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Multisensor Data Fusion for Improved Segmentation
of Individual Tree Crowns in Dense Tropical Forests

Mélaine Aubry-Kientz , Anthony Laybros , Ben Weinstein, James G. C. Ball, Toby Jackson,
David Coomes , and Grégoire Vincent

Abstract—Automatic tree crown segmentation from remote sens-
ing data is especially challenging in dense, diverse, and multilayered
tropical forest canopies, and tracking mortality by this approach is
even more difficult. Here, we examine the potential for combining
airborne laser scanning (ALS) with multispectral and hyperspec-
tral data to improve the accuracy of tree crown segmentation at a
study site in French Guiana. We combined an ALS point cloud clus-
tering method with a spectral deep learning model to achieve 83%
accuracy at recognizing manually segmented reference crowns
(with congruence >0.5). This method outperformed a two-step
process that involved clustering the ALS point cloud and then
using the logistic regression of hyperspectral distances to correct
oversegmentation. We used this approach to map tree mortality
from repeat surveys and show that the number of crowns identified
in the first that intersected with height loss clusters was a good
estimator of the number of dead trees in these areas. Our results
demonstrate that multisensor data fusion improves the automatic
segmentation of individual tree crowns and presents a promising
avenue to study forest demography with repeated remote sensing
acquisitions.

Index Terms—Airborne laser scanning (ALS), data fusion,
deepforest, high-resolution imagery, hyperspectral, 3-D adaptive
mean-shift (AMS3D), tree crown segmentation.

I. INTRODUCTION

A IRBORNE laser scanning (ALS) is a powerful technology
for mapping forest biomass and tracking forest dynamics

Manuscript received November 26, 2020; revised March 15, 2021; accepted
March 19, 2021. Date of publication March 26, 2021; date of current version
April 21, 2021. This work was supported in part by British National Environment
Research Council under Project NE/S010750/1, in part by French National
Research Agency Investissement d’Avenir under Grant CEBA, ANR-10-LABX-
0025, in part by French Centre National d’Etudes Spatiales, in part by French
Fonds Stratégique de la Forêt et du Bois, and in part by European Fonds Eu-
ropéen Agricole Pour le Développement Rural. (Corresponding author: Mélaine
Aubry-Kientz.)

Mélaine Aubry-Kientz is with the AgroParisTech, UMR EcoFoG (CNRS,
Cirad, INRAE, Université des Antilles, 97310 Kourou, French Guiana.

Anthony Laybros and Grégoire Vincent are with the AMAP, Univer-
sity of Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier,
France (e-mail: melaine.aubry.kientz@gmail.com; anthony.laybros@onf.fr;
gregoire.vincent@ird.fr).

Ben Weinstein is with the Department of Wildlife Ecology and Con-
servation, University of Florida, Gainesville, FL 32611 USA (e-mail:
ben.weinstein@weecology.org).

James G. C. Ball and Toby Jackson are with the Department of Plant
Sciences, University of Cambridge, CB2 3EA Cambridge, U.K. (e-mail:
ball.jgc@gmail.com; tobydjackson@gmail.com).

David Coomes is with the University of Cambridge Conservation Research
Institute, CB2 3QZ Cambridge, U.K., and also with the Department of Plant
Sciences, University of Cambridge, CB2 3EA Cambridge, U.K. (e-mail:
dac18@cam.ac.uk).

Digital Object Identifier 10.1109/JSTARS.2021.3069159

(e.g., [1]–[8]). Biomass maps are usually generated using
“area-based” approaches, which reduce the complex informa-
tion held in ALS point cloud into simple pixel-level summary
information about forest structure. A standard methodology is
to relate biomass estimates obtained from field plots to these
simple summary statistics using regression models, and to then
use these models to make predictions across ALS landscapes
[9]–[18]. More complex individual tree crown (ITC) approaches
seek to recognize ITC within ALS point clouds, then predict the
biomass of these trees using allometric functions, and then, by
summation, calculate biomass per unit area [6], [19], [20]. These
ITC approaches are a little better than area-based approaches
at mapping forest biomass, but their true value lies in tracking
tree-level responses to environmental stressors, such as drought
events [20], [21] and disease [22]. For this reason, there is strong
interest in developing ITC approaches to data analysis [23].

ALS data have been extensively used to segment ITCs [24]–
[26]. However, these ITC approaches are compromised by inac-
curacies in the segmentation of ALS point clouds, particularly in
dense, structurally diverse forests [6], [20], [23], [27]. For exam-
ple, crowns can be relatively flat, preventing reliable detection of
tree tops that can lead to oversegmentation of tree crowns [28],
[29]. Some individuals have disjunct sections of the crown in the
canopy, which result in disjoint clusters and oversegmentation.

Complementing ALS information with spectral data from
multispectral or hyperspectral sensors provides opportunities
to improve segmentation [30], [31], as well as identifying tree
species [32] and phenological stage [33]. The immense diversity
of tree species in tropical forests leads to a great diversity of
spectral signatures, which can help in the crown segmentation
process, because nearby trees are likely to differ [34], [35].
Assuming that neighboring segments with similar signatures are
likely to belong to the same individual, spectral information can
be used to merge neighboring segments and reduce overseg-
mentation. Therefore, the expectation is that segmentation will
be better if geometrical information from ALS is complemented
by spectral information.

In this study, we develop a method for complementing ALS
with RGB and hyperspectral imagery to improve ITC segmen-
tation. We work with the mean-shift algorithm—amongst the
most effective approach—currently available for segmenting
ALS point clouds of tropical rainforests [23]. This algorithm
draws polygons around each predicted tree crown; we then
merge neighboring spectrally similar segments to reduce over-
segmentation. To evaluate if segments are spectrally similar, we
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Fig. 1. Workflow of the segmentation procedure.

used hyperspectral data and RGB images. The resolution of the
RGB images is high, allowing identifying crowns on their texture
although their color is similar. We evaluate two approaches for
identifying segments to merge. First, a logistic model using
hyperspectral information and high-resolution RGB imagery as
input, and second, a deep learning model using high-resolution
RGB imagery [23], [36]. The workflows are presented in Fig. 1.
Finally, we demonstrate how this approach can be used to track
individual tree mortality over time.

II. MATERIALS AND METHODS

A. Data

1) Study Site: The Paracou field station is situated in a low-
land tropical rain forest with gently rolling terrain near Sinna-
mary (5˚18′N; 52˚55′W) in French Guiana. Its composition is
typical of Northern Guianese rain forests; more than 500 woody
species attaining 10 cm diameter at breast height (DBH) have
been recorded (over 118 ha), dominated by the Lecythidaceae,
Fabaceae, Chrysobalanaceae, Sapotaceae, and Annonaceae fam-
ilies (ordered in decreasing abundance). A total of 16 plots from
the experimental site were included in this study (named plot
1–16), representing more than 62 000 trees with DBH ≥ 10 cm.
Different types of silvicultural treatments of increasing intensity
were applied between 1986 and 1988. In this study, unlogged
control plots are accounted for the majority of the area (62.5 ha).

2) Inventories: All trees of DBH ≥ 10 cm were located by
Cartesian coordinates of their trunks to an estimated precision
of +/−2 m, botanically identified and their DBH were mea-
sured in 2015 (all plots), 2016 (6 plots), and 2019 (15 plots).

Plot corners and points along the plot border were georefer-
enced with centimetric accuracy using a total station when the
experimental plots were set up. Trees were then positioned
within subplots (20 × 20 m) using a measuring tape. Positions
of newly recruited trees were later estimated from the position
of older neighboring trees. Positions of the trees are taken at the
bole center.

3) ALS: ALS data were acquired in October 2015, Septem-
ber 2016, and November 2019 by ALTOA, operating a RIEGL
LMS-Q780 sensor. On all dates, the scan frequency was
400 kHz, the final point density was above 50 points·m−2, the
flying altitude was 800 m, and the scan angle was +/− 25°.

4) RGB Imagery: RGB images were acquired during the
same flights as the ALS scans with an IXA180 phase one camera
and an 8 cm ground sampling distance. Orthorectification of the
imagery was performed using the canopy digital surface model
(DSM) produced from the ALS data on each date. A 5-m reso-
lution DSM was created from the point cloud by selecting the
point of maximum height on a 1-m resolution grid, resampling
the DSM at 5 m, and interpolating between points using a cubic
spline.

5) Hyperspectral Imagery: Imaging spectroscopy was ac-
quired only in 2016, with a Hyspex VNIR-1600 (Hyspex NEO,
Skedsmokorset, Norway) sensor-mounted alongside the Riegl
scanner. Its 160 bands covered a spectral range of 414–994 nm
(i.e., visible to near infrared) with a spectral sampling distance
of 3.64 nm. The flight took place on a cloudless day (September
19th, 2016). Images were orthorectified and georeferenced to
1 m spatial resolution with the PARGE software [37] using the
canopy DSM produced from the ALS point cloud. Atmospheric
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correction was applied using ATCOR [38], removing the atmo-
spheric disturbance and obtaining apparent reflectance. Mean
spatial filtering was applied with a 3 × 3 window.

B. ALS Crown Segmentation

A 3-D adaptive mean-shift (AMS3D, [39]) algorithm was
used to segment tree crowns because previous work has shown
that it performs better than other methods at our study site
[27]. The AMS3D algorithm assumes the point cloud to be a
multimodal distribution where each mode is defined as local
maxima in density and height and corresponds to a single
location within an ITC [23]. The bandwidth was applied as a
Pollock kernel as it allowed a wider variety of crown shapes
to be segmented [40]. The shape of the bandwidth could vary
from a cone to an ellipsoid with parameter m [41], [42]. The
size of the bandwidth adapted to the point height to allow higher
crowns to be larger [23]. The segmentation was performed on
the Computree platform [43].

Based on previous analysis [27], the main drawback of the
ALS approach is the tendency to oversegment large crowns.
These large crowns are visible from the top, and therefore, their
segmentation might be improved by using additional spectral
information. In this study, we focus on the segmentation of
these upper canopy tree crowns. To do so, we first need to
convert the 3-D point clusters into 2-D polygons for which
spectral information is available. Once the point cloud had been
segmented, polygons were created by first rasterizing the point
cloud and keeping the cluster value of the highest point in a
pixel. The pixel size was chosen to ensure that all pixels were
assigned a cluster value. In our retrievals, the point density was
high (>50 points·m−2) and we rasterized at a resolution of 0.5 m.
We applied a majority filter (3×3 pixels) to reduce noise. Then,
polygons were created based on the clustered cells in the raster.

C. Manual Correction

Manual segmentation was conducted on a subset of trees in
2016 and the map of segmented trees was considered as our
ground truth. We first drew polygons where we thought they
should be crowns using the canopy height model (CHM) and
the high-resolution RGB images from 2015 and 2016, and the
hyperspectral information from 2016. These segments and their
species label were then validated in the field. Hereafter, these
segments are referred to as the “manually segmented crowns”;
they account for 706 of the crowns in plots 3,8,9,10,12, and 16
from 155 species.

Manual correction of the automatic AMS3D segmentation
was conducted in three plots of the study site (plots 4, 7, and
15) with RS data from 2016. This correction was guided by the
multispectral and hyperspectral data. The correction consisted
of merging, splitting, or redrawing segments. These segments
are hereafter referred to as the “reference segments.”

D. Texture in the RGB Images

As the resolution of the RGB images was high, we expected
different crowns to exhibit different textures although their color

Fig. 2. Examples of spectral data. (a) RGB image with six segments drawn;
textural information can be used to merge them into valid crowns (two on the right
and four on the left). (b) Hyperspectral data for the same segments (colorized
with three axes from the PCA) can also be used to merge segments from the
same individuals.

was similar (see Fig. 2). We used the high-resolution pictures to
compute texture indices based on the gray-level co-occurrence
matrix (GLCM). We derived seven statistics (mean, homogene-
ity, variance, dissimilarity, entropy, correlation, and contrast)
from the GLCM for each band (red, green, and blue) using the
GLCM package in R [44].

E. Principal Component Analysis (PCA) of
Hyperspectral Data

While the spatial resolution of the hyperspectral imagery
was lower than that of the RGB images, the spectral resolution
was much higher, and different crowns often had differentiable
spectrums. To reduce the number of dimensions, we used a PCA
and discarded the first PCA component that corresponded to illu-
mination [45], [46]. Before applying the PCA, the hyperspectral
data were centered and scaled. The scikit-learn library was used
to run the PCA and for centering and scaling the data [47].

F. Segment Merging Logistic Model

For any two adjacent AMS3D segments, we computed the
probability that fusion was necessary (i.e., that the segments
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were a part of the same crown and incorrectly segmented by
AMS3D). This probability depends on the following rules.

1) Allometry of height to the crown area of the two adjacent
segments to prevent the creation of a small tree with too
large a crown or a tall tree with too small a crown.

2) Minimum change in height inside a crown (Δheight).
3) Minimum change in hyperspectral values (ΔHSI).
4) Consistency in RGB texture (Δtexture).
The model used was a linear model, including the previous

terms with a logit link of the following form:

pf = logit−1 (allometry, Δheight, ΔHSI, Δtexture) (1)

where pf is the probability of fusion. To select the number
of components of the PCA of hyperspectral data to keep, we
gradually increased the number of components in the model and
computed the Akaike information criteria (AIC). Six compo-
nents were eventually selected as this model had the lowest AIC
(see Fig. 2).

To estimate the parameters of the model, the manually seg-
mented crowns were compared with the AMS3D segments.
If two segments were a part of the same crown, the value of
fusion for this pair was 1, while if two segments were not a
part of the same crown, it was set to 0. We first introduced
the different distance measures independently (either an HSI
distance measure or a texture distance measure) and selected
the distance for each data type that had the lowest AIC. As the
number of variables did not change, this meant that we selected
the variables that gave the model of maximum likelihood.

G. Variable Selection

Different distance measures could be used to compare the
hyperspectral and texture differences between segments [48]. If
the vectors being compared are considered orthogonal, distance
functions, such as Euclidean or weighted Euclidean distance, or
a difference based on the angular information, such as spectral
angle, can be used. We may also consider the distance between
the distributions with distance measures, such as Bhattacharyya
or cumulative spectrum. We compared six commonly used dis-
tance or dissimilarity measures applied to the six components
of the PCA run on the hyperspectral images, or on the texture
indices (seven indices for each of the three colors): the spectral
angle mapper (SAM, [49]), Canberra distance [50], Euclidean
distance of cumulative spectrum [48], root mean square, and
Bhattacharyya [51] and Euclidean distance.

H. DeepForest

The DeepForest package1 was recently developed to segment
trees from aerial RGB images [52]–[54]. The model uses a
deep learning convolutional neural network (CNN) to predict
individual crowns [53]. The deep learning model was pretrained
with annotations from sites of the U.S. National Ecological
Observation Network. The model was tested with data from
our study site, confirming that the method is robust and flexible
enough to be applied in tropical forests [53]. We fine-tuned

1Online. [Available]: https://github.com/weecology/DeepForest

the pretrained model with the bounding boxes drawn around
the reference crowns that had been segmented by the AMS3D
algorithm and corrected by hand (on 18.75 ha, see Section II-C).
Then, the model was applied to other plots for which manually
segmented crowns were available (plots 3, 8, 9, 10, 12, and 16,
summing to 706 manually segmented crowns; see Fig. 1). The
resulting bounding boxes were then used to refine the AMS3D
segmentation. If two segments from the AMS3D segmentation
intersected by more than 50% with the same bounding box
generated by DeepForest, they were merged.

I. Segmentation Validation

It is difficult to validate crown segmentation in dense tropical
forests as not all trees are visible in airborne imagery. Therefore,
one cannot expect to tally all the trees from an aerial view and di-
rectly use stem counts as validation data. This limitation prevents
the computation of detection rate, omission, and commission
errors, usually used to validate ITC segmentation.

Instead, we used the crowns that were manually segmented
for validation and computed congruence, and over- and under-
segmentation for these crowns. Following the procedure, as
described in [27], for each machine-segmented crown inter-
secting with a manually delineated crown, the Jaccard index
was calculated. Its value measures the ratio of the area of the
intersection of the two polygons over the area of their union. A
crown was considered correctly segmented if the Jaccard index
was above 0.5. To test the tendency of algorithms to oversegment
an additional test was conducted. For each reference crown,
we detected every automatic crown with more than 50% of
its area inside the reference crown. They were then merged
and the new Jaccard index was calculated. If it was above
0.5, the crown was considered oversegmented. A similar test
was applied to detect undersegmentation in which the roles of
reference and automatic segments were inverted. To detect how
well the method performed with small or large crowns, we then
realized this validation only with small (DBH<30 cm), medium
(30 cm<DBH <50 cm), and large trees (DBH >50 cm).

Then, following again the procedure of the article presented in
[27], we paired trees from the inventories with segmented crowns
from AMS3D only and AMS3D corrected with DeepForest,
and we computed the RMSE of a species-specific allometric
model estimating DBH from crown height and size. The lower
the RMSE, the better the fit of the model, which meant that
the crowns were better segmented. Computing the RMSE for
different tree size classes allowed us to identify which size
class was better segmented. We expected the correction with
DeepForest to reduce the RMSE for larger trees.

J. Tracking Tree Mortality Over Time

To evaluate how ITC segmentation could improve the estima-
tion of tropical forests’ dynamics, we compared the estimates of
tree mortality based on the ITC segmentations and the area of
loss of canopy height between two dates. Inventories from 2015
and 2019 were compared to retrieve the number and positions of
dead trees in 15 plots of the Paracou field station totaling 94 ha
to provide a means of validating the approach.

https://github.com/weecology/DeepForest
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TABLE I
AIC OF LOGISTIC MODELS INCLUDING VARIABLES INDEPENDENTLY (LOWEST

AIC IN RED)

TABLE II
CONGRUENCE OF THE REFERENCE CROWNS WITH DIFFERENT

SEGMENTATION METHODS

We used the CHM (resolution 0.5 m) from 2015 to 2019 to
identify height loss in the canopy. Following the criteria used in
[55], contiguous clusters larger than 4 m2 and with >3 m height
loss between CHM were classified as canopy subsidence areas.
Trees, which were recorded as alive in 2015, intersected with
these clusters, and were missing in the 2019 inventory, were
classified as dead.

Automatically segmented crowns that had more than 50%
of their area intersecting with a canopy subsidence area were
classified as lost crowns. We compared the number of lost crowns
with the number of dead trees. The number of dead trees (and
lost crowns) increases with canopy subsidence number and area,
so we also compared the number of dead trees to the number of
lost crowns divided by the sum of the canopy subsidence area.

III. RESULTS

A. AMS3D

In total, 132 678 clusters were segmented by AMS3D (2016
point cloud). Most of these clusters are too small to correspond to
canopy trees, and once rasterized and drawn as polygons, 49 168
crowns remained. A total of 78.2% of the manually segmented
crowns had a congruent segment. However, 12.7% of the crowns
were oversegmented (see Table II). Tree crown segments were

Fig. 3. Manual correction of AMS3D segmentation. (a) AMS3D results.
(b) AMS3D after manual correction.

manually corrected in plots 4, 7, and 15 (see Fig. 3). Out of
the 8097 crowns segmented by AMS3D in these plots, 1222
were fused with another and 234 were split, creating a reference
dataset comprising 6875 segmented tree crowns.

B. Logistic Regression Model

The AICs for logistic models containing hyperspectral infor-
mation were consistently lower than for models containing tex-
tural information, indicating the value of hyperspectral imaging
in tree recognition. The best-supported logistic model included
the spectral angle mapper from the hyperspectral data, and the
Bhattacharyya distance from the texture (see Table I).

The probability of two segments (A and B) being a part of the
same crowns was expressed as

pf (A,B) = logit−1

(
β0 + β1

DA

HA
+ β2

DB

HB

+ β3 |HA −HB |+ β4SAMHSIA,B
+ β5BhatA,B

)
(2)

where pf is the probability of fusion for two segments A and B,
DA and DB are their diameters, HA and HB are their heights,
SAMHSIA,B

is the spectral angle mapper from the hyperspectral
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Fig. 4. Correction of the oversegmentation of one crown. (a) AMS3D
segmentation (oversegmented). (b) Segmentation of the DeepForest method.
(c) AMS3D corrected by DeepForest.

data, BhatA,B is the Bhattacharyya distance from the texture,
and β0,...,5 are the parameters.

C. DeepForest

Once applied to plots 3, 8, 9, 10, 12, and 16, DeepForest
drew 10 297 boxes around crowns, while AMS3D segmented
23 173 polygons in these plots. Both algorithms had good
congruence but tended to oversegment, AMS3D being worse
at oversegmenting than DeepForest (see Table II).

D. Merging ALS-Derived Crowns Based on HIS and
RGB Data

Both correction methods (DeepForest and the logistic model)
correct over-segmentation by merging segments (see Fig. 4), but
the congruence rate is improved only with the DeepForest cor-
rection method (see Table II). While the logistic model reduced
the number of oversegmented crowns from 12.7% to 8.9%, the
DeepForest correction reduced it to 5.2%. Moreover, 82.9% of
the reference crowns were well segmented (congruence >0.5)
with the DeepForest correction.

Fig. 5. RMSE of the allometric model varies with DBH: it is higher for small
and large trees. In black: AMS3D and in red: AMS3D corrected with DeepForest.

We expected that the segmentation approaches that success-
fully applied AMS3D and DeepForest would benefit from the
advantages of both algorithms: the ability of AMS3D to segment
small crowns and the ability of DeepForest to bound larger ones.
Using the methodology, as described in [24], we paired the
automatic segments with the stems from the field inventories.
Then, using an allometric relation between DBH, H, and crown
diameter, we computed the RMSE between the observed DBH
and the DBH predicted by the model. The better the segmen-
tation method, the lower the RMSE should be. For large trees
(DBH > 50 cm), the correction with DeepForest decreased the
RMSE, which showed that large crowns were better segmented
once DeepForest correction had been applied. However, for very
small trees (DBH < 15 cm), the RMSE was higher after the
DeepForest correction (see Fig. 5). This was due to the fusion of
small segments with larger ones, removing these small segments
from the dataset and leaving fewer small segments available for
the pairing algorithm. The segmentation validation realized only
on small trees (DBH < 30 cm) showed that the crowns of these
trees are well segmented (82.4% of the 68 manually segmented
crowns), but the correction is not useful for these trees. Medium
trees (30 cm<DBH <50 cm) are almost as well segmented
(81.8% of the 351 manually segmented crowns), the correction
allows to reduce oversegmentation and to reach 83.5% of well-
segmented crowns. Big trees (DBH>50 cm) benefit the most
from the correction and 82.9 of the 287 manually segmented
crowns are well segmented after the correction (against 72.8%
without correction).

E. Tracking Tree Mortality Over Time

In the 15 sampled plots, 3361 trees died between 2015 and
2019, which represents 5.6% of the living trees of 2015. Out
of the 2706 trees that were situated in canopy subsidence areas
(contiguous clusters larger than 4 m2 and with more than 3 m
height loss between the CHM of 2015 and 2019), 503 (18.6%)
were classified as dead because they were missing in the 2019
inventory. The number of trees that died between 2015 and
2019 per 6.25 ha plot was related to the newly created canopy
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Fig. 6. (a) Canopy subsidence area and (b) number of crowns intersecting
with a canopy subsidence area in relation with the number of dead trees in these
areas.

subsidence area (see Fig. 6). However, the number of lost crowns
(crowns present in 2015 intersecting by more than 50% with
canopy subsidence detected in 2019) was found to be a much
stronger predictor of the number of trees that were observed to
have died in the field plots (R2 increased from 0.595 to 0.831, see
Fig. 6). Using the segmentation of AMS3D only, the correlation
was not as strong (R2 = 0.729), highlighting the benefit of
combining ALS and spectral information to track tree mortality.

IV. DISCUSSION

Although the combination of AMS3D and DeepForest is
complex and may not seem to be the simplest ITC segmentation
to use, it gives better results, is easier to implement, and also
faster than the logistic model developed. Other methods, mostly

based on the CHM, may be simpler, although they often need
a fair amount of parameter tuning. However, these methods do
not perform well in tropical dense forests. By using the entire
point cloud and not the CHM, and allowing the higher trees to
have larger crowns, AMS3D has proven to be the most effective
method to segment ITC on ALS data in our study site [27].

The methodology shows that combining 3-D ALS data with
2-D spectral data improves the segmentation of ITC in a dense
tropical forest. Our approach captures the complementary aspect
of what made individual crowns appear as coherent objects—
i.e., change in the spectral/textural characteristics of regions
or the presence of crown edges. Hyperspectral spectral data,
even reduced to six components, proved more effective than
the texture in merging neighboring segments from the same
crown. However, hyperspectral data are uncommon and tend to
be more expensive to acquire. The use of other texture features
may be more cost-effective if associated with the appropriate
similarity measure, as proposed, for instance, in [56] with
the color contrast occurrence matrix and the Kullback–Leibler
divergence.

DeepForest outperformed the logistic model approach despite
using only RGB images. The correction realized with DeepFor-
est reduced the oversegmentation by 12% without increasing un-
dersegmentation. This is promising as RGB images are cheaper
and more commonly available than hyperspectral images. The
application of DeepForest to hyperspectral imagery has not yet
been attempted and remains an area of active research. Com-
bining multiple sensors for object detection in remote sensing
imagery requires overcoming two main obstacles: first, how to
balance data with differing spatial resolution and data input types
(e.g., point cloud versus rasters), and second, accounting for
potential errors in georeferencing among data products [57].
In addition, it remains unclear whether it is better to a priori
select bands and hyperspectral features, as we did in our logistic
model, or learn directly from large hyperspectral data cubes.
Other deep learning methods have recently been developed to
segment tree crowns, often using the CNNs. The mask R-CNN
for instance does not simply draw bounding boxes but delineates
crowns exactly [58], while the faster-CNN has been applied to
ALS data [59], [60] to extract points corresponding to individual
trees. These deep learning methods present additional promis-
ing opportunities for fusing data from different sensors. Deep
learning methods that combine spatial and spectral learning are
rapidly evolving [61] and have the potential for simultaneously
learning on multiple data inputs.

Multidate remote sensing data have recently been used to
study trees’ dynamics, for instance, to track treefalls in African
savannas [62]–[64] or harvest trees in boreal forests [65]; to
estimate fire severity, drought-induced mortality, and track tree
growth and loss in the Sierra Nevada, California [66]–[69];
or to detect tree crowns’ shapes changes in Amsterdam, the
Netherlands [41]. However, using multidate ALS to track tree
growth in Scotland showed density-dependent biases [70]. In
tropical forests, mortality has been studied through tree gaps’
dynamics [55] and branch fall [71]. We showed here that adding
ITC information to tree gaps’ dynamics improves our ability to
track individual tree mortality.
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Tracking individual tree fate (recruitment, growth, and mor-
tality) from repeat ALS requires a high level of segmentation
accuracy. The sources of discrepancy between the repeated ALS
datasets are expected to occur over time, including geometric
issues from the imperfect alignment of point clouds or from
vegetation sway by the wind. Similarly, even the best quality
imagery will suffer from its own limitations and a slight change
in sun angle can reveal or mask, otherwise invisible or visible
crown. Spectral data can suffer from illumination problems
and parts, or even entire crowns can be hidden by shadows
of neighboring trees. So, multiple images combined with ALS
may indeed be required to achieve robust tracking of individual
trees. This combination can be done directly during the seg-
mentation of the point cloud if consistent spectral information
can be assigned to all points, as in the case of multispectral
ALS [29]. However, geometrical and spectral characteristics are
often acquired with separate sensors and the association of both
kinds of data can be hampered by misalignment. A geometrically
consistent fusion of both data can be achieved by backprojection
of ALS point clouds on the image plane so that each point has its
own spectral information (see for instance [72] for hyperspectral
imagery and [73] for multispectral imagery). This colored point
cloud can be then used to produce an image by interpolating the
color of the points reprojected on a plane. However, this amounts
to resampling and interpolating the spectral information and
degrades the resolution of the image leading to the loss of
fine texture. Moreover, hyperspectral imagery often has a lower
spatial resolution than that of the RGB imagery but is spectrally
more discriminating.

V. CONCLUSION

Efficiently and accurately segmenting tree crowns is chal-
lenging in dense tropical forests. We have shown that a new
approach combining the state-of-the-art methods for analyzing
ALS and RGB data (i.e., AMS3D and DeepForest, respectively)
performs better than either method on its own. We have also
demonstrated that our approach can be used to track the mortality
of individuals, which could radically improve dynamics’ models
used to predict forest responses to anthropogenic change.
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