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Abstract

The present work describes a comparison of the ability of multiple linear regression (MLR) and artificial neural
networks (ANN) to predict fish spatial occupancy and abundance in a mesotrophic reservoir. Models were run and
tested with 306 observations obtained by the sampling point abundance method using electrofishing. For each of the
306 samples, the relationships between physical parameters and the abundance and spatial occupancy of various fish
species were studied. For the 15 fish species occurring in the lake, six main fish populations were retained to perform
comparisons between ANN and MLR models. Each of the six MLR and ANN models had eight independent
environmental variables (i.e. depth, distance from the bank, slope of the bottom, flooded vegetation cover, percentage
of boulders, percentage of pebbles, percentage of gravel and percentage of mud) and one dependent variable (fish
density for the considered population). To determine the population assemblage, principal component analysis (peA)
was performed on the partial coefficients of the MLR and on the relative contribution of each independent variable
of ANN models (determined using Garson's algorithm). The results stress that ANN are more suitable for predicting
fish abundance at the population scale than MLR. In the same way, a higher level of ecological complexity, i.e.
community scale, was reliably obtained by ANN whereas MLR presented serious shortcomings. These results show
that ANN are an appropriate tool for predicting population assemblage in ecology. © 1999 Elsevier Science RV. All
rights reserved.
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1. Introduction

Interactions between organisms and their biotic
and abiotic environmental characteristics strongly

• Correponding author. Fax' + 33-5-61556096.
E-mail address:brosse@cict.fr (S. Brosse)

influence the habitat use, the spatial occupancy of
species, the proportion of each species within the
community and, thus, the community composi­
tion and structure (Schoener, 1989; Eklov, 1997).
Modelling and simulation are useful tools to
roughly mimic the ecosystem structuration and
functioning but their ability to model individual
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distribution, populations and ecosystems depends
on the available modelling techniques and com­
puting power (Giske et al., 1998). For example,
Ricker (1975) used correlation analysis to assess
the influence of the environment on recruitment
using abundance data. Canonical correspondence
analysis (ter Braak and Verdonschot, 1995) and
multiple least-square regression (Binns and Eiser­
man, 1979) have frequently been used as qualita­
tive methods to explore the relationships between
biological assemblages of species and their habitat
preferences. The MLR method is now a statistical
tool which is used in routine in ecology, but it
suffers from sorne drawbacks in that the relation­
ships between variables in environmental sciences
are often non-linear (James and McCulloch,
1990), while the method used is based on linear
principles. Transformation of non-linear variables
by logarithmic, power or exponential functions
can appreciably improve the results, but have
often failed to fit data (Lek et al., 1996b). The
artificial neural network (ANN), with the error
back-propagation procedure, is at the origin of an
interesting approach comparable with regression
analysis, but particularly efficient for non-linear
data (Rumelhart et al., 1986). Up to now, ANN
have been used in ecology for modelling phyto­
plankton production (Scardi, 1996), fish species
richness prediction (Guegan et al., 1998), and
prediction of density and biomass of various fish
populations (Baran et al., 1996; Lek et al.,
1996a,b; Mastrorillo et al., 1997). Nevertheless,
ANN have scarcely been applied at the commu­
nity scale, and the work of Tan and Smeins (1996)
is probably the only study at this scale which used
ANN performance to predict grassland commu­
nity changes. Moreover, their work only predicted
the density of each species taken one by one, and
did not deal with the existence of interactions
between species.

The aim of the present study is to model the
spatial distribution and abundance of six fish
populations according to measurable environmen­
tal characteristics. Here, we use two distinct mod­
elling methods and we compare their respective
capacities to fit observed patterns: (1) multiple
linear regression (MLR); (2) artificial neural net­
works (ANN). Then we quantified the influence of

the eight environmental variables on the spatial
distribution and habitat use of each population,
leading to an approach of the spatial assemblage
of the six fish populations studied.

2. Materials and methods

2.1. Study site and sampling

Lake Pareloup is located in the southwest of
France, near the city of Rodez. It covers a total
surface area of 1350 ha for a volume of about 168
106 m3

• The maximum depth is 37 m and the
average depth is 12.5 m. It is a warm monomictic
lake, which therefore undergoes a summer ther­
mal stratification, with a low oxygen content be­
low the thermocline (located at about 10 m depth
from early June to mid-September) preventing the
fish from colonising deep water during this pe­
riod. Fish sampling was performed weekly from
late June to late August in a restricted littoral
zone of the lake providing a wide range of topo­
graphical characteristics. Point abundance sam­
pling by electrofishing (Nelva et al., 1979)
modified for young fish (Copp, 1989) was em­
ployed to evaluate the microhabitat of the main
fish populations. Each week, 30-40 sampling
points were investigated in the same area of the
lake. For each of the resulting 306 sampling
points, nine habitat variables were taken into
account: distance from the bank (DIS) in metres,
depth (DEP) in metres, local slope of the bottom
at each sampling point (SLO) expressed in four
classes from zero (nil slope) to three (sheer slope),
percentage of flooded vegetation cover (VEG) and
percentages of five substrata: boulders (BOU),
pebbles (PEB), gravel (GRA), sand (SAN) and
mud (MUD). Fishes collected were preserved in
4% formaldehyde solution. In the laboratory, 0 +
roach (Rutilus rutilus, L. 1758), 0 + perch (Perca
fluviatilis, L. 1758), 0 + rudd (Scardinius ery­
thraphthalamus, L. 1758), 0 + gudgeon (Gabia
gabia, L. 1758), 0 + pike (Esax lucius, L. 1758)
and adult perch were identified and numbered for
each sampling point.
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Fig. 1. Typical thrce-Iayered feed-forward artificial neural
network. Eight input neurons corresponding to eight indepen­
dent environmental variables (DEP = depth, SLO = slope,
DIS = distance from the bank, BOU = boulders, PEB = peb­
bles, GRA = grave!, MUD = mud, VEG = flooded vegeta­
tion), ten hidden layer neurons and one output neuron for
estimating one fish population density. Each of the six fish
populations was predicted in tum. Connections between neu­
rons are shown by solid Imes: they are associated to synaptic
weights that are adjusted during the training procedure. The
bias neurons are also shown; their input value is one.

of the eight environmental variables on each fish
population. The network configuration is ap­
proached empirically by testing various possibili­
ties and selecting the solution that provides the
best compromise between bias and variance
(Geman et al., 1992; Kohavi, 1995). Training the
network consists of using a training data set to
adjust the connection weights in order to min­
imise the error between observed and predicted
values. This training was performed according to
the back-propagation algorithm (Rumelhart et al.,
1986). The computational program was written in
a Matlab® environment and computed with an
Intel Pentium® processor.

The modelling was carried out in two steps:
first, model training was performed using the
whole data matrix. This step was used to estimate
the performance of the ANN to learn data. Sec­
ond, we used the 'Ieave-one-out' bootstrap cross­
validation test (Efron, 1983; Efron and
Tibshirani, 1995), where each sample is left out of
the model formulation in turn and predicted once,

2.2. Modelling techniques

Modelling was carried out after 10glO(x + 1)
transformation of the dependent variables. This
transformation was applied to avoid an undue
influence of outliers on the models (ter Braak and
Looman, 1995). The Pearson correlation matrix
showed a strong correlation between SAN and
MUD (r = - 0.98) and therefore, the variable
SAN was removed from the data matrix in order
to deal with colinearity. MLR and ANN models
were set up using the same dataset (i.e. 306 sam­
pIes x (eight environmental variables + six fish
populations)) with the aim of comparing the two
methods.

For MLR, models were set up using ail the
variables simultaneously. Calculations were done
using SPSS software (Norusis, 1993). For 0 +
pike, which is a top-predator fish with low den­
sity, we considered its absence (coded 0) and
presence (coded 1). To process these categorical
variables, a logistic regression was used to model
0+ pike distribution. For each of the six models,
final values of the partial standardised regression
coefficients of MLR were retained to define the
influence of environmental factors at the popula­
tion scale. Then, they were used to perform prin­
cipal component analysis (PCA) in order to assess
the spatial occupancy of fish populations within
the entire fish assemblage.

For ANN modelling, a multilayer feed-forward
neural network was used. The processing elements
in the network, calIed neurons, are arranged in a
layered structure. The first layer, called the input
layer, connects with the input variables. In our
case, it comprises eight input neurons correspond­
ing to the eight environmental variables, respec­
tively. The last layer, calIed the output layer,
comprises a single neuron which corresponds to
the dependent variable to be predicted (fish den­
sity for the population considered) (Fig. 1). The
layer between input and output layers is called the
hidden layer. We could have used a single neural
network with six output neurons (one for each of
the six fish populations), but we preferred to use
six networks with the same architecture, each one
predicting the abundance of one fish population,
as to easily extract from the models the influence
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to validate the models. This procedure is appro­
priate when the amount of data is quite small
and/or when each sampie is likely to have 'unique
information' (Efron and Tibshirani, 1995; Ko­
havi, 1995). This step allows the prediction capa­
bilities of the network to be assessed.

One disadvantage of ANN is their lack of
explanatory power. Classical analyses, like MLR,
can identify the contribution each independent
variable (i.e. input) has on the dependent variable
(i.e. output) and can also give sorne measures of
confidence about the estimated coefficients. On
the other hand, current1y, there is no theoretical
or practical way of accurately interpreting the
weights attributed in ANN. For example, weights
cannot be interpreted as regression coefficients.
Therefore, ANN are generally better suited for
forecasting or prediction than for explanatory
analysis. Sorne authors have proposed methods
for interpreting neural network connection
weights to illustrate the importance of explana­
tory variables in the ANN (Garson, 1991; Dimo­
poulos et al., 1995; Goh, 1995; Lek et al.,
1996a,b). These studies have demonstrated the
potential of ANN approaches to explain non-lin­
ear interactions between variables in complex sys­
tems, and have proposed a procedure for
partitioning the connection weights to determine
the relative importance of the various input vari­
ables. In the present work, Garson's algorithm
(Garson, 1991), modified by Goh (1995), was used
to determine the influence of the environmental
variables. Ten models were set up for each of the
six fish populations studied. Then the influence of
environmental variables was defined for the ten
models and used to assess the spatial distribution
of the six populations within the entire commu­
nity using PCA. In this case, each model was
considered as a statistical unit. Thus, PCA was
performed on a data matrix containing 60 units
(ten units per population x six populations) and
the eight environmental variables. Finally, to sep­
arate fish population spatial occupancy within the
community, cluster analysis was performed on the
PCA results using the coordinates of the 60 units
on the first two PCA axes.

3. Results and discussion

3.1. Performance of the models

3.1.1. Multiple linear regression models
Examination of Fig. 2 shows sorne pitfalls

which may exist when developing MLR models.
Two of the six models were not significant to fit
the relationships between fish density and the
eight environmental variables: 0 + pike (r = 0.15,
P=0.54) and adult perch (r=0.19, P=0.22). In
both these models, the predicted values showed
only nil or close-to-nil values (except one point
for adult perch) (see Fig. 2). Overall, we obtained
94% of correct performance estimated using a
performance index (PI), based on the proportion
of responses within plus or minus 10% of the
actual value, but samples with fish were never
well-predicted. For the four significant models,
correlation coefficients were quite low. Only two
models gave a correlation coefficient higher than
0.5 (0.59 for 0 + rudd and 0.70 for 0 + gudgeon),
furthermore, the best of these two coefficients was
biased as this high value was due to only one
non-nil sample well-predicted. Moreover, for the
six models, most of the high values of fish abun­
dance were always underestimated and sorne low
predicted values were aberrant, i.e. negative fish
densities. The points were not well-distributed
along the line of perfect prediction (coordinates
1: 1). The residuals tended to increase with esti­
mated values, and their distribution was far from
normal. To determine the optimal predictive ca­
pacity of traditional methods, we used a non­
parametric regression technique: generalized
additive models (GAM) (Hastie and Tibshirani,
1990), using the locally-weighted smoother of
Cleveland (1979) current1y called 'Iowess', were
set up for the six populations. With this method,
the six models were significant (P < 0.01) and we
obtained a clear improvement of the correlation
coefficients: r = 0.54 for 0 + roach, r = 0.38 for
0+ perch, r = 0.74 for 0 + rudd, r = 0.74 for 0 +
gudgeon, r = 0.27 for 0 + pike and r = 0.37 for
adult perch. These improvements of the quality of
the model's predictions testifies to the non-linear
behaviour of the relationships between dependent
(i.e. fish populations) and independent (i.e. envi-



observed values

Fig. 2. Recogmtion performance of the MLR models for the six fish populations. Scatter plots of predicted values vs observed
values. The solid line mdlcates the perfect fit Ime of prediction (coordinates 1:1)

ronmental variables) variables. In addition, it
justifies the use of ANN, which are known to be
able to deal with non-linear relationships between
dependent and independent variables when com­
pared with classical MLR methods.

3.1.2. Artificial neural net\\'ork models
The ANN structure used was a three-layered

(8 --> 10 --> 1) feed-forward network with bias (Fig.
1). There were eight input neurons to code the
eight different independent variables. The hidden
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layer had ten neurons, determined as the optimal
configuration giving the lowest error in the train­
ing and testing sets of data with minimal comput­
ing time (Geman et al., 1992; Lek et al., 1996b,c).
The output neuron computed the value of the
dependent variable (fish density). We thus had a
total of 101 parameters: (eight input neurons x

ten hidden neurons) + (ten hidden neurons x one
output neuron) + II bias parameters.

The ANN with back-propagation gave much
higher correlation coefficients between observed
and predicted values (Fig. 3) than MLR. Fig. 3
shows that both low and high values of fish
densities were well-predicted even for scarce pop-
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Table 1
Performance index (PI) and sum of squared errors (SSE) m ANN trammg and testmg and m MLR training for the six populatIOns"

ANN MLR

Traimng Testmg Training

PI SSE PI SSE PI SSE

0+ Roach 66 7.32 63 1198 50 70.74
0+ Perch 72 6.23 69 14.02 65 29.46
0+ Rudd 69 9.26 61 13.46 46 65.27
0+ Gudgeon 97 0.66 96 2.65 98 1.04
0+ Pike 90 2.26 91 1.80 90 5.50
Adult Perch 94 7.74 91 8.25 95 1 18

a PI is the percentage of well-predicted values with an error rate lower than 10'/0.

ulations such as for 0 + gudgeon, for 0 + pike
and for adult perch. For these three fish popula­
tions, non-ni! values were rarely predicted as nil
values by the network (only two samples for 0 +
gudgeon and for adult perch) and a large propor­
tion of the high values were weIl or perfectly
predicted. For 0 + roach, 0 + rudd and 0 +
gudgeon, points were well-distributed along the
diagonal of best fit. 0 + perch, adult perch and
o+ pike abundances were underestimated, but
the results remained clearly better than those ob­
tained using MLR. Moreover the distribution of
residuals was close to normal with a mean value
of 0.007 (S.D.= ±0.152) for 0+ roach,0.017
(S.D. = ± 0.128) for 0 + perch, 0.006 (S.D. = ±
0.183) for 0 + rudd, - 0.004 (S.D. = ± 0.056) for
0+ gudgeon, -0.001 (S.D. = ± 0.172) for 0 +
pike and 0.001 (S.D. = ± 0.010) for adult perch.

A cross-validation testing procedure (i.e. leave­
one-out bootstrap) was performed to validate the
ANN models. Models could have been evaluated
using the determination coefficients (r 2

) or corre­
lation coefficients (r), but because of the scarcity
of high values of fish densities (especially for 0 +
gudgeon, 0 + pike and adult perch), we preferred
to use performance index (PI) and sum of squared
errors (SSE) to assess model prediction perfor­
mance. The PI was based on the proportion of
responses within plus or minus 10% of the actual
value.

The PIs obtained after the testing procedure
were very close to those obtained after training

for each of the six species (Table 1). SSE of the
test were low and close to those obtained during
the training procedure. MLR gave high PIs due to
the abundance of nil values; however the SSE
values were clearly higher than for ANN, except
for 0 + gudgeon and 0 + perch due to the
scarcity of non-nil values. Thus, compared with
MLR, ANN gave better results both in training
and testing procedures.

3.2. Importance of the enviromnental variables in
population abundance

In MLR, the influence of each variable can be
roughly assessed by checking the final values of
the partial standardized regression coefficients.
Each coefficient of a linear model is the partial
derivative of the response of the model with re­
spect to the variable of that coefficient. The stan­
dardized coefficients of MLR therefore generally
give a way to compare the relative influence of
each independent variable on the dependent vari­
able, when aIl other independent parameters have
been kept constant in the models. Table 2 shows
the MLR standardised partial coefficients of the
eight variables for each population. Few among
these coefficients were significant (5 for 0 +
roach, 3 for 0 + perch and 0 + rudd, 2 for 0 +
gudgeon, 1 for 0 + pike and adult perch). More­
over, three of the eight variables are usually con­
sidered as essential for 0 + fish microhabitat
choice: distance from the bank (DIS), depth
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(DEP), and flooded vegetation (VEG), but MLR
considered only distance from the bank (DIS) as
significant (except for adult perch). MLR shows
that 0 + fish abundance was significantly corre­
lated to low values of distance from the bank
(DIS) (i.e. negative coefficients), this is in accor­
dance with ecological studies (Haberlehner, 1988;
Copp, 1992). Nevertheless, according to MLR
models, 0 + roach and 0 + gudgeon abundance
increase with depth (DEP), which seems illogical,
as deep littoral areas are usually avoided by 0 +
fish. Finally, the flooded vegetation (VEG) was
never considered as a significant variable, whereas
it is logically one of the most important variables
for 0 + fish (Persson and Ekl6v, 1995; Ekl6v,
1997).

For ANN, the results of Garson's algorithm
stress the importance of environmental variables
in the model (Fig. 4). Standard errors calculated
for each variable after ten training procedures
were very low, showing the stability of the net­
work models. The contribution of each environ­
mental variable to the model for the six
populations was in accordance with previous eco­
logical studies (Holland and Huston, 1984;
Haberlehner, 1988; Copp, 1992; Mastrorillo et al.,
1996): 0 + roach, 0 + perch, 0 + rudd and 0 +
pike are closely linked to the flooded vegetation
(VEG) and the distance from the bank (DIS)
whereas 0 + gudgeon is indifferent to the flooded
vegetation (VEG) but strongly influenced by the
distance from the bank (DIS). Finally, adult perch

habitat is known to be largely governed by the
depth (DEP) and the distance from the bank
(mS) (Persson, 1983; Persson and Ekl6v, 1995).
Moreover, fish microhabitat is defined by several
variables showing that microhabitat results from a
complex combination of different habitat charac­
teristics (only 0 + gudgeon show a quite simple
diagram, with only one important variable, the
distance from the bank (DIS), which contributes
more than 50%). The main processes that deter­
mine fish habitat and distribution can be approxi­
mated by linear functions only to a limited extent.
Even when simple (e.g. logarithmic) transforma­
tions of variables to linearize their distribution are
used, the results remain unsatisfactory. The use of
complex transformations of the variables (e.g.
GAM) improves the results, but they remain
lower than those obtained by ANN. On the other
hand, ANN with only one hidden layer can model
non-linear systems in ecology without complex
transformations of the data (Goh, 1995; Lek et
al., 1996b; Scardi, 1996). The microhabitat of the
six fish populations studied here was reliably fitted
by ANN to the measured environmental charac­
teristics of the points sampled in the lake. The
ANN models clearly show the influence of each
variable on the microhabitat of each population
whereas MLR gives aberrant values which are
irrelevant from an ecological point of view. Thus,
MLR models are unable to represent ecological
reality due to non-linear relationships such as
those which probably exist between the densities

Table 2
MLR partial standardlsed coeffiCients for the six fish populations studieda

0+ Roach 0+ Perch 0+ Rudd 0+ Gudgeon 0+ Pike Adult perch

DEP 0.117* -0.050 -0.011 0.689** -0.016 0.003
DIS -0.418** -0246** -0.167** -0213** -0.126* 0.008
SLO 0.054 0.180** -0.294** 0.033 -0.033 0.075
BOU -0.033 -0019 -0.073 -0.013 -0.014 0.123*
PEB -0.112* -0.061 -0.031 -0.019 -0.ül8 -0.021
GRA 0.184** -0047 -0049 -0.014 -0.013 -0.013
MUD 0.263** 0.144* -0.256** -0.073 0.094 0.067
VEG -0.098 -0.087 0044 -0.066 0.025 -0.037

a Environmental variables were lettered as follows' DEP = depth. SLO = slope. DIS = distance from the bank, BOU = boulders.
PEB = pebbles, GRA = gravel, MUD = mud, VEG = flooded vegetation.

* Significant coefficient (P < 0.05J.
** Highly significant coefficient (P<O.OI).
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of the six fish populations considered and sorne
environmental variables.

3.3. Population assemblage studies

To visualise the spatial distribution of the six
fish populations studied within their environment
(i.e. population assemblage), on the basis of the
information provided by the models, PCA tech­
niques were used.

On its first and second axes which accounted
for 49.2 and 29.5% of the total information, re­
spectively (Fig. 5a), the PCA performed on the
partial coefficients of the MLR revealed a signifi­
cant correlation (P < 0.01) between distance from
the bank (DIS), pebbles (PEB), flooded vegetation
(VEG) and 0 + pike and 0 + roach; gravel

(GRA), mud (MUD) and 0 + perch and 0 +
roach; slope of the bottom (SLO), distance from
the bank (DIS), boulders (BOU) and adult perch.
We can notice, on the first axis, an opposition
between (0 + pike, 0 + rudd) and (0 + roach,
o+ perch). The second axis shows an opposition
between adult perch, and 0 + rudd (Fig. 5b).
These results based on MLR models conflict with
general agreement on habitat use by both 0 +
roach and 0 + perch individuals since, during the
larval and juvenile periods, they are generally
located close to shelters such as flooded vegeta­
tion (Haberlehner, 1988; Persson and Eklôv,
1995).

Concerning ANN, the PCA performed on the
contribution factors (Goh's algorithm results) al­
lowed the microhabitat of the six fish populations
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to be taken into account simultaneously to better
define their spatial occupancy and thus to ap­
proach the population assemblage. On its first and
second axes, which accounted for 43.1 and 20.6%
of the total information, respectively (Fig. 6a), the
PCA revealed a significant correlation (p < 0.01)
between flooded vegetation (VEG) and 0 +
roach. 0 + rudd and 0 + pike; between depth
(DEP) and adult perch; between distance from the
bank (DIS) and 0 + gudgeon. We can see, on the
first axis an opposition between 0 + gudgeon
individuals and the other fish species individuals
except for 0 + pike. The second axis shows an
opposition between adult perch and the group
o+ roach, 0 + rudd, 0 + pike and 0 + perch
(Fig. 6b). The representation of the ten statistical
units for each population reveals the range of
microhabitat variation for each fish population.
Moreover, the c1uster analysis distinguishes sev­
eral groups and enables an approach to be made
to the spatial range of microhabitat characteristics
for each population (Fig. 6c). The separation of
sorne fish populations such as 0 + gudgeon or for
top-predators (i.e. 0 + pike and adult perch) has
already been observed in natural environments,
and the spatial occurrence of 0 + roach, 0 +

O+rudd

rudd and 0 + perch, as illustrated by the c1uster
analysis, is well-known by ichthyologists. The fish
assemblage visualised in the PCA was in accor­
dance with various ecological studies concerning
the microhabitat of these species (Persson, 1983;
Haberlehner. 1988; Copp, 1992; Hosn and Dow­
ing, 1994; Persson and Eklôv, 1995; Mastrorillo et
al., 1996). As a consequence, the fish assemblage
was reliably predicted using ANN. This predicted
spatial occupancy can be easily visualised on a
PCA plane. Thus, ANN are more suitable than
MLR to reproduce the operation of real complex
multispecies systems (i.e. population assemblage)
on the basis of the ecological variables introduced
in the model.

4. Conclusion

The back-propagation of ANN constitutes a
more efficient tool than MLR to predict fish
abundance and spatial occupancy from the envi­
ronmental characteristics of the littoral area of a
lake. The selection of input variables introduced
into the modelling procedures, their ecological
significance and the constitution of testing sets of

b

O+roach

-4.00

49.2 a

Axis 1
5.00

0+ perch

~.9 J
adult perch ,

w

8
--~---

FIg. 5. Principal component analysis (PCA) perfonned on MLR results using the standardlsed partial regression coefficients for the
six fish populations. (a) Histogram of eigenvalues; (b) dlstnbution of the six samples (i.e. populations) and the eight envlronmental
vanables (DEP = depth, SLO = slope, DIS = dIstance from the bank, BOU = boulders, PEB = pebbles, GRA = gravel, MUD =
mud, VEG = flooded vegetation) on the FI x F2 plane.
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Fig. 6. Pnncipal Component AnalySIS (PCA) performed on ANN results using Garson', algorithm for the SIX fish populations. For
each population, the statistical units (samples) were the results of the ten ANN modeb (a) Histogram of eigenvalues; (b) distributIOn
of the 60 samples and the elght environmental vanables «DEP = depth, SLO = slope, DIS = distance from the bank, BOU = boul­
ders, PEB = pebbles, GRA = gravel, MUD = rnud, VEG = flooded vegetation) on the FI x F2 plane. (0) adult perch; (_) 0 +
roach; (0) 0 + perch; (e) 0 + pike; (6) 0 + gudgeon; C") 0 + rudd; (c) cluster analysis of the first two coordinates of PCA
showmg a separation between adult perch, 0 + pike and 0 + gudgeon, the three other populatIOns are dispersed across the sirnllanty
gradient.

data to assess the performance of the model are
important elements for this type of approach
(Faush et al., 1988). The ANN modelling ap­
proach used here is a fast and flexible way to
incorporate multiple input parameters into a sin-

gle mode!. In addition to the predictive value of
the model, the combination of ANN and multi­
variate analysis simultaneously visualise the re­
sults provided by several ANN models with the
same data matrix at the input. It is this ability to
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deal with multiple information sources that pro­
vides the power of this approach, resulting in a
significant improvement in ANN modelling over
conventional techniques. These results on the use
of ANN for population assemblage analyses are
promising and open new fields for their applica­
tions to ecology.
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