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Abstract: This study aims to evaluate a remote sensing-based approach to allow estimation of the
temporal and spatial distribution of crop evapotranspiration (ET) and irrigation water requirements
over irrigated areas in semi-arid regions. The method is based on the daily step FAO-56 Soil Water
Balance model combined with a time series of basal crop coefficients and the fractional vegetation
cover derived from high-resolution satellite Normalized Difference Vegetation Index (NDVI) imagery.
The model was first calibrated and validated at plot scale using ET measured by eddy-covariance
systems over wheat fields and olive orchards representing the main crops grown in the study
area of the Haouz plain (central Morocco). The results showed that the model provided good
estimates of ET for wheat and olive trees with a root mean square error (RMSE) of about 0.56 and
0.54 mm/day respectively. The model was then used to compare remotely sensed estimates of
irrigation requirements (RS-IWR) and irrigation water supplied (WS) at plot scale over an irrigation
district in the Haouz plain through three growing seasons. The comparison indicated a large spatio-
temporal variability in irrigation water demands and supplies; the median values of WS and RS-IWR
were 130 (175), 117 (175) and 118 (112) mm respectively in the 2002–2003, 2005–2006 and 2008–2009
seasons. This could be attributed to inadequate irrigation supply and/or to farmers’ socio-economic
considerations and management practices. The findings demonstrate the potential for irrigation
managers to use remote sensing-based models to monitor irrigation water usage for efficient and
sustainable use of water resources.

Keywords: evapotranspiration; irrigation; water; remote sensing; FAO-56 soil water balance; NDVI
time series

1. Introduction

Irrigated agriculture is the main water consumer worldwide, accounting for about
70% of all available fresh water [1]. However, increasing pressure on available water
resources, particularly in semi-arid regions, due to population growth, climate change and
competition from other economic sectors will affect the availability of water for irrigated
agriculture in the future. In this context, assessing irrigation performance through accurate
estimation of crop water use and improving irrigation water management using innovative
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and cost-effective tools is necessary for efficient and sustainable use of water resources.
Indeed, monitoring crop water use is a critical component of effective water resource
management, which provides a means to improve “water use efficiency”, an indicator
specified in the UN Sustainable Development Goals (SDG 6.4) that should substantially
increase by 2030 [2].

One way to improve water use efficiency is the adequate application of irrigation
water to match actual crop requirements, which necessitates accurate estimates of the crops’
irrigation water requirements (IWR). However, regarding water managers’ knowledge,
there is a lack of distributed spatio-temporal information on crop water requirements at
field plot scale over large irrigated areas. Indeed, key information useful for irrigation
managers to evaluate irrigation performance is the temporal and spatial distribution of
crop water use or evapotranspiration (ET) over large irrigated areas [3–6].

Several in-situ techniques are available to measure ET at local scale, including hydro-
logical methods (e.g., lysimeters), physiological methods (e.g., sap flow) and micrometeo-
rological methods (e.g., eddy covariance, scintillometers) [7]. A comprehensive review of
these measurement methods along with the factors governing their accuracies have been
provided by [8] and later discussed by [9] when evaluating the uncertainties of estimation
of crop water productivity which are associated with the field methods utilized to measure
crop yield and ET. These in-situ methods have been accepted as standards for ET measure-
ment and are therefore considered to provide baseline information to evaluate the accuracy
of remote sensing-based ET approaches. In fact, several methods to estimate ET through
remote sensing data have been developed recently and have been recognized powerful
tools for monitoring crop development and assessing spatial and temporal variability in
crop water use [10–13]. Compared to the field measurements, these approaches are cost-
effective and allow for spatial coverage and the quantification of the spatial and temporal
variability of ET estimates over large areas.

Different remote sensing-based approaches for ET estimates have been developed and
can be arranged into three categories according to the variables retrieved from satellites:
(a) surface energy balance (SEB) methods, (b) reflectance-based crop coefficient methods
and (c) RS-based Penman—Monteith direct methods [13]. With the SEB methods, the ET is
estimated from the latent heat flux which is calculated as the residual term of the surface
energy balance equation. Many SEB models have been widely used for ET applications
using different thermal sensors such as two-source energy balance (TSEB) [14], surface
energy balance algorithm for land (SEBAL) [15] and mapping evapotranspiration at a high
resolution with internalized calibration (METRIC) [16]. The major drawbacks of these
models are the time gaps between instantaneous ET estimates for many satellite systems
that induce difficulties in extrapolating ET at daily scale or more and the uncertainty in
estimating aerodynamic components and surface temperature [8].

A simple, widespread group of models combines a physical approach for the com-
putation of ET for a reference crop with the use of empirical coefficients to quantify the
difference between the reference crop and the actual vegetation observed [17]. The most
common and practical method largely applied to estimate crop water requirements and
irrigation scheduling at local scale is the well-known FAO56 approach [18], particularly the
so-called “dual crop coefficient” procedure that uses two coefficients to account separately
for crop transpiration (Kcb) and soil evaporation (Ke). Several studies have demonstrated
the potential of remote sensing to obtain crop coefficients from vegetation indices (VIs)
for a wide range of crops [19–27]. The approach for deriving crop coefficients from VIs is
based on the strong correlation between vegetation transpiration and the spectral response
of the vegetation through the fraction of photosynthetic active radiation absorbed by the
canopy [28]. One advantage of the Kcb-VI approach is its ability to provide robust, continu-
ous estimates of ET because the Kcb describes a smooth curve over time and can be safely
extrapolated between satellite overpass times [28–30], unlike surface temperatures, which
are much less stable [31]. However, the main challenges with this method include the need
for calibrated, crop-specific relationships and the failure to accurately estimate both soil
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evaporation following wetting events and ET reduction associated with actual variations
in soil moisture, as these processes are not adequately reflected in the VI [8]. Thus, to better
consider soil evaporation and water stress conditions, various studies have combined the
Kcb-VI approach with soil water balance (SWB) models in order to adequately determine
actual ET and irrigation water requirements [26,32–34].

Consequently, various tools have been developed in the past years aiming to support
operational irrigation water management through the computation of actual crop ET and
irrigation water requirements at plot scale over large areas. This has been possible thanks
to the increasing availability of the high-resolution Normalized Difference Vegetation Index
(NDVI) time series, which allowed the operational use of remotely sensed crop coefficients
coupled with an SWB model based on FAO56 methodology [35–39]. Examples of such
tools include the TOPS-SIMS [37] that provides near-real-time mapping of crop growth
conditions and water use based on a generalized Kcb-NDVI relationship, the SPIDER
system [40], which provides Kcb curves based on an NDVI time series for direct use
by farmers and the HYDROMORE tool [41], which provides the spatial and temporal
distribution of the soil water balance based on the FAO56 approach. The SAMIR tool
(Satellite Monitoring of Irrigation) [42], whose application is presented in this paper, was
developed within the framework of the joint international laboratory (TREMA) and is
designed to compute spatialized estimates of ET and crop water budget assessment at
regional scale based on the FAO56 method and the NDVI time series.

In this study, we evaluated the reliability of an approach based on a soil water balance
model driven by remote sensing data, implemented using SAMIR software, for assessing
crop irrigation requirements and monitoring spatialized irrigation water use. After calibra-
tion and validation of the model at plot scale, the approach was used to compare remotely
sensed estimates of crop irrigation requirements and in situ observations of irrigation water
use in the Haouz irrigated plain (Morocco). Our goal was to demonstrate the operational
application of a remote sensing-based soil water balance model to monitor irrigation water
use at field level over large irrigated areas.

2. Materials and Methods
2.1. Study Area

The Haouz plain is located in central Morocco, around Marrakesh, to the north of
the High Atlas mountain range. It lies between longitude 7◦33′ to 7◦39′ West and latitude
31◦37′ to 31◦42′ North, including approximately 3100 km2 of irrigated area. The climate
is Mediterranean semi-arid, with an average annual precipitation of about 250 mm, 70%
of which falls during winter and spring, but it is characterized by a large inter- and intra-
annual variability. The average air temperature ranges from 4 ◦C in winter to 37 ◦C in
summer, with an average annual reference evapotranspiration of 1500 mm. The crops are
irrigated using water from dams and river diversions from the high Atlas Mountains and
water extracted from the underlying aquifer.

The irrigation schemes are fed by reservoirs, and water is diverted and distributed by
gravity mainly through a hierarchic network of overhead concrete canals. Water delivery
and the irrigation infrastructure for the whole irrigation system are managed by a water
management agency called Office Régional de Mise en Valeur Agricole du Haouz (ORM-
VAH). The farmers are organized in Water User Associations (WUAs), which participate in
the operation and maintenance of the irrigation system. Inside the tertiary unit, the water
is rotated by the farmers themselves.

The area evaluated in this study (R3 irrigation district) during three seasons (2002–2003,
2005–2006 and 2008–2009) encompasses about 3000 ha of irrigated land (Figure 1), com-
prising about 745 individual plots, which became fully operative in 2000. There are three
WUAs (Bni Krim, Od Garne and Argoub) operating in the R3 irrigation scheme with
respective command areas of 600, 850 and 1550 ha that are supplied with water by 13, 20
and 35 tertiary canals respectively. The major crops in this area are cereals (mostly wheat)
and olive trees, very often combined with an understory composed of weeds or wheat crop.
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The three studied agricultural seasons were contrasted in terms of climatic conditions, par-
ticularly the rainfall (P) and reference evapotranspiration (ETo) that influence the irrigation
water requirement. The seasonal values from November to June for 2002–2003, 2005–2006
and 2008–2009 were respectively about 238 (with 108 mm falling in November), 218 and
274 mm for cumulative rainfall and about 726, 681 and 625 mm for total ETo.

Figure 1. Map of the study area. Upper left panel: Location of the study area in the Tensift watershed (Morocco); Right
panel: R3 irrigation district and location of six experimental fields (C1, C2, C3, V1, V2, V4); Lower left panel: Location of
two other experimental fields (V3, C4).

2.2. Model Description

The crop irrigation water requirements were simulated using a remote sensing-based
soil water balance model that tracked daily changes in soil water storage as a function of
inflows from effective rainfall and irrigation and outflows from deep percolation and actual
evapotranspiration. The model was based on the well-known FAO56 dual crop coefficient
approach [18], and we provide therefore in the following a brief description of the main
calculations focusing on the modifications implemented in the SAMIR tool. The main
originality of SAMIR lies in its use of a remote sensing NDVI time series for the monitoring
of vegetation development from which crop coefficients and vegetation fraction covers are
derived instead of using standard values.

The FAO56 approach is based on the concept of reference evapotranspiration for a
standard, well-watered grass scaled by crop coefficients to account for the crop-specific
development and influences on ET during a crop season. In the dual procedure, the crop
coefficient is split into two components to account for the crop transpiration (basal crop
coefficient, Kcb) and the evaporation from the soil (evaporation coefficient, Ke). Hence, the
crop actual evapotranspiration is estimated as follows:

ET = (Ks·Kcb + Ke)·ETo (1)

Ks is a stress coefficient which accounts for the reduction of transpiration due to
decreasing water availability in the root zone. Daily reference evapotranspiration (ETo)
is calculated using the FAO Penman—Monteith equation, given observations of daily
maximum and minimum temperature, solar radiation, wind speed and vapor pressure.

The SAMIR tool performs a remote sensing-driven soil water balance based on the
FAO56 dual crop method under non-standard conditions, i.e., considering the actual soil
water status, as described in the FAO paper 56 [18] and summarized and extended in a
subsequent paper [43]. Thus, NDVI time series [44] for vegetation monitoring are used to
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derive crop coefficients and fractional vegetation covers instead of the tabulated values.
The NDVI, relying on near infra-red (NIR) and red (R) reflectances, is the most common
vegetation index used to assess biophysical parameters and is available from most earth
observation sensors [45].

NDVI =
NIR− R
NIR + R

(2)

Discrete values of NDVI derived from satellite imagery are interpolated to daily time
series and used to estimate the temporal evolution of biophysical components such as the
basal crop coefficient (Kcb) and the fraction of soil surface covered by vegetation (fc) through
linear NDVI–VIs relationships. The work of [20] constitutes a theoretical framework for these
relationships, which is based on analytical relationships between LAI (Leaf Area Index) and
the transpiration coefficient and between the LAI and multispectral VI. Several empirical
relationships have been developed for different crops [19–23,29,46]. Regardless of the type of
relationship, it depends on soil and vegetation properties and, as much as possible, should be
calibrated to the study area concerned. If the area is sufficiently contrasted, the extreme values
representing bare soil (NDVImin) and full cover (NDVImax) can be extracted from the image
histogram [47]. Ref. [48] recommended the development and use of a linear relationship based
on these extreme points for their ability to provide reliable estimates of water requirements
when the demand is high at full cover.

In the case of soil evaporation, the model includes a modification to the calculation of
the soil evaporation rate in the FAO approach. It consists of applying a correction coefficient
(m) to the evaporation reduction coefficient (Kr) to prevent the rapid drying process of the
soil surface by evaporation following the wetting events, simulated by the FAO-56 model
under high evaporation conditions as reported by [49].

Kr = m· TEW − De
TEW − REW

≤ 1 (3)

where TEW represents the total evaporable water, REW the readily evaporable water
and De the soil surface layer depletion in the shallow surface layer used to compute
soil evaporation.

Following the FAO-56 model, soil evaporation is controlled by the soil surface layer
depth (Ze), whereas crop transpiration is controlled by the root layer depth (Zr). In the
SAMIR tool, a deep layer (Zd) was added below the root compartment to account for water
storage and capillary rise [50]. To allow water stored in this deep layer to be used by the
plant, a diffusion process was introduced to simulate capillary water movement between
the deep layer and the root layer. For coherence, diffusion was also introduced between
the root layer and the evaporation layer, especially to allow evaporation to decrease more
slowly after a wetting event and to allow the deeper layers to continue drying after harvest.
Lateral circulation of water (overland and subsurface runoff) is assumed to be negligible
in the flat irrigated areas covered by this model. During rainfall or irrigation events, the
water fills the compartments successively from top to bottom through gravity. When all the
compartments are full, excess water flows out of the system through deep drainage (DP).

The root depth Zr varies according to the stage of plant development and is assumed
to be linearly linked to the fractional vegetation cover (fc) according to Equation (4), which
is analogous to Equation (8-1) in the FAO-56 paper [18], linking Zr to Kcb:

Zr = Zr_min +
f c

f cmax
.(Zr_max− Zr_min) (4)

where fcmax represents the maximum fraction cover corresponding to the maximum rooting
depth (Zr_max) and Zr_min is the minimum rooting depth when the vegetation is detected
by satellite (fc > 0). The critical water capacities of the evaporation and root layers (TEW,
REW, TAW (total available water) and RAW (readily available water) following FAO-56



Remote Sens. 2021, 13, 1133 6 of 22

terminology) are computed as proposed in FAO-56 paper. Similarly, total available water
in the deep compartment (TDW) is computed as:

TDW = (θ f c − θwp)·Zd (5)

where θfc and θwp are the volumetric water content at field capacity and wilting point,
respectively.

Water diffusion due to capillary water movement, either upwards or downwards,
is driven by the gradient between the water content of the two layers. The formalism is
taken from [51] and is related to the difference in water content between the two layers as
compared to field capacity. The diffusion between the surface and root layers (Difer) and
between the root and deep layers (Difrd) is given by:

Di fer = cd·

 (TAW − Dr)
Zr

− (TEW − De)
Ze

θ f c

 (6)

Di frd = cd·

 (TDW − Dd)
Zd

− (TAW − Dr)
Zr

θ f c

 (7)

where De, Dr and Dd represent depletion in the evaporation, root and deep layers, respec-
tively, and cd is the diffusion coefficient (mm·day−1). The soil water balance is updated at a
daily time step using the equations of the dual crop coefficient approach at the evaporation
and root zone depths taking into consideration the water diffusion between layers and the
deep layer defined above.

Dej = 0 ≤
(

Dej−1 +
Ej

f ew
+ Tewj− Pj− I j

f w
− Di fer

)
≤ TEW (8)

Drj = 0 ≤
(

Drj−1 − Pj − Ij + ETcj − Di frd
)
≤ TEW (9)

Ddj = Ddj−1 − DPr + Di frd ≤ TDW (10)

where Dej, Drj and Ddj are the depletions at the soil surface, root zone and deep layers at
the end of day j (mm), Pj is the precipitation, Ij is irrigation depth, Ej is the soil evaporation,
Tewj is the depth of transpiration from the exposed and wetted fraction of the soil surface
layer, fw is the fraction of the soil surface wetted by irrigation and few is the wetted soil
fraction exposed to evaporation.

In the SAMIR tool, the irrigation is triggered based on management rules set by the
user and relies on the soil water status and the known or assumed farmer’s practices.
The main parameters to be defined are the criteria for triggering irrigation, the irrigation
depth and the soil fraction wetted by irrigation (fw). Different options are offered to trigger
irrigation based on the level of RAW and the level of TAW on a given threshold of the root
zone depletion (Dr) or at any fixed time step. In addition, in the case of annual crops which
are not irrigated during senescence, irrigation will cease once the Kcb decreases below a
given fraction of the peak value to be defined by the user. Additionally, other management
rules can be used to further control the delivery of water at a seasonal scale, which are the
maximum allowable cumulated water depth, the maximum number of irrigation events, a
minimum and maximum application depth per event and a minimum interval between
irrigation events.
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2.3. Experimental Data

The soil water balance model was calibrated and validated using data sets collected
during the SudMed project [52], which has been underway since 2001 in the Haouz semi-
arid plain around Marrakesh (Morocco) and pursued in the frame of the Joint International
Laboratory (Trema) [53].

Field experiments were conducted on six wheat fields during three growing seasons:
three fields (C1, V1, V2) in 2002–2003 and two fields (C2, C3) in 2015–2016 located in the
R3 district (35 km east of Marrakesh city, Morocco) and one field (V3) in 2016–017 located
in the Mejjat region (70 km west of Marrakesh city). For olive trees, an experiment was
carried out on an olive orchard (C4) located in the Agdal area (the southern boundary of
Marrakesh city, Morocco) during the 2002–2003 season and another one (V4) in the R3
district during the 2005–2006 season. Five fields (C1, C2, C4, V1 and V2) were irrigated
by flood system, and three fields (C3, V3 and V4) were supplied by drip irrigation system.
The irrigation rates and frequencies differed among the fields and were more related to
the surface irrigation scheduling in the R3 district in the case of the wheat fields and were
more flexible for the other fields (wheat under drip irrigation and olive under both flood
and drip irrigation) that relied on groundwater resources. The soil in the R3 district was
clay loam, and its average water content at field capacity (θfc) and wilting point (θwp) used
were the median values obtained by [54]. In the olive grove of the Agdal area, the soil was
a silty clay loam, and average θfc and θwp used were median values derived from four
pedotransfer functions [55–58]. In the wheat field (V3), the θfc and θwp used were derived
from pedotransfer functions according to the soil texture of the field [59].

Flux measurement and meteorological stations were installed and allowed continuous
monitoring of actual ET by an eddy covariance system (EC) and meteorological variables
for ETo calculations. The meteorological measurements included incoming solar radiation
(Kipp and Zonen CM5 Pyranometer, Delft, The Netherlands), air temperature and vapor
pressure (HMP45C, Vaisala, Helsinki, Finland), wind speed (A100R Anemometer, R.M.
Young Company, Traverse City, MI, USA) and rainfall (FSS500 Tipping Bucket Automatic
Rain Gauge, Campbell Scientific Inc., Logan, UT, USA). The EC system consisted of a 3D
sonic anemometer (CSAT3, Campbell Scientific Inc., Logan, UT, USA) and an open-path
infrared gas analyzer (Li7500, 207 Licor Inc., Lincoln, NE, USA) or fast hygrometer (KH2O,
Campbell Scientific Inc., Logan, UT, USA) that measured the fluctuations of the three
components of wind speed, air temperature and water vapor. A complete description
of the experiments can be found in [21,22] and [59] for wheat and in [60] and [61] for
olive trees.

For the spatialized assessment of irrigation performance in the irrigation scheme
using the remote sensing-based soil water balance model, irrigation volumes distributed in
the R3 district were collected at the scale of the irrigated units (referred hereafter by the
fields), which was the smallest unit for which water delivery was directly controlled by the
Irrigation Department at ORMVAH. The water that is billed to farmers at the end of the
season is delivered and measured at the tertiary canal intakes (serving the irrigated units)
according to predefined water rates, and the water is then distributed to farmers inside the
irrigated units by the Water Users Associations.

2.4. Satellite Data and Land Cover Mapping

A series of Landsat TM images of the studied area (Figure 2) acquired in 2002–2003
and 2008–2009 were geometrically and radiometrically corrected to provide a NDVI time
series and a land cover map [62]. During the 2005–2006 season, a time series of FORMOSAT
images was acquired over the R3 district and processed to produce a NDVI time series and
a land cover map [63]. The NDVI profiles generated for each pixel were used to identify
the main crop types of the study area using a decision-tree algorithm that was successfully
applied in the region [62] and allowed the distinction of three broad land classes: bare
soils/fallow, annual crops (mainly wheat) and trees (mainly olive trees) as presented in
Figure 3. In fact, for simplification, we considered one single class for trees, grouping
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trees and trees with an understory (which could be either weeds or a wheat crop) which
represented less than 10% of the R3 irrigation district area. The resulting land cover maps
were evaluated using ground data, and the confusion matrix computed gave a global
accuracy up to 80%, 85% and 76% respectively for the 2002–2003, 2005–2006 and 2008–2009
seasons (not shown here).

Figure 2. Acquisition dates for the satellite images during the three growing seasons.

Figure 3. Land cover maps for the 2002–2003 (a), 2005–2006 (b) and 2008–2009 (c) seasons in the R3 irrigation district. The
colors represent the trees (in green), the wheat crop (in yellow) and bare soil/fallow (in brown).
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2.5. Model Calibration and Evaluation

The actual ET measured at the eight flux sites was used to calibrate and validate
the model at plot scale. The model calibration procedure consisted of maximizing the
Nash-Sutcliffe efficiency (NSE) criterion computed between observed and simulated ET
using a steepest descent algorithm:

NSE = 1− ∑n
i=1(yiobs − yisim)

2

∑n
i=1(yiobs − yiobs)2 (11)

where n is the number of observations, yisim and yiobs are the values of simulated and
observed variables for day i respectively and yiobs is the average of observations over the
study period.

In order to consider different climatic conditions and irrigation practices, the cali-
bration was done using the data from the fields (C1, C2, C3) for wheat and the field C4
for olive trees, whereas the validation was achieved using the data from the fields (V1,
V2, V3) for wheat and the field V4 for olive trees. The calibration was performed for
the parameters controlling transpiration (Kcb, Zr_max, difdr, Z_tot (total soil depth)) and
evaporation processes (difre, REW, Ze). Parameters based on ground observations were
kept constant (NDVI-fc, θfc, θwp, init_RU (soil initial water content) and fw) as was the
fraction of readily available water (p) specific to FAO-56 and for which little information
was available. The Kcb and fc profiles were estimated from satellite data, and the other pa-
rameters, including Kcbmax (full cover), were calibrated based on ET measurements from
the experimental sites. The calibrations were applied incrementally including parameters
in the following order: first Zr_max controlling the plant available water, then parameters
driving evaporation (REW, Ze and difer), then capillary rise (Z_tot and difrd) and finally Kcb.
Observed irrigation values were used during this process, and the automatic irrigation
mode was then switched on to calibrate irrigation parameters.

The performance of the results of the model calibration and validation was analyzed
using three other statistical parameters: the correlation coefficient (R2) the root mean square
error (RMSE) and the percent bias (PBIAS), which measured the correlation, the magnitude
of the average error and the direction of the error bias between simulated and observed
values, respectively:

RMSE =

√
1
n
∗∑n

i=1(yisim − yiobs )2 (12)

R2 =

[
∑n

i=1(yisim − yisim)(yiobs − yiobs)

∑n
i=1(yisim − yisim)∑n

i=1(yiobs − yiobs)

]2

(13)

PBIAS =

[
∑n

i=1(yisim − yiobs) ∗ 100
∑n

i=1(yiobs)

]
(14)

where ysim and yobs are the averages of simulated and observed values respectively.
After the calibration and validation process at plot scale, the model was used

to estimate the spatially distributed irrigation water requirements at pixel scale over
the R3 irrigation district, which were compared with the actual irrigation amounts
supplied by ORMVAH during the 2002–2003, 2005–2006 and 2008–2009 seasons to
evaluate irrigation performance.

3. Results
3.1. Calibration of the Model

The calibration was done for wheat simultaneously on three fields (C1 in 2002–2003
and C2 and C3 in 2015–2016) and for olive tree on the C4 field. The linear relations linking
Kcb and fc with NDVI were established using values from the literature and NDVI values
extracted from the image time series (Table 1). For bare soil conditions, we assumed
null values for Kcb and fc with the NDVI of bare soils extracted from the images, and at
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full cover (fc = 1), the corresponding NDVI was the maximum value extracted from the
images [23,34,64]. The maximum Kcb values were calibrated for both wheat and olive tree
(Table 1).

Table 1. Relations used for fractional vegetation cover (fc) and basal crop coefficient (Kcb) estimates from the Normalized
Difference Vegetation Index (NDVI).

NDVI-fc NDVI_min NDVI_max fc_min fc_max Relation Sources

Wheat/olive tree 0.15 0.9 0 1 fc = 1.33*NDVI − 0.20
Min and Max NDVI taken
in images assuming resp.
bare soil and full cover

NDVI-Kcb NDVI_min NDVI_max Kcb_min Kcb_max Relation Sources

Wheat 0.15 0.9 0 1.05 Kcb = 1.40*NDVI − 0.21 Kcbmax calibrated

olive tree 0.15 0.9 0 0.76 Kcb = 1.01*NDVI − 0.15 Kcbmax calibrated

The daily Kcmax values were computed based on FAO-56 equation 72 using the
measured meteorological data. The average value was 1.15, which was within the interval
defined in FAO-56 ([1.05–1.3]) and was considered constant in the computation for simplifi-
cation. A low initial water content of 10% was considered for the wheat plots because no
significant rain was observed during the last days before the starting date of the simulation,
whereas the olive grove had been irrigated four days previously and had a higher initial
water content (init_RU = 0.8). The soil fraction wetted by rain or irrigation (fw) was set to
one for the plots irrigated by flood technique, and it was set to 0.6 and 0.3, respectively,
for the wheat plot and olive orchard using drip irrigation. The depth of the evaporation
layer (Ze) and the proportion of easily available water (p) were set according to FAO paper
56 [18]. All other parameters were obtained by calibration (REW, m, Zr_max, Z_tot, Difer,
Difrd) and are listed in Table 2.

Table 2. Parameters obtained after calibration on observed crop evapotranspiration (ET) for wheat (three plots) and olive
trees (one plot).

Parameter Definition
Values

Data Source
C1 (Wheat) C2 (Wheat) C3 (Wheat) C4 (Olive)

Soil Parameters:

θfc (m3/m3) Volumetric water content at field capacity 0.35 0.35 0.35 0.36 ground
observation

θwp (m3/m3) Volumetric water content at wilting point 0.22 0.22 0.22 0.22 ground
observation

Ze (mm) Height of the soil evaporation layer 125 125 125 125 FAO56

REW Readily evaporable water at surface layer 8 8 8 8 calibration

m correction to the coefficient of evaporation reduction 0.58 0.58 0.58 0.28 calibration

Zr_min (mm) Minimum root depth 125 125 125 125 FAO56

Zr_max (mm) Maximum root depth 700 700 700 950 calibration

Z_tot (mm) Total soil depth 1450 1450 1450 1450 calibration

p fraction of TAW to be depleted before stress 0.55 0.55 0.55 0.65 FAO56

Difer Diffusion between surface and root layers 16 16 16 0 calibration

Difrd Diffusion between deep and root layers 8 8 8 7 calibration

Init_RU (%) Soil initial water content 10 10 10 80 ground
observation

Irrigation Parameters:

fw wetted fraction 1 1 0.6 1 ground
observation

Kcb_off Kcb threshold to stop irrigation (% of Kcbmax) 75 75 75 - calibration

Ir_max (mm) maximum irrigation rate 60 60 20 100 ground
observation
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Figure 4 shows the comparison between the measured and estimated actual evapo-
transpiration after the model calibration along with the amount of irrigation and rainfall
over the three wheat fields (C1–C3) and the olive orchard (C4). For wheat, as mentioned
previously, the calibration was performed jointly for the three fields by maximizing the av-
erage Nash criterion. The results showed that the ET estimated by the model was correctly
adjusted to the measured ET. The average error statistics were about 0.84, 0.45 mm/day,
0.76 and 6% for NSE, RMSE, R2 and Pbias, respectively, and they ranged from 0.75 to 0.89,
0.32 to 0.56 mm/day, 0.50 to 0.91 and−0.02 to 16% for NSE, RMSE and R2, respectively. The
detailed statistics are provided in Table 3. It can be noted also that the temporal variations
of simulated ET correctly follow the dynamic of the measured ET and are sensitive to
the water supply events (irrigation and rainfall). These calibration results are improved
compared to the local calibration performed over the same wheat field (C1) by [22,65] when
using the standard FAO56 dual model and the Aquacrop model, respectively. For fields C2
and C3, the results are consistent (even improved for C2) with the validation undertaken
by [66] when evaluating the performance of the Hydrus-1D model for ET estimation. How-
ever, an important overestimation of ET is observed during a period of high evaporation
demand (25 March to 01 May) for the drip- irrigated field C3 (Pbias around 16%). This could
be attributed to a reduction in soil evaporation and/or moderate water stress probably
occurring during this period that was not accurately captured by the model (Ks was around
1.0), which reduced crop transpiration as a consequence to rapid soil drying in the limited
fraction wetted by drip irrigation as reported by [66], particularly if the wetting events
were not frequent enough to maintain adequate soil moisture, which was the case for field
C3. Indeed, the drip irrigation system in this field was not adequately monitored (irrigation
timing and rates not optimal) due to the lack of the farmer’s experience with this new
technique. Additionally, during the late season, the model underestimated ET for both the
C2 and C3 fields (after 07 May), which was probably caused by underestimation of soil
evaporation, particularly after wetting events occurring at that end of the season. This may
be explained by the reduction of the evaporation process in the soil surface, induced in
the model by the value of the fraction cover (fc), which is kept constant and equal to its
maximum (corresponding to NDVImax) until the end of the season. The discrepancies
observed could also be attributed to the accuracy of the NDVI values derived from satellite
images and the irrigation inputs recorded.

For olive trees, the calibration produced a good result because the dynamic of actual
ET estimated by the model accurately followed the time course of observed actual ET
(Figure 4d). The statistical values were 0.82, 0.37 mm/day, 0.86 and 4% for NSE, RMSE, R2

and Pbias, respectively. Interestingly, the proposed model and the calibrated parameters
values improved the ET estimates when compared with the results obtained on the same
field by [61], with the standard FAO dualKc yielding RMSE and R2 values of 0.54 mm/day
and 0.58, respectively.

After calibration of the soil and vegetation parameters, irrigation was switched to
automatic mode to calibrate related parameters based on a schedule that avoided stress
(i.e., Dr values above the RAW) and with the irrigation rate corresponding to the water
amount that will fill the depletion, limited by a maximum value Ir_max (mm) based on
observed practices. Olive trees were irrigated all year round, whereas irrigation of wheat
stopped at the beginning of the late period when Kcb decreased below a threshold kcb_off
(corresponding to wheat drying before harvest) that needed calibration. For the wheat
plots, the calibration consisted of minimizing both the difference between the total depths
of the simulated irrigation and the observed one and the difference between the dates of
the last simulated and observed irrigation events. The calibrated Kcb threshold to stop
irrigation of wheat (Kcb_off = 75%) was consistent with the observed agricultural practices
in the study area. Except for the C2 field, the simulated irrigation depths for C1 and C3
fields were similar to the observed ones (respectively 236, 320 mm and 251, 352 mm). For
the C2 field, the total irrigation depth simulated by the model (359 mm) was 30% less
than the observed one (512 mm), indicating applied irrigation higher than observed ET,
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which revealed an over-irrigation of this plot and that the amount in excess was probably
lost by deep percolation. This difference could be attributed to the fact that, on one hand,
this field received a high number of irrigation supplies (eight in total), all with a large
rate (about 64 mm), and four of them were received during periods of low evaporation
demand (between December and February), and on the other hand, some irrigation events
coincided with rainfall (19 February, 22 March) which promoted the deep percolation losses.
Regarding the date of the last irrigation supply for wheat, which was crucial for defining
the Kcb_off parameter, the differences between the dates simulated and observed were
quite low (−1, −3 and −4 days, respectively, for C1, C2 and C3).

Figure 4. Comparison between measured and simulated actual ET after model calibration over
three wheat fields: C1 (a) in 2002–2003, C2 (b) and C3 (c) in 2015–2016 and the olive trees C4 (d) in
2002–2003.
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Table 3. Statistical values of the comparison between measured and modelled actual ET over the
calibration and validation fields.

Calibration Fields Validation Fields

C1 C2 C3 C4 V1 V2 V3 V4

NSE 0.89 0.86 0.75 0.82 0.66 0.76 0.59 0.62
RMSE (mm/day) 0.32 0.46 0.56 0.37 0.46 0.54 0.69 0.54

R2 0.91 0.86 0.50 0.86 0.67 0.83 0.80 0.67
Pbias (%) 0.2 0.02 16.5 4.2 −1.8 −9.9 0.8 −11.6

3.2. Validation of the Model

After calibration of the model, validation in terms of actual evapotranspiration esti-
mates was performed using available measurements over the three wheat fields (V1, V2 in
2002–2003 and V3 in 2016–2017) and the olive field (V4 in 2005–2006). Figure 5 shows the
comparison between the daily evolution of the simulated and observed actual ET along
with the amount of irrigation and rainfall for the three wheat fields and the olive field.
A general coherence is observed between the modeled and the measured ET across the
growing season for all fields, suggesting a good performance of the model in estimating
actual evapotranspiration. For wheat, the average NSE, RMSE, R2 and Pbias values were
0.67, 0.56 mm/day, 0.77 and −4% ranging from 0.59 to 0.76, 0.46 to 0.69, 0.67 to 0.83 and
−9.9% to 0.84% for C1, C2 and C3 fields, respectively. The detailed statistics are provided in
Table 3. Interestingly, the actual ET estimated by the model was improved when compared
both (i) to the local calibration of the standard FAO56 dual-Kc model performed over
the same wheat fields (V1, V2) by [22], yielding NSE, RMSE and R2 values of 0.17 (0.44),
0.99 (0.75) and 0.65 (0.76) for the V2 (V1) fields, respectively, and (ii) to the calibration
of the Aquacrop model undertaken by [65], yielding NSE, RMSE and R2 values of 0.05
(0.57), 1.07 (0.69) and 0.65 (0.85) for V2 (V1) fields, respectively. This could be explained
by the introduction in the FAO56 model of diffusion between the root and evaporation
layers (Diffre) and the deep and root layers (Diffrd), allowing evaporation to be fed through
capillary rise particularly at the end of the cycle, and mitigating the occurrence of crop
water stress through the contribution of the water stored in the deep layer to feed roots in
dry conditions. For the V3 field irrigated by drip system, the results were slightly improved
compared with the calibration of the standard FAO dualKc made on the same field by [59]
yielding RMSE and R2 values of 0.75 mm/day and 0.75, respectively. However, as noted
by [59], an underestimation of the modelled ET during the initial stage is observed and is
probably due to an underestimation of the soil evaporation, particularly when the irrigation
events are more frequent, as with drip irrigation, which promotes more soil evaporation.

For olive trees, the validation was performed with the available data from an olive
orchard in the R3 district irrigated by drip system. The NSE, RMSE, R2 and Pbias were 0.62,
0.54 mm/day, 0.67 and −12%, respectively. This result showed that the daily simulated ET
values agreed with the measured ET, and the dynamic of actual ET estimated by the model
followed reasonably well the time course of observed actual ET (Figure 5d).

As in the calibration step, irrigation was switched to automatic mode using the
irrigation parameters calibrated and the rules previously defined. For the wheat plots,
except for the V1 field, the simulated irrigation depths for V2 and V3 fields were slightly
close to the observed ones (respectively 230, 340 mm and 220, 374 mm). For the V1 field, the
total irrigation depth simulated by the model (245 mm) was 36% higher than the irrigation
applied (180 mm), which revealed an under-irrigation of this plot. In fact, according to the
field survey, only three irrigation events had been scheduled during the whole growing
season, and a great delay was observed between the second and the last event (about
47 days) which induced water stress and a decrease of observed ET (Figure 5a). Regarding
the date of the last irrigation supply for wheat, the differences between the dates simulated
and observed were −9, +3 and −1 days, respectively, for V1, V2 and V3. The last irrigation
event was anticipated by the model for the V1 field (scheduled on 1 April, which coincided
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with a period of full wheat development under high evaporation demand) to avoid water
stress that was observed as mentioned above. These results suggest that the Kcb threshold,
defined as a percentage of the peak Kcb (full development), could be considered as a good
proxy for the scheduling of the last irrigation for wheat, and the value obtained seemed to
represent the farmers’ practices observed in the study areas.

Figure 5. Comparison between measured and simulated actual ET over the validation fields: three
wheat fields V1 (a) and V2 (b) in 2002–2003, V3 (c) in 2016–2017), and the olive tree V4 (d) in
2005–2006.

Overall, the results obtained after calibration/validation processes show that the
calibration performed provides an acceptable compromise for a set of calibrated parameters
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regardless of the irrigation system (flood or drip) when particularly used for evaluation of
ET estimates over large areas without information on the irrigation system in place.

3.3. Model Application for Spatialized Estimates of RS-IWR

The model implemented in the SAMIR software was run over the whole R3 irrigated
district using the image time series for the seasons 2002–2003, 2005–2006 and 2008–2009
and the calibrated parameters (Table 2). The soil in the district was considered almost
homogeneous and we used the median values obtained by Boulet et al. (2009) for θfc and
θwp. The initial soil water content (Init_RU) for annual crops was estimated considering
previous precipitation and was set to 10% of the soil available water (between θfc and
θwp) because no significant precipitation was observed before the starting dates of the
simulation. For olive orchards, the initial soil water content was set to 50% because most
of the olive farms had wells and were frequently irrigated regardless of surface water
availability. Regarding irrigation rules, the minimal duration of the irrigation turns was set
to 12 days according to local practices.

3.3.1. Analysis of Irrigation Water Practices

Figure 6 shows boxplots of the distribution of observed irrigation water supply (WS)
and remotely sensed irrigation water requirements (RS-IWR) at field level during each
of the three years of analysis. Clear shifts from one year to another can be observed both
in the irrigation water applied and the irrigation water requirements. The median value
of observed irrigation water was higher in 2002–2003 than in 2005–2006 and 2008–2009
(130, 117 and 118 mm respectively), but the shapes of the distribution were different. The
dispersion of the WS values was significantly lower in 2002–2003, which was the driest
year, than in the other seasons. This reveals that the irrigation water used by farmers
varies considerably from year to year, which could be related to both farmers’ irrigation
decision-making and delivery schedules made by the scheme managers that consider water
availability and define water supply conditions. Regarding the modelled irrigation water
requirements, median values were equal to about 175 mm in 2002–2003 and 2005–2006
and 112 mm in 2008–2009. Compared to observed water use, the dispersion of the RS-
IWR values was lower in 2005–2006 and particularly in 2008–2009 (the wettest year), in
which a large part of the crop water requirements were covered by the rainfall, but it was
higher in 2002–2003 (the driest year). This suggests that even in water shortage conditions,
the crop development was not spatially homogeneous, and some farmers have made
better use of limited water (deficit irrigation) along with adequate agricultural practices
to ensure acceptable crop growth, a fact that will be evident in the sections below. The
overall difference between the distributions of observed water use and modelled water
requirements showed that the sensitivity to variation in weather conditions was smaller for
the observed water use. This apparent lack of sensitivity suggests that factors other than
weather conditions could explain the farmers’ individual irrigation behavior.

3.3.2. Comparison of Irrigation Water Use Anomalies

To evaluate field-level irrigation water use within the irrigation district, we compared
the annual irrigation water supplied with the corresponding modelled irrigation water
requirement for each field in the area during the three seasons (Figure 7). The figure shows
differences in the scatterplots across the three seasons and a great variability between fields
for each season. No strong correlation was found between the observed irrigation water
applied and the irrigation requirement (R2 was equal to 0.14, 0.44 and 0.24 for 2002–2003,
2005–2006 and 2008–2009, respectively), which revealed an inconsistency in irrigation
water use across fields in the district. The dotted lines in Figure 7 represent the perfect
correspondence between water requirements and water supplied. Most of the fields fell
above the 1:1 line in 2002–2003 and 2005–2006, knowing that these years were characterized
by high climatic demand (Section 2.1), which showed that the farmers irrigated below the
estimated irrigation water requirements of the crops. In addition, the field points (Figure 7)
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in 2002–2003 (the driest season) were less scattered than in 2005–2006, which means that
the water supplied in that year was more homogeneous across fields as previously shown
(Figure 6). Indeed, during this season with insufficient rainfall and higher climatic demand,
the farmers relied critically on irrigation supplies for their crops that were restricted by
the scheme managers due to decreased water availability in the dam. In 2008–2009, the
majority of the fields fell below the 1:1 line, indicating that those fields were over-irrigated
even if the abundant rainfall was able to cover a large amount of crop water requirements,
which revealed the inadequacy of the irrigation scheduling.

Figure 6. Distribution of observed irrigation water use (WS) and remotely sensed irrigation water
requirements (RS-IWR) at field level for the three seasons.

Figure 7. Comparison between observed irrigation supply and modeled irrigation water require-
ments at field level in the three seasons (a) 2002, (b) 2005–2006 and (c) 2008–2009.
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The analysis of the distribution over the three years of the “water use anomaly”
indicator, which is calculated as the difference between the applied irrigation water and the
remote sensing estimates of irrigation water requirements at field level [67], shows large
variability across the three seasons. In 2002–2003, primarily negative water use anomalies
are observed, indicating that most of the fields (>75%) experienced water stress conditions,
homogeneously receiving water amounts below the irrigation requirements within the
district (anomalies concentrated around the median value of −24%). In 2005–2006, even
if the irrigation supply was not restricted and the season was rainy, the irrigation water
use pattern was surprisingly heterogeneous, with over 75% of the fields under-irrigated
and a larger magnitude of anomalies. Conversely, there was a major shift in 2008–2009 (the
wettest year) toward positive water use anomalies (>62% of the fields) reflecting apparent
irrigation supplies above water demands. Hence, we could hypothesize that in irrigation
management, both the farmers and the scheme managers fail to adequately consider
the magnitude of interannual changes in irrigation requirements induced by weather
conditions, which could be attributed partly to the lack of reliable spatial information on
the current soil water status.

Figure 8 presents the spatial distribution of the difference between the remote sensing
estimates of the irrigation water requirements and the applied irrigation water at field level
over the irrigation scheme for the three seasons. The spatial representation of the water use
anomalies over the irrigation scheme allows visual inspection of the irrigation water use
pattern, which enables the identification of areas with irrigation problems which could help
managers assess irrigation performance in addition to controlling illicit use of irrigation
water. Particularly, some fields identified as under-irrigated could have benefitted from
groundwater extractions, as is apparent through the spatial distribution of those fields,
which are located close to the wells (Figure 8a,b). However, this valuable information
could likely be obtained in seasons experiencing water shortage conditions (either reduced
rainfall or surface water supply restrictions) and/or seasons suffering inadequate irriga-
tion scheduling. Other examples concern the identification of: (i) areas located along the
southeast boundary of the perimeter (in red on the map) that officially received no water
but probably pumped it directly from the main channel which passes along their southern
boundary or (ii) the areas located at both the northeast and southeast boundaries (in green
on the map) for which water use largely exceeds water requirements, suggesting that this
excess of water supplied was probably used for areas outside the district boundaries, which
is illegal. The irrigation practices, which could explain the spatial variability observed,
may be influenced by various factors including biophysical drivers (e.g., weather, crop, soil
characteristics, etc.), socio-economic conditions and other behavioral considerations. Thus,
an investigation needs to be undertaken in the studied area in order to identify and better
understand the drivers of the actual farmers’ decision making.

The discrepancies identified between the field-level irrigation water supplies and the
remote-sensed estimates of the irrigation requirements may be attributed to uncertainties
in irrigation water records or model estimates. In fact, during every irrigation turn, the
managers deliver the water until the tertiary canal intakes according to predefined water
rates, and the water is then distributed to farmers inside the tertiary units by the Water
Users Associations. In some cases, the water could be reallocated for different reasons,
either to other fields due to agreements arranged between farmers or to fields owned by
the same farmer, particularly at the tertiary canal level, resulting in some fields receiving
more water than the amount allocated whereas others received less [68]. On the other hand,
the errors in the modelled irrigation water needs could result from the assumption made
for a homogeneous soil type in the irrigation district, knowing that soil properties account
among the key parameters for irrigation water requirement estimates. The same result was
reported by [69] when using the same approach, applying an RS-based soil water balance
model to estimate irrigation water requirements over a large irrigation area in the southeast
of Spain. The model errors could also be attributed to the simplifications adopted to
describe the soil water dynamics and crop development, whereas these processes are more
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complex to represent both in time and space [13]. While these errors cannot be ignored,
regarding the good validation results of the actual evapotranspiration obtained in the
studied region, the variability observed in the irrigation water use still relies on differences
in farmer’s agricultural practices, including irrigation, and scheme manager strategies for
irrigation water management as previously reported in the region [21,68]. Interestingly,
the approach proposed allows to detect this variability and provides interesting insights
into spatial and temporal irrigation water use patterns, which enables identifying possible
factors that could explain irrigation behaviors [67].

Figure 8. Map of differences between modeled irrigation requirements and observed irrigation water at field scale in the R3
irrigation district over the seasons 2002–2003 (a), 2005–2006 (b) and 2008–2009 (c).

4. Conclusions

Evaluating the spatial and temporal distribution of the crop irrigation water require-
ment at field level using remote sensing-based soil water balance models provides inter-
esting insights regarding irrigation water use when compared with in-situ monitoring of
observed irrigation water supplied at the irrigation district scale.

The evaluation at plot scale of the remote sensing-based FAO56 soil water balance
model implemented in the SAMIR software, under different weather and water manage-
ment conditions, provided acceptable estimates of actual ET, indicated by low values of
RMSE obtained for wheat (0.56 mm/day) and olive trees (0.54 mm/day), which were the
main crops in the region. The model also showed its ability to provide good estimates of
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irrigation water requirements and could be applied for evaluating irrigation water use in
large-scale irrigated areas.

The results of the model application over an irrigation scheme in the Haouz plain
(central Morocco) for estimating spatially distributed irrigation water requirements showed
a clear spatial variability in irrigation water use between fields, and particularly that the
observed water use decisions were less sensitive to interannual variability of weather con-
ditions than modelled irrigation water requirements. It could be inferred that in irrigation
management, both the farmers and the scheme managers fail to adequately consider the
magnitude of interannual changes in irrigation requirements induced by weather con-
ditions, which could be attributed partly to a lack of reliable spatial information on the
current soil water status. In addition to the model and the observed data uncertainties,
the variability observed could be attributed to different other factors including: (i) the
irrigation supply conditions that depend on water availability and inadequate irrigation
scheduling by the scheme managers and (ii) the farmer’s socio-economic considerations
and management practices (cultivar, sowing date, irrigation, fertilizers, weed control, etc.).

Importantly, this study demonstrates the opportunity to combine in-situ monitoring
information with a remote sensing-based soil water balance model for assessing field-level
irrigation decision-making in order to improve irrigation performance. The irrigation man-
agers would likely appreciate using operational tools based on the approach presented in
this study, which could allow for a reliable assessment of irrigation delivery performance
at the scale of irrigation schemes and provide an enhanced irrigation advisory service by
delivering customized and near real-time information on crop development status and
irrigation needs to farmers or Water Users Associations. These tools enable the improve-
ment of irrigation scheduling for efficient and profitable agricultural water management,
particularly in water limited areas.
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