

Since the 1980s, incursions of greater fiamingo (Phoenicopterus ruber roseus) in rice fields have been reported almost
every year in the Camargue, south-eastern France, and more recently in Spain. We assessed the performances of
artificial neural networks (ANN) in predicting presence or absence of fiamingo damages from Il variables describing
landscape features of rice paddies. The global matrix of 1978 records (276 with damage and 1702 without) for the
1993-1996 period was used to determine the suitable parameters: number of hidden layer nodes and number of
iterations. In order to avoid particular inputs either in the training set or in the testing set, ten different randomly
sampled training sets were available. A classic multilayer feed-forward neural network with back-propagation
algorithm was used throughout these experiments. Data from 1993 to 1996 were used to predict data for 1997 (73
fields with damage and 1905 without) and 1998 (88 with damage and 1890 without). Three training set compositions
were displayed: (1) the whole data set (1978 observations), (II) an equal number (276) of damaged and undamaged
fields (552 observations), (III) a set with 1/3 of observations being damaged fields (276) and 2/3 undamaged (552).
ANN faced sorne difficulty in predicting both presence and absence of damage. The number of each type record in
the training set was particularly sensitive. ANN predicted the more frequent outcome, (i.e. absence of damage). Most
onen, better results were obtained when equilibrating the number of presences and absences. In this case, we obtained
performances ranging from 64% up to 87% according to the presence and absence of data in the training set. When
fitting ANN with the whole set of presences to predict damage 1 year later, these results stabilised at ~ 79% for 1997
and between 66 and 72% for 1998 when more than half of the damaged fields were never visited by fiamingos during
the period 1993-1997. Our performances are quite similar to the results obtained by previous authors and
predictability from 1 year to the following one also supports that ANN can be an alternative or a supplement to
actual scaring methods in identifying potential damaged fields and propose agricultural management plans or
concentrate scaring actions on these high-risk areas. © 1999 Elsevier Science B.V. Ali rights reserved.
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1. Introduction

Rice-crop damage by shorebirds, ducks and/or
passerines has been studied mainly in North and
South America, Africa and Australia, where rice
is cultivated over very large areas. Damage by
these 'pests' has been estimated at millions of
dollars annually (Berryman, 1966; Wilson et al.,
1989; Decker et al., 1990) and huge efforts have
been made to find solutions (e.g. Meanley, 1971;
Elliot, 1979; Ward, 1979; Holler et al., 1982;
Avery and Decker, 1994; Avery et al., 1995; Ka
tondo, 1996).

In Europe, rice cultivation is restricted to parts
of the Mediterranean region and this phe
nomenon has received less attention. However, in
spring 1978, greater flamingos (Phoenicoterus ru
ber roseus) began to feed in rice fields of the
Camargue, the delta of the River Rhone in south
eastern France. Scaring campaigns have been car
ried out every year since 1981, and crop losses
from flamingos have been reduced. This habit
spread in 1993 to the Ebro delta, north-eastern
Spain, and Spanish farmers now face the same
problem as the French (Jimenez and Soler, 1996;
Johnson and Mesléard, 1997).

Scaring programs, begun in 1981, involve use of
gas exploders, rotating firing devices and Very
pistols (André and Johnson, 1981; Hoffmann and
Johnson, 1991). Even if these techniques are effi
cient in scaring or keeping away flamingos from
sorne rice fields, they are costly and time consum
ing. Monitoring of flamingo movements and be
haviours must occur over a wide foraging range
(over 60 km from the breeding site at the Etang
du Fangassier; Johnson, 1989). We based our
study on the hypothesis that sorne plots were
more attractive than others, e.g. that landscape
features may influence the flamingo's choice of
plots in which to forage (André and Johnson,
1981; Sourribes, 1993; Rogers, 1995; Jimenez and
Soler, 1996; Durieux, 1997).

A model identifying the most vulnerable plots
could be helpful to farmers and wildlife managers
by helping to evaluate the risk of crop damage in
problem areas. Due to the non-linearity of most
of the variables in ecology and the use of qualita
tive traits in the data set, we computed ANN to

propose predictive models for the damage caused
by flamingos in rice fields and to characterize the
explicative landscape variables.

2. Study area

The Camargue delta of the River Rhône, lies on
the Mediterranean Sea coast. Rice was introduced
into the area in the early 1940s and today paddies
coyer sorne 24000 ha (16% of the total surface
area of the Camargue and 46% of the agricultural
land, Chauvelon, 1996). Our study was carried
out in the Fumemorte Basin, one of six indepen
dent drainage basins of the delta. This sector is in
the eastern part of the delta proper and comprises
~ 70 km2

• Rice fields represent sorne 31% of the
total surface of the basin and 61% of the agricul
tural land. There are also extensive areas of natu
raI land (32%) and abandoned farm lands
(23.2%). The agricultural land is subdivided into
small cultural units, 75% being less than 3 ha
(Chauvelon, 1996). The southern part of the basin
is 2 km from the unique breeding site of the
greater flamingo in France (16.5 km for the north
ern part). The Etang du Fangassier is the only
breeding site of the greater flamingo in France
and one of the most important in the Mediter
ranean area (Rendon Martos and Johnson, 1996).

Flamingos frequent rice fields between sunset
and sunrise from the end of April to the beginning
of June. This period corresponds to the critical
germination period of rice in the Mediterranean
region (Fasola and Ruiz, 1996; Barbier and
Mouret, 1992). Damage to crops is caused in four
ways (Hoffmann and Johnson, 1991): (i) tram
pling which prevents germination; (ii) disturbance
of the grain, causing it to float to the surface
where it is blown to the downwind shore; (iii)
seedlings destroyed by trampling and (iv) ingurgi
tation of rice seeds. Whether flamingos visit the
fields in search of invertebrates or to feed on the
rice grain, or both, is not known. It has been
shown, however, that flamingos prefer sorne pad
dies to others and visit the same fields on consec
utive nights and from 1 year to the next (Rogers,
1995; Jimenez and Soler, 1996).
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3. Methods

3.1. Monitoring damage

We analysed occurrence of rice-crop damage by
fiamingos for the period 1993-1998. From 1993
to 1995, data were taken from internai reports of
the Parc Naturel Régional de Camargue, and by
interviewing landowners. Gnly ascertained
fiamingo damaged paddies were considered. For
the period 1996~ 1998, three methods of monitor
ing rice crop damage were used (Durieux, 1997):
1. a bi-weekly aerial survey (at 400 ft) of the

Fumemorte basin in the morning. Each field
with turbid water or with tracks was visited
the same day to confirm that fiamingos were
responsible for these tracks (presence of feath
ers, footprints).

2. daily observations at dusk and at night in
strategic places on farmlands considered vul
nerable. Information gathered by this method
was scarce due to the darkness and size of the
area surveyed.

3. interviews with farmers who plotted on a map
the distribution of fields frequented by fiamin
gos and the number of birds involved. This
inquiry was carried out at the end of June, but
farmers telephoned the 'French Rice Centre'
or the 'Tour du Valat Biological Station' im
mediately when they noticed groups of fiamin
gos in their fields.

The presence or absence of damage was coded (1)
and (0) respectively.

3.2. Environmental variables

We considered II environmental variables for
each of 1978 rice fields of the Fumemorte Basin.
These were: surface area; distance from natural
marshes; distance from the breeding site; distance
from the closest wooded hedge or copse; distance
from power lines; distance from habitations; dis
tance from principal roads; distance from sec
ondary roads; height of hedges surrounding the
paddy; number of wooded sides; adjacent (1) or
not (0) to damaged field.

Surface area was measured in ha and distances
were considered from the geometric centre of the

field (in m or km). The height of hedges was
assigned to one of five classes according to the
main vegetation occurring in the Camargue
(Durieux, 1997): < 50 cm (herbaceous plants or
absence of vegetation); 50 cm· 150 cm (mostly
Reed, Phragmites australis); 150 cm-3 m (hedges
composed of Reed, Tamarisk, Tamarix gallica,
Hawthorn, Crataegus monogina, Phillyrea,
Phil/yrea angust({olia. Elderberry, Samhucus lIi
gra), 3 m-15 m (Narrow-Ieaved Ash, Fraxinus
excelsior, Laurel, Laurus Ilobilis; Oleaster, Eleag
nus angust({olia); > 15 m (Common Aider, Alnus
glutinosa, Downy Oak, Quercus pubescens, Italian
Cypress, Cupressl/s semperuirens, Elm, Vlmus
campesfris, White Poplar, Populus alba, False
Acacia, Robinia pseudacacia).

3.3. ANN model/ing

3.3.1. Fitting and testing
The global matrix of 1978 records (276 with

damage and 1702 without) for the 1993-1996
period was used to train the ANN and to deter
mine the suitable parameters: number of hidden
layer nodes (HN) and number of iterations. In
order to test the classification quality of the
model, the data matrix was randomly decom
posed into two sets. The first set was used to train
the neural networks (training sets). The remaining
individuals (testing sets) were used to evaluate the
quality of their assignment in a hold-out proce
dure (Kohavi, 1995). Due to the larger number of
absences of damage, three set compositions were
sampled: sets A, Band C (Table 1). In order to
avoid particular inputs either in the training set or
in the testing set, ten different training sets C were
randomly sampied (CI-CIO).

We used a classic multilayer feed-forward neu
ral network with back-propagation algorithm
(Rumelhart et al., 1986) throughout these experi
ments. We trained networks with one hidden layer
of one to 15 neurons. The output variables were:
o= absence of damage, 1 = damage.

Training the network consisted of using a train
ing data-set to adjust the connection weights in
order to obtain the maximum number of individu
ais correctly classified. The connection weights,
initially taken at random in the range [ - 0.3, 0.3],
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Table 1
Three randomly sampled training and testmg sets used for fittmg ANN models

Set

A
B
C

Training sets Testing sets

Damage No damage Total Damage No damage Total

207 1277 1484 69 425 494
207 414 621 69 1288 1357
207 207 414 69 1495 1564

were iterative!y adjusted by a method of gradient
descent based on the difference between the ob
served and expected outgoing signaIs. The number
of iterations (necessary to guarantee the conver
gence of estimated values toward their expecta
tions) was first limited to 500, then to 400 in order
to avoid an overfit (see Gallant, 1993). Training was
performed first on sets A, Band C with six, eight,
ten, 12 and 15 hidden neurons, second on three sets
C with one, two, three, four, five, six, seven, eight,
ten, 12 and 15 hidden neurons, third on ten sets C
with six hidden neurons.

3.3.2. Predicting
Data from 1993 to 1996 were used to train a

mode! and predict data from 1997 (73 with damage
and 1905 without) and 1998 (88 with damage and
1890 without). Three training set compositions
were displayed: (I) the whole data set (1978 obser
vations), (II) an equal number (276) of damaged
and undamaged fields (552 observations), (III) a set
with 1/3 of the observations being damaged fields
(276) and 2/3 undamaged (552). ANNs were
trained with ten sets of each composition.

Note that aIl the paddies used by flamingos in
1997 were previously visited by birds while 48
paddies (out of 88) were first visited by the flamin
gos in 1998. The contribution of each environmen
tal variable was determined from trainings of ten
type II data sets using the Goh procedure (Garson,
1991; Goh, 1995).

4. ResuUs

4.1. Fitting and testing models

The larger number of 'absences' in the set A

induced the learning of absences far better than
presences (Fig. 1). Training with the set B was good
for both absence and presence, but presence was
poorly predicted ( ~ 5mlc> of correct classification).
The best results were obtained when equilibrating
the 'presences' and 'absences' (set C). After 180
iterations, performances fluctuated, according to
the number of neurons of the hidden layer (RN =
6-15), between 80 and 99% for training, and
between 61 and 84% for testing. For the next steps
of analysis, we considered 400 iterations when the
correct classification percentage was between 84
and 99% for training, and between 61 and 77% for
testing, in order to avoid anoverfit. When training
the ANN with three sets C, there was little variation
in the testing scores according to the number of
hidden layer nodes (Fig. 2). Rowever, predictions
seemed to be more balanced with an intermediate
number of hidden layer nodes (RN = 6): 69 to 75%
for absences and 68 to 77% for presences. Training
ANN with an equal set of presences and absences
gave the best correct classification percentages after
400 iterations when using a model with 6 hidden
layer nodes. This configuration was used for the
following analysis. The correct prediction, repeated
5 times, for ten randomly sampled testing sets,
associated with equilibrate training sets, varied
from 64% (set 4) to 87% (set 2) for presences (Fig.
3), and from 65% (set 1) to 79% (set 3) for absences.
Rowever the scores were balanced and quite homo
geneous for aIl the sets.

4.2. Prediction

A model (1) with an intermediate number of
hidden layer nodes (RN = 6) and trained with the
whole 1993-1996 data set predicted more ab-



353

C. TOllrenq el al. / Ecologlcal Modellmg 120 (1999) 349-358

100

90

80

70

60

50

40

30

20

10

O~"""~- ...........,r-----r---r-...,...--'--~- ......-"""

100

90

80

70

60

50

40

30 ...,......,,-1

20

10

O+---,r:'-.....,..--r--r--~-"'T"'"-~~-"'T"'"---,

}
laInine
prao_

}
taUne
prao_

} Irlllnlne

}
taUne
absence

(C)

100

90

80

70

60

50

40 -on,." 011"

30

20

10

Oil'="-T"'""'--'r--~-"""T"- __--r--r---'r--~-_

}

}

Iralnlne
absence
and
prao_

o 50 100 150 200 250 300 350 400 450 500
Iterations

Fig. 1 Number of iterations and performance (percentage of correct classification) obtained for three set compositions (A, B. C; see
text) by ANN model in training and testlllg. Five configurations of hidden layer nodes are represented (HN = 6, 8, 10, 12, 15).



354 C Tourenq et al. Ecological Modelling 120 (1999) 349-358

100

90 ..
i

80
DI D'bD 0 ....

El ..
~ El ..~ Q, 0". 0.. ~ ~ f 0

0..

~~ 70 *~.~J ~~~~, "Ê ..
'ê 60 •• 0

~ ..
50

8

100

90

~
80.
70.

J 60

50

40

0

• .. l' 1. 1: e ... Ifet ~ et e:
*

1. e
t 0

0
0 0 0

0 ...
~

8§.
~

• ~ §t. ..
~

0

8" st 0" !II.. a. Bi of.. 8
... ..

10 11

Fig. 3. Predictive power of ANN models (HN = 6) determmed
from live tramltlgs of ten sets with an equilibrate number of
presences (pres) and absences (abs).

were quite stable for ten trainings ~ 79% for both
presences and absences (Table 2).

Predictions differed slightly for 1998 (Table 3).
A model using a type III training set and same
training scores as 1997, predicted more absences
than presences ( ~ 76% vs 60%). There were no
such differences between accuracy of classification
using a type II training set. Despite higher train
ing scores, the predictive scores were lower than
in 1997, mainly for absences. These results can be
easily related to the somewhat different location
of damage in 1998 compared with the previous
years.

40 +-"'T'"""""-'-"""T--.-r--r-"T""""'T'""""""""T.....".......,r--r-"T"""-'

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of hiddeD layer Dodes

• Al 0 PI .. Al .. P2 • A3 0 P3

Fig. 2. Performances of three networks wIth an equilibrate
number of presences and absences (207) according to the
number of hidden layer nodes. For each network, trammg was
proceeded three Itmes and tested three lImes with the rest of
the observatIOns. A = absences, P = presences.

sences (92.4%) than presences of f1amingos in rice
fields (53.4%) in 1997. A model (II) with similar
number of HNs (6) but with an equal number of
presences and absences predicted more the pres
ences (93.2%) than the absences (65.7%). A simi
lar model (III) with 1/3 of observations being
presences and 2/3 being absences gave a balanced
prediction for 1997. Predictive scores of model III

• test pres

Set

.. te"t abs

Table 2
PredIctions for 1997 of ten type III (1/3 observations bemg presences and 2/3 bcing absences) ANN models with an intermedlate
number of hldden layer nodes (HN = 6)

Trainmg Testing Trainmg Testmg

(I993-1996) (I997) Presences ('Jo) Absences (%) Presences (%) Absences (';0)

III.! 1905 A+73 P 808 94.7 83.5 796

III.2 id 793 89.3 808 77.6
lIU Id. 85.9 91.8 78.1 77.6
I1I.4 id. 79 93.1 726 80.5
III.5 id. 83 94.2 79.4 79.7
III.6 Id. 753 95.5 71 2 804
III 7 id. 80 94.5 80.8 79.5
III.8 id 81 2 92.4 781 77.9
III 9 Id. 80 91.3 78.1 77.7
llI.!O id 81.5 94 849 81.3
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Table 3
PredictIOns for 1998 of ten type II (equal number of absences and presences) and ten type III (1/3 observatIOns being presences and
2/3 being absences) ANN models with an mtennediate number of hidden layer nodes (HN = 6)"

Model II ModellII

Trammg Testmg Traimng Testing

Set Presence ('X,) Absence (%) Presence (%) Absence ('Yu) Presence (%) Absence (%) Presence (%) Absence (%)

92.03 93.84 69.32 6619 85.15 95.29 60.23 7688
2 93.84 88.04 76.14 65.34 82.61 92.75 57.96 75.19
3 91.67 9384 73.86 6519 79.71 92.39 51.14 77 73
4 89.13 93.12 68.18 68.36 86.96 93.3 63.64 74.79
5 92 03 8804 71.59 66.14 81.88 95.11 56.82 7873
6 92.75 8949 70.46 64.55 84.78 93.3 64.77 78.25
7 93.12 90.22 73.86 65.93 80.8 93.12 5568 76.51
8 92.39 90.58 68.18 65.87 84.78 93.48 60.23 77.78
9 92 39 92.03 73.86 67.19 86.23 93.3 5682 7624
10 93.48 91.3 70.46 64.07 85.51 92.57 63.64 76.35

Mean 92.283 9105 71.591 65.883 83.841 93.461 59.093 76.845
S.D. 1.301 2.169 2.731 1.240 2.435 0.983 4.252 1.285

" S.D. = standard deviatlOn.

4.3. Contributions of environmental variables

From one model to another, ail variables dis
played high contributions (Table 4). However the
contributions of the surface of rice fields (SVP),
and also of the distance from the colony (DCO),
was often weak, while the distance from natural
marshes (DNM) and the distance from the closest
wooded hedge (DWO) exhibited high contribu
tions in most of the models. Note that contribu
tions of input variables varied considerably
among models. For example, model four at
tributed a huge contribution to the distance from
natural marshes (DNM), the number of closed
sides (NWS) exhibited also a heavy contribution,
while these variables were weakly implicated in
model seven.

5. Discussion

Artificial neural networks faced sorne
difficulties in predicting both presence and ab
sence of damage. The number of each type record
in the training set was particularly sensitive. As
previously observed by Spitz et al. (1996), Mas-

trorillo et al. (1997), Manel et al. (1999), ANNs
delivered better prediction for the largest occur
rence. Better results were obtained when equili
brating the number of presences and absences.
This is a problem, because in ecology absences are
often far more frequent than presences, and obvi
ously, information is lost by decreasing the num
ber of absences in training sets. The weak
improvement of the performance of ANN with
the increasing number of hidden layer neurons
could be related to close relative input variables,
but we can hardly conceive that it is the case with
environmental variables such as distance to the
natural marshes and number of wooded sides to
the field.

When equilibrating correct predictions of pres
ence and absence of damage, we obtained perfor
mances ranging from 64% up to 87% according to
the sampled data in the training set. When fitting
ANN with the whole set of presences to predict
damage 1 year later, these results stabilized ~

79% for 1997 and between 66 and 72% for 1998
when more than half of the damaged fields were
never visited by fiamingos during the period
1993-1997. These performances are quite similar
to the results 0 btained by Spitz etai. (1996) in
predicting the impact of Wild Boar (Sus serofa)
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on cultivated fields (approximately 80% for pres
ence, but only 42% for absence).

Damage of rice fields by fiamingos may be a
trivial problem on an international or on a na
tional scale, but, at a regional or local scale the
situation is more critical. Flamingo damage for
the Camargue has been estimated at approxi
mately $153000 annually (Johnson and Mesléard,
1997). Even if crop losses attributable to fiamin
gos has no perceptible impact on farming in terms
of national crop production, like other bird prob
lems in Europe (O'Connor and Shrubb, 1986;
Edgell and Williams, 1991), the same fields can be
visited on consecutive nights and over consecutive
years (Rogers, 1995) and crop losses can be im
portant for a single farmer.

Until now, several non-Iethal or lethal tech
niques were advanced to prevent damages to rice
paddies by birds (Meanley, 1971; Elliot, 1979;
Ward, 1979; Wilson et al., 1989; Decker et al.,
1990; Hoffmann and Johnson, 1991; Avery et al.,
1995). However, the effectiveness of these opera
tions is shown to be conditioned by the number of
birds and by the mobility and behaviour of the
species concerned (O'Connor and Shrubb, 1986;

Brugger et al., 1992). Rather than searching for
short-term methods of control which are not nec
essarily efficient, nor ethical (Morrisson, 1975;
Van Vessem et al., 1985; Caughley and Sinclair,
1994), long-term solutions to this particular prob
lem should be sought. Predictability from 1 year
to the next supports the idea that ANN can be an
alternative or a supplement to actual scaring
methods in identifying vulnerable fields. This
would enable agricultural management plans to
be established or scaring actions to be concen
trated on these high-risk areas.

The next step of our study is to extend predic
tions to the whole of the Camargue and to accu
rately identify vulnerable fields in order to
concentrate scaring methods or propose manage
ment actions on these high-risk areas. This study
interestingly revealed the ability of ANN to pre
dict damage by greater fiamingos from a small set
of environmental variables which it is easy to
collect. However, before extending the model,
sorne new analyses are needed to improve the
predictions, and also to find a method of identify
ing the most relevant environmental variables for
modelling the prediction (discriminant analysis,

Table 4
Relative importance of input variables for ten type II setsd

•
b

Set SVP DNM DCO DWO DTL DHA DPR DSR HHS NWS CON

lU 9.22 9.85 9.86 10.18 8.23 6.30 9.20 9.43 8.35 1184 7.55
11.2 9.18 13.30 10.80 11.3 9.28 8.54 4.11 5.41 8.99 9.59 9.41
11.3 10.4 1340 6.48 13.7 8.7 10.40 8.32 9.14 680 384 8.85
II.4 4.31 19.20 5.85 9.77 5.8 9.91 8.14 9.24 7.43 12.00 8.32
1l.5 5.17 12.50 5.41 12.5 7.74 12.80 8.90 7.39 9.52 9.63 8.44
II6 11.30 7.13 8.93 11.8 8.57 14.2 6.71 12.30 7.68 4.47 6.85
II7 3.69 9.14 5.38 11.8 9.92 8.96 10.90 9.91 8.93 13.70 7.64
11.8 5.03 12.00 8.70 9.48 9.36 9.21 9.84 11.00 7.35 8.26 9.75
II.9 9.81 11.20 5.79 10.20 5.27 7.46 10.20 10 20 8.18 13.60 8.17
lUO 7.87 10.80 9.83 10.20 11.50 11.80 6.23 8.53 7.87 5.75 9.63

Mean 7.6 11.85 7.7 11.09 8.44 9.96 8.25 9.26 8.11 9.27 8.46
S.D. 2.79 3.23 2.12 1.36 1.85 2.42 2.06 1.9 0.85 3.63 0.96

a SVP· surface area, DNM: distance from natural marshes, DCO' distance from the breeding site, DWO: distance from the closest
wooded hedge or copse, DTL: distance from power lines, DHA: distance from habitations, DPR: distance from principal roads,
DSR' distance from secondary roads, HHS: height of hedges surrounding the paddy, NWS: number ofwooded sides, CON: adjacent
(1) or not (0) to damaged field.

b S.D. = standard devlatlOn
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logistic regression ... ), as in ANNs usually ail
the variables contribute to the models. However,
the use of qualitative traits, which is possibly
responsible for the important variation of contri
butions between different trainings, can be a
problem for other classification methods. While
keeping a small set of input variables, the tempo
ral structure of damage should be usefully investi
gated if fiamingos exhibit more site-fidelity than
proximate response to environmental factors.
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Objectives
The conference will provide a forum for the

presentation and discussion of recent research on
machine learning such as artificia1 neural net
works and genetic a1gorithms, and its application
to ecologica1 modelling. Ecosystems are character-

ised by high non-linearities and comp1exity, which
artificia1 neural networks and genetic algorithms
seem to be suited to. Therefore modelling by
machine learning is expected to improve the un
derstanding and prediction of aquatic and terres
trial ecosystems.

The aim of the conference is to encourage and
facilitate interdisciplinary communication and re
search amongst professionals in machine 1earning,
eco10gical modelling and ecosystem management.

A number of specialised sessions will be or
ganised to focus on following themes:
• Eco10gica1 Applications of Artificia1 Neural

Networks
• Ecologica1 Applications of Genetic A1gorithms
• Hybrid Modelling of Ecosystems by Machine

Learning
• Elucidation, Monitoring and Forecasting of

Ecosystems by Machine Learning
• Analysis and Synthesis of Ecologica1 Data by

Machine Learning

Cali for papers
Papers are invited on the topics outlined above

and others which fall within the general scope of
the conference. Abstracts shou1d be submitted to
the Conference Secretariat by 30 November 1999
by electronic mail to Friedrich.Recknagel@
ade1aide.edu.au or 1ek@cict.fr.
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