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a Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France 
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A B S T R A C T   

The human ingestion of mercury (Hg) from sea food is of big concern worldwide due to adverse health effects, 
and more specifically if shark consumption constitutes a regular part of the human diet. In this study, the total 
mercury (THg) concentration in muscle tissue were determined in six sympatric shark species found in a fishing 
vessel seized in the Galapagos Marine Reserve in 2017. The THg concentrations in shark muscle samples (n = 73) 
varied from 0.73 mg kg-1 in bigeye thresher sharks (Alopias superciliosus) to 8.29 mg kg-1 in silky sharks 
(Carcharhinus falciformis). A typical pattern of Hg bioaccumulation was observed for all shark species, with 
significant correlation between THg concentration and shark size for bigeye thresher sharks, pelagic thresher 
sharks (Alopias pelagicus) and silky sharks. Regarding human health concerns, the THg mean concentration 
exceeded the maximum weekly intake fish serving in all the studied species. Mass-Dependent Fractionation 
(MDF, δ202Hg values) and Mass-Independent Fractionation (MIF, Δ199Hg values) of Hg in whitetip sharks 
(Carcharhinus longimanus) and silky sharks, ranged from 0.70‰ to 1.08‰, and from 1.97‰ to 2.89‰, respec
tively. These high values suggest that both species are feeding in the epipelagic zone (i.e. upper 200 m of the 
water column). While, blue sharks (Prionace glauca), scalloped hammerhead sharks (Shyrna lewini) and thresher 
sharks were characterized by lower Δ199Hg and δ202Hg values, indicating that these species may focus their 
foraging behavior on prey of mesopelagic zone (i.e. between 200 and 1000 m depth). In conclusion, the 
determination of THg concentration provides straight-forward evidence of the human health risks associated 
with shark consumption, while mercury isotopic compositions constitute a powerful tool to trace the foraging 
strategies of these marine predators. 
Capsule: A double approach combining Hg concentrations with stable isotopes ratios allowed to assess ontogeny 
in common shark species in the area of the Galapagos Marine Reserve and the human health risks concern 
associated to their consumption.  
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1. Introduction 

Mercury (Hg) contamination in the environment produces consid
erable adverse effects on marine ecosystems, as well as on human health 
(Zheng et al., 2019; US EPA, 2018). Mercury is known for being a highly 
toxic pollutant once it is methylated to monomethyl-Hg (MMHg) and 
dimethyl-Hg by abiotic and biotic processes (Sunderland et al., 2009). 
The main sources of Hg in the Ocean are the rivers inputs through es
tuaries, submarine volcanic activity, and atmospheric depositions 
(Obrist et al., 2018). Most of the Hg in the atmosphere and surface ocean 
results from human activities, particularly from coal-fired power sta
tions, metallurgy, and artisanal gold mining, Hg production and use, and 
industrial metals extraction (Obrist et al., 2018; Streets et al., 2019). 
These processes release important amounts of inorganic Hg (iHg) in 
gaseous (Hg0) or dissolved forms, as Hg+2 (Bergquist and Blum, 2007). 
The oxidation and reduction of these chemical Hg species occur simul
taneously by photochemical activation. In aquatic systems, the presence 
of organic matter also influences Hg photoreduction (O’Driscoll et al., 
2008). The main oxidation and reduction mechanisms in the aquatic 
environment are, therefore, induced by photochemical and dark biotic 
processes (Fitzgerald et al., 2007; Sunderland et al., 2009). 

Methyl-Hg biomagnification along the trophic web results in 
elevated Hg concentrations in top predators (Mason et al., 1995; Chen 
et al., 2014). Moreover, as long-lived species, sharks usually display 
significant MMHg concentrations due to bioaccumulation and bio
amplification processes (McKinney et al., 2016). Concentration of 
MMHg in fish depends on their trophic level, size (age), and environ
ment; therefore, the highest MMHg concentrations are generally found 
in large carnivorous fish (Maurice-Bourgoin et al., 2000; Fitzgerald 
et al., 2007). Large pelagic fish (including sharks) are top predators, and 
their diet is generally composed of high trophic level fish or squids. 

Monomethyl-Hg is a neurotoxic molecule; it can affect the develop
ment of young children exposed in utero or during the early childhood 
(Grandjean et al., 1997; Mergler et al., 2007). The ingestion of Hg and, 
more specifically MMHg can cause neurological problems, deficits in 
motor, psychomotor, visual and /or cognitive functions, immune de
ficiencies and toxicity to the central nervous system (You et al., 2012; 
Kim et al., 2016). Consumption of large pelagic fish appears to be the 
major pathway of human exposure to MMHg (Morel et al., 1998; Dorea 
and Barbosa, 2003). Therefore, from the human health perspective, it is 
crucial to document Hg levels in predator fish of the Pacific region and to 
understand which food items tend to increase the risk of Hg exposure. 

From 1990–2018, according to the FAO (2020), the global capture 
fisheries increased by 14% and reached 96.4 million tons in 2018, which 
90% was caught in the oceans. Asian countries represent almost half of 
the global marine capture fisheries, averaging 45 million tons per year 
(FAO, 2020). Global shark catches reported to FAO (2019) have tripled 
since 1950, reaching an all-time high in 2000 with 868,000 tons. Since 
then, a downward trend can be observed with about 22% lower catches 
(680,000 tons) in 2018. Asian fishing countries only report non
identified catches of sharks and rays or do not report any statistics at all 
for this group (FAO, 2020). In China, experts estimate that annual shark 
fishing ranges between 10 and 15,000 tons and almost all is domestically 
consumed (FAO, 2020). Nonetheless, one of the biggest gaps in the 
discussion of shark fin and shark meat markets is the lack on data to 
estimate the annual consumption in Asia (Dent and Clarke, 2015). 
Among species that are usually targeted, are the silky shark (Carch
arhinus falciformis) and the oceanic white tip (Carcharhinus longimanus), 
while blue shark (Prionace glauca) is mainly caught as bycatch (Van
nuccini, 1999). 

Shark fin is one of Asia’s most valued and luxury seafood products 
(Garcia Barcia et al., 2020). These species are consumed primarily for 
their meat, skin, cartilage liver, and fins, which are highly appreciated in 
Asiatic culture for the traditional shark fin soup. The meat of some shark 
species (i.e., thresher sharks) is considered of higher quality than others. 
Nevertheless, pelagic thresher shark (Alopias pelagicus) and bigeye 

thresher shark (Alopias superciliosus) meat is judged of lower quality 
compared to that of common thresher shark (Alopias vulpinus), but it is 
also widely commercialized (Vannuccini, 1999). Blue shark is consid
ered as one of the least preferred species for human consumption due to 
its soft and strong flavored meat; this species is frequently caught as 
bycatch, but is usually discarded, often after finning (FAO, 2020). Blue 
shark has a limited market in France, Germany, Spain, and Italy. In 
Japan, blue sharks are used for the preparation of hanpen (shark paste), 
but only if they have been promptly processed after capture. Large shark 
species are often avoided for human consumption as they can accumu
late high levels of mercury and other toxic metals (Vannuccini, 1999). 
Concentrations of about 0.5–1 µg Hg g-1 wet weight (w.w.) in axial 
muscle (>90% of Hg in muscle is MMHg) produce several changes in 
fish, including alteration in biochemical processes, damage to cells and 
tissues, and reduced reproduction (Scheuhammer et al., 2014). 

In addition to carbon and nitrogen stable isotopes analysis (δ13C and 
δ 15N) to characterize dietary resources and the trophic level, Hg stable 
isotopes are increasingly used in environmental studies to connect 
geochemistry, biology, ecology (Le Croizier et al., 2020, Tsui et al., 
2020) and health sciences. Mercury stable isotopes present multiple 
useful signatures due to classical Mass-Dependent Fractionation (MDF, 
reported as δ202Hg) and unique photochemical Mass-Independent 
Fractionation (MIF, reported as Δ199Hg). These properties enable 
tracing MMHg sources in marine and freshwaters environments 
(Cransveld et al., 2017; Masbou et al., 2018; Sackett et al., 2015; Laffont 
et al., 2009). Hg MDF is the result of various abiotic, such as photore
duction and volatilization (Bergquist and Blum, 2007; Zheng et al., 
2007) and biotic processes, the most important being methylation and 
demethylation (Janssen et al., 2016; Perrot et al., 2016). Hg MIF occurs 
predominantly during photochemical reactions (Bergquist and Blum, 
2007). In seawater, solar radiations induce a Hg isotopic gradient from 
the surface to depth, with higher δ202Hg and Δ199Hg values in the 
epipelagic zone (between 0 and 200 m deep) than in the mesopelagic 
zone (between 200 and 1000 m deep) (Blum et al., 2013; Sackett et al., 
2017). Therefore, Hg isotopic signatures constitute a powerful tool to 
trace the feeding patterns of marine predators, for instance discrimi
nating epipelagic from mesopelagic foraging habitats (Madigan et al., 
2018; Le Croizier et al., 2020) as both δ202Hg and Δ199Hg values 
decrease with depth in pelagic consumers (Blum et al., 2013; Motta 
et al., 2019). 

In August 2017, a fishing vessel (Fu Yuan Yu Leng 999) was seized in 
the Galapagos Marine Reserve, and hundreds of sharks have been 
sampled for scientific purpose. In order to document the Hg levels of the 
most common shark species living in the Eastern Equatorial Pacific, we 
present total mercury concentrations (THg) in muscle tissue of six 
sympatric shark species and combine these results with the Hg isotope 
signatures to provide information on the biology and feeding patterns of 
these shark species. To assess the health risk associated with a regular 
shark food consumption, we also calculated the maximum weekly 
tolerable amount of shark meat by fish species, for adults and children. 

2. Materials and methods 

2.1. Sampling 

This research was performed under Galapagos National Park Direc
torate (GNPD) research permit PC-24-17 and was carried out following 
the protocols of ethics approved by Ecuadorian laws. Sampling was done 
on board a Chinese refrigerated cargo vessel "Fu Yuan Yu Leng 999" 
boarded in August 2017 by the GNPD and the Ecuadorian Navy while 
illegally navigating within the Galapagos Marine Reserve, in the Eastern 
Equatorial Pacific. Within the ship, 6 623 shark carcasses from several 
protected species were found (Alava et al., 2017). From the six captured 
shark species, one, the hammerhead shark (Sphyrna lewini), is classified 
as endangered by the IUCN, one near threatened (blue shark Prionace 
glauca), and four vulnerable (Oceanic whitetip shark Carcharhinus 
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longimanus, silky shark Carcharhinus falciformis, bigeye thresher Alopias 
superciliosus, and pelagic thresher Alopias pelagicus). 

A total of 73 sharks (14 scalloped hammerhead, 12 blue shark, 14 
oceanic whitetip, 13 silky shark, 6 big eye thresher shark and 14 pelagic 
thresher shark) were randomly sampled and preserved frozen (− 18 ◦C). 
Weight (kg) and size (cm), defined as the pre-caudal length (PCL) 
thereafter in the text, were recorded for all animals (Table 1). All sam
ples for mercury analysis were homogenously selected within the whole 
ranges of PCL and weight (Fig. SI_1). 

2.2. Sample preparation 

Original samples were composed of muscle tissue and skin and were 
cut directly from the shark body, placed in separate zip-lock bags and 
frozen for preservation before their transport to the laboratory. Once in 
the Environmental Engineering Laboratory at the Universidad San 
Francisco de Quito (LIA-USFQ, Ecuador), samples were thawed, skin 
was removed from the muscle tissue with a ceramic knife to reduce the 
risk of metal contamination, and almost one hundred grams of muscle 
were kept in zip-lock bags at 4 ◦C. Samples had no contact with human 
dermal layer nor metal surfaces during their manipulation. 

Approximately 20 g from the samples were freeze-dried at − 50 ◦C, at 
the Laboratory of Agricultural and Food Biotechnology (USFQ) and the 
moisture content was 75%. Dried samples were grounded and homog
enized before their storage in new zip-lock bags. 

2.3. Total mercury (THg) analysis 

As total mercury (THg) concentration is known to be almost exclu
sively in the MeHg form in shark muscle, including for the species 
analyzed here, e.g. 95–98% in blue sharks (Carvalho et al., 2014; Kim 
et al., 2016; Storelli et al., 2003), THg was used as a proxy for MeHg. All 
samples were processed within one month using a DUAL-cell DMA-80 
Direct Mercury Analyzer (Milestone Inc.), based on the EPA 7374 
analytical method by thermal desorption at the Universidad San Fran
cisco de Quito (LIA-USFQ, Ecuador). Samples did not require pretreat
ment or acid-digestion; approximately 15 mg of sample was weighed 
and placed into the equipment to be pyrolyzed at 800 ◦C and analyzed in 
duplicate or triplicate to ensure precise results. Reference material CRM 
DORM-4 was used to control the accuracy of the procedure. Average 
relative error reached 10% and CRM recovery 98%. The values obtained 
were expressed in milligrams per kilogram on a dry weight basis (d.w.) 
and were converted to wet weight, considering the loss of water of 
muscle tissue during the freeze-drying process. The same conversion 
factor of 4 (from wet to dry weight) in shark muscles has been used by 
several authors (Pethybridge et al., 2010; Bosch et al., 2013). 

The THg body mass index (BMI) was calculated for each shark 
sample as THg (mg.kg− 1) per kg of body mass (w.w.) according to 
Pethybridge and collaborators (2010). 

2.4. Hg stable isotopes analysis 

A subset of 31 shark tissues (i.e. 5 or 6 individuals covering the 
available size range for each species) was selected for Hg isotope anal
ysis. Aliquots of approximately 20 mg of dry shark muscle were left 
overnight at room temperature in 3 mL of concentrated bi-distilled nitric 
acid (HNO3). Samples were then digested on a hotplate for 6 h at 85 ◦C in 
pyrolyzed glass vessels closed by Teflon caps. One mL of hydrogen 
peroxide (H2O2) was added and digestion was continued for another 6 h 
at 85 ◦C. One hundred µL of BrCl was then added to ensure a full con
version of methylmercury to inorganic Hg. The digest mixtures were 
finally diluted in an inverse aqua regia solution (3 HNO3: 1 HCl, 20 vol% 
MilliQ water) to reach a nominal Hg concentration of 1 ng g− 1. Aliquots 
of certified reference materials (ERM-BCR-464, tuna flesh) and blanks 
were prepared in the same way as the tissue samples. 

Mercury isotope compositions were measured at the Observatoire 
Midi-Pyrenées (OMP, France) using multi-collector inductively coupled 
plasma mass spectrometry (MC− ICP− MS, Thermo Finnigan Neptune 
Plus) with continuous-flow cold vapor (CV) generation using Sn(II) 
reduction (CETAC HGX-200), according to a previously published 
method (Enrico et al., 2016; Goix et al., 2019). Hg isotope composition is 
expressed in δ notation and reported in parts per thousand (‰) deviation 
from the NIST SRM 3133 standard, which was determined by 
sample-standard bracketing according to the following equation:  

δ202Hg (‰) = [ (202Hg/198Hg)sample / (202Hg/198Hg)NIST 3133) − 1] * 1000       

Where, δ202 represents the mass of 202Hg isotope. δ202Hg is used as a 
measure of MDF. Measures of MIF are calculated as the difference be
tween a measured δ-value, and the predicted δ-value that is calculated 
by multiplying the measured δ202Hg value by the kinetic MDF frac
tionation factor for each isotope (Bergquist and Blum, 2007). ∆ notation 
is used to express Hg MIF by the following equation:  

∆199Hg (‰) = δ202Hg – (δ202Hg Xa)                                                        

Total Hg in the diluted digest mixtures was monitored by MC-ICP-MS 
using 202Hg signals: mean recoveries of 103 ± 5% (1σ, n = 31) for 
samples and 100 ± 2% (1σ, n = 5) for certified reference materials were 
found, ensuring efficient digestion of samples. Hg levels in blanks were 
below the detection limit. Reproducibility of Hg isotope measurements 
was assessed by analyzing UM-Almadén (n = 5), ETH-Fluka (n = 5) and 
the biological tissue procedural standard ERM-BCR-464 (n = 5). Only 
one analysis was performed per sample, but measured isotope signatures 

Table 1 
Common and scientific names, number of samples (n), IUCN status, measured pre-caudal length range (average), measured body mass range (average), total mercury 
concentrations (THg, mg kg-1 d.w. and w.w.), THg body mass index (BMI) calculated as THg per kg of body mass (Pethybridge et al., 2010), MDF (δ202Hg) and MIF 
(Δ199Hg) range (and average) for the six shark study species samples from the Eastern Equatorial Pacific.  

Common name Scientific name n IUCN status Pre-caudal 
length range 
(cm) (Average) 

Body mass 
range (kg) 
(Average) 

THg (mg kg- 

1) d.w. 
THg (mg kg- 

1) w.w. 
THg BMI δ202Hg (‰) Δ199Hg (‰) 

Scalloped 
hammerhead 

Sphyrna lewini  14 Endangered 109–213 (147) 11–94 (38) 1,17–19,01 
(7,11) 

0,29–4,75 
(1,78) 

0,01− 0,10 
(0,05) 

0,46–0,67 
(0,56) 

1,54–2,19 
(1,87) 

Blue shark Prionace glauca  12 Near 
threatened 

100–149 (120) 5–29 (12) 3,69–13,41 
(7,50) 

0,92–3,35 
(1,88) 

0,07–0,36 
(0,18) 

0,45–0,73 
(0,57) 

1,70–2,24 
(1,88) 

Oceanic 
whitetip 

Carcharhinus 
longimanus  

14 Vulnerable 68–120 (101) 4–18 (12) 1,99–15,58 
(5,21) 

0,50–3,90 
(1,30) 

0,04–0,33 
(0,12) 

0,84–1,08 
(0,94) 

2,43–2,86 
(2,69) 

Silky shark Carcharhinus 
falciformis  

13 Vulnerable 56–166 (107) 1–45 (15) 1,01–33,58 
(7,05) 

0,25–8,39 
(1,76) 

0,02–0,29 
(0,11) 

0,70–0,96 
(0,81) 

1,97–2,89 
(2,49) 

Bigeye 
thresher 
shark 

Alopias 
superciliosus  

6 Vulnerable 114–182 (151) 21–69 (49) 2,98–10,23 
(6,04) 

0,75–2,56 
(1,51) 

0,02–0,04 
(0,03) 

0,10–0,78 
(0,48) 

1,49–2,45 
(1,80) 

Pelagic 
thresher 

Alopias 
pelagicus  

14 vulnerable 63–174 (126) 5–69 (28) 0,74–7,24 
(3,15) 

0,18–1,81 
(0,79) 

0,02–0,05 
(0,03) 

0,10–0,83 
(0,45) 

1,43–2,91 
(1,94)  
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as well as analytical reproducibility of standards agreed with previously 
published values (Table SI_1; Blum et al., 2013; Jiskra et al., 2017; Li 
et al., 2016; Masbou et al., 2013). 

2.5. Human health risk assessment 

Considering a Provisional Tolerable Weekly Intake (PTWI) of 1.6 µg 
MMHg kg-1 Human Body Weight (HBW) proposed by the World Health 
Organization (WHO, 2018), we calculated the maximum weekly intake 
of shark (g shark weekly) according to the following equation: 

Intake =
PTWI ∗ HBM

THg  

Where: THg represents the average THg concentration (mg kg-1 w.w.) in 
each shark species measured in this study (Table 1). Human body mass 
(HBM) was equal to 70 kg, 60 kg and 15 kg for adult men, women, and 
children, respectively. 

2.6. Data analyses 

For comparison of Hg concentration and Hg isotope ratios between 
species, data were first assessed for normality (Shapiro–Wilk tests) and 
homogeneity of variances (Bartlett tests). As these conditions were not 
met, Kruskal–Wallis (KW) tests, followed by Conover–Iman multiple 
comparison tests with Bonferroni’s adjustment were used. Linear re
gressions were conducted to assess the relationship between Hg con
centration and shark length. Analysis of covariance, ANCOVA, was used 
to compare the Hg accumulation rates between species. 

3. Results and discussion 

3.1. Levels of THg: influence of shark size and species 

Total Hg concentrations in the muscles of the 6 studied shark species 
ranged between 0.18 mg kg-1 w.w. in Alopias pelagicus and 8.29 mg kg-1 

w.w. in Carcharhinus longimanus, corresponding to 0.72–33.16 mg kg-1 

d.w, respectively (Fig. 1A; Table 1). Prionace glauca showed the highest 
mean THg concentration with a value of 1.88 ± 0.63 mg kg-1 w.w. 
(n = 12), while the lowest values were measured in Alopias pelagicus 
with 0.79 ± 0.47 mg kg-1 w.w. (n = 14) (Fig. 1A; Table 1). THg con
centrations were significantly higher in A. superciliosus and P. glauca 

compared to A. pelagicus and C. falciformis (KW, p < 0.05). The diet 
biomass of P. glauca is largely dominated by cephalopods (98%), while 
this proportion is lower in the other species (Galván-Magaña et al., 
2013). Moreover, the two species of thresher sharks analyzed here target 
different fish prey, with A. pelagicus focusing primarily on lanternfish 
and A. superciliosus on hakes (Galván-Magaña et al., 2013). Although 
trophic competition has been previously suggested for these predator 
species (Páez-Rosas et al., 2018), the differences in prey consumed may 
partly explain the differences in THg concentrations between shark 
species. 

Pre-caudal length of the sharks ranged from 56 to 203 cm and total 
weight from 1 to 94 kg, covering a large range of THg BMI, from 0.008 to 
0.35 (Table 1). The majority of shark species were juveniles or sub- 
adults, with a minimum pre-caudal length (PCL) of 56 cm for a silky 
shark individual, Carcharhinus falciformis (Table 1). Sexual maturity 
(adults) is around 2 m total length for P. glauca, C. longimanus, C. falci
formis and S. lewini, and 3 m for A. Superciliosus (Drew et al., 2015; Chen 
et al., 1997; D’Alberto et al., 2017; Lessa et al., 2004; Grant et al., 2018). 
The highest mean THg concentration was found in Prionace glauca, 
which also presented the highest BMI (Table 1), indicating that the size 
(and the age) have a large influence on THg levels. 

Positive and significant correlations were observed between THg 
concentrations and PCL for almost all species, except for Prionace glauca 
and Carcharhinus longimanus (Fig. 1B). No difference was found 
regarding the slopes of these correlations (ANCOVA, p > 0.05), 
traducing similar accumulation rates between species. However, when 
THg were normalized with the animal body mass (SBM), the highest 
values were observed in Prionace glauca and Carcharhinus falciformis (R2 

= 0.35 and 0.32 respectively). Maximum THg concentrations of our 
study were higher than those reported for all previous studies of these 
sharks (Table SI_2), except for Carcharhinus falciformis (O’Bryhim et al., 
2017) and Alopias pelagicus (García-Hernández et al., 2007). 

3.2. Mercury stable isotopes as indicators of sharks’ Hg exposure 

The Hg stable isotope fractionations are increasingly analyzed to 
explore the Hg biogeochemical cycle in marine environment, and more 
particularly the MIF used as a powerful tool to trace Hg sources. Our 
main focus is understanding Hg dynamics in top predator fish species, in 
the Eastern Equatorial Pacific, participating to a better knowledge of the 
mechanisms controlling Hg isotope variations in the pelagic Ocean. 

Fig. 1. A) Boxplots of total Hg concentration (THg, in µg g-1 d.w.) in muscle of six shark species from the Eastern Equatorial Pacific. The box length represents the 
interquartile range, the bar length represents the range, and the horizontal line is the median value. Different letters (e.g. “a” and “b”) indicate statistically significant 
differences between species (p < 0.05). B) Total mercury concentration (THg, in µg g-1 d.w.) in log scale vs. pre-caudal length (PCL, in cm) for the same shark species. 
Data fit a linear regression for A superciliosus, A. pelagicus, C. falciformis and S. lewini (p < 0.05). 
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Under the influence of solar radiation, dissolved methylmercury can be 
transformed into inorganic Hg (iHg) by photodemethylation, while 
dissolved iHg can be converted into gaseous mercury Hg(0) by photo
reduction. In aquatic experiments, MMHg photodemethylation is char
acterized by a Δ199Hg/Δ201Hg ratio of 1.36, while photodegradation of 
iHg leads to a ratio of 1.0 (Bergquist and Blum, 2007), these differences 
being explained by magnetic isotope effects (Buchachenko et al., 2007). 
In our study, the obtained slope of 1.20 between Δ199Hg and Δ201Hg 
(Fig. 2A) is explained by the dominance of MMHg demethylation over 
iHg photoreduction. This result shows that this MIF is caused by a dif
ference of the nuclear volume effect, since MIF is produced by the in
fluence of a difference in the nuclear spin with a slope ranging from 1 to 
1.36 and by the effect of the magnetic nuclear champ with a slope 
ranging from 2 to 2.7 (Laffont, 2009). In addition, Hg photochemical 
degradation induces a Δ199Hg/δ202Hg slope of 2.4, whereas microbial 
transformation (no MIF) is characterized by a slope of 0 (Bergquist and 
Blum, 2007). In our study, the Hg isotopes in all shark samples displayed 
a Δ199Hg/δ202Hg slope of 1.54 (Fig. 2B), indicating the dominance of 
photochemical over microbial degradation. Our observations are similar 
to those previously reported in pelagic ecosystems of the Pacific Ocean 
(Blum et al., 2013; Madigan et al., 2018). 

3.3. Mercury stable isotopes as indicators of sharks’ foraging depth 

Using Δ 199Hg and δ202Hg, it is possible to estimate the foraging 
depth of sharks (Le Croizier et al., 2020). Highest MIF and MDF values 
are usually related to surface feeding sharks, while sharks that feed in 
deep waters show lower Δ199Hg and δ202Hg. This variation is a conse
quence of the photochemical degradation of MMHg in sunlight surface 
water, resulting in elevated Δ199Hg and δ202Hg values (Blum et al., 
2013). We found highest δ202Hg and Δ199Hg values in Carcharhinus 
longimanus (1.08‰ and 2.86‰ respectively) and Carcharhinus falciformis 
(0.96‰ and 2.89‰ respectively) (Table 1, Fig. 3), which is consistent 
with the known distribution of these species in the epipelagic zone (i.e. 
upper 200 m of the water column) (Andrzejaczek et al., 2018; Hutch
inson et al., 2019). While the other shark species were characterized by 
lower Δ199Hg and δ202Hg values (Fig. 3), suggesting a foraging behavior 
associated with the mesopelagic zone (i.e. between 200 and 1000 m 
depth) (Bizzarro et al., 2017; Braun et al., 2019). 

Indeed the two species of thresher sharks (Alopias pelagicus and 

A. superciliosus) are found from 0 to 700 m depth (Bizzarro et al., 2017). 
In the Pacific Ocean, A. superciliosus displays diel vertical migration and 
mainly occupies surface waters during the night, while it dives to 
400–500 m during the day (Weng and Block, 2004; Nakano et al., 2003). 
The vertical distribution of A. pelagicus has received less attention, but 
Hg isotopes suggest a similar foraging depth to A. superciliosus, traduced 
by similar Δ199Hg and δ202Hg values between these two thresher shark 
species (Fig. 3A and B). 

Most samples of Prionace glauca also showed low Δ199Hg and δ202Hg 
values (Fig. 3), which is congruent with deep feeding patterns of this 
species (Braun et al., 2019). Páez-Rosas et al. (2018) mention that 
Prionace glauca has a great diving capacity, allowing it to explore various 
habitats along the water column. In fact, it is capable of undertaking 
daily vertical migrations to depths of over 600 m in order to feed on 
mesopelagic cephalopods (Carey et al., 1990; Kubodera et al., 2007). Hg 
isotope signature show that Sphyrna lewini likely feed at the same depth 
as P. glauca (similar Δ199Hg and δ202Hg values; Fig. 3). Interestingly, 
S. lewini primarily occupies shallow waters (<100 m) near the Gal
apagos Islands, while it dives up to 300 m during offshore movements 
(Ketchum et al., 2014; Hearn et al., 2010). Here, Hg isotopes suggest that 
S. lewini may forage in the twilight zone when moving offshore, leading 
to low Δ199Hg δ202Hg values, comparable to those of thresher and blue 
sharks (Fig. 3). 

Foraging depth generally increases during ontogeny in various shark 
species (Afonso and Hazin, 2015; Hoyos-Padilla et al., 2016), which 
would result in a decrease in Δ199Hg and δ202 Hg values with size. 
Interestingly, we found positive correlations between Hg isotopes and 
body length for 4 of the 6 species analyzed here: P. glauca, S. lewini, 
A. pelagicus and A. superciliosus (Fig. 4A and B). These trends could 
denote different foraging strategies at the intraspecific level, with larger 
individuals feeding at shallower depth. Although information is scarce 
on the reproductive cycle of these sharks, some species such as S. lewini 
are known to migrate between oceanic islands and pupping grounds in 
coastal areas (Salinas-de-León et al., 2017). Thus, the observed increase 
in Δ199Hg and δ202 Hg values with length could be due to a coastal 
signature of mature individuals. Further analysis covering the entire size 
range of these species would allow this hypothesis to be tested robustly. 

In the North Pacific Ocean, Hg exposure has been shown to increase 
with foraging depth in pelagic fish (Choy et al., 2009; Madigan et al., 
2018). In our shark samples, no correlation was found between Δ199Hg 

Fig. 2. Tri-isotopic ratios ( ± SD) A) Δ199Hg vs. Δ201 Hg and B) Δ199Hg vs. δ202 measured for the shark species samples in the Eastern Equatorial Pacific. Data fit a 
linear regression (p < 0.001). 
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or δ202Hg and THg concentration (Figs. SI_2 and SI_3), suggesting that 
there is no influence of foraging depth on Hg exposure for sharks in the 
Equatorial Pacific. This result could, however, be masked by the pre
dominant impact of other parameters such as size or trophic level on Hg 
concentrations. 

In a previous study using carbon and nitrogen stable isotopes, sig
nificant overlap was found in the trophic niche of blue (P. glauca), silky 
(C. falciformis) and thresher (A. pelagicus) sharks from the Galapagos 
Islands (Páez-Rosas et al., 2018), suggesting competition for dietary 
resources between these species. Here, silky sharks displayed higher 
Δ199Hg and δ202Hg values than blue and thresher sharks (Fig. 3A and B), 
which means that strong trophic competition between these species is 
unlikely. Our study thus indicates that considering the vertical foraging 
habitat is essential for accurately assess resource partitioning in pelagic 
predators. 

3.4. Human health risk assessment 

In numerous cultures, women, men and children can be exposed to 
mercury contamination by regular sea-food ingestion and more specif
ically by shark ingestion all over the world (Vannuccini, 1999). In
vestigations in Asian countries [e.g., Cambodia (Agusa et al., 2007), 
Taiwan (Hsu et al., 2007), Japan (Sakamoto et al., 2007)] have reported 
fish/shellfish consumption levels greater than average worldwide con
sumption. Even in the US, Asian populations have higher MeHg intake 
than the Non-Asian population (Buchanan et al., 2015), seafood intake 
being a key predictor of blood Hg concentration (Liu et al., 2018). The 
consumption of shark species is a big concern, especially for its effects on 
fetus, newborn and children, as this element can cross the placenta 
barrier (Stern and Smith, 2003; Morrissette et al., 2004). In a less extent, 
neonates can also be exposed by consumption of contaminated breast
milk (Dorea and Barbosa, 2003). Thus, pregnant women and young 
mothers should be aware of THg exposure via predator marine fishes in 

Fig. 3. Boxplots of Hg isotope signature (A: δ202Hg and B: Δ199Hg, in ‰) in muscle of six shark species from the Eastern Equatorial Pacific. The box length represents 
the interquartile range, the bar length represents the range, and the horizontal line is the median value. Different letters (e.g. “a” and “b”) indicate statistically 
significant differences between species (p < 0.05). 

Fig. 4. A) δ202 Hg ( ± SD) and B) Δ199Hg ( ± SD) and vs. pre-caudal length (PCL) for shark species samples from the Eastern Equatorial Pacific. Significant linear 
regressions are shown (p < 0.05). 
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their regular diet (World Health Organization, 2018). 
Shark samples in this study show mean concentrations ranging from 

0.77 µg THg kg-1 up to 1.85 µg THg kg-1 w.w., all exceeding the WHO 
reference value of 0.46 µg MMHg kg-1. It is generally assumed that 
MMHg represents more than 90% of THg in the majority of shark species 
(Pethybridge et al., 2010; de Carvalho et al., 2014), but this is mainly 
based on teleosts while a recent study showed that mean MMHg per
centage relative to THg in fins of eight shark species imported to 
mainland China and Hing Kong, was 69.0 ± 33.5% (Garcia Barcia et al., 
2020). Silky shark was the species with a higher percentage of MMHg 
82.10 ± 30.73% while scalloped hammerhead shark had the lowest 
percentage with 43.1 ± 24.2%. According to the US EPA’s Guidance for 
Assessing Chemical Contaminant Data in Fish Advisories (2001), all the 
shark samples exceeded the threshold level of 0.12 mg MMHg kg-1 w.w., 
defined for a consumption limit of 4 fish meals per month, and half of 
them (48%) for a consumption limit of 1 fish meal every two months. 
Table 2. 

According to the World Health Organization (2018), the PTWI is 
1.6 µg MMHg kg-1 HBW. The tolerable weekly intake of THg by shark 
consumption is presented in Table 3 and depends on the human body 
weight and the shark species. By considering a median portion of 100 g 
of shark fillet in a single serving for an adult, we can observe that none of 
the analyzed species is edible, except for A. pelagicus (Table 3), limited at 
one portion per week. Thus, it is highly recommended to avoid the 
regular consumption of shark meat, more specifically for populations at 
risk such as pregnant women and young kids. Japanese authorities 
advise a maximum intake of shark muscle of 60–80 g per serving size, 
once a week or less for pregnant women (Japan Ministry of Health La
bour and Welfare, 2003) which is higher than our estimations (Table 3). 
Considering the THg results in S. Lewini, P. Lauca, C. longimanus, C. 
falciformis and A. Superciliosus, the tolerable weekly amount of shark 
muscles ingested by men and women should not exceed 88 g and 75 g, 
respectively. While USA recommends avoiding the consumption of 
shark meat for pregnant women (Han and Watanabe, 2012). 

Therefore, we can infer that the consumption of this particular meat 
may represent a serious human health risk. Nevertheless, shark meat 
represents a valuable source of proteins (Gordievskaya, 1973). This 
meat is highly appreciated because of its low fat contain and its high 
quantities of lysine, an important amino acid contained in fish meal 
(Kreuzer and Ahmed, 1978). Fish are also considered as an important 
source of n-3 fatty acids known for their protective health effects 
reducing risk of cardiovascular disease, stroke and diabetes; but these 
protective effects may be decreased by high levels of Hg as observed in 
tuna and sharks (Smith and Guentzel, 2010). In Taiwan shark con
sumption tends to be more popular among men than women because it is 
considered aphrodisiac (Fabinyi, 2012) and shark fin soup is commonly 
believed to have positive health benefits ranging from increasing virility 
to extending lifespan (Vannuccini, 1999). The MMHg concentration in 
dried, unprocessed fins are lower than in muscles, reducing the human 

Hg exposure. From a study realized in US restaurants, the average 
concentration of MMHg in shark fins reached 4.6 ng mL-1 (n = 50); the 
consumption of a 240 mL bowl of shark fin soup containing would result 
in a dose of 1.1 μg MMHg, which is 16% of the U.S. EPA’s reference dose 
for a 74 kg person; but, the soup containing the highest measured MMHg 
concentration (as measured in hammerhead sharks) would exceed the 
reference dose by 17% (Nalluri et al., 2014). More recently, in the Hong 
Kong markets, dried shark fins from five species surpassed meth
yl‑mercury PTWIs (Garcia Barcia et al., 2020). 

Considering the human health risk assessment results, the con
sumption of shark meat represents a serious human health risk for the 
populations that include shark in their regular diet. Special attention 
should be focused on pregnant women and children concerning the 
frequency and amount of shark meat intake. 

4. Conclusions and recommendations 

The concentration of THg and, therefore, of MMHg in sharks is highly 
influenced by their body size (age) and dietary habits. Our data show 
that none of the THg levels of the shark species seized from the ‘Fu Yuan 
Yu Leng 999’ in the Galapagos Reserve is tolerable for a weekly con
sumption; thus, shark meat represents a serious human health risk for 
the populations that include these predator fishes in their regular diet. 
The study of Hg isotopes helps to explain the biology and feeding pat
terns of large pelagic fish species. Most of shark species have slow 
growth rates, late age-at-maturity and low fecundity compared with 
bony fishes. These life history parameters result in a limited ability to 
withstand fishing pressure and a longer recovery time in response to 
overfishing. The fishing activities are illegal in the Galapagos Marine 
Reserve, known as the largest global shark biomass of the world (Salinas 
de León et al., 2016). Sustainable fisheries for sharks are possible, but 
need to be closely managed with small yields compared to standing 
stocks (FAO, 2019). The increase in effort and the expansion of the areas 
fished in the recent decades has led to concerns over the consequences 
for the populations of several shark species in the world’s oceans, and 
particularly in the Eastern Equatorial Pacific. Many exploited species of 
sharks are declining and several have been protected by national legis
lations and international treaties, like the CITES (Convention on Inter
national Trade in Endangered Species of wild Fauna and Flora), which 
aims to ensure that international trade in specimens of wild animals and 
plants does not threaten their survival. However, the estimation of the 
impacts of CITES on shark’s listing in Southeast Asian fisheries (Fried
man et al., 2018) is biased by the lack of data from Asian countries 
production and captures. 

Table 2 
Regression analysis of Log (THg) level and Pre-Caudal Length. Significant linear 
functions (Y=a+bx) were fitted. Y=Log (THg) level (mg kg-1 ww), x is Pre- 
caudal Length (cm). The estimated intercept (a), slope (b), R2, p value and 
number of samples (n) are listed by species.  

Common name Scientific Name a b R2 n p value 

Scalloped 
hammerhead 

Sphyrna lewini  0009 0003 0,59  14 0,0012 

Blue shark Prionace glauca  0004 0957 0,17  12 0,1837 
Oceanic whitetip Carcharhinus 

longimanus  
0009 0317 0,28  14 0,0525 

Silky shark Carcharhinus 
falciformis  

0013 − 0247 0,82  13 0,0000 

Bigeye thresher 
shark 

Alopias 
superciliosus  

0008 0199 0,92  6 0,0025 

Pelagic thresher Alopias pelagicus  0010 − 0202 0,84  14 0,0000  

Table 3 
THg measured average concentration per study shark species and tolerable 
weekly intake of shark meat (in g) for men, women and children.    

Average body weight (kg)   

Men Women Children 
Shark specie THg average concentration 

(mg kg-1 ww) 
70 60 15 

Weekly intake (g shark/ 
weekly) 

Sphyrna lewini  1.75  64  55  14 
Prionace glauca  1.85  61  52  13 
Carcharhinus 

longimanus  
1.28  88  75  19 

Carcharhinus 
falciformis  

1.74  64  55  14 

Alopias 
superciliosus  

1.49  75  64  16 

Alopias pelagicus  0.77  145  125  31 

*PTWI (µg MeHg kg-1 HBW):1.6 
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Sonke, J.E., 2016. Natural Hg Isotopic Composition of Different Hg Compounds in 
Mammal Tissues as a Proxy for in Vivo Breakdown of Toxic Methylmercury. 
Metallomics 8, 170–178. https://doi.org/10.1039/c5mt00286a. 

Pethybridge, H., Cossa, D., Butler, E., 2010. Mercury in 16 demersal sharks from 
southeast Australia: biotic and abiotic sources of variation and consumer health 
implications. Mar. Environ. Res. 69 (1), 18–26. https://doi.org/10.1016/j. 
marenvres.2009.07.006. 

Sackett, D.K., Drazen, J.C., Choy, C.A., Popp, B., Pitz, G.L., 2015. Mercury Sources and 
Trophic Ecology for Hawaiian Bottomfish. Environ. Sci. Technol. 49, 6909–6918. 
https://doi.org/10.1021/acs.est.5b01009. 

Sackett, D.K., Drazen, J.C., Popp, B.N., Choy, A.C., Blum, J.D., Johnson, M.W., 2017. 
Carbon, Nitrogen, and Mercury Isotope Evidence for the Biogeochemical History of 
Mercury in Hawaiian Marine Bottomfish. Environ. Sci. Technol. 51 (23), 
13976–13984. https://doi.org/10.1021/acs.est.7b04893. 

Sakamoto, M., Kaneoka, T., Murata, K., Nakai, K., Satoh, H., Akagi, H., 2007. 
Correlations between mercury concentrations in umbilical cord tissue and other 
biomarkers of fetal exposure to methylmercury in the Japanese population. Environ. 
Res. 103 (1), 106–111. https://doi.org/10.1016/j.envres.2006.03.004. 

Salinas de León, P., Cuña-Marrero, D., Rastoin, E., Friedlander, A.M., Donovan, M.K., 
Sala, E., 2016. Largest global shark biomass found in the Northern Galápagos Islands 
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