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Abstract: The functional diversity of the New Caledonian mangrove sediments was examined,
observing the distribution of fungal dye-decolorizing peroxidases (DyPs), together with the complete
biochemical characterization of the main DyP. Using a functional metabarcoding approach, the
diversity of expressed genes encoding fungal DyPs was investigated in surface and deeper sediments,
collected beneath either Avicennia marina or Rhizophora stylosa trees, during either the wet or the dry
seasons. The highest DyP diversity was observed in surface sediments beneath the R. stylosa area
during the wet season, and one particular operational functional unit (OFU1) was detected as the most
abundant DyP isoform. This OFU was found in all sediment samples, representing 51–100% of the
total DyP-encoding sequences in 70% of the samples. The complete cDNA sequence corresponding
to this abundant DyP (OFU 1) was retrieved by gene capture, cloned, and heterologously expressed
in Pichia pastoris. The recombinant enzyme, called DyP1, was purified and characterized, leading to
the description of its physical–chemical properties, its ability to oxidize diverse phenolic substrates,
and its potential to decolorize textile dyes; DyP1 was more active at low pH, though moderately
stable over a wide pH range. The enzyme was very stable at temperatures up to 50 ◦C, retaining 60%
activity after 180 min incubation. Its ability to decolorize industrial dyes was also tested on Reactive
Blue 19, Acid Black, Disperse Blue 79, and Reactive Black 5. The effect of hydrogen peroxide and sea
salt on DyP1 activity was studied and compared to what is reported for previously characterized
enzymes from terrestrial and marine-derived fungi.

Keywords: lignocellulose degrading enzymes; dye-decolorizing peroxidases; heterologous
expression; dye decolorization; marine fungus; mangrove; salt adaptation
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1. Introduction

Coastal mangrove soils are fascinating ecosystems, representing a whole forest envi-
ronment at the interface between land and sea. These ecosystems consist mainly of woody
plants that grow under extreme environmental conditions such as high salinity and high
temperature [1]. Mangrove leaves and sediments contain a high concentration of carbona-
ceous material, feeding a considerable bacterial and fungal microflora [2,3]. According to
Latha [4], mangrove fungi represent the second largest ecological group of all marine fungi.
Recently, the structure of microbial communities in New Caledonian mangrove sediments
was analyzed in detail using a metabarcoding approach [3]. This work investigated the
distribution of prokaryotic and fungal communities with respect to depth, vegetation cover,
and season. The prokaryotic community appeared to be exclusively shaped by sediment
depth, with resulting differences in prokaryotic phyla composition. On the contrary, the
fungal community was evenly distributed according to the above criteria and showed a
dominance of Ascomycota over Basidiomycota in all analyzed layers [3]. Mangroves are
considered to be the largest carbon reservoir in coastal ecosystems and actively supply
carbon to adjacent ecosystems [5,6]. In this carbon-rich environment, mangrove fungi play
a key role in the recycling of organic matter, including Lignocellulose-rich biomass [7]. In
terrestrial forests, fungal degradation of plant lignocellulose is based on a close association
with the woody material, and on the secretion of a complex and variable cocktail of en-
zymes acting in a sequential, sometimes synergistic way [8,9]. Lignocellulolytic enzymes,
including cellulases, hemicellulases, and lignin-degrading enzymes (including Ligninolytic
peroxidases and laccases), are classified in the CAZy database [10]. The scientific literature
related to their characterization is broad and diverse for enzymes derived from terrestrial
species. By contrast, very little is known about the enzymatic mechanisms employed by
mangrove-derived fungi to break down plant biomass and their adaptation to marine
conditions, especially to high salt concentrations. In a previous study, we showed that the
presence of sea salt modified the composition of secreted lignocellulolytic enzymes, with
increased secretion of xylanases and cellulases, and lower production of oxidoreductases
belonging to the auxiliary activities (AA) class of the CAZy database [11]. This tendency
was recently confirmed in the study of the marine-derived fungus Stemphylium lucomag-
noense [12]. Although terrestrial basidiomycetes, particularly white-rot fungi, are seen as
the key actors in environmental lignin degradation, marine-derived ascomycetes were
also demonstrated to significantly degrade lignin [13]. For example, the mangrove fungus
Pestalotiopsis sp. was demonstrated to produce two different laccases that are active, with
different enzymatic behavior, in up to 5% sea salt [14]. Similarly, the marine white-rot
basidiomycete Phlebia sp. was shown to secrete two enzymatically different manganese
peroxidases (MnPs), in saline and non-saline conditions, respectively, also illustrating the
adaptation of marine fungi to sea salt [15].

Classical ligninolytic heme peroxidases, including manganese peroxidases (MnPs),
lignin peroxidases (LiPs), and versatile peroxidases (VPs), belong to the peroxidase-catalase
superfamily [16]. Dye-decolorizing peroxidases (DyPs) are heme peroxidases that were
more recently described. They belong, together with chloride dismutases (Cld) and other
heme-binding proteins (EfeB gene), to the “dimeric α+β barrel structural superfamily”
(Pfam CL0032, SCOP identifier 54909), also called CDE superfamily [17,18]. However,
the evolutionary relationships among the CDE family members are not clear: they show
low identity in structure-based alignments, and their common folding could represent
a convergent or divergent evolutionary process [19]. The fold of these proteins consists
of a β barrel decorated with α helices, resulting from homo- or hetero-dimerization of
two ferredoxin-like motifs [20]. Each motif is supplied by distinct polypeptide chains,
like in some cofactor-free bacterial enzymes [21,22], or by the N and C terminal domains
of a single polypeptide, like in DyPs, each containing a conserved histidine in the heme-
binding site and a GXXDG signature motif. This sequence contains the catalytic aspartate
that acts as a proton acceptor, playing the role of the catalytic histidine found in plant
peroxidases [23,24]. DyPs are produced in bacteria [25] as well as in filamentous fungi, with
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many examples in basidiomycetes such as Bjerkandera adusta [26], Pleurotus ostreatus [27],
Auricularia auricula-judae [28,29], and Trametes versicolor [30]. They have been purified and
biochemically characterized, demonstrating their capacities to oxidize a large variety of
substrates, such as phenolic compounds (2, 6-dimethoxyphenol and guaiacol) and non-
phenolic compounds (veratryl alcohol and Mn2+), together with anthraquinone substrates
and also flavonoids extracted from oak wood (catechin and quercetin) [30,31]. While heme
peroxidases have been largely studied in fungi isolated from terrestrial environments, little
is known about their involvement in lignocellulose degradation in marine habitats. In
comparison, other ligninolytic enzymes, such as laccases isolated from marine-derived
fungi, have already been isolated, produced, and characterized [32,33], and some have
been shown to participate in lignocellulose breakdown [34] or be promising candidates for
biotechnological processes such as dye decolorization [33,35].

In the present work, a cDNA capture by hybridization approach was used (i) to
evaluate the diversity of expressed fungal genes that encode DyPs in mangrove sediments,
using a metabarcoding approach, and (ii) to recover and clone full-length DyP cDNAs
in P. pastoris, to gain insights into the biochemical properties of enzymes isolated from
marine environments. One DyP, called DyP1 in this study, was heterologously expressed
and characterized, and its biotechnological potential for dye decolorization was assessed.

2. Materials and Methods
2.1. Strains for Cloning and Heterologous Expression

Escherichia coli strain DH5α (Promega, Charbonnieres, France) was used for vector
storage and propagation. P. pastoris strain X33 (Invitrogen, Carlsbad, CA, USA) was used
for the heterologous expression of the DyP-encoding synthetic cDNA after optimization of
codons (GenScript, Piscataway, NJ, USA).

2.2. Sediment Sampling, RNA Extraction, and cDNA Synthesis

Sediment samples were collected from a mangrove wetland located in Saint Vincent
Bay (21◦55′58′ ′ S, 166◦4′30′ ′ E) on the west coast of New Caledonia. As previously de-
scribed [3], sediment samples were collected in three independent 10 m2 plots (A, B, and C)
located 50 m apart and defined in Avicennia marina (A) and Rhizophora stylosa (R) pristine
areas. Three sediment cores (50 cm deep) were collected in 2016 at low tide with a stainless-
steel corer (8 cm diameter) in each 10 m2 plot during the wet (March) and dry (November)
seasons. Oxic (0–10 cm deep) and anoxic (40–50 cm deep) fractions were collected from
each core, and a single composite sample per fraction and per plot (A, B, or C) for each tree
area (A. marina and R. stylosa) was prepared by mixing equal amounts of sediments. Per
season (March or November), a total of 12 different composite samples were thus obtained
and separately analyzed: (i) R1A, R1B, and R1C and R2A, R2B, and R2C corresponding,
respectively, to the oxic and anoxic fractions from the three plots (A, B, and C) designated
in the R. stylosa area (R). (ii) A1A, A1B, and A1C and A2A, A2B, and A2C corresponding,
respectively, to oxic and anoxic fractions of the three plots (A, B, or C) localized in the A.
marina area (A). All composite samples were frozen and kept at −70 ◦C until use.

Total RNA was extracted from 8–12 g of each composite sample using the RNeasy
PowerSoil Total RNA kit according to the manufacturer’s recommendations (Qiagen, Ger-
mantown, MD, USA). RNA quality was evaluated on 1% agarose gels and the absence of
DNA contamination confirmed by PCR using non-reverse transcribed mRNA and eukary-
otic constitutively expressed EF1α gene-specific primers [36]. Specific reverse transcription
of poly-A mRNA, followed by double-stranded cDNA synthesis and amplification, was
performed on 500 ng of total RNA using the Mint-2 cDNA synthesis kit (Evrogen, Moscow,
Russia). The optimal number of PCR cycles to maintain a balance between transcript
representation and nonspecific background amplification during the cDNA amplification
was estimated to be 27 cycles. The resulting cDNAs, previously purified using a phenol-
chloroform protocol [37], were used as templates to specifically capture by hybridization
and sequence expressed fungal genes encoding DyPs.
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2.3. Probe Design, cDNA Capture by Hybridization, and High-Throughput Sequencing of Fungal
DyP cDNA

First, 1267 publicly available fungal DyP DNA coding sequences were identified by
BLAST searches and collected from GenBank (http://www.ncbi.nlm.nih.gov/genbank/,
accessed on 19 April 2021), the Joint Genome Institute Mycocosm database (https://
mycocosm.jgi.doe.gov/mycocosm/home, http://www.ncbi.nlm.nih.gov/genbank/, ac-
cessed on 19 April 2021; [38]) and the specialized RedOxiBase (http://peroxibase.toulouse.
inra.fr/, accessed on 19 April 2021; [39]). This sequence data set was used to design
69 (70 bp long) degenerate capture probes using the KASpOD software (https://g2im.
u-clermont1.fr/kaspod/index.php, accessed on 19 April 2021); [40] (individual probe
sequences will be published in a separate paper on fungal DyP diversity). In silico, indi-
vidual probes could hybridize to 0.2–11% of the 1267 fungal DyP sequences (four allowed
mismatches). Oligonucleotides were synthesized as single-strand DNA flanked by two
adaptor sequences (ATCGCACCAGCGTGT and CACTGCGGCTCCTCA) for their PCR
amplification and conversion to biotinylated RNA probes using the T7 RNA polymerase.

cDNA capture by hybridization was carried out as described by Bragalini et al.
(2014) [41]. Briefly, 2 µg of heat-denatured PCR-amplified cDNAs was hybridized to
the equimolar mix of biotinylated RNA probes (500 ng) for 24 h at 65 ◦C. Probe/cDNA
hybrids were captured on streptavidin-coated paramagnetic beads (Dynabeads® M-280
Streptavidin, Invitrogen). After different washing steps to remove unbound cDNAs, the
captured cDNAs were eluted using 50 µL of 0.1 M NaOH at room temperature, neutralized
with 70 µL of 1 M Tris-HCl (pH 7.5), and purified using the MinElute PCR purification
kit (Qiagen). Captured cDNAs were amplified using the primer M1 (Mint-2 cDNA syn-
thesis kit, Evrogen) that binds at both 5′ and 3′ ends of the cDNAs. PCR amplifications
were performed in 50 µL reaction mixtures containing 5 µL of captured cDNA, 200 µM
of dNTPs, 400 nM of primer M1, 5 µL of 10X Encyclo buffer, and 1 µL of 50X Encyclo
DNA polymerase (Evrogen). Cycling conditions were 1 min at 95 ◦C followed by 25 cycles
of 15 s at 95 ◦C, 20 s at 66 ◦C, and 3 min at 72 ◦C. Ten independent amplifications were
conducted for each sample. PCR products of the same sample were purified using the
MinElute PCR purification kit (Qiagen, Courtaboeuf, France) and pooled. A second round
of hybridization and PCR amplification was performed using each of the amplified cDNA
samples obtained after the first hybridization capture.

Captured cDNAs of each sediment sample (12 per season) were used as templates
to specifically amplify fragments of expressed fungal DyP genes using the following
fungal-specific tagged degenerate primers: DyP-F, 5′-Tag-TGYCCITTYGCIGCNCAYAT-3′

and DyP-R, 5′-Tag-RAARAARTAYTCICCNCC-3′ (Table S1; [42]. All PCR amplifications
were performed in triplicates in 25 µL reaction mixtures containing 20 ng of amplified
cDNA, 2.5 µL of 10X polymerase buffer (Invitrogen), 0.75 µL of MgCl2 (50 mM), 2.5 µL of
dNTPs (2 mM each), 1 µL of each primer (20 µM, Invitrogen), 0.3 µL of BSA (20 mg mL−1),
and 0.1 µL of Taq DNA polymerase (5U·µL−1, Invitrogen). Cycling conditions were
3 min at 94 ◦C and 35 cycles of 45 s at 94 ◦C, 45 s at 50 ◦C, and 45 s at 72 ◦C, followed
by 10 min at 72 ◦C. Control reactions without nucleic acid were systematically run in
parallel. Amplicons from the three independent PCR reactions were pooled and purified
using the Agencourt AMPure XP Kit (Beckman Coulter Diagnostics, California, CA, USA)
and quantified by fluorometry using a Qubit 2.0 fluorimeter and the Qubit dsDNA HS
assay kit (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA). Per season (March or
November), an equimolar mix of the tagged PCR products obtained for the 12 different
sediment samples was prepared and sequenced by FASTERIS (FASTERIS, Plan-les-Ouates,
Switzerland) on an Illumina MiSeq sequencer (2 × 250 bp).

In parallel, four full-length-captured cDNA composite samples corresponding to the
oxic and anoxic fractions collected in the A. marina (A1, A2) and R. stylosa (R1, R2) areas
were generated by pooling an equal amount of captured cDNAs obtained for the different
sediment samples of each season. These four full-length captured cDNA samples were

http://www.ncbi.nlm.nih.gov/genbank/
https://mycocosm.jgi.doe.gov/mycocosm/home
https://mycocosm.jgi.doe.gov/mycocosm/home
http://www.ncbi.nlm.nih.gov/genbank/
http://peroxibase.toulouse.inra.fr/
http://peroxibase.toulouse.inra.fr/
https://g2im.u-clermont1.fr/kaspod/index.php
https://g2im.u-clermont1.fr/kaspod/index.php
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sequenced using the Illumina HiSeq 2000 2 × 250 bp technology (I.G.A. Technologies,
Udine, Italy).

2.4. Bioinformatic Analysis and Statistics

Concerning the Miseq raw data, fungal DyP paired-end reads were merged using
Pear [43] and demultiplexed. Denoising procedures consisted of discarding reads that
fell outside the expected length range (expected size 350–470 bp) and those containing
ambiguous bases (N). Sequences were clustered into operational functional units (OFUs)
using SWARM [44]. SWARM is a de novo clustering based on an unsupervised single-
linkage clustering method that reduces the impact of clustering parameters on the resulting
OFUs by avoiding arbitrary global clustering thresholds and input sequence ordering
dependencies. SWARM builds OFUs in two steps: (i) an initial set of OFUs was constructed
by iteratively agglomerating similar amplicons, and (ii) amplicon abundance values were
used to reveal OFUs internal structures and to break them up into sub-OFUs if necessary.
In the present work, the SWARM aggregation distance equaled to 3. Chimeras were
removed using VSEARCH [45], and low abundance sequences accounting for less than
0.005% of the dataset were filtered out. This whole procedure was performed using the
pipeline FROGS [46]. To be able to compare samples, a normalization procedure was
applied to randomly resample down to 32,556 sequences per sample. A Wilcoxon test
was used to statistically evaluate the differences between the alpha diversity indices
calculated (Shannon index (H’), complement of the Simpson index (1-D), and Evenness
(J’)). The effect of environmental factors (tree, season, and depth) on the composition of
expressed fungal genes encoding DyPs were tested using nonparametric permutation-
based multivariate analysis of variance (PERMANOVA, adonis function; [47] based on
abundance dissimilarity (Bray–Curtis) matrices). These analyses were performed using
the VEGAN package (http://cran.r-project.org, accessed on 19 April 2021) in R. The
sequence data generated in this study were deposited in the EMBL-ENA public database
(PRJEB43346 for the first sampling campaign (March) dataset and PRJEB43343 for the
second sampling campaign (November) dataset).

Concerning the HiSeq raw data for full-length cDNA reconstruction through gene cap-
ture by hybridization enrichment, adapter sequences were eliminated using Cutadapt [48].
Sequence quality was evaluated with Trimmomatic [49]; bases with quality lower than
20 were eliminated and only sequences longer than 60 bases were kept. Trimmed sequences
were then assembled using IDBA-UD [50] (default parameters) and resulting contigs were
further assembled with CAP3 [51] (default parameters) to obtain longer contigs. A sim-
ilarity search between a custom peroxidase database and contigs was performed using
DIAMOND [52], with the BLASTx command in “sensitive” mode (i.e., a maximal E-value
of 1 × 10−5 and a minimal identity of 50%). Matching sequences were further analyzed to
search the DYP peroxidase domain using ScanProSite [53] and the Prosite database [54].

The ProtParam tool (http://web.expasy.org/protparam/, accessed on 19 April 2021)
was used to predict the theoretical pI, molecular mass, and molar extinction coefficient of
DyP. For sequence comparison, BlastP was used to search for sequences with similarity to
DyP1 in the UniProtKB/Swiss-Prot database (http://www.uniprot.org/blast, accessed on
19 April 2021). The search parameters were scoring matrix BLOSUM 62, gapped alignment
allowed, and cut-off E-value 0.1. DyP1 was aligned with 241 DyP sequences identified
in Agaricomycotina genomes available at the MycoCosm portal (https://mycocosm.jgi.
doe.gov/mycocosm/home, accessed on 19 April 2021) and GenBank using MUSCLE
as implemented in MEGA X (https://www.megasoftware.net/, accessed on 19 April
2021) [55]. A maximum likelihood phylogenetic tree was then constructed by MEGA X
using the WAG evolutionary model with gamma-distributed rate variation and the amino
acid frequencies of the dataset.

http://cran.r-project.org
http://web.expasy.org/protparam/
http://www.uniprot.org/blast
https://mycocosm.jgi.doe.gov/mycocosm/home
https://mycocosm.jgi.doe.gov/mycocosm/home
https://www.megasoftware.net/
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2.5. Cloning and Expression of DyP-encoding cDNA

DyP1 was produced using the in-house 3PE Platform (P. pastoris Protein Express: www.
platform3pe.com/, accessed on 19 April 2021). The cDNA encoding DyP was synthesized
after codon optimization for P. pastoris (GeneArt, Regensburg, Germany) and inserted into
the vector pPICZαA (Invitrogen, Cergy-Pontoise, France) using XhoI and XbaI restriction
sites in frame adding a C-terminal (His)6-tag to the recombinant protein.

P. pastoris strain X33 and the pPICZαA vector are components of the P. pastoris Easy
Select Expression System (Invitrogen). The PmeI-linearized pPICZαA recombinant plasmid
was inserted into P. pastoris competent cells by electroporation. Zeocin-resistant transfor-
mants were then screened for protein production.

2.6. Production and Purification of Recombinant DyP

The best producing transformant was grown in 2.5 L of BMGY (10 g L−1 glycerol,
10 g L−1 yeast extract, 20 g L−1 peptone, 3.4 g L−1 YNB, 10 g L−1 ammonium sulfate,
100 mM phosphate buffer pH 6, and 0.2 g L−1 of biotin) in flasks shaken at 30 ◦C in
an orbital shaker (200 rpm) for 16 h to an OD600 of 2–6. Expression was induced by
transferring the cells into 500 mL of BMMY (10 g L−1 yeast extract, 20 g L−1 peptone,
3.4 g L−1 YNB, 10 g L−1 ammonium sulfate, 100 mM phosphate buffer pH 6, and 0.2 g L−1

of biotin) adding 0.1 or 0.5 gL−1 of hemin at 20 ◦C in an orbital shaker (200 rpm) for a
further three days. Each day the medium was supplemented with 3% (v/v) methanol.

The supernatant was collected after harvesting cells by centrifugation at 3500× g
for 5 min at 4 ◦C. After adjusting the pH to 7.8, the supernatant was filtered on 0.45 µm
filters (Millipore, Molsheim, France) and loaded onto 5 mL HisTrap HP columns (GE
healthcare, Buc, France) connected to an Akta Xpress system (GE Healthcare). Prior
to loading, the column was equilibrated with buffer A Tris-HCl 50 mM pH 7.8, NaCl
150 mM, and imidazole 10 mM. The (His)6-tagged recombinant enzyme was eluted with
buffer B Tris-HCl 50 mM pH 7.8, NaCl 150 mM, and imidazole 500 mM. The fractions
eluted containing the purified protein were pooled, concentrated with a 10 kDa vivaspin
concentrator unit (Sartorius, Plaiseau, France), and dialyzed against 50 mM sodium acetate
buffer pH 5.2.

Protein concentration was determined using a Nanodrop ND-2000 spectrophotometer
(Thermo Fisher Scientific, IL, USA) by adsorption at 280 nm with theoretical molecular
masses and molar extinction coefficients calculated from protein sequence using Expasy
tools. A fraction of eluate was loaded onto 10% Tris-glycine precast SDS-PAGE (Bio-Rad,
Marnes-la-Coquette, France) to check protein purity and integrity. The molecular mass
under denaturing conditions was determined with PageRuler Prestained Protein Ladder
(Thermo Fisher Scientific, IL, USA)

2.7. Structural Analysis

A 3D model of the DyP1 was obtained from the automated protein structure homology-
modeling server SWISS-MODEL [56] using the crystal structure of B. adusta DyP (PDB
3MM3) as a template. The electrostatic surface was computed using the default parameters
in PyMol. The putative glycosylation sites were predicted using NetOGlyc 4.0 Server [57].

2.8. Standard Conditions for Peroxidase Activity

DyP activity was estimated from the absorbance changes observed during substrate
oxidation at optimal pH values at 30 ◦C in a Uvikon XS spectrophotometer (BioTek In-
struments, Colmar, France) [29]. Hydrogen peroxide (0.25 mM) was added to initiate the
reaction. Oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was
followed by generation of its cation radical (ε436 = 29.3 mM−1 cm−1). RB19 oxidation was
monitored for colorant disappearance (ε595 = 10 mM−1 cm−1). Substrate oxidation was
determined by measuring the enzymatic activity using saturating concentrations of RB19
(600 µM) and ABTS (5 mM) in 100 mM of citrate–phosphate buffer.

www.platform3pe.com/
www.platform3pe.com/
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2.9. Influence of Temperature and pH on DyP Activity and Enzyme Stability

To determine optimal temperature, the purified DyP was assayed over the temperature
range of 20–70 ◦C in standard conditions. For the pH profiles, DyP activity was determined
in 100 mM of citrate–phosphate buffer range from pH 2.6 to 7 using ABTS and RB19 as
substrates at 30 ◦C.

To define the thermal stability, DyP aliquots were incubated at different tempera-
tures (30–70 ◦C) for 30, 60, 90, 120, and 180 min. Thermal inactivation was stopped by
immediately cooling the treated protein aliquot on ice, and activity was measured under
standard conditions. The pH stability was determined by incubating DyP in 10 mM citrate-
phosphate buffer at different pH (2.6, 3, 4, 5, and 6) for 4, 24, and 48 h at 30 ◦C, and then
assaying the activity in standard conditions for each substrate.

2.10. Effect of Hydrogen Peroxide and Sea Salt on DyP Activity

The effects of H2O2 on peroxidase activity were determined under standard assay
conditions at the optimal pH in the range of 0.1 to 5 mM in 0.1 M citrate–phosphate buffer
at 30 ◦C.

The influence of sea salt on DyP activity was measured spectrophotometrically in
standard assay conditions, as described above, after sea salt addition (1–5% wt/vol) using
DyP of Trametes versicolor as a control [30].

2.11. Substrate Specificity and Kinetics

To determine the best substrates of the enzyme, enzymatic activities were mea-
sured using a UVIKONxs spectrophotometer (Bio-TEK Instruments) at optimal pH at
30 ◦C by following the oxidation of different substrates. For ABTS, 2,6-dimethoxyphenol
(DMP) and veratryl acohol (VA) oxidation, absorbance increases at 436 (radical cation;
ε436 = 29.3 mM−1 cm−1), 496 (dimeric coerulignone; ε469 = 55 mM−1 cm−1), and 310 nm
(veratraldehyde; ε310 = 9.3 mM−1 cm−1) were followed, respectively. Absorbance decreases
were followed in the case of Reactive Blue 19 (RB19) (595 nm, ε595 = 10 mM−1 cm−1) oxi-
dation resulting in dye decolorization. The oxidation of Mn2+ was determined at 238 nm
(Mn3+-tartrate complex; ε238 = 6.5 mM−1 cm−1) in 100 mM tartrate buffer pH 4.

All enzymatic activities were measured in linear increments (decreases for RB19). The
Michaelis constant, Km, together with the enzyme turnover value, kcat, were obtained by
non-linear least squares fitting of the experimental measurements to the Michaelis–Menten
model. Fitting of these constants to the normalized equation v = (kcat/Km) [S]/(1 + [S]/Km)
yielded the catalytic efficiency values (kcat/Km) with their corresponding standard errors.

2.12. Decolorization Properties

Five synthetic dyes, Acid Black (AB) (560 nm; 0.005% vol/vol), RB5 (610 nm; 0.0025%
vol/vol), Disperse Blue 79 (DB79) (530 nm; 0.0005% vol/vol), Basic Blue 41 (BB41) (610 nm;
0.00001% vol/vol), and Vat Green (VG) (640 nm; 0.00025% vol/vol), were supplied by
SETAS (Çerkezköy, Turkey) and used for determining the decolorization properties of
DyP at 37 ◦C. The reaction mixture contained DyP (0.125 mg mL−1), dye solutions (final
concentration described above), citrate–phosphate buffer (100 mM, pH 3), and 0.25 mM
of H2O2 in a total volume of 1 mL. The enzymatic dye decolorization was detected by
measuring the decrease in color absorbance in 1 h. The percentage of decolorization
efficiency was calculated as follows:

Decolorization (%) = ((Ai − At)/Ai) × 100 (1)

where Ai is the initial absorbance of a dye, and At is the absorbance of the dye after each
time point t.
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3. Results
3.1. Diversity and Capture of Fungal DyP Encoding cDNAs

The diversity of expressed genes encoding fungal DyPs was investigated in surface and
deeper mangrove sediments beneath A. marina and R. stylosa trees during the wet (March)
and dry (November) seasons. Sediment samples were collected in three independent plots
(A, B, and C) in the A. marina (A) and R. stylosa (R) pristine areas. This expressed gene
diversity was evaluated using a metabarcoding approach (Illumina Miseq) on environmental
cDNAs previously enriched in DyP sequences by gene capture by hybridization. The
normalized DyP dataset consisted of 781,344 sequences distributed among 25 different
operational functional units (OFUs), corresponding to 25 putative DyP encoding cDNAs
(Table S2). The number of OFUs per sediment sample varied from one to 10. DyP diversity,
estimated with the Shannon index, was systematically higher in the surface layers during
the wet season (Figure 1; Supplementary Table S2). The highest DyP diversity was observed
for the surface layers beneath the R. stylosa area during the wet season. By contrast, the DyP
diversity was systematically lower in the surface layers during the dry season (Figure 1A;
Table S3).
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Figure 1. Diversity of expressed genes encoding fungal DyPs in surface and deeper sediments collected beneath two
tree species (Avicennia marina and Rhizophora stylosa) during the wet (March) and dry (November) seasons. (A) Diversity
estimated with the Shannon index and (B) distribution of the different Operational Functional Units (OFUs).

Regarding the distribution of OFUs, the most abundant one (OFU1) was detected
in all sediment samples and represented 51,100% of all sequences in 70% of the samples
(Figure 1B). The full-length cDNA sequence of OFU1 was obtained from the HiSeq dataset
after gene capture by hybridization enrichment. The difference in the composition of
expressed DyP-genes assessed through a nonparametric multivariate analysis of variance
(PERMANOVA) highlighted a strong seasonal effect (P = 5.8 × 10−5, R2 = 0.178; Table 1).
Tree species (P = 0.032, R2 = 0.062) and sediment depth (P = 0.021, R2 = 0.072) had a lower
impact on the composition of the expressed fungal genes (Table 1).
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Table 1. Effect of environmental factors on the composition of expressed fungal genes encoding
dye-decolorizing peroxidases (DyPs).

Df F P R2

Variable
Tree species 1 3.011 0.032 0.062

Sediment depth 1 3.453 0.021 0.072
Season 1 8.579 5.8 × 10−5 0.178

Interaction
Tree × Depth 1 6.789 7.1 × 10−4 0.141
Tree × Season 1 2.462 0.062 0.051

Depth ×Season 1 2.926 0.036 0.061
Tree × Depth ×

Season 1 4.946 0.005 0.102

Residuals 16
The differences between groups were tested using PERMANOVA analysis on Bray–Curtis dissimilarity matrices.
Abbreviations: Df: degrees of freedom; F: F-test statistic.

3.2. Phylogenetic Analysis

We decided to study the most widely represented peroxidase in mangrove soils, OFU1,
which we called DyP1. A BlastP search was conducted against the UniProtKB/Swiss-
Prot database using DyP1 as the query. As a result, DyP sequences from fungal species
of the orders Auriculariales, Sebacinales, and Geastrales, included in the subphylum
Agaricomycotina, emerged as the proteins with the highest amino acid sequence identities
to DyP1 (Table 2).

Table 2. DyPs deposited from the UniProtKB/Swiss-Prot database presenting the highest amino
acid sequence identities (47–59%) with DyP1 from mangrove soils (the number of residue pairs
considered for each comparison is shown in brackets). The DyP entry names of 12 enzymes are
indicated together with the fungal species they belong to, from the orders Auriculariales (Exidia
glandulosa and A. auricula-judae), Sebacinales (Piriformospora indica and Serendipita vermifera), and
Geastrales (Sphaerobolus stellatus).

DyP1

E. glandulosa DyP A0A165BX62 59% (459)
P. indica DyP G4TL25 57% (460)

E. glandulosa DyP A0A165FCE7 56% (460)
E. glandulosa DyP A0A165G2C1 54% (498)
E. glandulosa DyP A0A165GZG2 54% (469)
S. stellatus DyP A0A0C9U2H4 54% (465)
S. vermifera DyP A0A0C3B0S6 53% (460)

E. glandulosa DyP A0A166ARP7 52% (505)
A. auricula-judae DyPI2DBY1 51% (505)
S. stellatus DyP A0A0C9UT91 51% (505)
S. stellatus DyP A0A0C9VF44 49% (472)
S. stellatus DyP A0A0C9VPJ8 47% (506)

DyP1 then underwent a phylogenetic analysis with 241 DyP sequences from 88 fungal
species belonging to 15 orders of this subphylum available at the JGI-DOE MycoCosm
portal [38] and GenBank. Sequences within the resulting phylogram (Figure 2) can be
sorted into the seven evolutionary clusters previously described by Linde et al. (2015a) [20].
Cluster I and III are the best defined and include most of the protein sequences. Cluster
III mainly comprises sequences from Agaricales and Polyporales, with different enzymes
characterized such as DyP4 from P. ostreatus [58], DyP1 from T. versicolor [30], and DyP
from Coriolopsis trogii [59], and a hypothetical DyP cloned from Ganoderma lucidum [60]
(blue arrows in Figure 2). Cluster I also includes Agaricales and Polyporales sequences, but
here we can also find sequences from the orders Auriculariales, Sebacinales, and Geastrales,
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which are not represented in the rest of the clusters, and include eight characterized fungal
DyPs from B. adusta [61], Termitomyces albuminosus (UniProtKB/Swiss-Prot Q8NKF3) [62],
A. auricula-judae [28], Mycetinis scorodonius (two enzymes) [63,64], Polyporaceae sp. [65], P.
ostreatus [58], and Pleurotus sapidus [66]. The sequence of DyP1 that we obtained from
mangrove soils lies within Cluster I, flanked by Auriculariales and Sebacinales sequences,
suggesting that the fungal species producing this enzyme most likely belongs to one of
these two orders.
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Figure 2. Maximum likelihood phylogenetic tree, constructed with 1000 bootstrap replications, showing the position of
DyP1 from mangrove (black arrow) with respect to 233 DyP sequences identified in 82 published (and a few unpublished)
Agaricomycotina genomes (the latter with permission of the PIs project) available at the JGI Mycocosm Portal on May 2020,
including sequences of Pleurotus ostreatus (JGI 1069077 and JGI 62271), Bjerkandera adusta (JGI 72253), and Trametes versicolor
(JGI 48870). Eight GenBank sequences from Auricularia auricula-judae (Aurau-JQ650250), Mycetinis scorodonius (Mycsc-
CS490657 and Mycsc-CS490662), Ganoderma lucidum (Ganlu-ADN05763), Polyporaceae sp. (Pospl-AAB58908), Termitomyces
albuminosus (Teral-AAM21606), Pleurotus sapidus (Plesa-CFW94145), and Coriolopsis trogii (Cortr_AUW34346) are also
included. The color of both branches and enzymes indicates the order of the fungal species they belong to according to the
legend, where the total DyP cDNA number is shown (including eight from GenBank) followed by the number of genomes
for each order. The positions of the characterized DyPs from A. auricula-judae, B. adusta, Polyporaceae sp. (Irpex lacteus), M.
scorodonius, T. albuminosus, P. ostreatus, T. versicolor, P. sapidus, and C. trogii are indicated with blue arrows.

An alignment with five characterized fungal DyPs (Figure 3) representative of Clusters
I and III confirmed that DyP1 presented the key amino acid residues characteristic of this
peroxidase family, including (i) distal arginine and aspartate residues (Arg371 and Asp213),
the latter forming part of the DyP signature motif GXXDG, necessary for enzyme activation
by H2O2 [61], and (ii) the proximal histidine (His351) occupying the fifth coordination
position of the heme iron, and a second aspartate (Asp433) [67]. Interestingly, some surface
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aromatic residues putatively involved in catalysis were also identified in the amino acid
sequence of DyP1, as described in more detail below.
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DyP1                -----VVTNATLPVDDIQADILVGMRKKKERFYFFKIN-NATLFKAGLHNTVVAEITSVK 94 
Aurau_JQ650250      ------VAATSLNTDDIQGDILVGMHKQKQLFYFFAIN-DPATFKTHLASDIAPVVASVT 51 
Mycsc_490657        AST--AAASVGLNLTDIQGDILIGMKKNKEMFFFFSIA-DAAAFKSHLGSAILPLITSTQ 54 
Bjead_72253         HKTESGANDTVLPLNNIQGDILVGMKKQKERFVFFHVN-DATSFKTALKTYVPERITSAA 53 
Pleos_1069077       ----MTTPAPPLDLNNIQGDILGGLPKRTETYFFFDVT-NVDQFKANMAHFIPHIKTSAG 55 
Trave_48870         ----MSSTVPAFDPANVQGDILVGLPKKAQQYIIFQIDDNVTGFRKALNNLIPLITTTTQ 56 
                               :   ::*.*** *: *. : : :* :  :   *:  :   :    ::.  
 
DyP1                KIL-----------------TVSTQPQVAVNLAFSQAGLTKLGKT-DNLNDTVFSAGQAA 136 
Aurau_JQ650250      QLS-----------------NVATQPLVALNIAFSNTGLLALGVT-DNLGDSLFANGQAK 93 
Mycsc_490657        QLL-----------------AVASQPTTAVNLAFSQTGLNALGLAAQGLGDSLFASGQFS 97 
Bjead_72253         ILI----------------SDPSQQPLAFVNLGFSNTGLQALGIT-DDLGDAQFPDGQFA 96 
Pleos_1069077       IIKDREAIKEHK-----RQKKPGLVPMAAVNVSFSHLGLQKLGIT-DDLSDNAFTTGQRK 109 
Trave_48870         VQQDRTKIANNKKAAKEQGKTPALIKLSGVNVAFSQAGLTKLGIT-DDLLDPAFKEGQLA 115 
                                          .      :*:.**: **  ** : :.* *  *  **   
 
DyP1                DANFLGDPGT-------NGWEPTFVATSSLHGVILLASDTTTLIDTQVAHLEAVWG---- 185 
Aurau_JQ650250      DATSFKE-ST-------SSWVPQFAG-TGIHGVIILASDTTDLIDQQVASIESTFG---- 140 
Mycsc_490657        GAQSLGDPGT-------SNWVQAFAG-TGIHGVFLLASDTVDNVNAELSQIQSILG---- 145 
Bjead_72253         DAANLGD-DL-------GQWVAPFTG-TTIHGVFLIGSDQDDFLDQFTDDISSTFG---- 143 
Pleos_1069077       DAEILGDPGSKNGDAFTPAWEAPFLK--DIHGVIFVAGDCHGSVNKKLDEIKHIFGVGTS 167 
Trave_48870         DAQNLGDPGSTASGKFVPDWLPAFLQ-GNIHGVILISGDCNATIAETRVVIERIFSVGAS 174 
                    .*  : : .          *   *     :***:::..*    :      :.   .     
 
DyP1                -SSITKLYELQGAIRPGAEEGHEMFGYKDGIAQPAVFGFNLVPYPGQLAVPAGIILTGEA 244 
Aurau_JQ650250      -SSISKLYSLSASIRPGNEAGHEMFGFLDGIAQPAINGFNT-PLPGQNIVDAGVIITGAT 198 
Mycsc_490657        -TSITEAYRLQGEARPGDQQGHEHFGFMDGISNPAIDGFST-ALPGQAVLSPGLFLLGED 203 
Bjead_72253         -ASITQVQALSGSARPGDQAGHEHFGFLDGISQPSVTGWETTVFPGQAVVPPGIILTGRD 202 
Pleos_1069077       HASISEVTHVRGDVRPGDVHAHEHFGFLDGISNPAVEQFDQNPLPGQDPIRPGFILAKEN 227 
Trave_48870         NATLHEVTTLIGKVRPGLEDGHEHFGFLDGISQPAIEGIDTNPNPGQETVRQGIILLGRD 234 
                     ::: :   : .  ***   .** **: ***::*::   .    ***  :  *.::     
 
DyP1                GD--TVTRPSWTKDGSFMAFRKLRQYVPEFNNFVVSNAPPVA---NKTTAESIAIFGSRL 299 
Aurau_JQ650250      ND--PITRPSWAVGGSFLAFRQLEQLVPEFNKYLLDNAPAGS---GS-LQARADLLGARM 191 
Mycsc_490657        GDGSSSSRPSWAKDGSFLAFRQLQQRVPEFNKFLADNAALT--------QGNADLLGARM 255 
Bjead_72253         GD--TGTRPSWALDGSFMAFRHFQQKVPEFNAYTLANAIPANSAGNLTQQEGAELLGARM 260 
Pleos_1069077       GDSRAAARPDWAKDGSFLTFRYLFQMVPEFDDFLESNPIVLP---GLSRKEGSELLGARI 284 
Trave_48870         GDG-TTGRPSWAIDGSFLALRYLFQLVPEFNNFLKGNALTGN---GLTPDQGSELLGARL 290 
                    .*     **.*: .***:::* : * ****: :   *                 ::*:*: 
 
DyP1                VGRWKSGAPIDKTPLVDDPVMAADPYQNNNFDFFHLLSNFTSDQSHCPFAAHIRKTRPRD 359 
Aurau_JQ650250      VGRWKSGAPIDLTPTADDPALGADAQRNNNFTYSHAGFDLGSDQSHCPFSAHIRKTRPRA 312 
Mycsc_490657        MGRWKSGAPVDLAPTADDVDLANDPQRNNNFNFTHAGFTETTDETHCPFSAHIRKTNPRS 315 
Bjead_72253         FGRWKSGAPIDLAPTADDPALGADPQRNNNFDYSDT----LTDETRCPFGAHVRKTNPRQ 316 
Pleos_1069077       VGRWKSGAPIEITPLKDDPKLAADAQRNNKFDFGDS--LVRGDQTKCPFAAHIRKTYPRN 342 
Trave_48870         MGRWKSGAPIDLAPTQDDPALGADASRNNNFRYAFT--DDQTTTIRCPFAAHTRKTNPRA 348 
                    .********:: :*  **  :. *  :**:* :            :***.** *** **  
 
DyP1                DLPT--------GALNTIMRAGIPYGPEPSNSELTNGA----TTQDRGLAFVAYQSQIAQ 407 
Aurau_JQ650250      DLGGSLTPPNLSAGANSIMRSGIPYGPEVTSAESASNTT----TQERGLAFVAYQAQLSQ 368 
Mycsc_490657        DFNPQ-------NTNNHIIRAGIPYGPEVTDAEASSNTSSTDASLERGLAFVAYQSNIGN 368 
Bjead_72253         DLGGP-------VDTFHAMRSSIPYGPETSDAELASGVT----AQDRGLLFVEYQSIIGN 365 
Pleos_1069077       DLEGP--PLKADIDNRRIIRRGIQFGPEVTSQEHHDKKT----HHGRGLLFVCYSSSIDD 396 
Trave_48870         DLEDP--PISFSTETRRIIRRGVQFGDEVTPQEAASGKT----ALDRGLIFAAYQSTIPN 402 
                    *:                :* .: :* * :  *  .          *** *. *.: : : 
 
DyP1                GFQFLQHSWANTPTFVP-----------GKNV-QPGFDPIIGANAGNDRWAVG------- 448 
Aurau_JQ650250      GFHFLQQTWADNANFPP-----------GKTPATVGLDPIIGQNN-------GQPRVVNG 410 
Mycsc_490657        GFAFLQQAWVDNANFFF-----------GKTT-PPGVDPIIGSVAAQNNFAPNGPRPVSG 416 
Bjead_72253         GFRFQQINWANNANFPF-----------SKPI-TPGIEPIIGQT---------TPRTVGG 404 
Pleos_1069077       GFHFIQESWANAPNFPVNAVTSAGPIPPLDGV-VPGFDAIIGQKVG------GGIRQISG 449 
Trave_48870         GFQFIQKSWANTVSFPP-----------NKPF-TPGFDPIIGQTND------DSVRTLAG 444 
                    ** * *  *.:  .*              .     *.: ***                   
 
DyP1                TDIANPTGNLTF--PVFIKSNGGEYFFVPSISAIRDTLSV--------------- 486 
Aurau_JQ650250      LLPSNSSASLSI--PQFVVSHGGEYFFSPPISAIGGRLSA--------------- 448 
Mycsc_490657        LDPTDSTKIVTIN-TDFVSSRGGEYFFSPSLSAIQNTLSV--------------- 455 
Bjead_72253         LDPLNQNETFTV--PLFVIPKGGEYFFLPSISALTSTIAA--------------- 442 
Pleos_1069077       TNPNDPTTNITLPDQDFVVPRGGEYFFSPSITALKTKFAIGVASPAPHSQAPISA 504 
Trave_48870         TDPNNQTAELSLP-TDWVLPKGGEYFFSPSIPALRTKFALAA------------- 485 
                        : .  .:.    ::  .****** * : *:   ::                 

Figure 3. Alignment of DyP1 and five characterized DyPs from Cluster I (Aurau_JQ650250,
Mycsc_490657, and Bjead_72253) and III (Pleos_1069077 and Trave_48870). Highlighted residues
include (i) proximal histidine (magenta) and aspartate (red); (ii) distal-side arginine (cyan) and
aspartate (red), the latter within the GXXDG signature motif (red box); and (iii) four solvent-exposed
aromatic residues, corresponding to two conserved tryptophans (yellow), as well as two tyrosines
(green) sometimes substituted by other amino acids (gray). Alignment was produced with Clustal2.1,
and symbols below the sequences indicate full conservation of the same (asterisk) or equivalent
residues (colon) and partial residue conservation (dot).

3.3. Structural Analysis

A DyP1 structural model was generated by homology modeling (Swiss Model). An
analysis of this model revealed a ferredoxin-like fold with an internal heme cofactor acces-
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sible from the solvent through a narrow channel (Figure 4A,B). No significant differences
were observed in size when the heme access channel was compared with that of the A.
auricula-judae DyP (AauDyP) (Figure 4D) where this enzyme could oxidize different sub-
strates [20]. Different key residues identified in the amino acid sequence (Figure 3) are
located at positions of the molecular architecture typical of a catalytically active enzyme
(Figure 4C). The sequence includes six tryptophans and nine tyrosines with some of them
(Tyr68, Trp149, Tyr192, Tyr228, Tyr268, Tyr325, Tyr376, Trp416, and Trp445) exposed to the
solvent. The oxidation of bulky and high redox potential substrates at surface aromatic
residues, via long-range electron transfer pathways to the heme, is known in ligninolytic
peroxidases and DyPs [61,68]. Among the above aromatic residues, Trp149 and Trp416 are
conserved in the five characterized DyPs shown in Figure 3. Trp416 occupies the same
position of the catalytic Trp377 in the A. auricula-judae DyP [61] (Figure 4D) and of Trp411
(the only solvent-exposed aromatic residue) in the T. versicolor DyP (Figure 4E), pointing to
a putative catalytic role of this residue in DyP1 (and also in T. versicolor DyP).
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Figure 4. Homology model of DyP1 from mangrove soils, with a typical ferredoxin-like fold, showing
the location of Trp and Tyr residues exposed to the solvent in two different orientations of the protein
(A,B); and the heme environment amino acid residues Asp213, Arg371, His351, and Asp433 (as
a structural detail in (C)). Trp416 in (B) is located at a position equivalent to that of the catalytic
Trp377 in the A. auricula-judae DyP (AauDyP) crystal structure (PDB: 4W7J) (D); and of Trp411 in
a homology model of T. versicolor DyP (JGI 48870) (E). A detail of the heme access channel region
in DyP1 and AauDyP is also shown in A and D (the heme cofactor is depicted as red sticks at the
bottom of the channel).

3.4. Heterologous Production and Purification of the Recombinant DyP1

After the transformation of P. pastoris with the recombinant vector pPICZα-A contain-
ing the DyP1 encoding cDNA, 48 transformants were selected for their resistance to zeocin
and were then screened for the presence of DyP1 in the extracellular medium. The best
transformant was selected based on the band intensity corresponding to the recombinant
protein and visualized following SDS-PAGE (expected molecular weight for DyP1 was
55 kDa).



J. Fungi 2021, 7, 321 13 of 23

As dye-peroxidases are heme enzymes, the heme precursor hemin was added to Pichia
cultures at two different concentrations (0.1 and 0.5 g L−1), to favor the production of
functional holo-DyP1. SDS-PAGE analysis showed that the intensity of the band from the
culture supplemented with 0.1 g L−1 hemin was higher than that of 0.5 g L−1. According
to Zerva et al. [69], the presence of 0.1 g L−1 of hemin in the culture medium increases
enzyme production more than 20-fold. With this approach, a soluble and active protein
was produced, with a yield of about 290 mg of protein per liter of culture medium. The
high production yield obtained in P. pastoris was much higher than that obtained with
E. coli production with a few mg per liter, i.e., Trametes versicolor TvDyP1 and Pleurotus
ostreatus DyP isoforms PleosDyP1 and Pleos DyP4 were produced with 1 mg/5 L and 6.3 to
11.7 mg/9 L of E. coli cultures, respectively [35,58].

The expected molecular weight for DyP1 was 55 kDa, but after purification, the
protein ran on SDS-PAGE at about 70 kDa, with a 30% greater apparent molecular weight
(Figure S1). This is due to the presence of N- and O-glycosylations, as already observed
for other recombinant proteins produced in P. pastoris [70]. DyP1 was predicted to possess
potential N-glycosylation at positions 23, 57, 67, 133, 163, 215, 374, and 546, as predicted
via the N-GlyDE web server (http://bioapp.iis.sinica.edu.tw/N-GlyDE/, accessed on
19 April 2021). The best transformant was cultured in a larger volume (500 mL), and the
recombinant protein was purified by affinity chromatography using an IMAC column.
DyP1 was purified to homogeneity (Figure S1) from a culture containing 4682 mg of
proteins with a recovery of 63.3 mg of DyP (Table 3). The recovery of the purification was
43.6%, with a purification factor of 32.4.

Table 3. Purification for the recombinant DyP1 produced in Pichia pastoris X33. IMAC: immobilized metal affinity
chromatography.

Purification
Step

Volume
(mL)

Total Activity
(U mL−1)

Protein
(mg)

Specific Activity
(U mg−1) Yield (%) Purification

(Fold)

Culture
medium 500 376 4682 0.08 100 1

IMAC 25 164 63.3 2.59 43.6 32.4

3.5. Catalytic Properties

Six different substrates, i.e., Mn2+, the anthraquinone dye RB19, the low redox-
potential dye ABTS, together with the phenolic and non-phenolic aromatic compounds
DMP and VA, were tested to evaluate substrate specificity of recombinant DyP1. The
enzyme exhibited activity against ABTS and RB19 only (Table 4), with Km values of 0.651
and 1.497 mM, respectively. No activity was found against DMP, Mn2+, or VA. Catalytic
efficiency (Kcat/Km) was estimated for the anthraquinone RB19 to 2.23 s−1 mM−1.

Table 4. Kinetic constants of the recombinant DyP1 produced in P. pastoris. The pH column indicates either the tested pH
range or the determined optimal reaction pH.

Substrate
Parameters

Km (mM) kcat (s−1) kcat/Km (s−1 mM−1) pH

ABTS 0.651 +/− 0.081 0.322 0.49 3
RB19 1.497 +/− 0.878 3.34 2.23 2.6
DMP 0 0 0 2.6–7
Mn2+ 0 0 0 2.6–6

VA 0 0 0 2.6–7

http://bioapp.iis.sinica.edu.tw/N-GlyDE/
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3.6. Enzyme Activity and Stability at Different pH and Temperature

Recombinant DyP1 was active under acidic pH conditions with an optimum at pH 3
for ABTS in the pH range tested (Figure 5A). This value was 2.6 for RB19. At higher pH,
the DyP1 activity substantially dropped when the pH was between 4 and 6, and almost
no activity was found at pH 6.0. The pH stability of DyP1 was assessed by incubating the
enzyme for 4, 24, and 48 h with ABTS in a pH range from 2.6 to 6. The enzyme turned out
to be very stable throughout the range of pH and the activity increased with time, with a
marked activation at pH 4 and 5 (Figure 5B). However, the enzyme lost its activity after 48
h of incubation at pH 6.
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(B) pH stability in the range pH 2.6–6 for 4, 24, and 48 h incubation; (C) optimal temperature for the oxidation of ABTS; and
(D) temperature stability in the range 25–70 ◦C. Enzyme activity was measured in a 0.1 M citrate-phosphate buffer using
ABTS (5 mM) as a reducing substrate and 0.25 mM H2O2 at 30 ◦C (and at pH 3.0 in (C,D). Activity values were calculated
as a percentage of maximum activity (set to 100%) at optimum temperature and pH. Each data point (mean +/− standard
deviation) is the result of triplicate experiments.

The optimum temperature for the enzyme activity against ABTS was 40 ◦C. However,
the enzyme was less active in the ranges 20–30 and 50–55 ◦C (60–80%, respectively, com-
pared to its activity at 40 ◦C), and nearly lost its activity at 60 ◦C (Figure 5C). The thermal
stability of DyP1 was examined by testing activity towards ABTS after heat treatment of
the enzyme at different temperatures and for various incubation times, ranging from 30 to
180 min. The enzyme was stable at temperatures ranging from 30 to 50 ◦C, retaining about
60% of initial activity after 180 min of incubation at 50 ◦C. However, at 60 ◦C and above,
no activity remained after 30 min of incubation (Figure 5D).

3.7. Decolorization of Industrial Dyes

Because of its potential for dye decolorization, DyP1 activity was tested on five more
industrially relevant dyes, belonging to five different chemical classes: acidic, basic, reactive,
vat, and disperse dyes. As shown in Table 5, DyP1 was highly active on Reactive Black 5
(RB5) dye (32.3% of decolorization) and to a lesser extent on Acid Black (AB) and Disperse
Blue 79 (DB). By contrast, TvDyP1 from T. versicolor (GenBank accession numbers 19415892)
was active only against AB, though with 75% of decolorization.
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Table 5. Decolorization of industrial dyes by the recombinant DyP a.

Dye DyP1 TvDyP1

AB 18.8 +/− 0.008 75.0 +/− 0.007
BB − −

RB5 32.3 +/− 0.009 −
DB79 5.2 +/− 0.005 −
VG − −

a Decolorization was determined after 1 h of incubation in citrate–phosphate buffer (100 mM, pH 3) and 0.25 mM
of H2O2 at 37 ◦C. Symbols: −: no decolorization. Each data point (mean +/− standard deviation) is the result of
triplicate experiments.

3.8. Effect of Hydrogen Peroxide on DyP1 Activity

Although hydrogen peroxide is the electron acceptor of peroxidases, these enzymes
are known to lose activity in the presence of H2O2, through a mechanism known as suicide
inactivation [71]. The optimum concentration of H2O2 was determined by incubating
the reaction mixture with different concentrations of H2O2, ranging from 0.1 to 5 mM,
and the highest DyP1 activity was recorded for 0.25 mM H2O2 (Figure 6A). Above this
concentration, DyP1 residual activity decreased gradually, up to 30% at 5.0 mM H2O2.
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Figure 6. Effect of hydrogen peroxide and sea salt on DyP1 activity and surface charges of three different fungal DyPs.
(A) The optimal concentration of hydrogen peroxide in standard conditions, using ABTS (5 mM) as a substrate. (B) Effect of
sea salt addition on recombinant DyP1 and T. versicolor DyP (TvDyP1) as a control. Relative enzymatic activity recorded
as in (A). Each data point (mean +/− standard deviation) is the result of triplicate experiments. (C) Surface charge plots
(negative and positive charges in red and blue, respectively) from homology models of DyP1 and TvDyP1 (GenBank
accession numbers 19415892) and from the experimental three-dimensional structure of AauDyP from A. auricula-judae
(PDB: 4W7J). The heme cofactor, deeply buried within the active site, is hardly visible (yellow spheres). Surface potentials
were calculated using the vacuum electrostatics function of the PyMOL molecular graphics system (Schrödinger, New York,
NY, USA).

3.9. Influence of Sea Salt on DyP1 Activity and Surface Charge of the Recombinant DyP1

Recombinant DyP1, identified in mangrove sediments, was compared with TvDyP1,
active in terrestrial environments, to gain insights into DyP1 adaptation to saline conditions,
as found in marine environments. As we can see in the results presented in Figure 6, the
activity of the purified DyP1 was affected by sea salt addition (Figure 6B). From 1% of sea
salt addition, the enzyme retained less than 20% of its initial activity. At 3% of sea salt, the
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recombinant DyP1 activity was severely affected by sea salt, even more than its terrestrial
counterpart, TvDyP1.

Three-dimensional models of recombinant DyP1 and TvDyP1 were generated, and
the overall surface charges were compared with AauDyp (Figure 5C). The three enzymes
showed a well-balanced ratio of negative to positive surface charges. In line with these re-
sults, analysis of the enzyme primary structure showed that the ratio of negatively charged
(D + E) over positively charged (R + K) amino acids was about 1.19, 1.16, and 1.24 for the
recombinant DyP1, TvDyP1, and AauDyP, respectively. By contrast, a lytic-polysaccharide
monooxygenase cloned from the mangrove fungus, Pestalotiopsis sp NCi6 (PsLPMOA),
and a laccase obtained from the marine-derived Pestalotiopsis sp KF079 possessed higher
(D + E)/ (R + K) ratios of 4.8 and 3.95, respectively.

4. Discussion

The mangrove ecosystem accounts for a large production of lignocellulosic biomass
and greatly contributes to carbon sequestration on the planetary scale [72]. Fungi are
colonizers of mangrove forests, and the representative species form a large and diversified
ecological group, playing a central role in the degradation of lignocellulosic sedimentary
organic matter [73]. Lignocellulose biomass degradation is based on the secretion of a
broad variety of enzymes that have different, complementary catalytic activities, including
cellulases, hemicellulases, and lignin-modifying enzymes [74]. In this study, we focused on
DyPs as model lignin-modifying enzymes, because enzymes from this family are present in
Ascomycota and Basidiomycota, and both Phyla were identified in New Caledonian man-
grove sediments [3]. These enzymes have been suggested to contribute to the degradation
of phenolic residues and the modification of lignin-derived soil organic matter [61].

The diversity of expressed genes encoding fungal DyPs was investigated in both
surface and buried mangrove sediments underneath A. marina and R. stylosa trees, and
during the wet (March) and the dry (November) seasons. Compared to soils from terrestrial
forests, which can harbor a high diversity of expressed lignolytic genes (e.g., from 82 to
253 DyP OFUs [75]), mangrove sediments showed much narrower diversity, with only
25 DyP OFUs retrieved, possibly the result of physical–chemical gradients associated with
mangroves sediments that are inimical to fungal ligninolytic enzyme activities (e.g., low
oxygen and nitrogen contents [76]). DyP diversity was also strongly affected by the season,
as already observed for the fungal community composition [35]. A systematic decrease
in DyP diversity was observed in surface layers during the dry season (November). In
previous studies, wet seasons appeared favorable to microbial colonization in mangrove
ecosystems, particularly for fungi [73], as salinity and temperature decrease and increase,
respectively [77,78]. Moreover, the water availability is an important factor regulating
fungal activity in mangrove sediments [79]. However, in our study, DyP diversity was
lower in the wet season, except for surface layer sediments collected during the wet season
beneath R. stylosa. The impact of tree species on DyP composition is consistent with previ-
ous work conducted in forest ecosystems, showing that tree species and more particularly
species-generated soil C/N ratio are the most important factors driving functional gene
distribution [75]. However, in New Caledonian mangrove habitats, salinity is also an im-
portant factor. It shapes tree distribution, impacting directly or indirectly on the taxonomic
and functional diversity of sediment fungal communities [80]. Random high-throughput
(Hiseq) sequencing of environmental cDNA after gene capture by hybridization enabled
us to identify the full-length sequence of the most abundant fungal OFU in mangrove
sediments, DyP1, whose sequence was successfully cloned and expressed in P. pastoris.

The origin of DyP1 was inferred from phylogenetic analysis, and a biochemical charac-
terization was conducted to determine its physical–chemical properties, kinetic parameters,
and potential for biotechnological applications, such as dye decolorization. Phylogenetic
analysis revealed a sequence similarity from (47% to 59%) of the recombinant DyP1 with
those of DyPs from four species of the orders Auriculariales and Sebacinales (Basidiomycota,
Agaricomycotina), including E. glandulosa, A. delicata, P. indica, and S. vermifera. This result
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is in agreement with our previous finding that Basidiomycota was mainly represented by
Agaricomyceta [3]. Although Ascomycota largely dominated the analyzed mangrove sedi-
ments (73.8–94.5% of total ITS sequences), Basidiomycota represented 5.3–26.2% of total ITS
sequences [3]. Interestingly, Agaricomycotina represented 5.3–18.3% of total ITS sequences,
i.e., most of the Basidiomycete sequences, and operational taxonomic units (OTUs) affiliated
to the genus Exidia were detected in mangrove sediments.

The structural model of DyP1 highlighted the presence of the heme cofactor and a
ferredoxin-like fold forming the CDE superfamily. Asp 213 and Arg 371 were identified
showing the conserved motif GXXDG residues and their contribution in the heterolytic
cleavage of H2O2 to activate the enzyme. This result was similar to AauDyP where Aspar-
tate and Arginine were located in positions 168 and 332, respectively [61], and to P. sapidus
DyP with Asp174 and Arg338 [66]. Additionally, the fifth ligand of the heme iron of DyP1,
histidine 351, was detected with an aspartate at position 433 forming a hydrogen bond
similar to the recombinant PsaDyP (His 317 and Asp 401) and AauDyP (His304 and Asp395).
However, in some cases, the aspartate residue was substituted by a glutamic acid [61,66].
The homology modeling admits the catalytic activity of the Trp 416 of DyP1, which was
tendentially like A. auricularia-judae (Trp 377) and T. versicolor DyP (Trp 411) [30,61]. To
oxidize a large number of substrates, DyP1 shows an aromatic surface with tryptophane
and tyrosine residues. This result was in line with PsaDyP, where Tyr343 and Trp383 were
conserved solvent-exposed residues, and with Pleurotus eryngii VP, where Trp164 plays a
key role in the direct electron transfer [66,68].

Among the five substrates tested, including Mn2+, recombinant DyP1 showed activity
on ABTS and RB19 only, with higher affinity for the former (Km, 651.39 µM) than for
the latter (Km, 1497.07 µM). Affinities for ABTS and RB19 were higher for TvDyP1 (Km,
292 and 37.8 µM, respectively) and AauDyP (Km, 283 and 6.5 µM respectively). For P.
ostreatus DyPs, Pleos yP1/ PleosDyP4 Km values were 780 and 787 µM for ABTS, and 45 and
82 µM for RB19, respectively [58]. I. lacteus DyP also showed higher affinity to ABTS (Km
28 µM) than to RB19 (Km 13 µM) [65]. Catalytic efficiency of DyP1 was 4–5 times higher for
RB19 (kcat/Km, 2.23 s−1 mM−1) than for ABTS (kcat/Km, 0.49 s−1 mM−1), whereas catalytic
efficiency on ABTS was 3, 2, and 0.7 times higher than catalytic efficiency on RB19, for
TvDyP1, PleosDyP1/ PleosDyP4, and I. lacteus DyP, respectively [30,58,65]. In conclusion,
although the catalytic efficiencies of recombinant DyP1 were lower than for the above
characterized DyPs, they were still in the range of what was found for DyPs isolated from
terrestrial environments.

The structural homology model obtained for DyP1 presents both the heme cofactor
and the ferredoxin-like fold characteristic of the CDE superfamily [23]. A detailed analysis
revealed all the elements characterizing a catalytically active DyP. Thus, Asp213 and Arg371
located over the heme plane (at the so-called distal side) are expected to contribute to the
enzyme activation by H2O2 as previously demonstrated for distal aspartate and arginine
in AauDyP [20]. Similarly, the key residues located below the heme plane (the so-called
proximal side) are conserved when compared with other DyPs. In this region, His351
therefore acts as the fifth ligand of the heme iron, and the interaction between this histidine
and the neighboring Asp433 may be responsible for the redox potential of the enzyme,
as suggested by Linde et al. [61]. Concerning the putative catalytic sites for substrate
oxidation, the heme access channel and the surface Trp416, which occupies a position
equivalent to that of the catalytic Trp377 in AauDyP, are the main candidates. The former
has been suggested to be the low-efficiency site for ABTS and RB9 oxidation, while the
solvent-exposed Trp377 has been demonstrated to be the high-efficiency site for these two
substrates in the A. auricula-judae enzyme [20]. Unlike this enzyme, DyP1 presents a set
of kinetic constants for these two substrates, indicating that only one of these two sites is
active, although other alternative sites cannot be ruled out. Among them, we found other
solvent-exposed tryptophan and tyrosine residues that could also act as catalytic residues
instead of Trp377. They could be activated by long-range electron transfer pathways in a
similar way as described for Trp377 in AauDyP [61] and for different Trp and Tyr residues in
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ligninolytic peroxidases [81–83]. Directed mutagenesis studies of these residues and at the
heme access channel are necessary to definitively identify the catalytic site of this enzyme.

Enzymatic activity on ABTS of purified recombinant DyP1 was optimal at pH 3, similar
to what was reported for DyPs from I. lacteus [65], T. versicolor [30], P. sapidus [66], A. auricula-
judae [29], and Pleurotus ostreatus [58]. Recombinant DyP1 is stable at acid pH (2.6–5.0),
with activity increase for longer incubations at pH 4.0 and 5.0. At pH 6.0, enzyme activation
was observed for 24 h, whereas after a longer incubation time, activity was completely
abolished. For TvDyP, P PleosDyP1/PleosDyP4, and I. lacteus DyP, stability was similar in
the same pH range, but no activation effect at pH 4.0 and 5.0 was observed [30,58,65]. The
effect of temperature on DyP1 activity and stability was measured at different temperature
points ranging from 30 to 70 ◦C. Recombinant DyP1 showed optimal activity at 40 ◦C
and retained 60–80% residual activity after 180 min incubation at temperatures in the
range of 30–50 ◦C. For corresponding temperatures, TvDyP1 retained only 5–35% activity,
and PleosDyP1 was inactive, although Pleos-DyP4 maintained 100% activity even in the
range of 60–70 ◦C [30,58]. Finally, P. sapidus DyP (PsaDyP) was active in the temperature
range of 15–30 ◦C but had already lost 50% activity after 5 min incubation at 50 ◦C [66].
Although H2O2 is a peroxidase co-substrate, it is also known to inactivate enzyme activity
above a critical, enzyme-specific concentration. Optimal activity for recombinant DyP1
was recorded at 0.25 mM H2O2. This value lies within the range of values determined for
other DyPs: 0.125 mM for PsaDyP, 0.5 mM for TvDyP1, and 0.4 to 0.8 mM for I. lacteus
DyP [30,65,66].

To assess the potential of recombinant DyP1 as a biocatalyst for applications in white
biotechnology, we tested its capacity to decolorize the industrial dyes already tested
for TvDyP1 [30]. DyP1 was active on three dyes (AB, RB5, and DB79), corresponding
to different chemical classes (acidic, reagent, and disperse dyes), whereas TvDyP1 was
only active on AB, though with a higher efficiency (75% decolorization). DyP1 instead
showed higher substrate versatility, suggesting an original technological potential for large-
spectrum dye bleaching, and showed the best efficiency on RB5 (32% decolorization). In
several studies, RB5 is reported as a well-known recalcitrant azo dye, with a rigid aromatic
molecule that is difficult to degrade. This compound is dangerous, carcinogenic, and toxic
to humans and the environment [84]. In previous studies, RB5 was decolorized by various
fungal strains, such as P. eryngii F032 (94% decolorization) [85], Geotrichum candidum Dec 1
(94%) [86], Cerrena sp. WICC F39 (86%) [87], Funalia trogii (95%) [88], and Trametes gibossa
WRF3 (82%) [84]. These results open a field of application for the recombinant DyP1 that
needs to be further developed, for instance by immobilizing the enzyme to improve its
efficiency [89].

To complete enzyme characterization, and as the recombinant DyP1 was obtained
from a marine environment (mangrove of New Caledonia), we tested the behavior of
DyP1 in saline conditions. Despite its marine origins, recombinant DyP1 was similarly
affected by sea salt, compared with terrestrial-derived TvDyP1. By contrast, marine Phlebia
sp. MnP showed four times higher activity when the culture medium was supplemented
with 3% of sea salt [15]. Furthermore, two laccases recently cloned from the marine-
derived fungus Pestalotiopsis sp. KF079, isolated from the Baltic sea mudflats, were strongly
activated by up to 360% of their initial activity in the presence of 5% (w/v) sea salt [33]. We
also demonstrated that lytic polysaccharide monooxygenases from the mangrove fungus
Pestalotiopsis sp. NCi6 (PsLPMOA) remained active even at 6.0% (w/v) sea salt [90].

Salt-adapted enzymes originating from marine environments are generally charac-
terized by highly negative surface charges thought to contribute to protein stability and
activity in extreme osmolytic conditions [91–93]. In our results, the recombinant DyP1
had a low (D + E)/(R + K) ratio of 1.19, which is the same as for the terrestrial-derived
TvDyP1 (1.16) and AauDyP (1.24). In line with these results, this ratio for the laccases
MtLac from the terrestrial Myceliophthora thermophila was 1.55, and for PsLac1 from the
marine-derived Pestalotiopsis sp. and SlLac2 from S. lucomagnoense 1.55 and 1.2, respectively,
despite their marine origin [14,33]. By contrast, the laccase PsLac2 and PsLPMOA enzymes
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isolated from Pestalotiopsis sp. had a four-times higher recurrence of negatively (D + E) than
positively charged (R + K) amino acids [33,90]. This observation was supported by com-
paring the homology-guided three-dimensional models generated for two DyPs revealing
a well-balanced surface charge distribution, while for the PsLac2 and PsLPMOA enzymes
highly negative residues were exposed at the surface [33,92]. We can thus conclude that the
surface charge distribution of mangrove-derived DyP1 is reminiscent of those of terrestrial
DyPs. Mangrove habitats are detritus-based ecosystems, colonized by a large community
of terrestrial saprotrophic fungi [73]. Future experiments will be needed to compare the
structural organization of the mangrove soil at the taxonomic and functional levels. To
achieve this goal, it will be pivotal to clone and characterize other DyPs identified in the
mangrove soil samples and to study DyP biodiversity as a function of depth, vegetation,
and season. Similar studies should be also conducted on other lignocellulose-degrading
enzymes to validate this approach and corroborate these results.

5. Conclusions

Mangrove habitats are rich ecosystems, extremely diverse because of the combination
of highly variable environmental gradients related to salinity, temperature, humidity,
depth, tree species, and many more variables. This results in a rich biodiversity and
diverse microbial distribution, constituting as such a very original model environment
to characterize. In the present work, gene capture by hybridization combined with high-
throughput sequencing allowed the detection of fungal functional cDNAs encoding DyPs,
whose expressions were lower than the genes identified in conventional forest soils, and the
discovery of novel biocatalysts. We also expressed and characterized the most frequently
encountered and abundant DyP from the explored mangrove. We conclude that the newly
discovered DyP1 is expressed from a fungal species within the genus Exidia and that
the enzyme has biochemical properties close to their terrestrial isoforms, although likely
endowed with greater substrate versatility.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7050321/s1. Table S1: List of tagged primers used to amplify expressed genes encoding
fungal Dye-decolorizing Peroxidases (DyPs); Table S2: Normalized dataset where the 781,344 fungal
DyP sequences are distributed among the 25 different Operational Functional Units (OFUs) within
the sediment samples; Table S3: Mean number of fungal DyP OFUs (Operational Function Units)
detected and diversity indices calculated for oxic and anoxic sediment fractions collected during the
wet (March) and dry (November) seasons within two mangrove pristine areas (Avicennia marina and
Rhizophora stylosa); Figure S1: title: SDS-PAGE of the two-step purification for the recombinant DyP1
produced in Pichia pastoris. Lanes: 1, culture medium fraction; 2, purified DyP1 obtained after IMAC
chromatography and M, protein molecular mass markers.
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