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Abstract: Optical remote sensing can contribute to biodiversity monitoring and species composition
mapping in tropical forests. Inferring ecological information from canopy reflectance is complex
and data availability suitable to such a task is limiting, which makes simulation tools particularly
important in this context. We explored the capability of the 3D radiative transfer model DART
(Discrete Anisotropic Radiative Transfer) to simulate top of canopy reflectance acquired with airborne
imaging spectroscopy in a complex tropical forest, and to reproduce spectral dissimilarity within
and among species, as well as species discrimination based on spectral information. We focused
on two factors contributing to these canopy reflectance properties: the horizontal variability in leaf
optical properties (LOP) and the fraction of non-photosynthetic vegetation (NPVf ). The variability
in LOP was induced by changes in leaf pigment content, and defined for each pixel based on a
hybrid approach combining radiative transfer modeling and spectral indices. The influence of LOP
variability on simulated reflectance was tested by considering variability at species, individual
tree crown and pixel level. We incorporated NPVf into simulations following two approaches,
either considering NPVf as a part of wood area density in each voxel or using leaf brown pigments.
We validated the different scenarios by comparing simulated scenes with experimental airborne
imaging spectroscopy using statistical metrics, spectral dissimilarity (within crowns, within species,
and among species dissimilarity) and supervised classification for species discrimination. The
simulation of NPVf based on leaf brown pigments resulted in the closest match between measured
and simulated canopy reflectance. The definition of LOP at pixel level resulted in conservation
of the spectral dissimilarity and expected performances for species discrimination. Therefore, we
recommend future research on forest biodiversity using physical modeling of remote-sensing data to
account for LOP variability within crowns and species. Our simulation framework could contribute
to better understanding of performances of species discrimination and the relationship between
spectral variations and taxonomic and functional dimensions of biodiversity. This work contributes
to the improved integration of physical modeling tools for applications, focusing on remotely sensed
monitoring of biodiversity in complex ecosystems, for current sensors, and for the preparation of
future multispectral and hyperspectral satellite missions.
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1. Introduction

Tropical forest ecosystems host at least two-thirds of the terrestrial biodiversity and
contain about 25% of the carbon in the terrestrial biosphere [1,2]. The loss of biodiversity
currently observed worldwide strongly impacts tropical forests [3]. This decline of biodiver-
sity is induced by anthropogenic factors including land-use change, exploitation of natural
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resources, and climate change, leading to forest disturbance and disappearance [4–7], with
potential feedback due to climate-biosphere interactions [8].

Many studies have reported the relationship between ecosystem functions and biodi-
versity [9–12], others highlight ecosystem services provided by the biodiversity of such
forest ecosystems and their importance to sustaining life on Earth [13,14]. Thus in order to
monitor biodiversity and ensure their conservation, a set of so-called Essential Biodiversity
Variables (EBVs) has been defined by the Group on Earth Observations—Biodiversity
Observation Network (GEOBON) [15]. EBVs enable the study, reporting and integration
of change in biodiversity into local- to global-scale management plans [16]. The difficulty
to collect ecological information from ground observation over large spatial scales and in
a consistent and repeatable manner led to the use of remote sensing [17], and the iden-
tification of remote-sensing enabled EBVs (RS-EBVs) and satellite remote sensing (SRS)
EBVs [18].

Remote sensing has been shown to be a powerful tool to track biodiversity [19–21].
As such, studies focusing on remote sensing of terrestrial plant diversity have been clas-
sified into four categories according to Wang and Gamon [22]: (i) indirect estimation of
biodiversity derived from habitat mapping performed at moderate spatial resolution; (ii)
fine scale mapping of species distribution [23–25] or functional types [26] (iii) estimation of
functional diversity through leaf traits estimated from remote-sensing information [27–29];
(iv) estimation of diversity based on the spectral variation hypothesis (SVH). The SVH
initially formulated by Palmer et al. [30] relates the spatial variability of spectral data (spec-
tral heterogeneity or variation) to environmental heterogeneity, a major factor explaining
species distribution and functional diversity. Reviews on this hypothesis stated that this
assumption, however, overlooks a number of factors such as sensor specifications, target
vegetation types or metrics derived from remotely sensed data [31–33].

Imaging spectroscopy has shown strong potential for diversity mapping using the
aforementioned approaches [25,28,34,35], as these methods can take advantage of fine
spatial scale, high spectral sampling and high signal-to-noise ratio (SNR) provided by
airborne acquisitions. Despite the potential of airborne imaging spectroscopy for the study
of biodiversity, its use for regional- to global-scale monitoring of ecosystems is currently im-
possible for logistical and financial reasons. Current and forthcoming spaceborne imaging
spectroscopy sensors open perspectives for improved capacity to transfer methodologies
developed to monitor biodiversity based on airborne imaging spectroscopy at broader
scales. In this perspective, we need to better understand the influence of key drivers linking
vegetation diversity to spectral diversity, and understand the contribution of multiple fac-
tors which can be intrinsic and extrinsic to vegetation. Such understanding will contribute
to preparing, testing, and identifying limitations of methodologies dedicated to forest diver-
sity mapping and applicable to spaceborne imaging spectroscopy. Optical remote-sensing
information acquired from forest ecosystems is driven by interactions between incoming
sunlight in the visible and infrared domains, and biophysical, biochemical and structural
properties of vegetation [36]. These include leaf traits (chemical constituents, morpholog-
ical properties), foliage density and orientation, and the structural properties of woody
elements (trunks, branches, twigs). In addition to these factors intrinsic to vegetation,
other factors such as background (ground reflectance), and the conditions of acquisition,
including atmospheric properties, geometry of acquisition, as well as sensor configuration
also influence the signal acquired with an airborne or spaceborne sensor [36,37].

In order to better understand the influence of the different factors influencing canopy
reflectance measured with an optical sensor, simulation tools based have been developed
during the past 50 years. These models usually rely on simulations of bi-directional
reflectance factor (BRF) [38]. Three major types of BRF model are used to simulate canopy
reflectance. Empirical models give a mathematical description of BRF without attempting
to explain the biophysical and chemical processes that govern BRF [39]. Geometric optical
(GO) reflectance models consider physical dimension and structure of forest to understand
the BRF [40,41]. Radiative transfer models (RTMs), also known as physical modeling,
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describe interactions between incident solar radiation and physical environments such
as tropical forests [42]. They allow explicit description of interactions between incoming
sun radiation and vegetation through structural and biochemical properties based on the
fundamental equations of radiative transfer. RTMs are more robust than empirical methods
and GO reflectance models.

Numerous approaches have been implemented to model radiative transfer in terres-
trial environments. One-dimensional models such as PROSAIL [43] have been widely used
to simulate radiative transfer in spatially homogeneous canopies like crops, grasslands,
and closed forests [44,45]. In complex and spatially heterogeneous scenes such as tropical
forests, 3D models are more suitable since they account for vertical and horizontal hetero-
geneity, and include shading and multiple scattering [46]. Three-dimensional (3D) RTMs
reconstruct the architecture of a medium through geometric primitives such as triangles,
cubes, cones, spheres or cylinders [47]. The combination of these elements with the other
inputs of the RTMs allows generating 3D scenes of different levels of complexity.

Simple geometric structures derived from dendrometric measurements were initially
used to approximate the forest structure in the first studies using 3D RTM [47]. The recent
development of light detection and ranging (LiDAR) provided an unprecedented level
of detail to characterize forest 3D architecture [48]. Schneider et al. [49] evidenced the
interest of using detailed 3D structure of vegetation derived from LiDAR compared to
simpler 3D representations of individual trees defined as geometric shapes and located in
the scene based on field inventories: they obtained increased accuracy when comparing
experimental imaging spectroscopy with simulations using LiDAR-derived 3D structure.

In the current era of deep learning, RTMs are also strong candidates in the perspec-
tives of data augmentation [50] to alleviate challenges related to data sparsity in order
to understand interactions between vegetation and solar radiation, to test potential and
limits of methods, and to prepare future missions. DART (Discrete Anisotropic Radia-
tive Transfer) [51,52] is currently one of the most comprehensive 3D RTMs for simulating
remotely sensed data, in particular in the context of forest studies [42,53]. However, the
proper parameterization of DART in order to account for forest structural and radiometric
properties requires particular care, and needs to be tuned for the application considered.
Malenovský et al. [54] showed the influence of including woody elements in 3D simu-
lations in order to retrieve Leaf Area Index (LAI) and simulate canopy reflectance for a
Norway spruce forest. Strong assumptions on the homogeneity of leaf optical properties
(LOP) within species or individuals are also usually made when using 3D models to study
heterogeneous vegetation. Schneider et al. [49] simulated imaging spectroscopy with DART
on a temperate mixed forest in order to study the potential of upscaling leaf level observa-
tions, and put efforts on characterization of the vertical heterogeneity of LOP for each tree
species, but used the same LOP for a given layer and all individual trees from the same
species. Ferreira et al. [55] studied the contribution of DART simulations to the retrieval of
structural and chemical properties of individual tree crowns (ITCs) in dry tropical forests,
and assumed homogeneity of LOP in ITCs. The assumptions made by the authors were
appropriate to meet their objective. However, accounting for intra-species and intra-crown
variability of LOP is potentially crucial for the production of realistic simulations aiming
at exploring the potential of methods dedicated to biodiversity monitoring since there is
spectral variability within crowns, within species and among species in tropical forest [56].
Thus, the hypothesis of uniform LOP at either crown or species scale may lead to dramatic
underestimation of spectral heterogeneity in simulation of forest stand scale remotely
sensed data, making these simulations unsuitable for applications built upon the fine
analysis of spatial heterogeneity of spectral information, such as biodiversity mapping.

The lack of information on the non-photosynthetic vegetation fraction (NPVf ) and an
inadequate characterization of the diversity of LOP have been shown to contribute to the
relatively low radiometric agreement between simulation and experimental data [49,54,57].
Simulating the variability in canopy reflectance is challenging in many ways, as it re-
quires definition of fine scale 3D structure and heterogeneity of LOP. While airborne laser
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scanning (ALS) potentially fulfills the requirements for the definition of the 3D structure,
the definition of LOP also needs to be addressed using indirect estimation, as sampling
within and among species variability in optical properties in hyperdiverse ecosystems is
not feasible. To address those challenges, we designed a methodology aiming at simulating
spatial heterogeneity in spectral data over a complex tropical forest using the DART model.
We used ALS data in order to reconstruct 3D forest architecture. Then, we defined scenarios
to account for NPVf using different proxies based on 3D structure or canopy reflectance.
Once an optimal scenario to characterize NPVf was defined, we performed simulations
accounting for LOP variability at different scales (pixel, crown, species). Finally, we com-
pared simulations to airborne imaging spectroscopy using statistical metrics, dissimilarity
metric and supervised classification methods. The main objective of this study was to
define a framework for producing realistic simulations in the perspective of supporting
methodological development for biodiversity assessment using 3D modeling, consider-
ing: (i) the effects of incorporation of NPVf into simulation and (ii) the influence of LOP
variability on the spectral response simulated by the DART model.

2. Materials
2.1. Study Area

The study area is located in the coastal part of French Guiana at Paracou research
station (5◦18′ N, 52◦53′ W). It is characterized by a lowland terra firme rainforest. The
forest is dominated by Leguminosae-Caesalpinioideae, Lecythidaceae, Chrysobalanaceae,
and Sapotaceae families. Field plot network inventories carried out almost every year for
more than 35 years highlight a large specific diversity with more than 750 tree species
identified over 118.75 ha. A complete description of the Paracou experimental site can be
found on https://paracou.cirad.fr/website (accessed on 2 March 2021).

2.2. Remotely Sensed Data

In September 2016, an airborne campaign funded by the Centre National d’Etudes
Spatiales (CNES) and the Center for the study of biodiversity in Amazonia (labex CEBA)
led to the acquisition of imaging spectroscopy, LiDAR data, and very high spatial resolution
red, green and blue (RGB) imagery. The acquisitions were performed in clear sky conditions
at an average flying altitude of 890 m.

2.2.1. Imaging Spectroscopy

Imaging spectroscopy data were acquired with a Hyspex VNIR-1600 sensor (Hyspex
NEO, Skedsmokorset, Norway) over 160 spectral bands in the visible and near infrared
(VNIR) regions, ranging from 415 nm to 993 nm. Spectral information corresponding to
spectral bands > 902 nm were discarded because of the low signal-to-noise ratio. Images
were orthorectified and geo-referenced using the PARGE software (http://www.rese.ch/
products/parge/ accessed on 4 March 2021) with the canopy DSM (Digital Surface Model)
produced from the LiDAR point cloud. Atmospheric corrections were performed using
ATCOR-4 software [58] to produce top of canopy (TOC) reflectance with 1-m spatial
resolution. Airborne acquisition over the full site and its surroundings resulted in 23 flight
lines covering 14 Km2.

2.2.2. Airborne Laser Scanning (ALS)

ALS data were acquired with a RIEGL LMS Q780 simultaneously with imaging spec-
troscopy data. The sensor operated with a frequency of 400 kHz and a scanning angle of
±30◦ which ensured an average pulse density of 33 pulses/m2. A point cloud filtering was
applied to remove points classified as Low point (noise) according to the ASPRS Standard
LIDAR Point classification [59].

https://paracou.cirad.fr/website
http://www.rese.ch/products/parge/
http://www.rese.ch/products/parge/
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2.2.3. Red, Green and Blue (RGB) Imagery

Very high spatial resolution (VHSR) imagery was acquired during the same airborne
campaign using an iXU 180 Phase One camera. This imagery includes red, green and blue
channels and the final spatial resolution of the orthorectified mosaic was 10 cm.

2.3. Ground Information
2.3.1. Field Plot Network and Selected Sites for Simulation

The Paracou site hosts an experimental setup including multiple permanent plots
contributing to long-term monitoring of the influence of human induced disturbances
since 1986 [60]. Species inventories combined with accurate tree trunk location have been
performed every 1–2 years for each plot for more than 35 years for the oldest plots.

We selected two subplots in the control undisturbed forest plots, dimensioned to fulfill
the different aspects of our analysis:

• A plot of 80 × 80 m, hereafter referred to as Site A was dedicated to the adjustment of
statistical models for the estimation of vegetation biochemical properties;

• A plot of 300 × 300 m, hereafter referred to as Site B, was dedicated to the comparison
of the simulations with experimental data.

The extent of the airborne imaging spectroscopy acquisition and the location of the
plot network as well as Sites A and B are presented in Figure 1.
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2.3.2. Individual Tree Crown Delineation

Manual delineation of emerging crowns identified from the inventories was conducted,
based on visual interpretation of the VHSR image, combined with a canopy height model
derived from ALS. This delineation was validated during field surveys [61–63]. More than
2500 ITCs were delineated in the area covered by the imaging spectroscopy acquisition,
but our analysis focused on ITCs used as support to the modeling activities performed on
site B. We selected the nine most abundant species from these delineated crowns in site B,
corresponding to 162 ITCs and 10,262 pixels. Table 1 provides basic statistics on size and
distribution of ITCs per species in sites A and B.

Table 1. Statistical description of ITCs corresponding to the nine most abundant species delineated in site A and B.

Species Number of ITCs Number of Pixels Mean Number of Pixels Per ITC

Site A

Bocoa prouacensis 1 72 72
Dicorynia guianensis 1 53 53
Eschweilera sagotiana 5 286 57

Licania alba 1 83 83
Licania heteromorpha 2 44 22
Pradosia cochlearia 2 433 216

Sextonia rubra 2 223 111
Vouacapoua americana 6 387 64

Total 20 1581 85

Site B

Dicorynia guianensis (DG) 11 1147 104
Eperua falcata (EF) 45 3102 68

Eperua grandiflora (EG) 8 694 86
Eschweilera sagotiana (ES) 30 1270 42
Licania heteromorpha (LH) 8 251 31
Moronobea coccinea (MC) 12 609 50
Pradosia cochlearia (PC) 14 1538 109

Recordoxylon speciosum (RS) 14 944 67
Tapura capitulifera (TC) 20 707 35

Total 162 10262 66

3. Methods
3.1. Overview of the Methodology

Our main objective was to define a simulation framework aiming at simulating
realistic remote sensing data measured with optical sensors over tropical forests. To
reach this goal, we focused on identifying the optimal method for the introduction of
two major contributors to the heterogeneity measured with remote sensing, NPVf and
LOP. Figure 2 provides the general workflow of our study. During the first step, the global
parameterization of DART simulations was defined for all the factors remaining unchanged
for all simulations, based on experimental data. This global parameterization included
sensor characteristics, geometry of acquisition, topography definition as well as 3D forest
reconstruction from ALS data. The second step aimed at building different scenarios for the
integration of two factors into the simulations, NPVf and spatial variability in leaf optical
properties. NPVf was based either on the introduction of woody elements (wood area
density, WAD) into the 3D reconstruction, or on the addition of brown pigments (Cbrown)
into leaf constituents. The spatial variability in leaf optical properties was defined at
different levels of organization (pixel, crown, species) based on inventoried and delineated
tree crowns. The third step consisted in running the DART model in order to produce
simulated imaging spectroscopy data for each scenario. Finally, the fourth step aimed
at comparing simulations with airborne acquisitions at different levels: we compared
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experimental airborne acquisitions with simulations based on pixel reflectance, spectral
dissimilarity within and among species, and species discrimination performed with a
supervised approach.
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(LOP) when simulating imaging spectroscopy of complex canopies.

3.2. Presentation of Leaf and Canopy Models
3.2.1. Leaf Optical Properties Modeling with PROSPECT

We used the leaf model PROSPECT [64,65] to simulate leaf optical properties. PROSPECT
is a leaf model simulating directional-hemispherical reflectance using biophysical and bio-
chemical parameters. It is based on Allen’s generalized plate model [66]: a leaf is modeled
as a pile of identical elementary layers characterized by an absorption coefficient and a
refractive index defined over the optical domain from 400 nm to 2500 nm. Here, we used
PROSPECT-D [64] including three main pigments that control the absorptive properties of
fresh leaves in the visible (VIS) domain, i.e., chlorophylls a + b (Cab), carotenoids (xantho-
phylls and carotenes) (Cxc), and anthocyanins (Canth). Additional constituents accounted
for by PROSPECT-D include brown pigments (Cbrown), which is used to simulate senescent
leaves, and contributes to leaf absorption in the VNIR, leaf mass per area (LMA) and
equivalent water thickness (EWT), which are mainly contributing to leaf absorption in the
short wave infrared domain. The scattering properties of the leaf are controlled by the leaf
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structural parameter (N), which corresponds to the number of elementary layers in the leaf,
separated by N-1 air layers.

3.2.2. Three-Dimensional (3D) Modeling of Canopy Reflectance with DART (Discrete
Anisotropic Radiative Transfer)

The DART model [51,52] was used to simulate airborne imaging spectroscopy. DART
simulates the radiative transfer in the 3D “Earth-Atmosphere” system from the visible to
thermal infrared domain of the electromagnetic spectrum. It is used to study both natural
and urban landscapes, and allows for the integration of atmospheric and topographic
effects. The DART scenes were based on 3D representations made of individual volume
elements (voxels), each of them characterized by a set of properties such as vegetation
density, leaf angle distribution, optical properties corresponding to leaves, trunk and
branches, soil and any relevant elements included in the scene. Simulations were performed
with the package pytools4dart (https://pytools4dart.gitlab.io/pytools4dart/ accessed on
12 March 2021) a python API (Application Programming Interface) aiming at preparing,
running and analyzing DART simulations, specially dedicated to the design of large and
complex simulations.

DART was set in flux tracking mode to simulate TOC reflectance, with the sun and
the atmosphere as the only radiation sources. Topography was defined with a digital
surface model produced from ALS point clouds. A generic litter spectrum was used for
the optical properties of the soil/background. Simulations were performed for 135 bands
ranging from 415 nm to 902 nm, following instrumental characteristics of the airborne
acquisition for sites A and B. Sensor height, solar zenith and azimuth angles as well as
spatial resolution were set according to the geometry of acquisition during the airborne
campaign. Simulations were performed using nadir viewing geometry for all pixels. Hence,
no effects induced by the field of view of the sensor and the angles of rotation of the aircraft
were accounted for in the simulated reflectance.

3.3. Defining Scenarios for the Integration of Leaf Optical Properties (LOP) Heterogeneity in
3D Modeling

Spectral variability in canopy reflectance among species, within species, and within
individual trees has been documented [56] and multiple factors such as position in canopy
or topography contribute to this variability. In our study, we specifically focused on
the influence of spatial variations in LOP on this spectral variability: we defined three
scenarios for the integration of LOP in radiative transfer simulations at pixel level (LOPpixel),
crown level (LOPITC), or species level (LOPspecies). Then we compared simulated canopy
reflectance with corresponding experimental acquisitions in order to describe the influence
of LOP variability on spectral heterogeneity of canopy reflectance and assess the degree of
realism of the simulation.

The definition of LOP at different scales could not be performed using field sampling
for logistic reasons. Instead, we implemented a method to estimate a set of relevant
chemical constituents from canopy reflectance: here we focused on leaf pigments, and
estimated the combination of pigment content for each pixel (see Section 3.6 for details).
Then we used the pigment content estimation at pixel level, or its average at crown or
species level using the species inventory and the crown delineation, to simulate and assign
LOP values in the simulation scene depending on the scenario.

https://pytools4dart.gitlab.io/pytools4dart/
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3.4. Definition of 3D Structure of the Canopy

The 3D forest structure was derived from ALS acquisition: the ALS point cloud
and associated trajectory file were voxelized using the AMAPvox v.1.7.3-BETA software
(http://amap-dev.cirad.fr/projects/amapvox accessed on 3 April 2021). AMAPvox tracks
every laser pulse through a 3D grid (voxelized space) from the top of the canopy to the
last recorded hit. The effective sampling area of each laser pulse (or fraction of pulse in
case of multiple hits) is computed from the theoretical beam section (a function of distance
from laser and divergence of laser beam) and the remaining beam fraction entering a voxel.
In case more than one hit is recorded for a given pulse then it is assumed that the surface
intercepted by each hit (the “hit area”) is equal to the inverse of the total number of hits
times the beam section. This information is combined with the optical path length of each
pulse entering a voxel to compute the local transmittance per voxel. Different estimation
procedures are provided in the AMAPVox software [67]. In the present study we used a
numerical resolution to compute for each voxel the transmittance, or gap probability Pgap,
from the equation below:

∑ n
i BFenti × Si × Pgapli = ∑ n

i BFouti × Si (1)

with li the optical potential path length of pulse i (from entry point to the expected
exit point).

Si the cross section of pulse i, computed at voxel center.
BFent and BFout being the beam surface fraction entering and outgoing the voxel.
The equation above expresses that the estimated Pgap per unit length of a voxel is

the value that yields the light transmission rate (given the actual path length and effective
surface of all contributing pulses) equal to the observed transmission rate.

The gap fraction probability per unit path length per view direction θ depends only
on the foliage projection ratio and the plant area density (PAD, m2·m−3).

Pgap = e−G(θ)×PAD (2)

G(θ) projection function will depend on the leaf inclination distribution function (LIDF)
which is also an important factor among canopy structure properties influencing canopy
reflectance [48,49,68]. However available data did not allow us to include estimated LIDF
in our simulations, and we used a unique LIDF corresponding to spherical distribution, the
most widely used since it offers straightforward computation of the projection function,
equal to 0.5 in any direction [68].

Here, we used a uniform 1 × 1 × 1 m voxel size matching with the spatial resolution
and pixel grid of the imaging spectroscopy acquisition. Some post-processing steps are
required to adjust the raw 3D distribution of PAD obtained from AMAPvox [69–72] and
ensure accurate description of horizontal and vertical structure. These adjustments were
performed as follows:

• A hierarchical re-estimation of the transmittance based on a mixed linear model was
performed in order to minimize the uncertainty associated with poor sampling of
lower canopy voxels resulting from the gradual extinction of the laser beam (occlu-
sion) [72].

• A reduction factor of 0.8 was applied to the re-estimated PAD in order to compensate
for the limited penetration achieved by the LMSQ780 LiDAR when flying at 900 m.
This factor was set to fit the extinction profile obtained over the same area while
operating at lower altitude (450 m) (G. Vincent, in prep).

3.5. Integration of Non-Photosynthetic Vegetation Fraction (NPVf) into Simulations

Each voxel in the 3D scene is characterized by a specific PAD. PAD is an important
factor driving the interactions of electromagnetic radiation with vegetation [36,73], which
combines the contribution of various elements including leaves of all development stages
(from juvenile to senescent and dead leaves), branches and stems. The vertical integration

http://amap-dev.cirad.fr/projects/amapvox
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of the PAD corresponds to the Plant Area Index (PAI). PAI is defined as the sum of Leaf Area
Index (LAI) and Wood Area Index (WAI) [74]. LAI is a key parameter to consider for physio-
logical, ecological and climatological studies [75]. Old-growth forests are characterized by a
non-negligible fraction of NPVf corresponding to dead leaves and woody components like
standing deadwood, twigs and branches distributed within tree crowns [76]. Zhu et al. [77]
showed an overestimation of LAI estimated by terrestrial LiDAR of 3.0 to 31.9%, caused
by woody elements, with differences observed among forest types. Calders et al. [78]
analyzed the relationship between effective PAI (ePAI), effective LAI (eLAI), and effective
WAI (eWAI), which corrects for clumping effect, using the librat Monte Carlo ray tracing
model. They obtained a linear relationship between eLAI and ePAI–eWAI. However, no
strict complementarity was obtained between these three area indices, as woody structure
is preferentially obscured by the leaves. Accounting for the relative effect of these woody
elements is particularly challenging when using radiative transfer modeling [79] since they
are important photon-absorbing and -scattering components [36], hence both their spectral
response and their 3D distribution in a forest scene should be considered in radiative
transfer approaches.

In our study, we compared two approaches to take into account NPVf in our simu-
lations, based on different hypotheses: the first approach is based on the disaggregation
of PAD into LAD and WAD, while the second approach assumes equality between PAD
and LAD and uses brown pigment content in leaves to account for the influence of NPVf
on canopy reflectance. The former will be referred to as NPVfWAD, while the latter will
be referred to as NPVfCbrown. We also compared these two scenarios accounting for NPVf
with the case where PAD is exclusively defined as leaf materials without brown pigments,
hereafter referred to as NPVf 0.

3.5.1. Estimation of NPVfWAD

The definition of WAI from the voxelized mock-up is based on two hypotheses. First,
PAD is assumed to be the sum of WAD and LAD: although literature showed that this
hypothesis is incorrect when accounting for clumping [74,80], we used 3D forest representa-
tion based on individual voxels characterized by turbid medium with no clumping. Second,
the contribution of WAD was assumed to be a fix proportion of PAD. This assumption
is not validated by experimental observations, but this simplification is imposed by the
impossibility to accurately differentiate wood and leaves from ALS data.

In order to adjust the proportion of WAD to be applied to all voxels, we first identified
a set of ITC corresponding to defoliated and foliated individuals based on visual analysis
of VHSR imagery. This visual identification resulted in 10 ITCs unambiguously identified
as defoliated, and 20 ITCs unambiguously identified as fully foliated and non-senescent.
The visual identification was not assisted by inventory data, so our selection included
a random selection of species. Then, we extracted the PAD corresponding to the three
uppermost voxels from the 3D mockup, and we computed the mean PAD from foliated and
defoliated voxels. We defined the reference NPVfWAD as the ratio between the mean PAD
from defoliated voxels and the mean PAD from foliated voxels, assuming that on average
the WAD of the defoliated crowns is similar to the WAD of foliated crowns. In order to
account for woody structure being preferentially obscured by the leaves, we also tested an
intermediate scenario in which NPVf is half of NPVfWAD. This intermediate scenario will
be referred to as NPVfWAD/2.
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3.5.2. Estimation of Leaf Brown Pigment Content

In the second approach, we assumed equality between PAD and LAD, and used a
spectral index in order to estimate the brown pigment content (Cbrown) corresponding to
each pixel. This approach is based on the hypothesis that the radiometric contribution of
non-photosynthetic elements in a voxel can be compared to the radiometric contribution
of Cbrown, which absorbs in the VNIR domain. Brown pigments are characterized by a
broad absorption domain, with maximum absorption in lower wavelengths of the VIS
domain, gently decreasing until 1100 nm [81]. The introduction of brown pigments results
in smoothing of the green reflectance peak, and more remarkably a less abrupt increase
in reflectance in the red-edge. The influence of Cbrown in the red-edge domain can be used
to define a spectral index linking canopy reflectance to leaf brown pigment content. The
definition of this spectral index and the procedure used to adjust the regression model
linking canopy reflectance to leaf pigment content is described in the next section.

3.6. Simulation of Leaf Optical Properties through the Estimation of Leaf Pigment Content

Leaf pigment content controls LOP and canopy reflectance in the VIS region of the
electromagnetic spectrum as well as in the red-edge domain and first part of the NIR
domain [36]. Here, our first goal was to define a strategy to assign pigment content to
each pixel, crown or species in our simulations, based on canopy reflectance. A variety
of methods can be used to assess foliar pigment content from remotely sensed canopy
reflectance acquired with imaging spectroscopy. Verrelst et al. [82] categorized these
methods into four categories: (i) parametric regression, including vegetation indices, shape
indices and spectral transformations, and assuming a simple relationship between spectral
data and vegetation biophysical variable, such as a linear monovariate relationship; (ii) non-
parametric regression, based on data-driven techniques that directly link spectral data and
biophysical variables (e.g., linear and non-linear machine learning regression algorithms);
(iii) inversion of RTM using numerical optimization and look-up table approaches; and
(iv) hybrid methods, which combine RTM for the simulation of a training dataset with
parametric or non-parametric regression methods.

Parametric regressions based on vegetation indices and linear or polynomial models
are the most straightforward means of estimating pigment content [83–85]. However,
the adjustment of such empirical models requires a large amount of field data. Hybrid
approaches provide a means to overcome this dependency on field data: they are based on
the simulation of a training dataset (corresponding to LOP or canopy reflectance) using
appropriate physical models and sampling strategy, in order to adjust a regression model
applicable to experimental data. Therefore, we chose a hybrid approach in this study, in
order to train regression models linking spectral indices with leaf pigment contents, includ-
ing Cab, Cxc, Canth and Cbrown. This approach is based on two steps: First, the regression
models were adjusted based on a simulation including a broad range of pigment content.
Here, we adjusted a linear model specific to each pigment and each NPVf scenario, based
on simulations performed on Site A. Then the linear models were applied on experimental
data corresponding to Site B, in order to define specific pigment content for each NPVf
scenario. Figure 3 illustrates the procedure used to adjust regression models for the estima-
tion of leaf pigment content from spectral indices, and to estimate pigment content from
airborne imaging spectroscopy on site B based on these regression models.
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(Discrete Anisotropic Radiative Transfer) simulations from site A. The panel on the right side describes the computation of
the pigment content from airborne imaging spectroscopy acquired over site B, based on the linear models adjusted on site A.

3.6.1. Adjustment of Models for the Estimation of Leaf Pigments (Site A)

We used three spectral indices to estimate Cab, Cxc and Canth from remotely sensed
data: the Chlorophyll Index (CI) (Equation (3)), the Carotenoids Reflectance Index (CRI)
(Equation (4)) and the Anthocyanin Reflectance Index (ARI) (Equation (5)) [86]. These
spectral indices were applied on imaging spectroscopy for various ecosystems including
forest [28,29,87]. Due to the lack of documented spectral index for Cbrown in the literature,
we defined a Brown Pigment Reflectance Index (BPI) (Equation (6)) based on reflectance
measured in the red-edge and NIR domains. The spectral band selected in the red-edge
was centered on 750 nm, which is characterized by negligible absorption of Cab compared
to Cbrown.

CI =
R760−800

R690−725
− 1 , (3)

CRI =
(

1
R510−520

− 1
R690−710

)
× R760−800, (4)

ARI =
(

1
R530−570

− 1
R690−710

)
× R760−800, (5)

BPI =
R850 − R750

R850 + R750
, (6)
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where Rλ1−λ2 corresponds to the mean reflectance in the spectral domain defined by λ1
and λ2.

DART was used to simulate the hyperspectral acquisitions on site A coupled with
PROSPECT-D to simulate LOP. We followed the global parameterization setting for instru-
mental configuration, the structure of the 3D mockup was parameterized as described in
Section 3.4. A sampling strategy based on experimental distribution and co-distribution
of leaf chemistry [88] was designed in order to define a combination of leaf pigments to
be associated with each pixel, i.e., vertical column of voxels, of the 3D mockup. We then
generated 6400 combinations of Cab, Cxc, Canth and Cbrown following a normal multivariate
distribution for Cab and Cxc, a log normal distribution for Canth, and a normal distribution
for Cbrown. Each of these 6400 combinations was assigned to a pixel from the simulation
corresponding to site A.

The other input parameters of PROSPECT-D, N, EWT and LMA, were set to a constant
value. The leaf structure parameter N influences leaf scattering properties and the ratio
between reflectance and transmittance, but does not influence leaf absorption. Hence,
the N parameter was set to 1.8, assuming that the vegetation scattering induced by the
detailed canopy structure would provide sufficient variability. The influence of EWT and
LMA on canopy reflectance is limited in the VNIR spectral domain, thus they were set
to 12.9 mg·cm−2 and 12 mg·cm−2 respectively, which correspond to the average values
reported by Féret et al. [88] for a leaf dataset collected at the Paracou research station.

The linear regression models between leaf pigment content and the spectral indices
(computed from simulated canopy reflectances) were trained using sunlit pixels only, i.e.,
pixels with more than 20% reflectance in the NIR spectral band centered on 800 nm, in
order to reduce confusions induced by low illumination in further comparisons [23].

3.6.2. Application of Models for the Estimation of Leaf Pigments (Site B)

The regression models adjusted on site A were applied to the pixel of the airborne
hyperspectral observations of Site B in order to estimate pigment content site B 3D mockup.
Same as for site A, all voxels in the same vertical columns shared the same pigment
content. The pixel-scale pigment content was then aggregated at crown scale following
delineated ITCs and at species scale using the taxonomic identification of these ITCs, using
the average value of sunlit pixels. A generic spectrum simulated using a combination of
canopy pigment was used to characterize pixels of non-delineated ITCs in species and
ITC scenarios. Finally, for each level of LOP heterogeneity (pixel, crown, species), the four
NPVf scenarios (NPVf 0, NPVfWAD, NPVfWAD/2, NPVfCbrown) were produced, resulting in 12
simulations of imaging spectroscopy data corresponding to Site B.

3.7. Comparing Simulations with Airborne Acquisitions

We compared airborne acquisitions with simulated imaging spectroscopy data based
on different levels of information. They included radiometric comparison between mea-
sured and estimated canopy reflectance, as well as comparison of crown/species scale
spectral variability between measured and estimated canopy reflectance, species discrimi-
nation using supervised classification algorithms and spectral dissimilarity within ITCs,
between ITCs of the same species and between ITCs of different species using spectral
angle metrics.

3.7.1. Radiometric Comparison

Different statistical criteria were used to compare the observed (RSENSOR,λ) and sim-
ulated TOC reflectance (RDART,λ) in the VNIR spectral domain. These included the root
mean square error (RMSE) (Equation (7)) and the coefficient of determination (R2) (Equa-
tion (8)), computed as follows for each spectral band of the sensor:

RMSE(λ) =

√
∑n

i=1(RDART,λ(i)− RSENSOR,λ (i))2

n
, (7)
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R2(λ) = 1− ∑n
i=1(RDART,λ(i)− RSENSOR,λ(i))

2

∑n
i=1
(

RSENSOR,λ(i)− RSENSOR,λ
)2 , (8)

3.7.2. Analysis of Spectral Dissimilarity

Tropical tree species discrimination using supervised methods remains challenging,
and assuming a direct link with within- and among-species variability of canopy reflectance
is a simplification [89]. A number of statistical metrics of variability such as the coefficient
of variation, the spectral angle or the minimum distance from the spectral centroid can be
used to relate spectral diversity to plant diversity [22]. In this study, the spectral angle [90],
defined in (Equation (9)), was used to compare spectral dissimilarity between experimental
data and simulated data. The spectral angle was computed on sunlit pixels at three level
using the 135 spectral bands: (i) within crown for all pairwise combinations of pixels of a
given crown, (ii) within species for all pairwise combinations of crowns of a given species,
and (iii) among species, for all pairwise combinations of species. The comparison between
the dissimilarity matrices of observations and simulations was done at each level with
Pearson’s correlation coefficient and RMSE.

Spectral angle [radian] = cos−1


∫ λb

λa
Si(λ)× Sj(λ)dλ[∫ λb

λa
Si(λ)

2dλ
] 1

2 ×
[∫ λb

λa
Sj(λ)

2dλ
] 1

2

 (9)

where Si and Sj are the spectra of elements i and j, and λa and λb are the wavelength
boundaries i.e., 415 to 902 nm in this study.

3.7.3. Species Discrimination

A large number of publications evidenced the interest of imaging spectroscopy data
for the discrimination among species, even for tropical forests showing strong diver-
sity [24,62,89,91–94]. On a higher ecological level, this capacity to discriminate among
species based on spectral information is also a fundamental property for methods aiming
at estimating diversity indices based on the heterogeneity of spectral information [28,29,34].
In this study, we used the performances of species discrimination based on supervised
classification as an indicator of the realism of our simulated imaging spectroscopy data.
Species discrimination applied in real situations inherently leads to successful classification
for species characterized by high discriminability, and confusion between species showing
lower discriminability. This capacity to accurately identify a species or misidentify it as
another species is explained by the expression of vegetation traits. In our study, we applied
supervised classification for species identification on both experimental and simulated
imaging spectroscopy data, hypothesizing that realistic simulations would lead to similar-
ity in the confusion matrix derived from classification when compared to the confusion
matrix derived from experimental data. We used linear discriminant analysis (LDA) as a
supervised classification algorithm in order to perform species classification [62,89,92].

LDA is a parametric classification algorithm based on the hypothesis of multivariate
normality of input variables, and aims to maximize the between-class variance and mini-
mize the within-class variance, through a linear discriminant function. In our study, we
performed classification on ITCs corresponding to the nine most abundant species detailed
in Table 1. For each species the ITCs were randomly distributed between two folds of equal
size: one for training and the other for testing. The split is made at the crown level instead
of the pixel level in order to avoid using pixels from the same crown in both training
and test datasets. Sampling pixels from the same crown in both training and test dataset
may lead to overestimated scores due to spatial correlation among neighboring pixels
and possibly lower variability within crown than among crowns. This resulted in 4 to 23
ITCs/species used to train the LDA model, and 4 to 22 ITCs/species used to test the model.
The procedure was applied on imaging spectroscopy data, with training and test datasets
built from the same pixel selection for experimental and simulated data, and repeated
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100 times in order to account for the influence of the random selection. The Pearson’s
correlation coefficient was used to compare the average confusion matrices of tests on
observations against simulations. Two correlation analyses were performed, one to com-
pare the success of classification using the diagonal elements of the confusion matrix, and
another one comparing confusion rate between species and using off-diagonal elements.

4. Results
4.1. Definition of the 3D Structure of the Forest

The PAI was computed for each pixel in site B, first from the initial 3D mock-up
produced with AMAPVox, after application of the hierarchical re-estimation of transmit-
tance, and finally after application of the attenuation factor. The mean PAI following was
9.71 m2/m2 for Site A and 9.4 m2/m2 for Site B.

4.2. Estimation of NPVf
4.2.1. NPVf Derived from Wood Area Density (WAD)

The PAD of three uppermost voxels of the selection of foliated and defoliated ITCs
was averaged in order to analyze their distribution. The mean PAD corresponding to defo-
liated and foliated tree crowns was 0.33 m2·m−3 and 1.54 m2·m−3, respectively (Figure 4).
NPVfWAD, defined as the ratio of these two mean densities, was then set to 21% in simula-
tions. Other studies reported NPVf ranging between 10% and 50% depending on forest
type and stage [55,95,96]. In order to account for potential shadowing of woody elements
by leaves [62], we also tested a scenario corresponding to 50% of NPVfWAD hereafter re-
ferred to as NPVfWAD/2. For each of these scenarios, the optical properties corresponding to
generic wood optical properties were assigned to a constant proportion of PAD defined as
NPVfWAD or NPVfWAD/2. The complementary fraction of PAD corresponding to LAD was
characterized by LOP with pigment content defined as described in Section 4.3.
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4.2.2. NPVf Derived from Leaf Brown Pigment Content

A linear regression model was adjusted in order to describe the relationship between
BPI and Cbrown based on DART simulation over Site A. The Pearson’s correlation coefficient
(r) corresponding to this linear relationship was 0.67 (Figure 5a). The linear model was then
applied to sunlit pixels from Site B in order to account for non-photosynthetic vegetation in
the scenario considering the PAD as equivalent to LAD. The value of Cbrown ranged between
0 and 0.6 arbitrary units (Figure 5b). The scenario accounting for NPVf through Cbrown is
referred to as NPVfCbrown hereafter.
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4.3. Influence of NPVf on the Pigment Content Estimate
4.3.1. Impact on the Adjustment of the Relationship between Spectral Indices and
Pigment Content

Once DART simulations were performed on Site A for the different scenarios ac-
counting for NPVf, the relationships between pigments content and their corresponding
spectral indices were studied (Figure 6). Overall, a linear relationship with a positive
correlation was observed between pigment content and corresponding spectral index, for
all pigments and all scenarios accounting for NPVf. The relationship between Cab and CI
showed the strongest correlation, with Pearson correlation coefficient ranging between 0.89
and 0.93. However, the correspondence between Cab and CI strongly varied depending
on the scenario used to account for NPVf : NPVfWAD and NPVfWAD/2 resulted in a dra-
matic decrease in the range of CI (Figure 6, X-axis), which is explained by the decreased
effect of chlorophyll absorption on the signal when mixing photosynthetic elements with
non-photosynthetic elements.

The relationship between Cxc and CRI showed lower correlation, with Pearson’s
correlation coefficient ranging between 0.55 and 0.65, with maximum correlation obtained
for NPVf 0, and comparable correlation for the three other scenarios. As for CI, the range
of variation observed for CRI decreased with NPVfWAD and NPVfWAD/2 due to reduced
contribution of photosynthetic vegetation.

Finally, the relationship between Canth and ARI showed relatively different behavior:
The Pearson’s correlation coefficient was similar for NPVf 0 and NPVfCbrown (Pearson’s
r = 0.83–0.82), while it increased to 0.91–0.90 when including wood optical properties in
the voxels, along with a reduced range of variation of ARI, as for the two other indices.

While all spectral indices appeared to be sensitive to the pigment content they were
initially designed to be used with, the linear models adjusted based on DART simulations
are expected to result in very different pigment content when applied to experimental data,
depending on the method used to account for NPVf.
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Figure 6. Relationship between spectral indices and leaf chemistry obtained from DART simulation on site A. (a) NPVf 0;
(b) NPVfWAD; (c) NPVfWAD/2 and (d) NPVfCbrown. Top: Cab and CI; middle: Cxc and CRI: and bottom: Canth and Anthocyanin
Reflectance Index (ARI).

4.3.2. Implication of the Application of the Models on Experimental Data

The regression models adjusted based on DART simulations performed on Site A
(Figure 7) were applied to sunlit pixels from Site B in order to estimate pigment content for
each NPVf scenario. The distribution obtained for Cab and Cxc was very similar for NPVf 0
and NPVfCbrown. Cab ranged from 2.9 to 82.7 µg·cm−2 with mean of 35.2 ± 10.1 µg·cm−2

for NPVf 0 and from 0.9 to 93.7 µg·cm−2 with a mean value of 38.5 ± 11.7 µg·cm−2 for
NPVfCbrown. The two scenarios NPVfWAD and NPVfWAD/2 resulted in increase in Cab rang-
ing from 1.6 to 105.4 µg·cm−2 with a mean of 43.7 ± 13.1 µg·cm−2, and from 1.1 to
133.6 µg·cm−2 with a mean value of 54.8 ± 16.7 µg·cm−2, respectively.

The influence of the different NPVf scenarios on the estimation of Cxc was compa-
rable to the results obtained with Cab. Cxc ranged from 1.5 to 17.9 µg·cm−2 with a mean
value of 7 ± 2.4 µg·cm−2 for NPVf 0 and from 1.7 to 23.7 µg·cm−2 with a mean value of
9.1 ± 3.2 µg·cm−2 for NPVfCbrown. The distribution of Cxc strongly increased for NPVfWAD
and NPVfWAD/2 scenarios.

The influence of the different NPVf scenarios on the estimation of Canth differed from
the influence observed for photosynthetic pigments. Canth distributions including negative
values were obtained for all scenarios with various occurrences, suggesting discrepancies
between simulated and measured reflectance for the spectral domain used to compute ARI.
These negative values were set to zero when introduced into DART simulations.
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4.4. Influence of NPVf on Simulated Reflectance

Imaging spectroscopy and DART simulations were compared using spectral R2 and
the RMSE for each NPVf scenario (Figure 8). We assumed that higher R2 and lower RMSE
would indicate higher radiometric realism. Overall, NPVfCbrown and NPVf 0 scenarios re-
sulted in similar R2 over all the spectral domain, with stronger correlations than those
obtained for NPVfWAD and NPVfWAD/2 over the full spectral domain. The scenario corre-
sponding to NPVfWAD resulted in lowest R2 overall. The spectral profile of R2 was similar
among NPVf scenarios: lower correlations were obtained in the far-blue (<450 nm), green
(520 nm), red-edge and NIR domains, while higher correlations were obtained between
blue and green domains (500 nm), and in the yellow-red domains (570–680 nm).
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The choice of NPVf scenario resulted in strong differences in RMSE between measured
and simulated reflectance in the red-edge/NIR domains. The NPVfCbrown scenario resulted
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in lower RMSE compared to other scenarios in the full spectral domain, except in the
red domain.

Spectral bands located in the blue, green, red, red edge and NIR spectral domains were
selected in order to analyze the influence of NPVf on the simulated reflectance (Figure 9).
The influence of NPVf on reflectance was particularly strong at 491 nm (blue) and 666 nm
(red), corresponding to domains of absorption of photosynthetic vegetation. In these
regions, an underestimation of reflectance was observed for NPVf 0. The integration of
NPVf using WAD led to an increase of simulated reflectance up to an overestimation
for NPVfWAD. For NPVfCbrown, reflectance was underestimated at 491 nm and 666 nm.
In the green domain (560 nm), the effect of NPVf was moderate, except for NPVfCbrown
which removes the positive bias observed with the other scenarios. An overestimation of
reflectance was observed for NPVf 0 at 720 nm (red edge) compared to scenarios where
NPVf were considered. Simulated reflectance was overestimated at 800 nm overall but no
significant effect of NPVf was detected. Given these results, we decided to only use the
NPVfCbrown in the following analyses.
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4.5. Influence of LOP Variability on Simulated Reflectance

Spectral R2 and RMSE were used to compare reflectance from airborne acquisi-
tions and DART simulations for each spectral band and each LOP level, when selecting
NPVfCbrown. LOPpixel outperformed LOPITC and LOPspecies in the visible region based on R2

and in the NIR based on the RMSE (Figure 10). Relatively similar results were obtained for
other NPVf scenarios (results not shown).
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4.6. Analysis of Spectral Dissimilarity

The spectral dissimilarity was computed within crowns, among crowns correspond-
ing to the same species and among crowns corresponding to different species using the
spectral angle. DART simulations were compared to imaging spectroscopy to test if the
spectral dissimilarity observed in imaging spectroscopy data was correctly simulated for
the different LOP scenarios (Figure 11 and Table 2). When defining LOP per species in
DART (LOPspecies), low agreement was obtained between spectral dissimilarity computed
from imaging spectroscopy and from simulations for all levels (within crowns, within
species and among species), with systematic underestimation. Intermediate performances
were obtained when defining LOP per ITC in DART simulations. LOPITC scenario showed
a systematic underestimation of spectral dissimilarity within crowns and a good agreement
between spectral dissimilarities within species and among species. The definition of LOP
per pixel in DART simulations outperformed other scenarios, with strong agreement of
spectral dissimilarity when comparing experimental data with simulations for all levels.
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Table 2. Pearson’s correlation coefficient and RMSE computed when comparing spectral dissimilarity from imaging
spectroscopy and from DART simulations for the different LOP variability scenarios. Spectral dissimilarity is compared
within crowns, within species and among species.

Pearson’s r RMSE [◦]

Spectral Dissimilarity

LOP Scenario
LOPspecies LOPITC LOPpixel LOPspecies LOPITC LOPpixel

Within Crowns 0.10 0.34 0.88 0.84 0.80 0.30
Within Species 0.28 0.91 0.91 1.84 0.69 0.54
Among Species 0.48 0.93 0.92 1.75 0.81 0.67

4.7. Assessing the Potential of Species Discrimination

Performances for species classification based on LDA were compared when applied
on airborne imaging spectroscopy and DART simulations (Figure 12 and Table 3). The sim-
ulation corresponding to LOPspecies resulted in an overestimation of the potential of species
discrimination compared to airborne imaging spectroscopy, with close to 100% overall
classification accuracy. The confusion matrix derived from classification applied on LOPITC
and LOPpixel scenarios showed stronger consistency with the confusion matrix derived
from classification applied on experimental. Overall, LOPpixel outperformed LOPITC, with
particular ability to reproduce confusion among species.
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Table 3. Pearson’s correlation coefficient comparing LDA classification of DART simulations to
imaging spectroscopy for LOP level scenarios. The consistency in correct classification and mis-
classification is compared between classification results obtained from airborne acquisition and
classification results obtained from simulations.

Confusion Matrix Elements LOPspecies LOPITC LOPpixel

Correct classification 0.05 0.86 0.92
Misclassification −0.04 0.71 0.79

4.8. Visual Comparison

Figure 13 allows for visual comparison between imaging spectroscopy and the DART
simulation of site B with the LOPpixel/NPVfCbrown scenario. Similar patterns and object
dimensions were observed after stretching the nadir true color composites of DART simu-
lation (Figure 13b) and imaging spectroscopy (Figure 13e). The nadir true color composites
(Figure 13a) and imaging spectroscopy (Figure 13d) highlight the need for spectral charac-
terization of defoliated crowns. This aspect was not considered in this study. In addition,
the comparison in Figure 13f highlights the need for accurate characterization of biophysi-
cal and structural parameters which particularly affect the NIR region. This, in addition
to the improvement of pigment contents estimates, will potentially increase radiometric
agreement between simulations and imaging spectroscopy.
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tance from ray tracing in Vincent et al. [72] (Equation (7)) can be shown to be biased by 
the fact that it considered an average optical path length rather than the actual path 
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Figure 13. RGB composite Color. Top: imaging spectroscopy: (a) True color (R: 640 nm, G: 549 nm, B: 458 nm); (b) True color
stretched (R: 640 nm, G: 549 nm, B: 458 nm); (c) False color stretched (R: 800 nm, G: 640 nm, B: 549 nm). Bottom: NPVfCbrown:
(d) True color (R: 640 nm, G: 549 nm, B: 458 nm); (e) True color stretched (R: 640 nm, G: 549 nm, B: 458 nm); (f) False color
stretched (R: 800 nm, G: 640 nm, B: 549 nm).
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5. Discussion
5.1. Three-Dimensional (3D) Forest Reconstruction

The 3D forest structure was reconstructed by discretizing ALS data in 3D space
using AMAPVox software. By applying Beer-Lambert’s turbid medium approximation,
local transmittance enables estimation of PAD and PAI. Infravoxel clumping may have
caused an underestimation of LAI and PAI [77,97]. Qu et al. [98] estimated the PAI of a
moist tropical forest at Fazenda Cauaxi in the Paragominas Municipality of Pará State,
Brazil. They reported a mean PAI of 6.94 m2/m2. Another study was conducted by
Pimmasarn et al. [69] in Khao Yai National Park in central Thailand. They obtained a
mean PAI of 8.02 m2/m2. These results are slightly lower than the PAI reported here (mean
PAI of 9.4 m2/m2). By contrast, Vincent et al. [72] mapped PAI at the same site (Paracou
experimental station) by ALS (using a different laser system, i.e., a Riegl LMSQ560) and
reported a mean PAI of 13.2 m2/m2. In that study the authors also compared simulated
and measured light levels below canopy which revealed a slight underestimation of the
ALS estimated transmittance [72]. Moreover, it is worth noting that the formula used to
compute voxel transmittance from ray tracing in Vincent et al. [72] (Equation (7)) can be
shown to be biased by the fact that it considered an average optical path length rather
than the actual path lengths as was done here. The bias might be responsible for the
underestimation in transmittance (and overestimation of PAI) observed at that time. This
may indicate that the present estimate is more accurate than the one previously published
for the site.

An independent measurement of PAI on site A (80 × 80 m) was conducted using high
density TLS in 2016 (G. Vincent and F. Heuschmidt (2018) unpublished). The plot was
voxelized at 50 cm resolution using AMAPvox. The estimated plot level PAI was found to
be equal to 11.4 m2/m2.

Finally, it should be noted that the uncertainty in PAI which to a large extent is related
to the limited sampling density in the lower canopy due to occlusion. The upper canopy
is much better sampled and the PAD of the top canopy layers which indeed are of prime
interest here are probably more accurately estimated than PAI (PAD integrated over the
entire profile).

5.2. Influence of NPVf on Leaf Chemistry Estimate

A set of linear models was adjusted to estimate pigment contents from spectral indices,
for each of the scenarios accounting for NPVf. The relationship between leaf pigment
content and spectral indices varied depending on the scenario, due to the contribution of
woody elements or brown pigments to the canopy reflectance. Therefore, these statistical
models aiming at estimating leaf pigment content integrated different mixtures of materials
assumed to be found in experimental data (wood, senescent leaves).

Despite differences in these relationships, a strong correlation was obtained between
Cab and the Chlorophyll Index, and between Canth and the Anthocyanin Reflectance Index,
for all scenarios accounting for NPVf in Site A. We found a moderate correlation between
carotenoid content and the Carotenoid Reflectance Index. The main influence of NPVf was
on the range of spectral indices, thus revealing different distributions of pigment content
expected when applying Site A regressions to Site B. The poor suitability of some of these
models (such as the models leading to negative anthocyanin content) highlights weaknesses
in the integration of some of the factors influencing canopy reflectance into simulations.

Further work would be required in order to perform direct validation of these models
for the estimation of leaf pigments based on imaging spectroscopy. However, it was
expected that such a straightforward approach based on spectral indices would lead to
inaccurate estimation when applied to such complex ecosystems. The main purpose of
our approach was to provide a basis for the integration of relative variations in pigment
content on our study site, and more refined multivariate approaches may be needed to
minimize absolute bias in simulated values, that we could not control or correct here.
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We compared the estimated pigment contents following NPVf scenarios with those
reported in the literature in the context of tropical forests in order to determine their realism
for our purposes. Arellano et al. [99] reported Cab ranging from 19.2 to 105.4 µg·cm−2

and Cxc ranging from 1.0 to 44.2 µg·cm−2 in an Amazon rainforest of Ecuador. The
ranges obtained for the different simulations then remained in a realistic range for Cab
and Cxc. Canth showed discrepancies in some cases, with negative values. Ranges for Canth
reported in the literature can reach higher values than those derived from our hybrid
models [64,86], but such high values correspond to leaves which are unlikely to be found as
main contributors to canopy reflectance in tropical forests. In tropical forests, anthocyanins
mainly accumulate in juvenile leaves during the expansion phase and in vegetation found
in the shaded parts of the forest. Further investigations on the definition of optimal NPVf
could be relevant for improving the matching between estimated and expected pigment
contents in tropical forests.

Despite the ubiquity of spectral indices in remote sensing, there are some issues when
upscaling from leaf to canopy level since other factors such as canopy architecture, solar
geometry, background properties and LAI also affect the relationship between pigment
content and vegetation index [100]. Intensive sampling in situ combined with the partial
least square (PLS) method, which has proved to be a successful empirical approach to re-
trieve leaf traits from canopy spectral data [101–103], could be relevant for local calibration
and improvement of pigment content estimation.

5.3. Influence of NPVf on Simulation of Canopy Reflectance

The consideration of woody elements within forest architecture is one of the main
issues in forest RTM [49]. In this respect, all DART NPVf scenarios were compared to
imaging spectroscopy in order to investigate the influence of NPVf on simulation of canopy
reflectance. Particularly important influence of NPVf was observed in the blue and red parts
of the VIS domain, corresponding to the main domains of absorption of photosynthetic
pigments with a major contribution of Cab. Pigments are major contributors of pixel’s
reflectance in the visible region [37,104]. Our results showed that the introduction of NPVf
from WAD (NPVfWAD and NPVfWAD/2) resulted in an increase of reflectance in the blue and
the red domains (Figure 8). This observation is due to the mixture effect of green vegetation
(strong absorption in the blue and red domains) with non-photosynthetic vegetation (lower
absorption in the visible) which leads to an increase of reflectance. These findings were
in agreement with Malenovský et al. [54] who evidenced an increase of 2% of canopy
reflectance in the red domain when woody elements were integrated into simulations.
The introduction of NPVf based on brown pigments only resulted in the addition of
absorbing constituents to the leaves in the simulation, and no mixture with elements of
higher reflectance. Consistent with previous observations [54,105], the introduction of
NPVf led to a decrease of simulated reflectance in the red edge and NIR, either using WAD
or Cbrown. Overall, we found lower agreement between imaging spectroscopy and DART
simulations in the NIR.

The reflectance in the red region was underestimated for NPVf 0 and our optimal
scenario (NPVfCbrown) compared to their counterpart in the imaging spectroscopy. Defining
NPVf as a fraction of PAD (NPVfWAD) needs further attention. Combining the integra-
tion of woody elements through WAD and senescent materials through brown pigments
in simulations may further improve the agreement between imaging spectroscopy and
DART simulations.

Two assumptions made when considering NPVf as a uniform fraction of PAD should
be discussed. First, this leaf-to-wood area ratio is known to be spatially heterogeneous
(across species, with canopy depth, etc.). Second, the turbid medium assumption is
expected to lead to discrepancies when introducing woody elements which are spatially
hierarchically organized and interact with light as volumes instead of surfaces. The
additional implicit assumption of homogenous mixing between leaf and wood is also not
met. Improved representation of tree branching structure based on connected cylinders may



Remote Sens. 2021, 13, 2120 25 of 31

contribute to improve the integration of woody elements [106,107]. A mixed representation
using voxels for foliage and meshed volumes for woody parts is entirely compatible with
the DART model, however the ALS point cloud alone does not provide sufficient resolution
to achieve such level of detail of canopy geometry description. Leaf and wood are virtually
inseparable in ALS point clouds as many returns are mixed points (with both leaves and
wood contributing to a particular return) due to the laser footprint size (around 25 cm
diameter here). Tree geometry reconstruction would further be hampered by the limited
pulse density, the geometric accuracy (limited by the laser footprint size), and the high
occlusion rate occurring in dense forests. Finally, small woody elements such as the twigs
have been shown to significantly affect the reflectance more than large woody parts such
as branches or trunks [54], which suggests that the improved integration of the main wood
structure in a mixed representation, which could be considered with TLS measurements,
should also be refined with a procedure allocating small elements.

5.4. Influence of LOP Variability on Species Separability and Discrimination

The inadequate representation of LOP spatial variability within crowns, among crowns
or species was reported as one of the main sources of error in RTM studies [49,108,109].
To solve these issues, we tested three scenarios accounting for LOP spatial variability:
LOPspecies, LOPITC and LOPpixel.

Agreement between imaging spectroscopy and DART simulations was assessed by
comparing the whole spectrum using statistical metrics, species separability using spectral
dissimilarity metrics and potential of species discrimination using discriminant analysis.
The lowest agreement was obtained by LOPspecies representation. This scenario led to
overestimation of species separability. The LOPITC representation showed intermediate
results while the most faithful scenario was LOPpixel.

The efforts made in the definition of LOPs turned out to be an important discriminating
axis of species. However, we were constrained by the lack of detailed description of other
sources of variability of the LOPs such as the foliar clumping, N, LIDF or LMA homogenized
on the whole 3D mockup. This potentially explain the lower discrimination of species in
simulated images (LOPpixel and LOPITC).

The fine scale definition of leaf optical properties partly allows conservation of the
spatial heterogeneity of reflectance, and appears to be a promising framework to explore
the spectral variation hypothesis by means of remote-sensing simulations.

6. Conclusions

DART RTM was used to simulate imaging spectroscopy in tropical forests. We took
advantage of ALS to reconstruct a detailed forest 3D architecture. With the aim of defining
a framework for producing realistic simulation in tropical forest, the influence of NPVf
and LOP variability on simulated reflectance was explored. Analyses were performed
using sunlit pixels of a set of ITCs. In order to estimate pigment content used as input for
LOP characterization of each pixel, we used a hybrid approach combining 3D RTM and
spectral indices.

NPVf were incorporated into simulations either considering WAD or Cbrown as proxies.
Three scenarios including LOPspecies, LOPITC and LOPpixel enabled the assessment of the
effect of LOP variability on simulated reflectance. Comparison between imaging spec-
troscopy and DART simulated images was performed using statistical metrics, spectral
dissimilarity metric and supervised classification.

Results showed that simulations which did not account for NPVf resulted in moderate
correlation (R2 0.10–0.62) between measured and simulated canopy reflectance in the VIS
domain, and consistently low correlation (R2 0.08–0.18) in the red edge and NIR domain,
associated with relatively high RMSE. Using Cbrown as a proxy for NPVf resulted in similar
performances in the VIS domain, lower RMSE between measured and simulated canopy
reflectance in the red edge and NIR domains, but still relatively low correlation. Since
good agreement between imaging spectroscopy and DART simulation were obtained
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for NPVfCbrown, the underestimation of the reflectance observed in the blue and the red
spectral domains when including Cbrown suggested the possibility to combine the two
approaches, with an appropriate value of NPVfWAD in order to optimize the agreement
between measured and simulated reflectance over the full VNIR range.

The definition of specific LOP for each pixel in a DART simulation resulted in more
realistic simulations than when using the same LOP for all pixels in a tree crown, or when
using the same LOP for all pixels in all tree crowns of a species. This was observed for ra-
diometry, spectral dissimilarity and performances when applying supervised classification.
We conclude that the strategy usually adopted in the literature, consisting in assigning
one set of LOP per species results in strong overestimation of the capacity of supervised
approaches to perform species discrimination. Simulations of remote sensing data based
on physical modeling should put more efforts into accounting for variations of leaf optical
properties within species, and within individual crowns when relevant regarding the spa-
tial resolution of the simulations. Spectral variation hypothesis needs to consider the large
variability within species when inferring species diversity patterns from spectral diversity.

Overall, results showed that the incorporation of NPVf combined with LOP variability
are relevant for simulating spatial heterogeneity in remotely sensed data in tropical forests.
However, the improvement of leaf trait definition and characterization of structural param-
eters should be addressed in order to increase radiometric agreement between simulation
and imaging spectroscopy data. Our simulation framework (LOP per pixel approach)
showed an interesting potential for benchmarking remote-sensing applications dedicated
to biodiversity monitoring when applied to satellite missions currently operational as well
as for future missions currently in preparation [110–112].
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