

LABORATOIRE D'AMELIORATION DES PLANTES Centre ORSTOM d'Adiopodoumé BP V51 ABIDJAN (COTE D'IVOIRE)

RAPPORT DE STAGE DE MAITRISE: (MAGISTERE DE BIOLOGIE) CONTRIBUTION A L'ETUDE DES RELATIONS ENTRE SOUS-ESPECES CHEZ LE RIZ CULTIVE ORYZA SATIVA L.

Observation de descendances issues de croisements entre les variétés éloignées 108 et 521.

par

Annabel DESGREES DU LOU

RESUME

Afin de mieux connaître les relations qui existent entre les sous-espèces indica et japonica chez le riz cultivé O.sativa pour établir ensuite des shémas de sélection, on a croisé les variétés indica 108 et japonica 521.

Sur les descendances de la F2 521/108 et du rétrocroisement 521/108//108 essentiellement, on a observé par électrophorèse la ségrégation de sept loci enzymatiques, et on a mesuré la fertilité pollinique, le tallage à un moment donné et le délai entre le semis et l'épiaison.

Sur les sept loci étudiés, trois présentent une distorsion par rapport aux ségrégations mendeliennes. Cette distorsion provient pour deux loci des gamètes femelles F1 qui ne ségrègent pas selon les lois mendeliennes par suite de duplications chromosomiques ou à cause de l'influence de gènes gamétophytiques. Pour le troisième loci, la sélection porte au contraire sur les gamètes mâles F1 par le jeu de gènes de certation ou de gènes gamétophytiques responsables d'une stérilité partielle du pollen.

Par contre pour les caractères morphologiques étudiés on observe des situations conformes aux lois mendeliennes: les parents présentent des caractères très différents, tandisqu'on retrouve chez les hybrides des statuts intermédiaires.

Enfin il paraît possible d'associer des caractères morphologiques à des marqueurs enzymatiques puisque deux liaisons ont été mises en évidence : une liaison entre un marqueur enzymatique et le délai d'épiaison et une autre entre un second marqueur et la fertilité pollinique.

SOMMAIRE

INTRODUCTION

A.MATERIEL ET METHODES

- 1.Materiel vegetal
- 2. Itineraire cultural et dispositif d'essai
- 3. Electrophorèse
- 4. Fertilité pollinique
- 5. Caractères morphologiques
- 6. Méthodes statistiques
- 7. Logiciels utilisés

B. RESULTATS

- 1. Analyse des ségrégations enzymatiques
- 2. Fertilité pollinique
- 3. Analyse des caractères morphologiques
- 4. Relations entre caractères et marqueurs enzymatiques

C. DISCUSSION

- 1. Analyse des ségrégations enzymatiques monolocus
- 2. Analyse des relations entre loci
- 3. Fertilité pollinique
- 4. Caractères morphologiques
- 5. Liaisons entre les caractères et les marqueurs enzymatiques étudiés

CONCLUSION

REFERENCES BIBLIOGRAPHIQUES

- ANNEXE 1: Résultats supplémentaires obtenus pour un huitième marqueur enzymatique, les phosphatases acides
- ANNEXE 2: Organisation des bacs dans la serre
- ANNEXE 3: Composition des solutions utilisées
- ANNEXE 4: Tableaux de contingence entre marqueurs enzymatiques
- ANNEXE 5: ANOVA entre marqueurs et caractères morphologiques
- ANNEXE 6: Tallage au 35° jour
- ANNEXE 7: Photographies
- Addenda: Mise au point d'une technique de préparation d'ADN mitochondrial de Riz.

INTRODUCTION

Le Laboratoire d'Amélioration des Plantes de l'ORSTOM à Adiopodoumé (Côte d'Ivoire) est engagé dans des programmes de recherche sur les Ressources Génétiques de cinq plantes économiquement importantes: le PANICUM (graminée fourragère), le CAFE, le GOMBO (légume), le MANIOC et le RIZ, céréale dont la demande est croissante en Afrique.

L'étude des ressources génétiques consiste à appréhender la diversité génétique des plantes citées, pour pouvoir sauvegarder les espèces sauvages en voie de disparition ou les variétés traditionnelles peu à peu abandonnées au profit de variétés importées, et étudier les possibilités d'utilisation optimale en amélioration des plantes des complexes d'espèces considérés.

Mon stage s'intégrait dans le programme "Riz", et avant d'en définir le sujet, il est nécessaire d'introduire quelques généralités sur la systématique et la biologie du riz.

SYSTEMATIOUE

Le genre Oryza comporte deux groupes d'espèces principaux: Sativa et Latifolia. On y trouve cinq génomes: A, B, C, D, E à l'état 2n ou 4n.

Un seul génôme (A) est reconnu dans le groupe Sativa, qui présente cinq espèces diploïdes à 24 chromosomes, dont trois espèces sauvages: Oryza rufipogon Griff., O.longistaminata A. Chev. et Roehr, O.breviligulata A. Chev. et Roehr, et deux espèces cultivées: O.glaberrima Steud. et O.sativa L.

L'espèce O.sativa, d'origine asiatique, sur laquelle porte ce travail, se divise en deux sous-espèces: indica et japonica, que l'on distingue grâce à des combinaisons des critères consignés dans le tableau suivant, et qui sont séparées par des barrières reproductives non-absolues: le taux de stérilité F1 dans un croisement entre indica et japonica pouvant aller de 50% à 100 %.

CARACTERES	SOUS INDICA	S-ESPECE JAPONICA
Résistance au chlorate de potassium	-	+
Résistance aux basses températures	-	+
Rapport longueur/largeur des épillets	+	- .
Longueur des poils apiculaires		+
Réaction de coloration des glumelles au phénol	+	-

BIOLOGIE

Graminée monocotylédone de type C3, Oryza sativa est une espèce cultivée, de type annuel, présentant une autogamie non stricte mais largement prédominante.

Plusieurs types de culture existent: la riziculture pluviale sur sol non inondé, la riziculture irriguée, et la culture de riz flottant, qui peut vivre dans un à deux mètres d'eau en s'adaptant à la profondeur de l'eau par la croissance de ses entre-noeuds.

La durée du cycle de culture varie selon les variétés entre trois et six mois mais on retrouve toujours les mêmes étapes.

Pour les riz les plus précoces les plantules sortent du sol cinq jours après le semis: c'est la "levée". L'émission des tiges secondaires ou "tallage" débute vingt jours après le semis. Les panicules sortent de leur gaine foliaire environ trente jours après: c'est" l'épiaison". Suit la floraison, les fleurs de riz ou "épillets" sont généralement autofécondées. La phase de maturation dure alors trente à trente-cinq jours, au bout desquels on récolte les grains.

PROGRAMME RIZ ET SUIET DE STAGE

Les projets menés au Laboratoire portent sur le groupe Sativa: on s'intéresse d'une part à la systématique, à la diversité* et à l'évolution des espèces qui le constituent, notamment en étudiant la dynamique de la domestication des plantes cultivées, d'autre part aux relations interspécifiques et intraspécifiques, à travers l'étude des barrières reproductives et de l'hérédité des caractères.

SECOND, GHESQUIERE et PHAM proposaient en 1985 un protocole général d'expérimentation intitulé: "Croisements entre parents éloignés de riz cultivés."

L'idée majeure était la suivante: il s'agissait d'étudier les relations entre les sous-espèces japonica et indica chez le riz cultivé O.sativa, le maintien à l'état hybride entre ces deux sous-espèces devant permettre d'une part de favoriser des recombinaisons fines entre génomes, d'autre part d'exprimer un éventuel effet mutagène de l'état hybride.

Mon stage s'intègre dans une expérimentation préliminaire à petite échelle, portant sur des descendances issues des variétés *indica* 108 et *japonica* 521.

On se propose d'observer la ségrégation de marqueurs enzymatiques, la fertilité pollinique et certains caractères morphologiques de la descendance issue du rétrocroisement 521/108//108, et de façon annexe de la F2 521/108 et de la descendance issue du rétrocroisement 521/108//521. On étudiera si dès cette génération il est possible, sur des effectifs réduits, de rencontrer des faits allant dans le sens des prévisions citées plus haut.

^{*}J'ai participé, dans le cadre de l'étude de la diversité des variétés traditionnelles de riz en Côte d'Ivoire, à une courte mission de prospection dans le Centre du pays. Le compte-rendu est adjoint au présent rapport.

A. MATERIEL ET METHODES

1. MATERIEL VEGETAL

a. Variétés parentales utilisées

Les deux parents utilisés, 108 et 521, sont appelés "testeurs de OKA" (du nom d'un chercheur japonais) car ce sont des variétés caractérisant, pour les réactions de fertilité en croisement, les deux sous-espèces japonica (521) et indica (108) de l'espèce O.sativa (SECOND 1982).

b. <u>Descendances étudiées</u>

Trois types de descendances sont étudiées*: la F2 issue du croisement 521/108 par autofécondation contrôlée de la F1, les descendances issues des rétrocroisements 521/108//108 et 521/108//521. Les hybrides F1 521/108 sont également observés.

2. ITINERAIRE CULTURAL ET DISPOSITIF D'ESSAI

a. Semis-repiquage

Les graines ont été semées en terrines le 07.06.88. Les plantules ont été repiquées le 20.06.88 en pots moyens de 4 litres (pour l'expérimentation principale) ou en petits pots de 1 litre (pour l'electrophorèse seulement), en serre, dans des bacs remplis d'eau (sans submersion).

Les effectifs sont indiqués sur le tableau 1.

b. Dispositif d'essai

Les pots de 4 litres sont disposés dans deux bacs en randomisation totale. Les plantes uniquement destinées à l'electrophorèse sont disposées sans organisation particulière dans deux autres bacs, l'environnement n'influant pas de façon apparente sur les marqueurs enzymatiques étudiés.

Le plan du dispositif est donné en annexe.

^{*} La convention IRRI (International Rice Research Institute, Philippines) sera utilisée ici pour symboliser les différents types de croisements:

^{521/108:} hybride 521(femelle) X 108(mâle) 521/108//108: back cross (521X108)X108 521/108//521: back cross (521X108)X108

TABLEAU 1: Effectifs mis en culture

GENOTYPE	semé	repiqué en pots moyens	repiqué en petits pots
108	60	8	9
521	60	. 8	10
F1 521/108	15	8	8
F1 108/521	15	0	0
F2 521/108	150	0	134
BC 521/108//108	150	104	17
BC 521/108//521	17	0	11

TABLEAU 2: Choix du système d'électrophorèse en fonction de l'enzyme révélée

ENZYM	Α	PON rophorèse B pH 8,0		F1	F2-F3-F4	PAPIER WHATMAN N°3 N°1	MI(
	pii 0,0						
CAT	,	+		+			
EST	+	,	+			+	
GOT	+		, , , + - · · -	9		+	
PGD		+		+		+	
PGI		+			+	+	
POX		+		+		+	
	1				,		

F1: jeune feuille

F2-F3-F4: feuilles agées

c. fumure et traitements phytosanitaires

Toutes les trois semaines à partir du repiquage:

- engrais: N P K 10-18-18 (60 g par bac)
- insecticides: 75 cc DECIS, 75cc THIMUL

3. ELECTROPHORESE

La technique développée au Laboratoire depuis 1974 est l'électrophorèse d'enzymes sur gel d'amidon en système horizontal, les procédés d'extraction, de migration et de révélation étant ceux décrits par SECOND et TROUSLOT (1980).

a. choix des enzymes révélées

Après analyse des zymogrammes* parentaux, on a retenu six enzymes discriminantes présentant pour 7 loci des allèles différents chez les parents 108 et 521:

- -catalase (locus A), CAT.
- -6-phosphogluconate déshydrogénase (locus B),PGD
- -glutamate oxaloacétate transaminase (locus B), GOT
- -estérases (locus E), EST
- -peroxydases (locus B), POX
- -phosphoglucose isomérase (loci A et B), PGI

Le déterminisme génétique des systèmes utilisés est connu (PHAM et al. en préparation).

VARIETE		<i>NTAUX</i> PGD-A		<i>IDIES</i> POX-B
108 521	 	 A2A2 A1A1	 	_ · _ ·

b. choix du système en fonction de l'enzyme révélée

Les échantillons sont toujours broyés à température ambiante sans tampon d'extraction. Selon l'enzyme révélée, on modifie l'organe prélevé (jeunes feuilles ou feuilles plus agées), le tampon de migration et l'épaisseur de la rondelle de papier imbibée d'extrait (tableau 2).

^{*}Par zymogramme on désigne la combinaison des bandes observées sur une plaque d'électrophorèse pour un individu avec un système de révélation spécifique d'une enzyme.

c. Principes biochimiques des révélations:

Après incubation de la plaque pendant 5 minutes dans une solution de H2O2 à 0,05%, on rince à l'eau et on immerge dans une solution de 0,4% de FeCl₃ et 0,4% de K₃FeCN₆. La réaction fait alors apparaître les bandes CAT en négatif (bandes blanches sur fond bleu).

-PGD:

6-phospho gluconate + NADP+ ----> Ribulose-5-phosphate + NADPH PGD

Révélation: NADPH + NBT + PMS ----> FORMAZAN (précipité bleu)

-EST:

Ester d' α ou β naphtyl ----> α ou β naphtol + sel EST

Révélation: α ou β naphtol + Fast Blue RR Salt----> précipité coloré

-GOT:

L.aspartate + kétoglutarate ---->L.glutamate + oxaloacétate GOT

Révélation: Oxaloacétate + Fast Blue BB Salt ----> coloration verte

-POX:

L'oxygène libéré oxyde un composé (3 amino 9 éthyl carbazole) qui se colore.

-PGI:

D-fructose-6-phosphate ---->D-glucose-6-phosphate PGI

D-glucose-6-phosphate + NAD+ ---->6-phosphogluconate + NADH G-6-PGD *

NADH + NBT + PMS ----> FORMAZAN (précipité bleu)

* <u>G-6-PGD</u>: Glucose-6-phosphate déshydrogénase, ajoutée dans la solution de révélation.

La coloration apparait ici à la surface du gel mais très faiblement dans

son épaisseur. On utilise alors la méthode de révélation à l'agar: le mélange réactionnel est mélangé à une solution d'agar-agar (2 %) portée à ébullition, juste avant la révélation. La solution gélifie sur le gel d'amidon en refroidissant. C'est ce second gel qui sera conservé.

Les gels sont fixés à l'acide acétique 7% et conservés en gaine plastique.

d. Vérification des croisements effectués:

L'observation des zymogrammes des hybrides F1 permet de vérifier qu'il s'agit bien d'hybrides 521/108. D'autre part les ségrégations dans la descendance du rétrocroisement 521/108//108 montrent que 10 individus présentent des allèles du parent 521 à l'état homozygote. Ces individus ne peuvent provenir d'un rétrocroisement, ils témoignent sans doute d'une autofécondation incontrôlée et ne seront pas pris en compte dans les analyses statistiques qui suivent.

4. FERTILITE POLLINIQUE.

La fertilité pollinique est évaluée par la colorabilité des grains de pollen. Nous avons utilisé le colorant d'ALEXANDER (1969) qui colore la paroi du pollen en vert, le cytoplasme et le noyau en rouge. Si on considère comme fertiles les gamètes présentant un cytoplasme qui occupe tout le volume du grain de pollen, et comme stériles les grains de pollen présentant un cytoplasme partiellement rétracté ou inexistant, on obtient une bonne corrélation entre la fertilité pollinique évaluée par cette méthode et la fertilité paniculaire (PHAM 1984).

Quatre épillets ont été prélevés sur la première panicule de chaque plante, à différents niveaux, puis conservés dans de l'alcool acétique 3:1 en chambre froide. Le pollen récolté est coloré par le réactif d' ALEXANDER, monté en lame mince et observé au microscope.

On observe sur 340 grains de pollen la répartition en grains totalement remplis et en grains partiellement remplis ou vides.

5.CARACTERES MORPHOLOGIQUES.

Six caractères quantitatifs seront notés sur les plantes: le tallage, la date d'épiaison, la hauteur et la longueur du drapeau (première feuille paniculaire), le nombre d'épillets par panicules et leur type d'insertion. Les deux premiers caractères seulement seront analysés, les autres mesures n'ayant pu être faites qu'en Septembre.

- Tallage:

Au 35° jour et au 51° jour on a compté le nombre de talles présenté

par chaque plante sur la descendance du rétrocroisement 521/108//108, sur la F1 et sur les parents.

- Date d'épiaison:

On a relevé les dates d'apparition des trois premières panicules sur la descendance du rétrocroisement 521/108//108 et des deux premières panicules sur les autres descendances.

Remarque: pour les mesures de fertilité pollinique et pour les délais d'épiaison les résultats sont incomplets, 70% seulement des plantes ayant fleuri avant la fin du stage; en particulier les parents 108, à cycle plus long, n'avaient pas encore commençé à épier le 25 Août (le stage se terminant le 27 Août) et aucune mesure de fertilité ou de délai d'épiaison n'a pu être faite sur ces individus.

6. METHODES STATISTIQUES

a. Ségrégations enzymatiques:

-Locus par locus:

.Comparaison des ségrégations observées avec une ségrégation mendelienne monogénique:

Pour chaque locus, les ségrégations obtenues sont comparées à une ségrégation mendélienne monogénique, au moyen du test du chi-2 pour les descendances F2 et BC 108/521//108, au moyen du test binomial pour la descendance BC 108/521//521 à cause de son faible effectif.

Test binomial:

Soit "a" l'effectif de la catégorie la moins fournie et "n" l'effectif total, on évalue la probabilité P d'obtenir un effectif égal ou inférieur à "a" dans une distribution binomiale B(n,p):

$$P = \sum_{x=0}^{\infty} C_n^x p^x q^{n-x}$$
 (1)

"p" étant la probabilité dans l' hypothèse nulle qu'un individu appartienne à l'une ou l'autre des catégories.

La règle de décision est la suivante:

si P > 0,05 on accepte l'hypothèse nulle; la ségrégation est mendélienne.

si P < 0.05 on refuse l'hypothèse nulle, il y a des distorsions.

En cas de distorsion, on calcule les fréquences alléliques et leurs intervalles de confiance.

Pour calculer les intervalles de confiance, on utilisera les formules suivantes:

- erreur-type sur un effectif:

$$S_F = \sqrt{F(N-F)/N}$$

N: effectif total

F: effectif de la catégorie considérée

- erreur-type sur une fréquence:

$$S_p = \sqrt{p(1-p)/p}$$

N: effectif total

p: fréquence considérée

On testera la différence entre effectifs alléliques observés et effectifs attendus selon Mendel par le test du chi-2.

Comparaison (par le test du chi-2) de la ségrégation observée dans la descendance F2 avec une ségrégation correspondant à l'hypothèse de "panmixie".

Par "panmixie" de la F2, on entend que cette F2 résulte:

- d'association aléatoire des gamètes en F1
- de non sélection sur les zygotes produits.

-Liaisons entre loci:

Pour les descendances de la F2 et du rétrocroisement 521/108//108 on établit un tableau de contingence pour chaque couple de loci, et on effectue un test d'indépendance (chi-2). Dans le cas de liaisons, le calcul des pourcentages de recombinaison entre loci n'a pas été fait.

b. Fertilité pollinique, tallage et date d'épiaison:

Le pourcentage de grains de pollen pleins, le tallage à 51 jours et le délai moyen entre le semis et l'épiaison pour chaque plant seront analysés de la même façon.

On caractérisera tout d'abord la répartition de la variable étudiée au sein de chaque descendance par sa moyenne et son diagramme de répartition, ce qui permettra de comparer entre elles les descendances.

Si deux descendances ont des moyennes très proches pour le caractère

étudié, on comparera leur répartition par un chi-2.

c. Relations entre caractères quantitatifs et marqueurs enzymatiques.

On étudiera s'il existe des liaisons entre le caractère étudié et chaque marqueur enzymatique suivi, en effectuant une analyse de variance à un facteur: on compare entre elles les moyennes du caractère étudié au sein de chaque classe de génotypes pour un locus donné. Si une différence significative apparait (au seuil de 5%), on conclut à une liaison entre le locus en question et au moins un locus influant sur le caractère étudié (TANKSLEY et RICK 1982).

7. LOGICIELS UTILISES.

La plupart des calculs ont été effectués sur MACINTOSH PLUS avec le logiciel STATVIEW 512+.

Les superpositions de graphes ont été faites grâce au logiciel CRICKET-GRAPH.

<u>TABLEAU 3a</u>: Analyse des ségrégations enzymatiques observées dans le back-cross 521/108//108 et test de leur conformité par rapport aux proportions mendeliennes.

LOCUS	GENOTYPE	EFFECTIFS OBSERVES	EFFECTIFS THEORIQUES			NFORMITE: SIGNIFICATION
CAT-A	A1A1 A2A1	53 63	58 58	0,86	1	NS
PGD-A	A2A2 A1A2	52 64	58 58	1,24	1	NS
PGI-A	A1A1 - A2A1	46 51	48,5 48,5	0,258	1	NS
PGI-B	B2B2 B1B2	69 26	47,5 47,5	19,46	1	***
POX-B	B4B4 B3B4	52 65	58,5 58,5	1,44	1	NS

Niveaux de signification:

NS: différence non significative

* : différence significative au seuil de 5%

** : différence significative au seuil de 1%

***: différence significative au seuil de 0,1%

B. RESULTATS

1. ANALYSE DES SEGREGATIONS ENZYMATIQUES.

Nous présenterons tout d'abord les ségrégations monolocus, puis les relations entre loci.

a. ségrégations monolocus.

*Tests de conformité par rapport aux ségrégations mendeliennes:

Les tableaux 3a, 3b, 3c présentent les ségrégations observées et les résultats des tests de leur conformité par rapport aux ségrégations mendeliennes.

Dans la plupart des cas la ségrégation mendelienne est respectée. Cependant des distorsions de ségrégations apparaissent pour trois loci: au locus PGI-B dans les trois descendances, au locus EST-E dans la F2 et BC 521/108//521, au locus POX-B dans la F2. Dans les trois cas c'est l'allèle du parent 108 qui est en excès.

* Distorsions de ségrégation:

- calcul des fréquences alléliques:

Pour pouvoir comparer entre elles les fréquences alléliques des différentes descendances, on ne considèrera dans les back-cross que les fréquences des allèles issus du parent femelle F1; on peut ainsi tout comparer à une distribution théorique 1/2:1/2 alors que si on considérait tout le pool de gamètes la distribution théorique serait 1/4:3/4 dans les back-cross et 1/2:1/2 dans la F2.

Les effectifs du BC 521/108//521 sont trop faibles pour calculer une estimation précise des effectifs alléliques. Ceux-ci ne sont donnés qu'à titre indicatif.

* POX: Tableau 4a.

La F2 présente un excès significatif de l'allèle 108, mais ce phénomène s'annule, voire s'inverse dans la descendance BC108.

* PGI-B: Tableau 4b.

Les trois descendances présentent un excès de l'allèle 108.

* EST: on ne possède ici que deux classes d'individus, les génotypes E0E2 et E2E2 n'étant pas distinguables. Les fréquences sont estimées en supposant que les génotypes se répartissent selon le shéma:

E0E0 : p² N où p: fréquence de E0 E0E2 : 2 pq N q: fréquence de E2

 $E2E2 : q^2N N=135$

<u>TABLEAU 3b</u>: Analyse des ségrégations enzymatiques observées dans la F2 521/108 et test de leur conformité par rapport aux proportions mendeliennes.

LOCUS	GENOTYPE	EFFECTIFS OBSERVES	EFFECTIFS THEORIQUES		CONFO DL SIG	RMITE: NIFICATION
CAT-A	A1A1 A1A2 A2A2	29 70 36	33,75 67,5 33,75	0,91	2	NS
EST-E	E0E0 E0E2 et E2E2	13 122	33,75 101,25	17,01	1	***
GOT-B	B0B0 B1B0 et B1B1	34 101	33,75 101,25	0,002	1	NS
PGD-A	A1A1 A1A2 A2A2	33 68 34	33,75 67,5 33,75	0,02	2	NS
PGI-A	A1A1 A1A2 A2A2	30 67 38	33,75 67,5 33,75	0,95	2	NS
PGI-B	B1B1 B1B2 B2B2	24 59 52	33,75 67,5 33,75	13,75	2	***
POX-B	B3B3 B3B4 B4B4	8 65 44	29,25 58,5 29,25	25,60	2	***

<u>TABLEAU 3c</u>: Analyse des ségrégations enzymatiques observées dans le back-cross 521/108//521 et test de leur conformité par rapport aux proportions mendeliennes.

LOCUS	GENOTYPE	EFFECTIFS OBSERVES	EFFECTIFS THEORIQUES	TEST de CONF test SI binomial	ORMITE: GNIFICATION
CAT-A	A2A2 A1A2	5 6	5,5 5,5	P=0,5	NS
EST-E	E0E0 E2E0	0 11	5,5 5,5	P=0,0005	***
GOT-B	B0B0 B1B0	3 8	5,5 5,5	P=0,113	NS
PGD-A	A1A1 A2A1	8 3	5,5 5,5	P=0,113	NS
PGI-A	A2A2 A1A2	7 4	5,5 5,5	P=0,274	NS
PGI-B	B1B1 B2B1	10	5,5 5,5	P=0,006	**
РОХ-В	B3B3 B4B3	3 8	5,5 5,5	P=0,113	NS
			•		

<u>TABLEAU 4a:</u> Fréquences alléliques observées au locus POX-B et test de leur conformité aux fréquences attendues

Descendance	Allèle	Effectifs observés		Effectifs théoriques	CHI-2 et significatio	DL n	Fréquences alléliques observées	Erreur type
F2	B3 B4	40,5 76,5	5,1	58,5 58,5	11,08 ***	1	0,346 0,654	0,044
BC 521/108//108	B3 B4	65 52	5,3	58,5 58,5	1,44 NS	1	0,55 0,45	0,058
BC 521/108//521	B3 B4	3 8	1,48	5,5 5,5	Test bind P=0,113 NS		0,273 0,727	0,13

TABLEAU 4b: Fréquences alléliques observées au locus PGI-B et test de leur conformité aux fréquences attendues

Desce	endance	Allèle	Effectifs observés		Effectifs théoriques	CHI-2 et signification	DL n	Fréquences alléliques observées	Erreur type
F2	,	B1 B2	53,5 81,5	5,7	67,5 67,5	5,8 **	1	0,396 0,604	0,042
BC 521	: 1/108//108	B1 B2	26 69	4,3	47,5 47,5	19,46 ***	1	0,274 0,726	0,046
BC 521	! /108//521	B1 B2	10	0,9	5,5 5,5	Test bino P=0,006 **		0,1 0,9	0,09

On obtient alors:

p = 0.31

q = 0.69

Erreur type = 0.04

On ne peut pas ici tester par le chi-2, le nombre de degrés de liberté étant insuffisant.

. comparaison de la ségrégation observée avec la ségrégation correspondant à l'hypothèse d'une "panmixie" de la descendance F2.

Le tableau 5 montre que la panmixie est vérifiée pour le locus PGI-B (on sait que PGI-B et EST-E sont liés, l'estimation faite ci-dessus pour calculer les fréquences alléliques du locus EST-E est donc légitime); par contre ce n'est pas le cas pour le locus POX-B, les associations B3B4 étant favorisées par rapport aux associations B3B3 ou B4B4.

2. Relations entre loci.

Les tableaux de contingence sont placés en annexe; les tableaux 6a, 6b donnent les résultats des tests d'indépendance pour les descendances BC108 et F2.

Dans la descendance BC108, seuls les loci PGI-A et PGI-B apparaissent liés; dans la descendance F2, on observe quatre liaisons: GOT-B/PGD-B, EST-E/PGI-B, GOT-B/PGI-B, POX-B/PGI-B.

2.FERTILITE POLLINIQUE

Le tableau 7 donne les valeurs moyennes des fertilités polliniques pour chaque classe étudiée (on assimile fertilité pollinique et pourcentage de grains de pollen pleins).

Les figures 1 à 5 représentent la répartition du taux de fertilité au sein de chaque classe. Ces diagrammes sont superposés dans les figures 2bis et 5bis pour permettre leur comparaison.

On observe une stérilité pollinique étonnament fonte chez le parent 521 (50%): cela peut être dû à une forte sensibilité à la chaleur (il a très peu plu pendant cet hivernage), ou au manque de lumière (sous la serre), ou encore à un comptage trop sévère.

Cette stérilité est amplifiée dans les descendances jusqu'à 75% dans la F1 et dans la descendance du BC 521/108//521 et seulement jusqu'à 60% dans la F2 et la descendance du BC 521/108//108; cependant la répartition est très différente entre les descendances de la F2 et du BC 521/108//108 puiqu'on trouve un chi-2 de 111 donc fortement significatif: il semble qu'on ait une restauration de la fertilité plus rapide dans le BC 521/108//108.

Les effectifs sont trop petits pour pouvoir analyser la répartition mais il apparaît tout

<u>TABLEAU 5:</u> Comparaison de la ségrégation observée avec la ségrégation correspondant à l'hypothèse d'une panmixie de la descendance F2

LOCUS	GENOTYPE des F2	DISTRIBUTION ATTENDUE	DISTRIBUTION OBSERVEE	CHI-2	DL	Signification
PGI-B	B1B1 B1B2 B2B2	21,15 64,6 49,25	24 59 52	1,02	2	NS
POX-B	B3B3 B3B4 B4B4	53 50	8 65 44	6,03	2	**

TABLEAU 6a: Relations entre loci dans la descendance du back-cross 521/108//108

	CAT-A	PGD-A	PGI-A	PGI-B	POX-B		
CAT-A		I	I	I	. I		
PGD-A		.*	I	I	I		
PGI-A	. •			D**	I		·
PGI-B	·				I	•••	

TABLEAU 6b: Relations entre loci dans la descendance F2 521/108

	CAT-A	EST-E	G ОТ-В	PGD-A	PGI-A	PGI-B	POX-B
CAT-A		I	I	I	I	I	I
EST-E			I	Ι.	I	D***	I
GOT-B				D**	I	D***	I .
PGD-A					I	I	I
PGI-A		:				· I	I
PGI-B							D**

I : indépendance
D* : liaison significative au seuil de 5%
D** : liaison significative au seuil de 1%
D***: liaison significative au seuil de 0,1%

TABLEAU 7: Fertilités polliniques moyennes

CLASSE:	521	F1	BC 521/108//108	BC 521/108//521	F2
Fertilite moyenne:	50,7%	25,9%	40,8%	22,3%	35,5%
Erreur-type:	7,5%	3,4%	3,7%	2,7%	2,8%
Cefficient de variation:	42	31,9	59,9	40,2	62,1

TABLEAU 8: Caractérisation des tallages mesurés pour chaque classe d'individus

108	521	F1 521/108	BC 521/108//108
7,9	5,6	6,9	8,1
0,7	0,3	0,6	0,2
23,9	13,2	23,8	24,2
	7,9	7,9 5,6 0,7 0,3	7,9 5,6 6,9 0,7 0,3 0,6

TABLEAU 9: Délais moyens d'épiaison (en jours)

CLASSE:	521	F1	BC 521/108//108	BC 521/108//521	F2
Délai moyen d'épiaison:	63,6	74,8	74,6	64,9	72,7
Erreur-type:	0,5	1,1	0,7	1,3	0,6
Coefficient de variation:	2	4,6	6,5	6,7	6,4

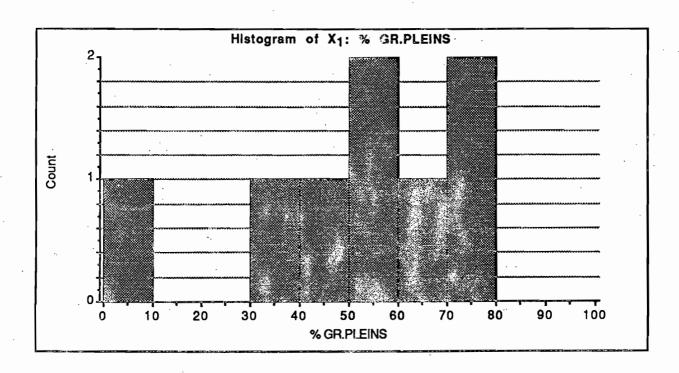
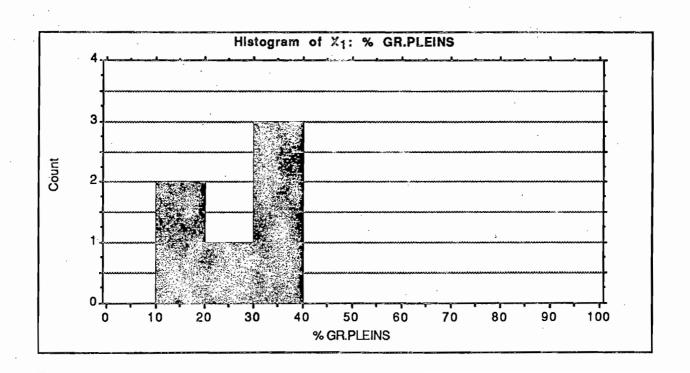
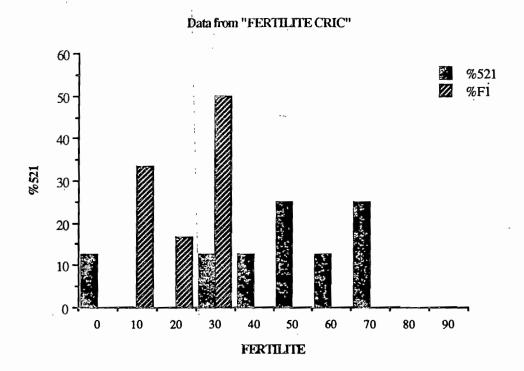




FIGURE 2: REPARTITION DE LA FERTILITE POLLINIQUE DES F1

FIGURE 2bis: Fertilités polliniques comparées des 521 et des F1

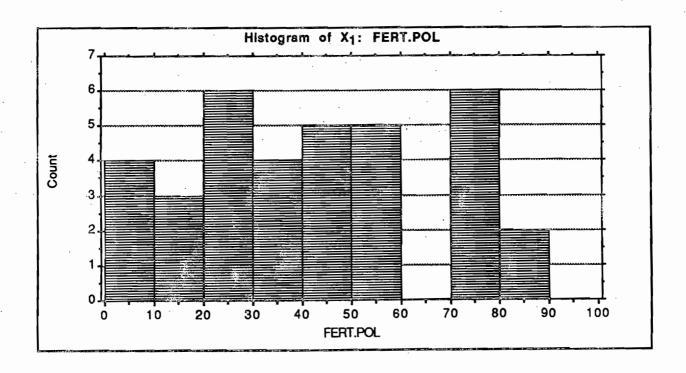
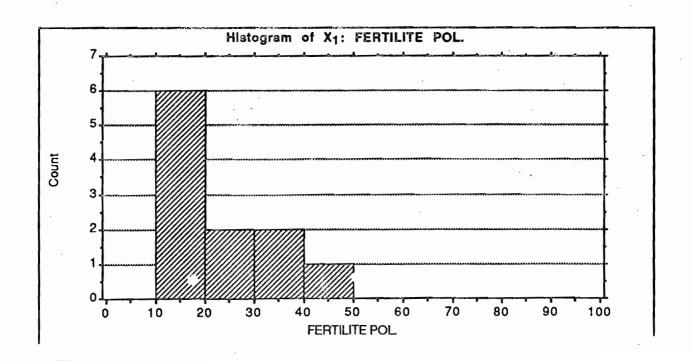



FIGURE 4: REPARTITION DE LA FERTILITE POLLINIQUE DES BC 521

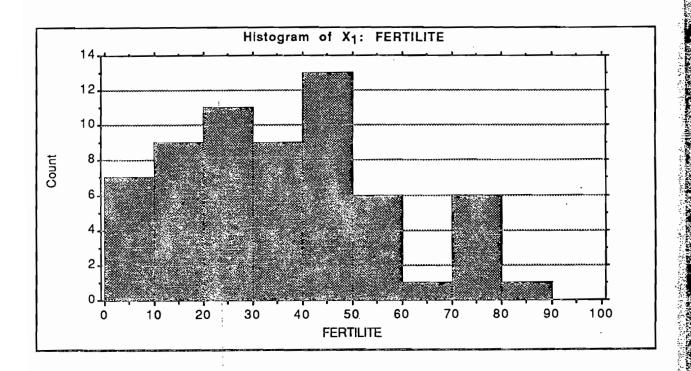
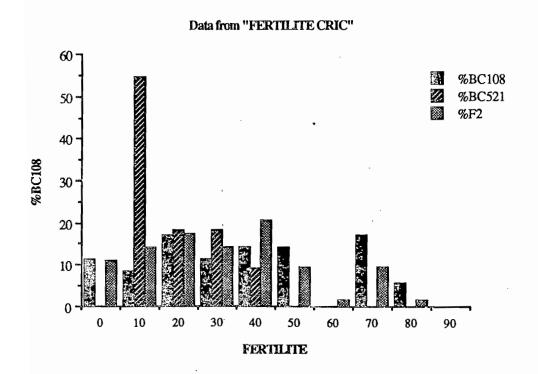



FIGURE 5bis: Fertilités polliniques comparées des BC108, des BC 521 et des F2

de même une plus grande hétérogénéité dans les fertilités de la F2 et de la descendance du BC 521/108//108 que dans celles de la F1, de la descendance du BC 521/108//521 et des parents 521.

3. ANALYSE DES CARACTERES MORPHOLOGIQUES:

a. tallage:

Le tallage au 35° jour ne présentant pas encore une hétérogénéité suffisante il n'est donné qu'à titre indicatif en annexe.

Le tableau 8 présente la moyenne et l'écart-type des tallages mesurés dans les différents groupes d'individus (parents 108 et 521, hybrides 521/108 et descendance du BC 521/108//108); la répartition au sein de chaque groupe apparait sur les figures 6 à 9. Les figures 8 bis et 9 bis permettent de comparer entre elles ces répartitions.

Dans le BC 521/08//108 où on considère 100 individus, la répartition observée est clairement une répartition gaussienne; pour les parents et la F1 l'effectif est trop faible (8 individus) pour analyser la répartition.

Cependant des tendances générales se dégagent nettement: les parents 108 tallent plus que les parents 521, la F1 présentant un tallage intermédiaire; on retrouve un tallage de type 108 dans le BC108, avec certaines plantes transgressives qui tallent beaucoup plus que les parents.

b. delai d'épiaison:

Les délais moyens en jours pour chaque classe d'individus apparaissent sur le tableau 9.

Les figures 10 à 14 présentent la répartition de ces délais jusqu'au 80° jour (25 Août) au sein de chaque classe d'individus. Les différentes répartitions sont superposées dans les figures 11 bis et 14 bis.

On voit apparaître deux tendances nettement différentes: les parents 521 ont une épiaison précoce et groupée, tendance que l'on retrouve dans la descendance du BC 521/108//521 malgré des résultats plus hétérogènes. Par contre l'épiaison est plus étalée dans le temps et retardée d'environ 10 jours dans la F1, la F2, et la descendance du BC 521/108//108.

Les répartitions de la F2 et du BC 521/108//108 sont très différentes puique le chi-2 obtenu est très significatif (162,2), il apparait donc que dans le BC 521/108//108 on retrouve la tendance des parents 108 avec un délai d'épiaison plus long.

4. RELATIONS ENTRE CARACTERES ET MARQUEURS ENZYMATIQUES

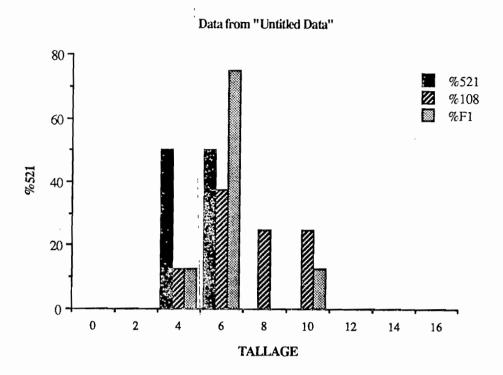
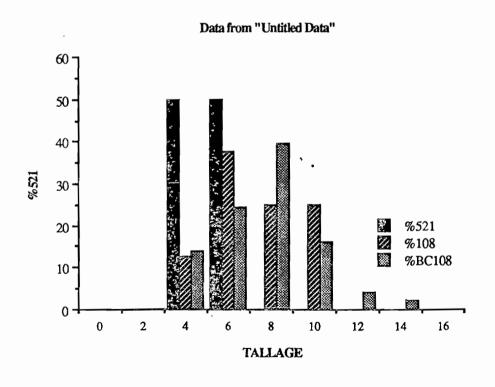



FIGURE 9bis: Tallages au 51° jour comparé des parents et des BC 108

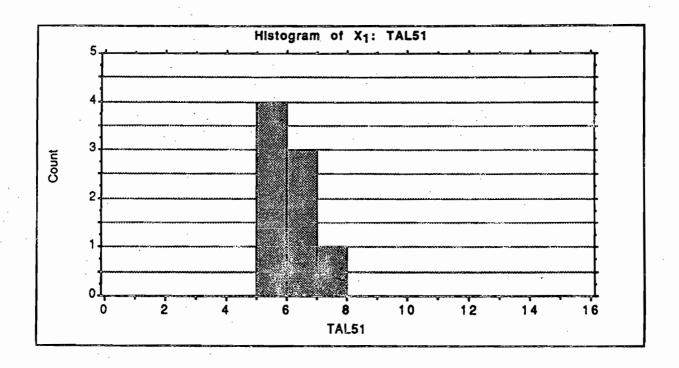


FIGURE 7: REPARTITION DU TALLAGE AU 51° JOUR DES PARENTS 108

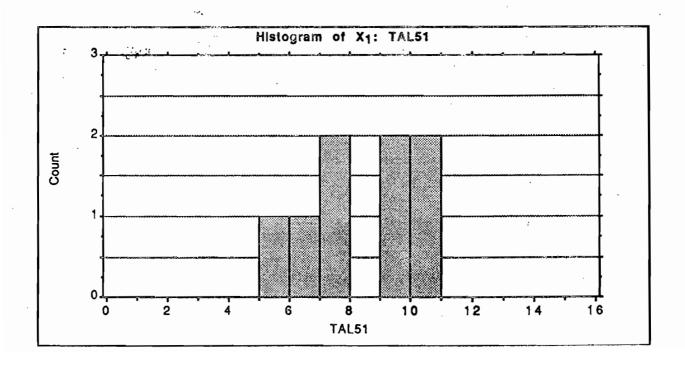


FIGURE 8: REPARTITION DU TALLAGE AU 51° JOUR DES F1

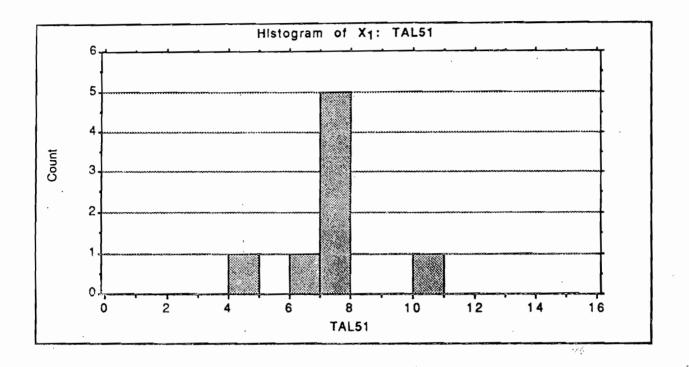
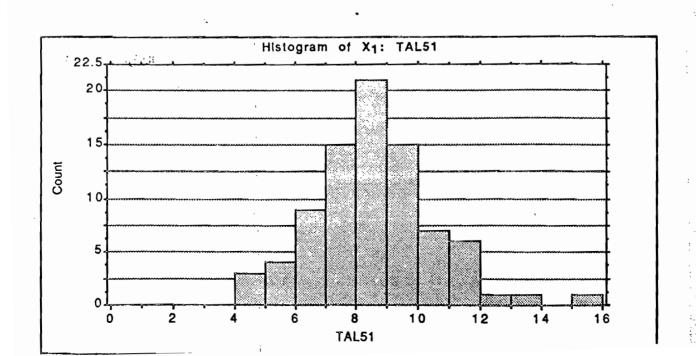



FIGURE 9: REPARTITION DU TALLAGE AU 51° JOUR DES BC108



FIGURE 11: REPARTITION DE L'EPIAISON DES F1

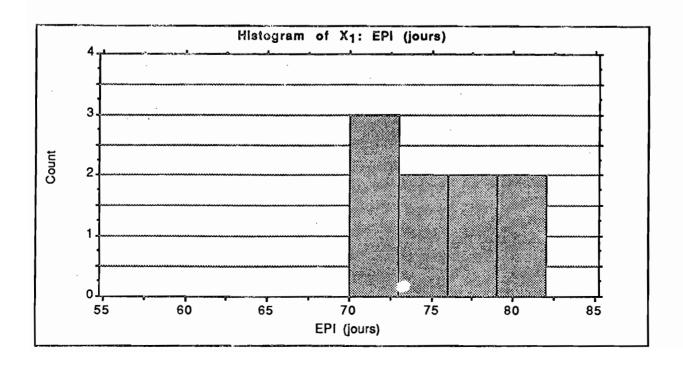
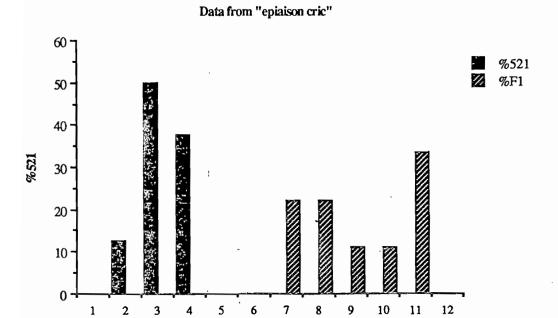



FIGURE 11bis: Epiaisons comparées des 521 et des F1

Row Numbers

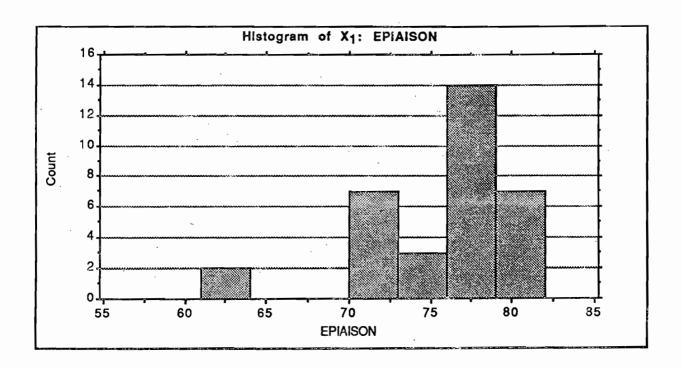



FIGURE 13: REPARTITION DE L'EPIAISON DES BC 521

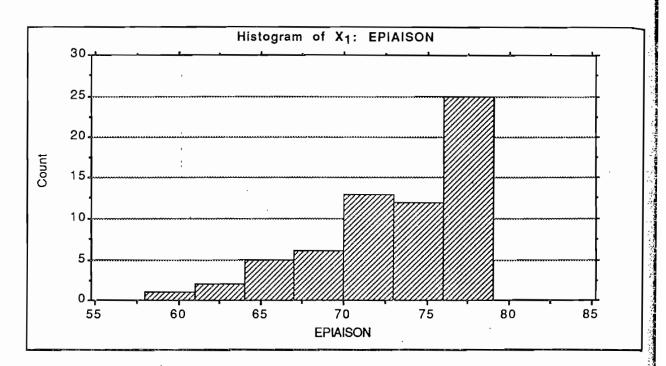
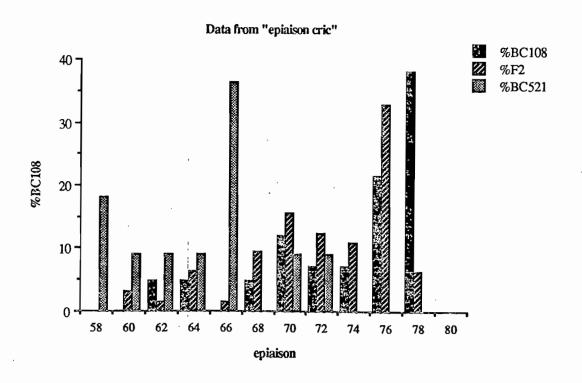



FIGURE 14bis: Epiaisons comparées des BC 108, des BC 521 et des F2

Le tableau 10 donne les résultats des analyses de variance de la fertilité par rapport à chaque marqueur enzymatique étudié dans la descendance du BC 521/108//108 et dans la F2.

Seul le locus GOT-B semble présenter une liaison avec le caractère de fertilité pollinique. On a indiqué dans le tableau 10 bis les moyennes de la fertilité pollinique pour chaque génotype de ce locus.

Des analyses de variance ont été effectuées entre le tallage et les marqueurs CAT-A, PGD-A, PGI-A, PGI-B, POX-B. Elles sont fournies en annexe. Les résultats de ces tests sont résumés dans le tableau 11.

Au seuil de 5% on ne peut conclure à aucune liaison d'un des locus étudié avec un locus influant sur le tallage. Cependant au seuil de 10% trois tests deviennent significatifs: TAL/CAT-A, TAL/PGI-A, TAL/POX-B.

On a résumé dans le tableau 12 les résultats des analyses de variance entre le délai d'épiaison et chaque marqueur enzymatique pour chaque classe d'individus.

On voit qu'il existe une liaison fortement significative entre le marqueur PGI-B et le délai d'épiaison. Le tableau 12 bis détaille les moyennes de délais d'épiaison pour chaque génotype du locus PGI-B; la comparaison des classes deux à deux fait apparaître deux classes de génotypes: B1B1 et B1B2 ont un délai moyen d'épiaison de 70 jours alors que B2B2 épie au bout de 76 jours.

Remarque: On pourrait alors faire une objection: l'épiaison étant liée à un des marqueurs enzymatiques, l'échantillon traité n'est pas représentatif de la population puisque les individus à délai d'épiaison supérieur à 80 jours n'apparaissent pas. Il est cependant légitime de faire des analyses de variance, même sur cet échantillon incomplet, car si un marqueur influe sur l'épiaison alors cette influence apparaîtra aussi sur les individus les plus précoces; réciproquement s'il n'y a pas d'influence il est équivalent de considérer les plantes les plus précoces ou la totalité des individus.

TABLEAU 10: Résultats des analyses de variance pour la fertilité pollinique

	CAT-A	EST-E	GOT-B	PGD-A	PGI-A	PGI-B	POX-B	
fertilite pollinique dans BC 521/108//108	NS	-	-	NS	NS	NS	NS	 ·
fertilite pollinique dans la F2	NS	NS	*	NS	NS	NS	NS	

<u>TABLEAU 8 bis</u>: comparaison des moyennes des fertilités polliniques pour chaque génotype du locus GOT-B dans la F2

GENOTYPE (locus GOT-B)	FERTILITE POLLINIQUE MOYENNE
B0B0	27%
B0B1 ou B1B1	39%
	·

TABLEAU 11: Résultats des analyses de variance pour le tallage

	CAT-A	PGD-A	PGI-A	PGI-B	POX-B	
TALLAGE test au seuil de 5%	NS	NS	NS	NS	NS	
TALLAGE test au seuil de 10%	*	NS	*	NS	*	

NS: test non significatif
*: test significatif

TABLEAU 12: Résultats des analyses de variance pour les délais d'épiaison

	CAT-A	EST-E	GOT-B	PGD-A	PGI-A	PGI-B	РОХ-В
épiaison dans BC 521/108//108	NS	-	-	NS	NS	**	NS
épiaison dans la F2	NS	NS	NS	NS	NS	***	NS

TABLEAU 12 bis: comparaison des moyennes de délai d'épiaison pour chaque génotype au locul PGI-B dans la F2 et dans la descendance du BC 521/108//108

GENOTYPE (locus PGI-B)	EPIAISON MOYENNE des F2	EPIAISON MOYENNE des BC 521/108//108
B1B1	69j	
B1B2	71j	72 j
B2B2	76j	77j
		(1) - 분

C. DISCUSSION

1. ANALYSE DES SEGREGATIONS ENZYMATIQUES MONOLOCUS:

Le tableau 13 récapitule les résultats des tests de conformité des ségrégations observées pour chaque enzyme et chaque descendance avec les ségrégations mendeliennes théoriques. On distingue deux types de distorsions : pour les loci EST-E et PGI-B la distorsion apparait dans les descendances des rétrocroisements et dans la F2; pour le locus POX-B la distorsion n'apparait que dans la descendance F2.

Nous allons donc traiter ces deux cas séparément.

1^{er}cas: la distorsion sur les loci EST-E et PGI-B.

Ces deux loci étant très liés (ils sont situés à 14 cM l'un de l'autre sur le chromosome 3 d'après GLAZMANN 1982), nous ne traiterons que le cas de PGI-B, les données sur EST-E étant moins complètes du fait de la présence d'un allèle nul.

La distorsion peut provenir des gamètes femelles des gamètes mâles ou encore des deux types de gamètes. On remarque qu' une distorsion apparait dans les descendances des rétrocroisements; or dans ces descendances on observe seulement la ségrégation des gamètes femelles (les plantes fournissant les gamètes mâles étant homozygotes). L'hypothèse la plus simple pour expliquer ce résultat est donc celle d'une sélection sur les gamètes femelles des hybrides F1 521/108.

Interessons-nous alors à la F2: en supposant que la même situation existe pour les gamètes femelles que dans le BC 521/108//108, la F2 permet de calculer les fréquences des allèles issus des gamètes mâles.

Tableau de croisement des gamètes F1:

		gamètes mâles F1:	-
N.		B1 p'1	B2 p'2
gamètes	B1	B1B1	B1B2
femelles F1	p1=0,274	p1p'1 ((p1p'2+p2p'1)/2
	B2	B2B1	B2B2
	p2=0,726	(p1p'2+p2p'1)/2	2 p2γ'2

<u>TABLEAU 13:</u> Tableau récapitulatif des résultats des tests de conformité des ségrégations rendéliennes localisation des différents marqueurs

	CAT-A	EST-E	GOT-B	PGD-A	PGI-A	PGI-B	POX-B
F2	NS	***	NS	NS	ŅS	***	***
BC 521/108//108	NS	-	-	NS	NS	***	NS
BC 521/108//521	NS	***	NS	NS	NS	**	NS ·
localisation chromosomique	ch.3	ch.3	ch.3	ch.11	ch.4	ch.3	inconnue (pas sur ch.3)

La résolution du système:

$$p"1=0,396 = p1p'1+ (p1p'2+p2p'1)/2$$

 $p"2=0,604 = p2p'2 + (p1p'2+p2p'1)/2$ donne:
 $p"1=0,482$
 $p"2=0,518$
 $erreur-type=0,04$.

Ces résultats sont bien conformes à ceux attendus sous l'hypothèse d'une distorsion portant uniquement sur les gamètes femelles.

Il faut maintenant tenter d'interprêter cette distorsion dans la ségrégation des gamètes femelles. Remarquons que le déséquilibre va toujours dans le sens d'un excès de l'allèle du parent 108. Deux types de modèles sont alors possibles:

<u>ler modèle</u>: MISUSHIMA et KONDO (1960) ont montré que des distorsions dans les ségrégations alléliques pouvaient intervenir par suite de duplications de gènes ou de chromosomes; un tel phénomène pourrait expliquer les résultats obtenus si la portion chromosomique portant l'allèle 108 se duplique plus facilement que la portion chromosomique portant l'allèle 521.

<u>2ème modèle</u>: Imaginons qu'une fraction des gamètes portant l'allèle 521 soit stérile; cela entraînerait la ségrégation gamétique suivante:

	fréquence initiale	% de stérilité	fréquence finale
gamètes portant l'allèle 108	0,5	0	$\frac{0.5}{0.5+0.5(1-p)}$ >0.5
gamètes portant l'allèle 521	0,5	p	0,5(1-p) <0,5 0,5+0,5(1-p)

D'après les fréquences gamétiques obtenues pour chaque locus on peut calculer le pourcentage de stérilité qui correspondrait aux résultats trouvés:

au locus PGI-B:
$$0.726 = 0.5/(0.5 + 0.5(1-p))$$

 $p = 62\%$ (erreur-type de 4,2%)
au locus EST-E: $0.69 = 0.5/(0.5 + 0.5(1-p))$

p = 55% (erreur-type de 4,3%)

Un pourcentage de stérilité gamétique de 60 % sur les gamètes portant les allèles provenant du parent 521 aux loci PGI-B et EST-E permettrait donc d'expliquer les résultats obtenus. Or l'existence de gènes de stérilité liés aux marqueurs du chromosome 3 (auxquels appartiennent PGI-B et EST-E) a été montrée par OKA(1953). Ces gènes sont appelés S1/s1 et S2/s2, les gamètes s1s2 étant létaux et les gamètes S1S2 partiellement stériles.

La distorsion de ségrégation observée aux deux loci étudiés peut alors s'expliquer par le modèle suivant:

GENOTYPES PARENTAUX: 108. S1s2 allèle 108 521. S1S2 allèle 521

S1s2 allèle 108 S1S2 allèle 521

GENOTYPE F1: S1 s2 allèle 108
S1 S2 allèle 521

GAMETES en F1: S1 s2 allèle 108 S1 S2 allèle 521 fertiles 60 % de stérilité

Les conventions utilisées pour l'écriture des génotypes sont les conventions habituelles: si A et B sont indépendants le génotype s'écrit A B

A B

s'ils sont liés: AB

Pour simplifier les calculs nous supposons, à chaque fois que nous envisageons une liaison entre deux gènes, que cette liaison est suffisamment forte pour que les recombinaisons soient négligeables.

Selon ce modèle, la distorsion de ségrégation devrait exister aussi bien sur les gamètes mâles que sur les gamètes femelles; mais il est possible que l'expression des gènes S diffère entre gamètes mâles et femelles.

2ème cas: la distorsion sur le locus POX-B

La ségrégation est conforme aux modèles mendeliens dans les descendances des rétrocroisements: il n'y a donc pas de distorsion sur la ségrégation des gamètes femelles. L'hypothèse la plus simple pour expliquer le déséquilibre obtenu en F2 est

alors celle d'une sélection portant sur les gamètes mâles.

On peut de la même façon que précédemment calculer les fréquences des gamètes mâles de la F1 à partir des fréquences alléliques du rétrocroisement(qui sont les fréquences des gamètes femelles de la F1) et des fréquences alléliques de la F2, et regarder si les valeurs obtenues sont compatibles avec l'hypothèse faire.

Tableau de croisement des gamètes F1:

		gamètes mâles F1 B3 p'3	B4 p'4	
gamètes femelles Fi	B3	B3B3	B3B4	
	p3=0,5	p3p'3	(p3p'4+p'3p4)/2	
	B4	B4B3	B4B4	
	p4=0,5	(p3p'4+p'3p4)/2	p4p'4	

La résolution du système:

p''3= 0,346 =p3p'3 + (p3p'4+p'3p4)/2
p''4= 0,654 =p4p'4 + (p3p'4+p'3p4)/2 donne:

$$p'3 = 0,2$$

$$p'4 = 0,8$$

erreur-type = 0.04

L'hypothèse d'un déséquilibre causé seulement par les gamètes mâles est donc compatible avec la situation observée mais cela implique une forte distorsion au niveau de leur ségrégation; là encore deux modèles sont envisageables, sachant que les gamètes en excès sont encore les gamètes portant l'allèle du parent 108 au locus étudié:

<u>ler modèle</u>:On connait l'existence de gènes de certation appelés ga/ga⁺(NAKGHARA 1972), le pollen portant l'allèle ga⁺ étant plus compétitif que celui portant l'allèle ga. Le pollen portant l'allèle du parent 108 peut donc être favorisé si le gène POX-B est lié à un gène ga/ga⁺ selon le shéma:

ga+ allèle 108 ga allèle 521

<u>2ème modèle:</u> On peut envisager une stérilité partielle du pollen portant l'allèle du parent 521 au locus POX-B. Un phénomène de stérilité partielle du pollen des hybrides F1 intra-sativa a en effet été découvert par OKA en 1957: deux gènes indépendants s1/+1 et s2/+2 provenant de la duplication d'un

même gène interagissent, la présence simultanée des deux allèles récessifs s1 et s2 provoquant un développement anormal du grain de pollen et sa stérilité. Si POX-B est lié fotement à un de ces deux gènes, l'allèle du parent 521 étant couplé à un allèle récessif et l'allèle du parent 108 à un allèle dominant on a la situation suivante:

GENOTYPES PARENTAUX: 108: s1 +2 allèle 108 521: +1 s2 allèle 521

s1 +2 allèle 108 +1 s2 allèle 521

GENOTYPE F1:

s1 +2 allèle 108 +1 s2 allèle 521

GAMETES en F1:

25%: s1 +2 allèle108

25%: s1 s2 allèle 521

stérili**té**

25%: +1 +2 allèle 108

25%: +1 s2 allèle 521

FREQUENCES GAMETIOUES

FINALES en F1:

allèle 108:

allèle 521:

p4 = 0.5/(0.5+0.25) = 0.67

p3 = 0.25/(0.5+0.25) = 0.33

erreur-type = 0.04

le tableau suivant permet de comparer la situation réelle et la situation attendue d'après le modèle proposé:

	fréquences gamétiques observées en F1	erreur type	fréquences gamétiques attendues en F1 selon le modèle 2	erreur type
B4 allèle 108	0,8	0,04	0,67	0,04
B3 allèle 521	0,2		0,33	

Le modèle proposé n'est donc pas tout à fait suffisant pour expliquer la distorsion observée; celle-ci étant très forte, il n'est pas exclu qu'elle soit en fait dûe à une action combinée des deux phénomènes: la stérilité pollinique en F1 engendrant une distorsion de ségrégation, tandis que la liaison du marqueur à des gènes de certation entraîne une plus grande compétitivité des gamètes mâles portant l'allèle 108.

D'autre part les tests ont montré que les génotypes hétérozygotes au locus POX-B sont privilégiés; or il ne peut s'agir d'un phénomène d'autoincompatibilité, courant chez les végétaux, puisque le Riz présente un fort taux d'autofécondation. Il faut envisager ici une mortalité des homozygotes pour expliquer cet excès d'hétérozygotes.

Or OKA a mis en évidence en 1957 un phénomène de faible viabilité des individus de la F2 provenant d'un croisement intra-sativa dû à l'existence de deux gènes dupliqués A1/a1 et A2/a2 pour lesquels deux allèles dominants sont nécessaires pour assurer le développement de la plante.

Exemple: génotypes viables: A1 a2, A1 A2, A1 a2 ...
A1 a2 A1 A2 a1 A2

génotypes non viables: A1 a2, a1 a2 ... a1 a2 a1 a2

Supposons que POX-B soit lié fortement à un de ces gènes, l'allèle du parent 108 étant conjugué à un allèle récessif et l'allèle du parent 521 à un allèle dominant; on aurait alors la situation suivante:

GENOTYPES PARENTAUX: 108. A1 a2 allèle 108 521. a1 A2 allèle 521

A1 a2 allèle 108 a1 A2 allèle 521

GENOTYPE F1: <u>a1 A2 allèle 521</u> A1 a2 allèle 108

GAMETES en F1: 25%: a1 A2 allèle 521 25%: a1 a2 allèle 108

25%: A1 A2 allèle 521 25%: A1 a2 allèle 108

VIABILITE EN F2: homozygotes 521: 100%

homozygotes 108: 33% hétérozygotes: 75%

(On considère evidemment l'homozygotie et l'hétérozygotie pour le locus POX-B)

Ce modèle explique donc l'avantage des hétérozygotes sur les homozygotes 108, l'avantage qu'ils ont sur les homozygotes 521 pouvant s'expliquer par le phénomène de stérilité pollinique lié à l'allèle du parent 521 vu précédemment.

2. ANALYSE DES RELATIONS ENTRE LOCI:

Deux des liaisons trouvées sont conformes aux résultats connus sur sativa puisque la liaison entre GOT-B et PGI-B a été démontrée par GHESQUIERE (1981): les deux gènes sont sur le chromosome 3 à une distance de 31 cM; la liaison entre EST-E et PGI-B a été prouvée par GLAZMANN (1982), les deux gènes sont à 14 cM de distance.

Mais pour les trois autres couples GOT-B/PGI-B, PGI-A/PGI-B, POX-B/PGI-B les gèes sont considérés comme indépendants génétiquement. On peut expliquer le résultat obtenu par un phénomène d'élimination des gamètes correspondant à une recombinaison entre les deux loci considérés pou chaque couple, ce qui engendrerait un excès de gamètes parentaux par rapport aux gamètes recombinés et par là même une pseudo-liaison génétique. On peut résumer ce phénomène dans le shéma suivant:

GAMETES EN F1	FREQUENCES INITIALES	% D' ELIMINA	ATION FREQUENCES FINALES
gamètes parentaux:	0,5	0	0,5/(0,5+0,5(1-P))
gamètes recombinés:	0,5	p	0,5(1-p)/(0,5+0,5(1-p))

Cette hypothèse est tout à fait cohérente pour le couple POX-B/PGI-B avec le modèle de stérilité partielle du pollen F1 qui a été proposé. En effet on a postulé une liaison entre POX-B et le gène s2/+2; si maintenant il existe une liaison entre POX-B et le gène s1/+1, on a la situation suivante en F1:

GENOTYPES PARENTAUX: 108. PGI-B2 s1 +2 POX-B4 PGI-B2 s1 +2 POX-B4

> 521: PGI-B1 +1 s2 POX-B3 PGI-B1 +1 s2 POX-B3

GENOTYPE F1: PGI-B2 s1 +2_POX-B4 s2 POX-B3 PGI-B1 +1

RECOMBINES GAMETES F1: PARENTAUX

> PGI-B2 s1 +2 POX-B4 PGI-B2 s1 s2 POX-B3 létaux

> PGI-B1 +1 +2 POX-B4 PGI-B1 +1 s2 POX-B3

Ce modèle implique donc un pourcentage d'élimination des gamètes recombinés p = 50%, ce qui donnerait en situation finale pour les gamètes mâles 33% de recombinés et 67% de parentaux tandis que les gamètes femelles gardent une répartition 50:50.

On calcule les effectifs attendus pour les génotypes recombinés en partant de ces fréquences gamétiques et on les compare aux effectifs observés réellement:

GENOTYPE	EFFECTIF OBSERVE	EFFECTIF PREVU par le MODELE
PGI-B1 POX-B4	7	4
PGI-B2 POX-B3	<u>1</u>	4

Les effectifs attendus et les effectifs observés sont de même ordre de grandeur, ce modèle est donc acceptable.

3. FERTILITE POLLINIQUE

Les fertilités polliniques des parents 108 seraient nécessaires ici pour interprêter ce qui se passe: l'augmentation de la stérilité pollinique dans les descendances peut en effet soit provenir du parent 108, qui serait encore plus stérile que le parent 521 ou plus sensible à certains facteurs externes, soit provenir d'un phénomène de stérilité pollinique en F1. Cette seconde hypothèse est tout à fait probable si l'on se réfère au modèle de stérilité pollinique partielle du pollen F1 faisant intervenir les gènes s1/+1 et s2/+2 qui a été proposé pour expliquer la distorsion de ségrégation au locus POX-B.

4. CARACTERES MORPHOLOGIQUES

Sans connaître exactement le délai d'épiaison des parents 108, on sait que celui-ci est supérieur à 80 jours; tallage et délai d'épiaison présentent donc des situtions semblables: les deux parents présentent des performances très différentes pour le caractère étudié, les hybrides ont un statut intermédiaire(sans qu'on puisse remarquer de phénomène d'hétérosis), les descendances des BC 521/108//108 et 521/108//521 récupèrent respectivement les tendances des parents 108 et 521, avec apparition de certaines plantes transgressives (fort tallage ou épiaison très précoce). Ces deux caractères sont donc vraisemblablement soumis à

l'influence d'un ou plusieurs gènes présentant des allèles différents chez les deux parents.

L'hétérogénéité du tallage des F1 par rapport à celui des parents peut s'expliquer par une plus grande sensibilité à l'environnement, phénomène courant chez des hybrides.

5.LIAISONS ENTRE LES CARACTERES ET LES MARQUEURS ENZYMATIQUES ETUDIES (phénomène déja noté par PHAM (1984) sur d'autres descendances)

Le marqueur PGI-B est fortement lié à un gène influant sur le délai d'épiaison; les comparaisons de moyennes montrent que l'allèle B1 est lié à une épiaison plus précoce que l'allèle B2, les individus hétérozygotes pour ce locus présentant la même épiaison que les homozygotes B1B1.

De façon moins significative le marqueur GOT-B est lié à un gène influant sur la fertilité pollinique; la comparaison des moyennes précise que l'allèle B1 est lié à une fertilité pollinique plus grande que l'allèle B0.

Pour le tallage, les analyses de variances n'ayant pas été significatives, on ne peut conclure à une liaison entre l'un des marqueurs étudiés et un gène codant pour le tallage, mais le fait que trois tests deviennent significatifs lorsqu'on augmente le seuil de signification de 5% indique qu'il n'est pas exclu que les marqueurs CAT-A, PGI-A, POX-B influent sur le tallage (BOUGEROL (1987) avait noté une influence de CAT-A et PGI-A sur le tallage). Il faudrait pour le vérifier recommencer la manipulation à une plus grande échelle, ce qui augmenterait la puissance des tests. Si de telles liaisons existent, cela signifierait que le tallage est au moins sous l'influence de trois "loci de caractères quantitatifs" car CAT-A, PGI-A et POX-B sont génétiquement indépendants deux à deux.

CONCLUSION

DECOURAGEMENT N'EST PAS IVOIRIEN

L'objectif de cette étude était d'observer les descendances issues de croisements entre deux sous-espèces très éloignées de *O.sativa*. Ces sous-espèces présentent en effet des caractéristiques différentes et complémentaires qu'il serait intéressant de combiner chez une même plante.

Quatre types d'observations ont pu être faits:

- de nombreuses barrières reproductives (dues la plupart du temps à des gènes gamétophytiques) existent entre les sous-espèces *indica* et *japonica*, ce qui engendre une forte stérilité dans toutes les descendances étudiées. Il semble cependant que cette stérilité diminue dans la F2 et dans le rétrocroisement par le parent *indica*..
 - la transmission des caractères parentaux est en général additive.
- des distorsions de ségrégations apparaissent pour trois marqueurs enzymatiques, entrainant une perte des informations venant du parent japonica.
- deux marqueurs enzymatiques de caractères morphologiques ont pu être mis en évidence.

Ainsi les recombinaisons entre génomes éloignés intra sativa sont possibles mais on se heurte à des problèmes de stérilité et les résultats obtenus confirment qu'il existe un effet mutagène de l'état hybride: il faudrait donc imaginer des shémas de croisement permettant d'une part de contourner les barrières reproductives pour obtenir des plantes suffisamment fertiles, d'autre part de limiter les pertes d'information causées par l'état hybride.

REFERENCES BIBLIOGRAPHIQUES

BEZANCON G, SECOND G (1984)

"Les Riz" in "Gestion des ressources génétiques des plantes cultivées." Tome 1 (PERNES J, Ed ACCT)

BOUGEROL B (1987)

Rapport de stage de fin d'études d'ingéniorat.(ORSTOM)

DE DATTA, SURAJIT K (1981)

Principles and practices of Rice Production.

D'HAINAUT L (1975)

Concepts et méthodes de la statistique. Nathan.

PASTEUR N et al (1987)

Manuel technique de génétique par électrophorèse des protéïnes.

PHAM JL (1984)

Hybridations intraspécifiques chez *Oryza sativa* L.: étude de quelques hybrides F1 et descendances F2. Rapport d'élève ORSTOM.

PHAM JL (1988)

Isozymic markers for plant height and spikelet fertility in Rice.

Accepté dans Rice Genetics Newsletter.

SECOND G (1984)

Relations évolutives chez le genre ORYZA et processus de domestication des Riz.

Collection Etudes et Thèses. Editions de l'ORSTOM.

SECOND G,TROUSLOT P (1980)

Electrophorèse d'enzymes de Riz (ORYZA sp.). Travaux et documents de l'ORSTOM.

SOKAL R, ROHLF F J (1969)

Biometry: the principle and practice of statistics in biological research.

Ed Freeman.

Synthèse in:

BOUGEROL B (1987)

REVUE BIBLIOGRAPHIQUE: Les croisements entre espèces ou sous-espèces du genre *Oryza* possédant le génome A (groupe *Sativa*):

des travaux suivants:

CLEMENT G, POISSON C (1986)

Les problèmes de la stérilité dans les croisements indica par japonica pour l'amélioration du riz (O.sativa L.) La recherche de la compatibilité hybride Agronomie tropicale 41-1: 27-36

MIZUSHIMA U, KONDO A (1960)

Fundamental studies on rice breeding through hybridization between japanese and foreign varieties. II. Structural difference of chromosomes between a japanese and an indian variety proved by anomalous mode of segregation in apiculus anthocyanin pigmentation in their hybrid.

Japan . J. Breed. 10: 1-9

NAKAGAHRA M (1972)

Genetic mechanism on the distorted segregation of marker genes belonging to the eleventh linkage group in cultivated rice.

Japan. J. Breed. 22: 232-238

NAKAGAHRA M, OMURA T, IWATA N (1972)

Gametophyte genes and their loci on the eleventh linkage group of cultivated rice.

Japan. J. Breed.22: 305-312

NAKAGAHRA M, OMURA T, IWATA N (1974)

New certation genes on the first linkage group found in inter-subspecific hybridization of cultivated rice. J.Fac.Agr., Kyushu Univ. 18: 157-167

OKA HI (1953)

Gene analysis of intervarietal hybrid sterility and certation due to certain recombinaisons of gamete-development in rice.

Japan. J. Breed. 2: 217-224

OKA HI (1957)

Complementary lethal genes in rice. Japan. J. Genetics 37: 24-35

ANNEXE 1: Résultats supplémentaires obtenus pour un huitième marqueur enzymatique, les phosphatases acides.

La ségrégation des phosphatases acides (PAC) s'observe par électrophorèse selon les mêmes méthodes que celles utilisées pour les sept marqueurs étudiés précedemment mais l'organe échantillonné est cette fois-ci la feuille paniculaire. Cette étude n'a donc pu être faite qu'après l'épiaison, c'est à dire dans les tout derniers jours du stage, et elle reste incomplète, une partie seulement des plantes ayant épié avant le 27 Août: on l'a donc plaçé en annexe à titre d'information, l'analyse définitive ne pourra être faite qu'après réception des résultats des dernières manipulations faites en ce moment au laboratoire d'Abidjan.

Materiel et methodes:

On suit exactement le même protocole et on fait les mêmes analyses que pour les autres marqueurs; trois points cependant sont particuliers :

- Deux loci très liés sont en fait étudiés pour ce marqueur: les loci Fa (allèles Fa et 0) et AMC (allèles +9 et -4).

Les génotypes parentaux à ces loci sont (Fa -4) pour le parent 108 et (0 +9) pour le parent 521.

- Le système d'électrophorèse utilisé est un peu modifié:

TAMPON	ORGANE	PAPIER	MIGR	ATION
Borate pH 8,0 (système C)	ECHANTILLONNE feuille paniculaire + morceau de gaine	WHATMAN n° 1	voltage 11	durée 5 h

⁻ Le principe de coloration est le suivant:

$$\alpha$$
-Naphtyl Phosphate ----> α -Naphtol + Phosphate PAC

α-Naphtol + Fast Blue BB ----> précipité brun

Résultats:

a. Ségrégations monolocus:

Le tableau a présente les résultats des tests de conformité aux ségrégations mendeliennes. Il apparait une distorsion de ségrégation dans la F2, mais pas dans les rétrocroisements.

Le tableau b donne les fréquences alléliques calculées pour la F2, on voit qu'il y a un excès significatif de l'allèle du parent 108.

Le résultat du test de panmixie dans la F2 est présenté dans le tableau c, il montre que l'association des gamètes au locus PAC se fait au hasard.

b. Relations avec les autres loci:

Les résultats des tableaux de contingence pour les descendances F2 et BC 521/108//108 sont résumés dans le tableau d. Apparemment on ne peut conclure à aucune liaison entre le locus PAC et les six autres loci étudiés.

DESCENDANCE	génotype	EFFECTIFS OBSERVES	EFFECTIFS THEORIQUES	TEST	SIGNIFICATION
BC 521/108//108	Fa -4 0 +9 Fa -4+9	28 0 21	24,5 0 24,5	X ² =1	NS
BC 521/108//521	Fa -4 0 +9 Fa -4+9	0 5 6	0 5,5 5,5	test binor P=0,5	nial: NS
BC 521/108//108	Fa -4 0 +9 Fa -4+9	23 4 31	14,5 14,5 29	$X^2=12,8$	6 ***

Tableau b: Calcul des fréquences alléliques

DESCENDANCE	ALLELE	EFFECTIFS OBSERVES	EFFECTIFS THEORIQUES	TEST	Fréquences alléliques observées
F2	Fa -4	38,5	29	$X^2=6,2$	0,66
	0 +9	19,5	29	*	0,34

<u>Tableau c</u>: Test de panmixie dans la F2

GENOTYPE DES F2	DISTRIBUTION ATTENDUE	DISTRIBUTION OBSERVEE	TEST	SIGNIFICATION
Fa -4 0 +9 Fa -4+9	21,35 5,66 22	23 4 31	X ² =3,4 (DL=2)	

Tableau d: Relations avec les autres loci

	CAT-A	EST-E	GOT-B	PGD-A	PGI-A	PGI-B	POX-B
PAC dans la F2	NS.	NS	NS .	NS	NS	NS	NS
PAC dans BC108	NS	-	-	NS	NS	NS	NS

Tableau e: Relations avec les caractères morphologiques

	FERTILITE POLLINIQUE	EPIAISON	TALLAGE
PAC dans la F2	NS	NS	-
PAC dans BC 108	NS	NS	

c.Relation avec les caractères

morphologiques:

Les résultats des ANOVA effectuées entre PAC et les caractères tallage, épiaison, fertilité pour les descendances F2 et BC 521/108//108 sont résumés dans le tableau e. Apparemment PAC n'est pas un marqueur d'un des caractères étudiés, aucun test n'étant significatif.

Discussion-conclusion:

On retrouve le même type de situation que pour le locus POX-B, avec des fréquences alléliques très proches (0,346 et 0,654 contre 0,34 et 0,66), on peut donc appliquer la même hypothèse d'une sélection sur les gamètes mâles.

Les modèles proposés restent:

1^{er} modèle: la liaison du locus PAC à des gènes de certation (différents de ceux liés à POX-B puique POX-B et PAC sont indépendants génétiquement).

2ème modèle: Une stérilité partielle

du pollen portant l'allèle 521.

ANNEXE 2: Organisation des bacs dans la serre

Les plantes sont codées de 01US à 291US comme suit:

- 01US à 07US: parent 108

- 08US à 15US: parent 521

- 16US à 23US: hybrides F1 521/108

- 24US à 145US: BC 521/108//108

- 146US à 156US: BC 521/108//521

- 157US à 291US: F2 521/108

Les plantes 01US à 127US sont plaçées en randomisation dans des bacs à pots de 6 litres selon le plan indiqué dans le fichier STATVIEW intitulé "PLAN BACS DE 6 LITRES" (en lisant ce fichier de gauche à droite on lit les bacs en partant du fond de la serre); les autres plantes sont rangées dans l'ordre dans deux autres bacs.

40	65	3	67
68	10	70	72
71	73	105	75
76	53	78	79
120	17	82	83
125	108	110	87
88	61	90	114
106	93	127	95
96	97	98	118
77	2	102	103
104	74	92	107
85	109	86	111
58	113	91	115
116	12	99	119
80	6	22	123
124	84	126	94

100	34	101	66
16	121	18	59
25	9	69	46
117	13	57	15
48	81	5	50
20	63	122	23
24	8	26	27
28	54	30	42
37	33	q.	35
36	32	49	39
64	41	31	43
44	45	11	47
7	38	19	51
52	100	29	55
56	14	112	4
60	89	62	21

ANNEXE 3: Composition des solutions utilisées

Le tableau 2 indique les références des principaux produits chimiques utilisés.

1°) TAMPONS DE MIGRATION

Système A - Système de BREWER (1970) légèrement modifié. Utilisé avec des gels à 14 g. d'amidon pour 100 ml de tampon.

Tampon "Gel". Histidine HCl 5 mM, NaCl 2,5 mM pH 6,0

Histidine mono HCl

1,92 g

Ajuster à pH 6,0 avec NaOH 2 N et compléter à 200 ml avec H₂0.

Tampon "Bac". Citrate de Na 0,41 M, pH 6,0

Acide citrique

NaOH en pastilles

86

g 1.800 ml

Ajuster à pa 5,0 avec NaOH concentrée et complétér à 2.000 ml avec H2C.

Système 5 - Système de BREWER (1970) légèrement modifié atalias é et des gels à 14 g. l'environ dour 100 ml de tempon.

Tampon "Sel". Histicine Hill E mM, Nail 2,5 mM pH 8,0.

Histidine HCl

1,92 g

Na El M

Ajuster à pH 8,0 avec NaOH 2N et compléter à 2.000 ml

avec H20.

Tampon "Bac". Citrate de Na 0,41 M pH 8,0

Acide citrique

NaOH en pastilles

88 g

H20 distillée

1.800 ml

Ajuster à pH 8,0 avec une solution concentrée de NaOH et compléter à 2.000 avec H20.

Remarque : Selon la qualité de l'amidon il est nècessaire d'aguster le pH du tampon "gel" pour que le mélange amidon + tampon soit au pH correct ; Dans notre cas on ajuste à 6,25 pour 6,0 et 9,3 pour 8,0.

Système C - Système de SMITHIES (1955). Utilisé avec des gels à 11 g. d'amidon pour 100 ml de tampon.

Tampon "Gel". Scrate 5,83 M ph 6,5

Acide borique

3,72 g

H₂D

1.800 ml

Ajuster à pH 8,5 avec Na OH 2N et compléter à 2.000 ml

avec H₂0.

Adide carique H_nO distillée 27,1 g 1.810 ml

Ajuster à pH 8.0, avec NaOH concentrée et complèter à $2.000~\mathrm{ml}$ avec $\mathrm{H_2O}$.

2°) SOLUTIONS DE REVELATION

1. Tampon Acétate de Na 0,05 M pH 5,0 Acétate de Na; $3H_20$ 13,6 g H_20 1.900 ml Ajuster à pH 5,0 avec HCl normal. Compléter à 2.000 m

Ajuster à pH 5,3 avec HCl normal. Compléter à 2.000 ml avec $\rm H_{\tilde{2}}0$.

Tampon Tris HCl 0,5 M pH 8,5
 Tris (Hydroxyméthyl) amino-méthane 121 g
 HLO 1.985 ml
 Ajuster sich t,6 avec mil 1/2 concentra, loroluter
à 2.000 ml avec mg0.

3. Fampon Tris+Maléate 3,2 M pH 3,3
Tris 24,2 g
Acide maléique 23,2 g
H₂O q.s.p. 1.600 ml

5. Solution Thiosulfate de Na 0,06 M Thiosulfate de Na, 5 H_2 0 1,5 g q.s.p. 1.000 ml

6. Solution Iodure de K 0,09 M
Iodure de K
1,5 g
H₂0 q.s.p. 1.000 ml

8. Solution d'Agar à 2% Peser 1 g. d'Agar-Agar dans 50 ml H₂O. Porter à ébullition tout en agitant, maintenir à 45-50°C jusqu'à l'emploi.

9. Tampon Phosphate te Na 0.1 M pH 6,5

Mélanger a et b de façon à obtenir le pH 6,5 Diluer au 1/2 avec H_2O

10. Tampon Phosphate 0,1 M pH 7,1 Solution de Phosphate 0,2 M

a) NaH₂PO₄, H₂O 27,6 g dans 1 1 H₂O

b) Na₂HPO₄, 2 H₂O 71.2 g dans 2 1 H₂O

Mélanger 300 ml de solution a + 600 ml solution b + 900 ml $\rm H_2O$

11. Tampon Malate de Na 1 M pH 6,0

a) Acide D1 malique: $26.8 \text{ g} + \text{H}_2\text{O} \text{ q.s.p.}$ 100 ml

b) Na₂ CO₃ : 21,2 g + q.s.p. 100 ml

Alouter doucement b dans a tout en agitant fortement

ANNEXE 4: Tableaux de contingences entre marqueurs enzymatiques

s	ummary Statistics	
OF:	12	
Total Chi-Square:	.316	p+.6326
G Statistic:	.975	D#.6325
Contingency Coefficient.	.082	
Cramer's V:	.082	

TABLEAU DE CONTINGENCE EST-E/POX-B DANS LA F2

Summery Statistics		
OF:	2	
Total Chi-Square:	.077	p=.9525
G Statistic:	.09	
Contingency Coeff cient:	.029	
Cramer's V	.029	

TABLEAU DE CONTINGENCE PGI-A/GOT-B DANS LA F2

Su	ummary Statistics	
DF:	2	
Total Chi-Square:	.715 p= 6995	
G Statistic:	,728	
Contingency Coefficient:	.073	
Cramer's V:	073	

TABLEAU DE CONTINGENCE PGI-B/GOT-B DANS LA F2

Si	nemary Statistics
DF	2
Total Chi Square.	17 008 p+ 0002
G Statistic	15 163
Contingency Conflicient:	335
Cramer's V:	356

TABLEAU DE CONTINGENCE CAT-A/GOT-B DANS LA F2

	ummary Statistics	
DF.	2	
Intal Chi-Square:	.124	p- 5751
G Statistic	.706	
Contingency Conflictent:	073	
Cramer's V	073	

TABLEAU DE CONTINGENCE CAT-A/PGD-A DANS LA F2

Su	immary Statistics
OF:	4
Total Chi-Square:	.495 p=.974
G Statistic:	.492
Contingency Coefficient:	.06
Cramer's V:	.043

(ABLEAU DE CONTINGENCE CAT-A/POX-B DANS LA F2

Summary Statistics		
DF:	4	
Total Chi-Square:	603	p= 1529
G Statistic;	.608	
Contingency Coefficient:	.012	
Cramer's V.	.051	

TABLEAU DE CONTINGENCE CAT/PGI-B DANS LA F2

Si	immary Statistics	
DF	4	
Tel il Chi Square	7 943 p+ 0937	
G. Staristic	7 985	
Coolingercy Coefficient	235	
Gramer's V	172	

TABLEAU DE CONTINGENCE PGD-A/PGI-A DANS LA F2

5	Summary Statistics
DF	4
Total Chi-Square,	1 893 p= 7573
G. Statistic	1 045
Contractly Confedent	117
Gramer's V	0.14

TABLEAU DE CONTINGENCE CAT-A/EST-E DANS LA FZ

	Summary Statistics
DI	12
Total Chi Squere	4 923 p= 0053
G. Sintatir	5.076
Contingent y Costs, est	100
Cramer's V	191

TABLEAU DE CONTINGENCE PGI-B'PGI-A DANS BC 108

·	of PGI-B Y1: Recode of PGI-A y Statistics
Dr.	1
Total Chi-Square	4 431 p. 0353
G Statistic	4 527
Contingency Coefficient	241
Phi	. 248
Chi-Square with continuity correction	3 392 p- 0555

TABLEAU DE CONTINGENCE PGI-B/POX-B DANS BC 108

	reade of PGI-B Y1: POX-B	
	y Sixisies	
DF:	1	
Total Chi-Square.	58 p- 4465	
G Statistic	503	
Contingency Coefficient	.009	
Phi;	.09	
Chi-Square with continuity correction		
Chi-Sauare with continuity correction	.248 pr 6186	

TABLEAU DE CONTINGENCE PGI-BIPGD-A DANS BC 108

Coded Chi-Square X1: Recode Summa	of FGI.B Ty Statistics	Y1: Recode of PGD-A
DF:	1	
Total Chi-Square	.937	pr 333
G Statistic	.935	1- 55.
Contingency Coefficient.	113	
	114	
Chi-Square with certainty correction	.405	D+ 48:4

TABLEAU DE CONTINGENCE PGI-B/CAT-A DANS BC 108

Coded Chi-Square	X1: Recode of PGI-B Summary Statistics	Y1: Recode of CAT-A
Dr:		
Total Chi Square	1 439	
G Statistic		r- 2304
Contingency Coeffe ent.	1 418	
Phi;	14	
Challengers with resident	t correction of the	per la company de la company d

TABLE AU DE CONTINUE NOE ONT ... -

Summary	y State tes
tol .	1
Let d. Che Equano	72 p. 200 t
G. State or	722
Contingues Conflicted	Lat
170	ti ati
Chilly and water continuity companies	376 p. 14

TABLEAU DE CONTINCENCE POX-B/PGI A DANS PC 109

الماديدية	STATISTICS	
D:	1	
Tetal Chi Square	F-4A	p. 4777
G. Sestate	645	
Contingenty Conficient	603	
Phi	603	
Chilman was contrary contented	326	b- ice

TABLEAU DE CONTINGENCE CAT-A/PGD-A DANS BC 108

50	Statistics	
() (1	
Trial Chi Course	336	p+ 5021
G. Challe be	.336	
Contingency Continent	062	
Phi	067	
Chi-Square with continuity correction	132	p+ 7162

TABLEAU DE CONTINGENCE POX-B'CAT-A DANS BC 103

Summery	Statistica	
DF.	1	_
Total Chi-So Jare	.022 p. PF?P	
G Statistic:	.027	
Continuency Coefficient	0:6	
Phi	016	
Chi-Square with controlly correction:	005 p+ 9452	

TABLEAU DE CONTINGENCE POX-BIPGD-AI DANS BC 108

Coded Chi-Square X-	: POX-R Y1: R	reads of PGD-A	
Şu	mmary Statistics		
ניר	1		
Tetal Chi Square	764	p- 3821	
G Statistic:	765		
Contingency Challenal	5,00		
F'hi:	.000		
Profession with a new spine season.		Tr. Arm	<u> </u>

INDLEAU DE CONTINGENCE PGD-A/GOT-B DANS LA F2

s	ummery Statistics	
bt.	2	
Tolal Chi Square.	6 993 p=.0303	,
G Statistic	6.553	
Contingency Coefficient	.222	
Gramer's V:	.228	

TABLEAU DE CONTINGENCE EST-E/PGI-A DANS LA F2

Si	ummary Statistics	
Dr .	2	
Total Chi-Square:	2 2 p- 3329	
G Statistic	1,96	
Contingency Coefficient:	.127	
Gramer's V:	.128	

TABLEAU DE CONTINGENCE EST-E/PGI-B DANS LA F2

Sı	ummery Statistics
DF;	2
Total Chi-Square:	26.371 p= 0001
G Statistic	20 198
Contingency Coefficient	.404
Cramer's V	442

TABLEAU DE CONTINGENCE PGI-B/POX-B DANS LA F2

Sumi	mary Statistics
DF.	4
Total Chi-Square:	11,262 p= 0238
G Statistic:	. 8878
Contingency Coefficient	:296
Cramer's V:	.219

TABLEAU DE CONTINGENCE EST-E/GOT-B DANS LA F2

, ,	Table Analysis Statistics	
DF:	1	
Total Chi-Square.	3 357	p. 0669
G Statistic:	2 994	
Contingency Coefficient.	156	
Phi:	.158	
Chi-Square with continuity correction:	2.238	p= 1346

TABLEAU DE CONTINGENCE PGI-A/PGI-B DANS LA F2

Б	ummary Statistics
DF.	4
Total Chi-Square	B.492 p= 0751
G Sinistic:	9 081
Contingency Coefficient.	.243
Cramer's V:	.177

. TABLEAU DE CONTINGENCE PGI-A/POX-B DANS LA F2

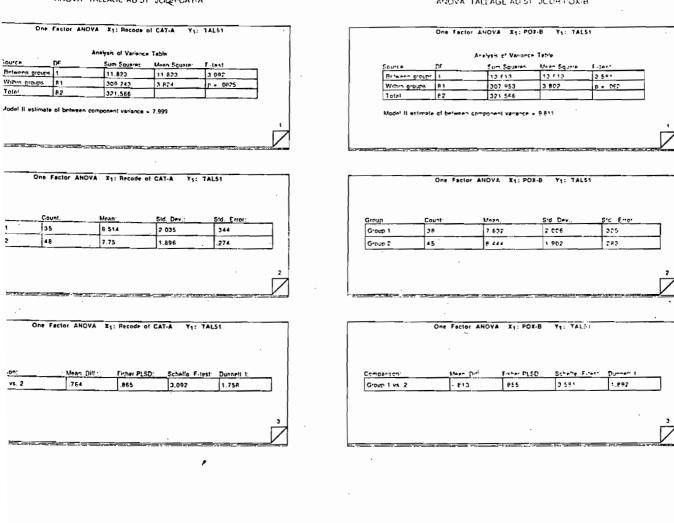
Sc	ummary Statistics
DF:	4
Total Chi-Square:	4,447 p=.3489
G Sintistic:	4.382
Conlingency Coefficient:	.191
Cramer's V:	.138

TABLEAU DE CONTINGENCE PGD-A/PGI-B DANS LA F2

s	ummary Statistics	
DF:	1 4	
Total Chi-Square:	1.886 p= 756	68
G Statistic:	1.857	
Contingency Coefficient:	.117	
Cramer's V:	.084	

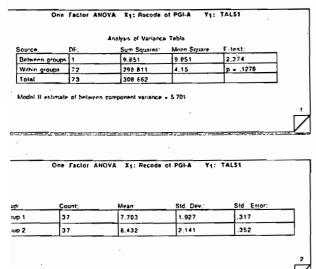
TABLEAU DE CONTINGENCE PGD-A/POX-B DANS LA F2

	Summary Statistics	
DF .	4	
Total Chi-Square	7 647	p+.1054
G Statistic:		
Contingency Coefficient	.248	
Cramer's V:	181	


TABLEAU DE CONTINGENCE PGD-A/PGI-A DANS BC 108

Coded Chi-Square X ₁ : Recode Summary	of PGD-A Y1: Recode of PGI-A Statistics
DF:	1
Total Chi-Square.	3.021 P= 0822
G Statistic	3 043
Continuency Coefficient	.197
Phi.	.201
Chi-Square with continuity correction.	7 271 p- 1318

ANNEXE 5: ANOVA entre marqueurs et caractères morphologiques


ANOVA TALLAGE AU 51' JOUR'CAT-A

ANOVA TALLAGE AU 511 JCUR POX-B

ANOVA TALLAGE AU 51° JOUR/PGI-A

ANOVA TALLAGE AU 51° JOUR'PGI-B

Source	DF	Analysis of Variance Sum Squares	Man Source	F-test
Detween proups	. 1	467	467	105
Within groups	c ò	30E 18	4 437	c - 7465
Total	70	306 648		
		condition, kai-tuce	3 97	

		·	•		
			, and a second		
	One Factor	ANOVA X	1: Recoda of P	GI-A Y1: TAI	.51
parison:		lean Diff.:	Figher PLSD:	Schelle Filest	: Dunneti I
uptvs. 2		.73	944	2,374	1.541

Greup 1 51 8 02 2 293 321	でした	Count	1.400-	Std Dev	2.4 E.c.
	ו מניסיו	51	8 02	2 293	321
Group ? 20 8.2 1.508 227	roup ?	20	8 2	1 508	227

Comparison	Mean Dilli	Fisher PLSD.	Schalla F.la	et Dunnett I	
Group 1 vs 2	. 18	1 109	105	325	

AND LATERACE PROCESS OF PROCESS O

Made. If not mate of bottom - component yangange + 110 787

	(^	Mass	Std Dev	Cid Erior
Group *	1.5	77 133	1,005	515
Grant C		77 777	4 971	. 160

ב של 1,14 כ של	1.0-0	Lares of th	Sehren Finet	Direcell 1
Grent . M. 1	4 556	5 665.	b 05F.	3 15

ANOVA EPIAISON/POX-B

	Dne Factor	ANOVA X1: P	OX-B Y1: EP	IAISON
		Analysis of Vari	ance Inbir	
THE	Dr	Sum Sount	es Mean Squa	re Filest
Between groups	1	7 728	2 72B	.129
Within preups	31	654 1R1	21,103	p - 7216
Total	32	656 909		

	One Factor	ANOVA X1: POX-B	Y1: EPIAISO	ON
Broup	Count	Mean,	Std Dev.	Sid Error
Grown 1	13	75.538	3 688	1.023
2 פרסים	20	74,95	5.083	1,137

			A1. POA-B	Y1: EPIAISON	
חסכויהטסח	1*	Mean Dill:	Fisher PLSD	Schelle F-lest	Dunnett 1
Proup 1 vs	2	588	3.338	.129	.36

$\mathcal{O}_{\mathcal{F}} = \mathcal{F}_{\mathcal{F}} \circ \mathcal{F}_{\mathcal{F}} \circ$

Sile Cart | FRINK | Dr. Bergen 12 Telle | No. 2 Kills

		1	7-4 -	
	r-	1 - 1 - 4 -	11, n. f. s	1
Butween er ge	·	4 777	1 1 1 7 7	1
W		21. 45	3.55	: . 3
16:0	4.5	321.00		1

Hand they are to of the larger comprehent you are a mile

C. P	C =1	11000	FIE FEE	c.~ L
en pp. t	2.5	£ 510	. 62.2	7=7
	44	. ter	1.10	3.1

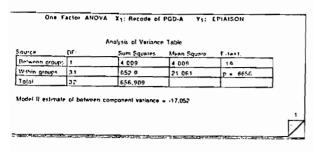
	14.2- 7"	Frent CLS	5-4-110 F 16-1	D *" :
Greup 1 vr. 2	4:4	616	. 64	. 63

ANOVA EPIAISON'CAT-A

One Factor ANOVA	X4: Recode of CAT-A	Y1: EPIAISON

Analysis of Variance Table

ource	D.E.	Sum Source	Mon- Source	F. test
פיניטיבר מיניטיב	1	10 509	10 509	504
Within prount	31	646 4	20 852	D . CE3.
Tetal	32	656 959		


Model II ertimate of briws on component variance = -10 343

One	Factor	AVOVA	X1:	Perode	0!	CAT-A	Y1:	E FIA'S ON

aroup.	Count	Mean	SIC Dev	Sid Errer
Group 1	15	75.8	3 224	935
Group 2	1.8	74 667	. 5 423	1 278

One Factor ANOVA X1: Recode of CAT-A Y1: EPIAISON

Company to	Liven Diff	Fisher PLSD	Sche"e Filest	Dunner: 1	
Group 1 vs 2	1 133	3 256	504	.71	

	Count	••		
'	Count.	Mean:	Std Dev:	Std Error:
p !	15	74.8	4.648	1.2
02	18	75.5	4.541	1.07

		X1: Recode of PGD-	Y1:	EPIAIS	ON
		٠			
Rrison;	 Mean Diff.	Fisher PLS()	Scheffe	F-lest:	Dunnett 1.
1 YS 2	7	3,273	.19		.436

ANOVA EPIAISON/CAT-A DANS F2

	One	Factor	ANOVA	X1: Recode of	CAT-A	٧1:	EPIAISON
			A	nalysis of Variance	Table		
Sourco.	_	DF:		Sum Squares:	Mean Sc	ware:	F-test:

Sourco.	DF:	Sum Squares:	Mean Square:	F-test:
Between groups	2	38.07	19.035	.872
Within groups	61	1331.367	21.826	0 - 4232
Total	63	1369,438		1

***	191	051IM 216	01	Celmeeu	component	variance	•	1.395	•

	One Factor ANDVA	X1: Recode	of CAT-A Y1: E	PIAISON
·	Count	Mean:	Std Dev :	Std Error
pι	14	73.357	4.5	1.203
2	18	71.389	4.44B	1.048
. 2	32	72.938	4.859	.859

One i	actor ANOVA X1	Recode of CAT-	A Y1: EPIAI	SON
	`			
rison	Mean Diff.;	Fisher PLSD	Scholle F-lest	Dunnett 1:
1 vs 2	1.9ER	3.329	.699	1.182
1 vs 3	.42	7.994	039	.28
2 vs 3	-1.549	2 753	633	1 125

Sr; rrp	Cit	S. + St. 444	Melon Square	F 14+1
Despend Co .P.	1	244	244	17
וליקאיים קייניים	24	420 771	17 537	D . \$13?
Total	25	421 115		

3 oup	Count:	Megn.	Std Dev	Sir Errer
Group 1	9	75 111	3.296	1.099
Group 2	17	75 353	4 568	1 108

	One Factor	ANOVA X1	; Recode of PGI-	A Y1: EPIAIS	D4
Comparison:		Mean Diff	Fito PLSD	Schollo Filast	Dunnett t
G-000 1 vs 2		.,242	. 3 563	.02	14

ANOVA EPIAISON'GOT-B DANS F2

Source	DF	Analysis of Variance Sum Squares	Mean Square.	F-lest:
Between groups	_	25 016	25 016	1 154
Within groups	67	1344 421	21 EE4	p • .7959
Total	63	1269 438		
Model II estimat	e of between	component variance	3 332	

One Facto	r ANOVA X1: GO	T-B Y1: EPIA'S	ON
Count:	Vest	Std Dev	Sid Error
19	71 632	4.425	1 015
45	73	4 748	708
	Count:	Count: Mean 19 71 632	Count: Mean Std Dev : 19 71 632 4.425

	One Factor ANOVA	X1: GOT-B	Y1: EPIAISON	
Comparison	litran Ditt		Schelle F.Inet	
Group 1 vs 2	.1 368	7 547	1 154	1,574

HOSTATE THE LETTER STREET AT AVOID STREET AND As the state of Mariana and Assets 7 724 7 764 1271 733 23 973 1301 438 75.1 Mother groups 12 Total 63 r - 4440 6.3 Model II estimate of believer component valiance + 14.259

2.10.2	Ce	14	Sir Dev	514 E1101
C.cnr.,	4	71.75	4 071	2.016
הירעם ב	60	70 (40	4 717	(09

00	r Factor A	NOVA X1	Resode of EST-E	Y1. EFIAIS	ON
	-				
C	11	eas is "	1.000 Fl ch	Schollo Finel	Donnett 1
Croup 1 se 2	-	1 423	e 636	251	592
				<u> </u>	

ANOVA EPIAISON:PGI-A DANS T2

One Factor ANOVA X1: Recode of PGI-A Y1: EPIAISON

		Analysis of Variance	Tabin /	
יטווירי	DF	Sum Sauntes:	Mich Square	I -test:
Between groups	2	10 305	9 696	43R
לימנים מו מימנים	C:	1350 045	27 132	p = 6473
1 ctn1	63	1369 438		

Greve	Count.	Mean.	Sid Dev	Sid Error
Group 1	1.1	71.455	5.82	1.755
Grown ?	22	72 591	4.584	977
Group 3	31	73	4.359	.783

actor ANOVA X1:	Recode of PG1-	A Y1: EPIAIS	DN
`		•	
Kensu Dilli	Fisher PLSD:	Scholle F-lest:	Dunneti t:
-1.136	3.474	.214	.654
-1.545	3 302	.438	.936
- 409	2.623	.049	.312
	-1.136	Mean Dill : Fisher PLSD: -1.136 3.474 -1.545 3.302	-1.136 3.474 .214 -1.545 3.302 .438

COR BROY - AND LA BORE YE TO ALTER

Transcript Same of Their

51.01	rs.	* = C - 17 ***	Mark to the	1 14.00
Detailed propri	7	17.452	6 776	162
With the groups	۲٠	· si · uci	27.112	1: 100
Tetal	1.3	.340 470		

_	One Factor	ANOVA X1: PCX-B	V1: EPIAISON	
		Nese	Sid Dev	5:4 Fr
ur '		70 P	5 167	2.344
	27	72 741	4 309	633

	Mean EM.	E +- 1. FLED	Sehelle Freet	D
Group 1 ve 2	.1 521	2 502	51.0	64-
Group 1 vs. 2	. 05	4 527	3	ŧ.,
Sector Pive 3	. 50=	2.46	2 5725-5	5.55

ANOVA EPIAISON PGD-A DANS F2

One Factor ANOVA X1: Recode of PGD-A Y1: EPIAISON

Dince	DE	S.1- 57:17:01	Mona Same	F. teri
מינומים ביותשליים	2	77 RQ4	11 447	519
Within provins	F 1	1346 543	22 074	c . inc
Total	6.3	1269 428		

Model II ertimate of browner component variance x (5.314)

	One Factor ANOVA	X1: Recode o	PGD-A Y1:	EPIAISON
Greun	Court	Maan	Frd Dev	S' Tre
Group 1	17	73.588	4 550	1.025
G-cup 2	17	72 235	5 2RE .	1 797
G-ისი 3	30	72 223	z ice.	# 4

One	Facior ANOVA X1	: Recode of PGD-A	Y1:	EPIAISON
Comparison.	Mean Diff	Fisher PLSD	ورسواله	Friest Dunnett t
Group 1 vs. 2	1,353	3.223	.352	84
G-oup 1 vs 3	1.355	2.852	451	.95
Group 2 vs 3	002	2 852	P.450E	-7 .001

Antiyem of Variance Table

Source	Dι	Sum Squares	Mean Square:	F-1051
Retweet groups	1	1917 631	1017 631	4 141
Within g hups	61	28250 D2	463.115	p = 0462
Total	62	30167 651		

Model II estimate of between component variance = 1454,516

	- PAINTE			AL DESTRUCTION	/—————————————————————————————————————	
One	Factor	ANOVA	X1: GOT-B	Y1: FERTILIT	E	

Group:	Count:	Mean.	Sld Dev.:	SId Error:
Group 1	20	27.45	21,642	4 839
Group 2	43	39.302	21.465	3.273

	One Factor ANOVA	X1: GOT-B	Y1: FEATILITE	
	`		_	
omperison:	Mean Diff.:	Fisher PLSD:	Schelle F-lest.	Dunnett t:
Group 1 vs. 2	-11.852	11.648*	4.141*	2.035

.

One Factor ANDVA X1 Recode of PGI-B Y1: EPIAISON Analysis of Varionica Table

Source	Cr	S.m Squares	Piesu Sonsie	7.10.1
Between ground	2	451 978	225 954	15 023
Within groups	£1	0.7 500	15 041	p • 0001
Total	6.3	1260 438		

Model II estimate of between component variance = 105 452

3 oup	Count:	Mean	Std Dev :	Std Errer
Group 1	14	69 143	4.881	1.305
Group 2	24	75 833	2 297	469
Group 3	26	71 462	4 411	865

Domparison:	Ream Diff	Fater PLSD	Schelle Filer	Dunnett ti
Group 1 vs. 2	-6 6P	5 408.	13 157*	5.13
Group 1 vs 3	-2 319	2 571	1 626	1.804
Group 2 vs 3	4 372	2 195	3 656.	3 982

ANOVA FERTILITE POLLINIQUE/POX-B DANS F2

One Factor ANOVA X1: POX-B Y1: FERTILITE

Analysis of Variance Table

Source:	DF.	Sum Squares:	Mean Square:	F-test:
Bahween groups	2	1216 36	608.18	1.26
Within groups	60	28951.29	482.522	p = ,2909
Total	62	30167 651		

Model II estimate of between component variance = 62.829

	One Factor	ANOVA X1: POX-B	Y1: FERTILI	TE
oup.	Count:	Mean:	Sid Dev	Sid Error
iroup 1	5	49.8	26.386	11.8
roup 2	26	32.769	20.58	4 036
roup 3	32	35,562	22.417	3,963

	One Factor ANOVA	X1: POX-B	Y1: FERTILITE	
parison;	Mean Diff.:	Fisher PLSD	Schelle Filesi	Dunnett t
top 1 vs 2	17.031	21.450	1.26	1.588
up t vs. 3	14 237	21 132	.908	1.348
VD 2 Vs. 3	-2.793	11 602	.116	.482

ANOVA FERTILITE POLLINIQUE/CAT-A DANS F2

One Factor ANOVA K1: Recode of CAT-A Y1: FERTILITE

Analysis of Variance Table

Source-	DF	Sum Squares	Mean Squere	F-1es1
Rewern groups	2	1316 284	65P 442	1 360
Within groups	60	28850 767	480 846	0 - 2521
Total	52	20167 651		

Model II estimate of between component variance = 88 798

One Factor ANOVA X1: Recode of CAT-A Y1: FERTILITE

group.	Count	1,4+2+	Std Dev.	en Euch
Group 1	15	43 6	25 452	6 572
Group 2	18	34 167 ,	21 686	5 111
Group 3	30	32 333	20.16	3 EB1

One Factor ANOVA X1: Recode of CAT-A Y1: FERTILITE

Comparison:	Mean D.	Firher FLSD:	Scheffe Filest	Dunne!! !
Group 1 vs. 2	9 433	15.836	.757	1.231
Group 1 vs. 3	11 267	13.872	1.32	1 €25
Group 2 vs 3	1 633	13 079	.039	28

Con Tectes About to Recommod FOUR by HERRIGHT

Annual of the one of Tetral

	r .		14 0- 44	1 411
forther prospe	:	1721 613	1.3100	. ; .:
Min a Grant.	ι č	21.120.000	107 314	D + 2527
Tetal	67	32167 653		

Model II or I male of Indianon companent vaccours - 61 541

							_
0.00	Factor.	AVOVA	Ya: Becode e!	A.0.23	٧.	111111111111	

(routh	Chint i	Mean	Big Dec	Sid Error
C+0:40 1	16	26.2	25 726	r. ca1
Group ?	18	40.5	24 508	5 776
Chan 3	29	35 836	16.97	3 142

One Facial ANOVA X1: Ancode of PGD-A Y1' FERTILITE

			_	
Crapange	Mose De	tiche FIED	Schrife F test	לויייים ו
Gerup 1 vs. 2 ·	î	15 096	035	245
Group 1 vs. 3	2.628	-3 6FZ	LS ó	1 122
Cutting to 4 3	0171	13 182	• 077	1 458

ANOVA FERTILITE POLLINIQUE/PGI-A DANS F2

One Factor ANOVA X1: Recode of PGI-A Y1: FERTILITE

Analysis of Variance Table

Source	€r.	Sem Squares	Mean Square	Filer
Be.www. B.c. br	5	1354.867	677 433	1 411
אייים מיניקא	6.0	ZPR12 7P4	480 213	p = 2519
letel	62	30167 651		

Model It estimate of between component variance • 98.61

One Factor ANOVA X1: Recode of PGHA Y1: FERTILITE

יירטף	Court	J.lean_	Bid Dev	Eld Eller
1 תניהים	10	31.7	15 312	4 P47
2 מנים G	23	41 652	23 641	4 620
Group 3	30	32 133	22 289	4.069

One Factor ANOVA X1: Recode of PGI-A Y1: FERTILITE

Comparison:	Mean Diff.	Freber PLSD	Schelle F-le	st. Dünnett
Group 1 vs 2	.9.952	16 605	.719	1,199
Group 1 vs 3	433	16 008	.001	.054
Group 2 vs 3	9 519	12.15	1.228	1,567

Con Lactor Andre De Berein et ESTE - Ve EESTERL

Activities of Marie & Section

*	for	[m [n .s.e.	10 - 55 800	1 1941
1	•	: * ** *	7. 117	171
0.5 .51	c ·	20-46 -05	154.51	r , 6772
	17	20167 651		

Francis II estimate of Estimate temperature variance a 1673-363

One Factor ANOVA 74: Recode of EST-E Y4: FERTILITE

C ip	(= .=!	Pers	Sie Dev	Enc. 1
Gravo 1	4	. 27 75	10 56	1.50
Graup 2	į p	25.26	22 485	2 927

One Factor AHOVA X1: Recode of EST-E Y1: FERTILITE

Ceeeeeee	Man D"	E-65 4- E15D	Sire"e Tier	Pre-e** 1	
G-6 - 1 - 1 - 5	5.54	15 0.	242	205	_

ANOVA FERTILITE POLLINIQUE/PGI-B DANS F2

では、これでは、10mmのでは、10mm

One Factor ANOVA X1: Recode of PGI-B Y1: FEPTILITE

Analysis of Variance Table

Source	€LE	Sim Sommer	L'una Saune	Filer:
Be,were B.unbe	7	547 234	271 167	549
With a director	60	29675 317	493 755	D # 5502
Total	6.2	20167 651		

Model II estimate of between component variance + 4111-250

One Factor ANOVA X1: Recode of PSI-B Y1: FERTILITE

	Crunt	1.ºspo	E.L Den .	5.4 E
Group 1	15	34.2	:F C44	4 659
C-545 2	24	39 208	21.165	4.22
Greup ?	24	32 708	25 335	5 172

One Factor ANOVA X1: Recode of PGI-B Y1. FERTILITE

Companson.	Mean Diff	Fire PLSD.	Schelle Fite	st_ Durrett t
Group 1 vs 2	-5.008	14 631	234	484
Group 1 vs. 3	1.492	14 631	.021	204
Group 2 vs 3	6.5	12.832	513	1 013

. 60 4.6

25 F*S

24 922

Schelle F. est

25.

Mean Square

154E 679

S'd Dev

22 405

24 37

Sche"e F-1est 2 897

533 B15

2 697

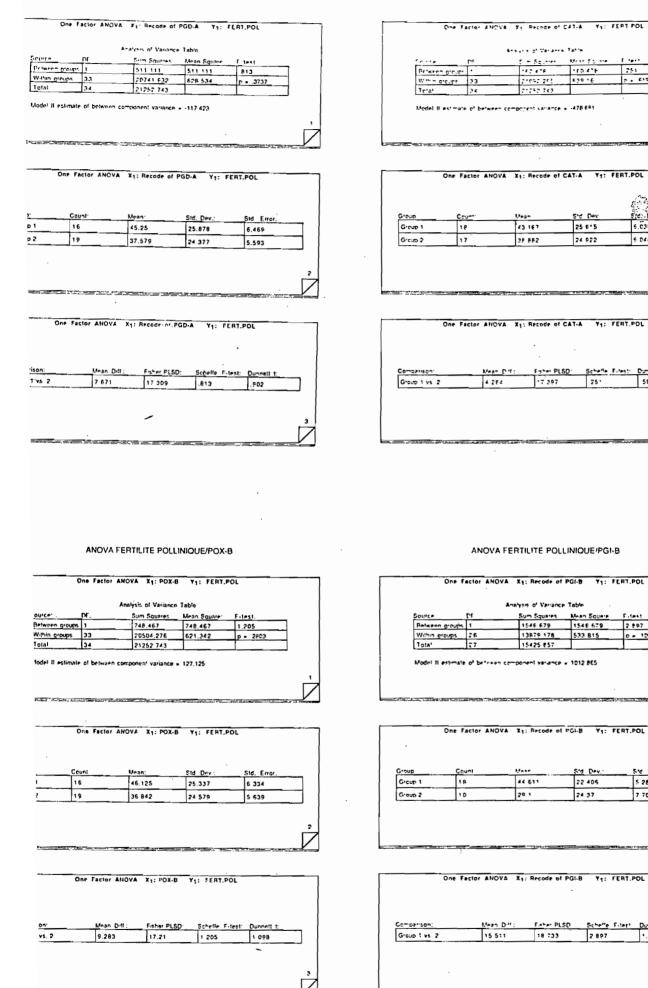
- 1007

5 281

7 706

1.702

251


. . 6136

Sid Em

6.038

5 044

50.

ANOVA FERTILITE POLLINIQUE/PGI-A

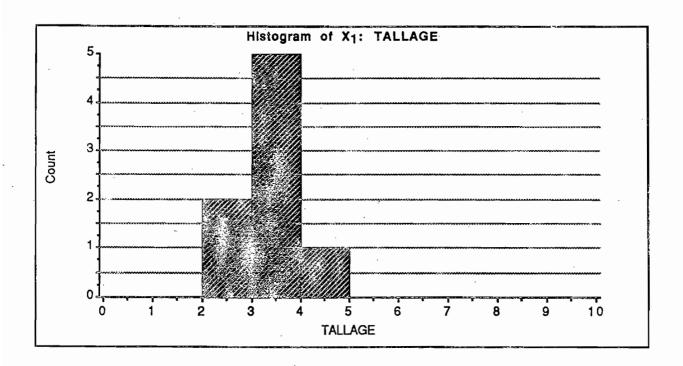
One Factor ANOVA X1: Recode of PGI-A Y1: FERT.POL

Analysis of Variance Table

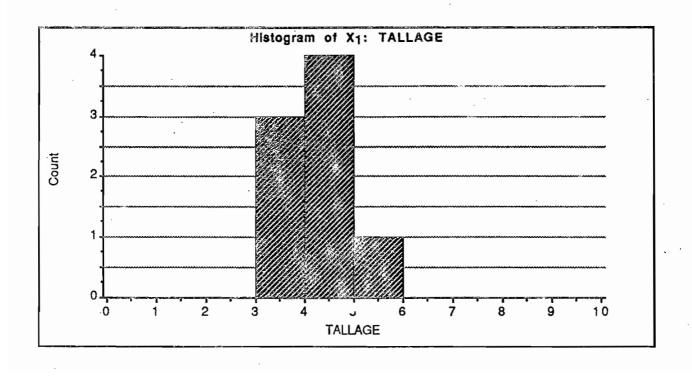
Source:	DF:	Sum Squares:	Mean Square:	F-test:
Between groups	1	80.257	80.257	.136
Within groups	26	15345.6	590.215	p = .7153
Total	27	15425.857		

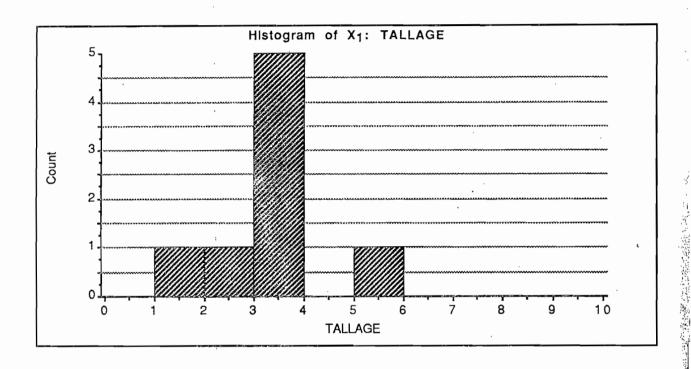
Model II estimate of between component variance = -509.958

One Factor ANOVA X1: Recode of PGI-A Y1: FERT.POL

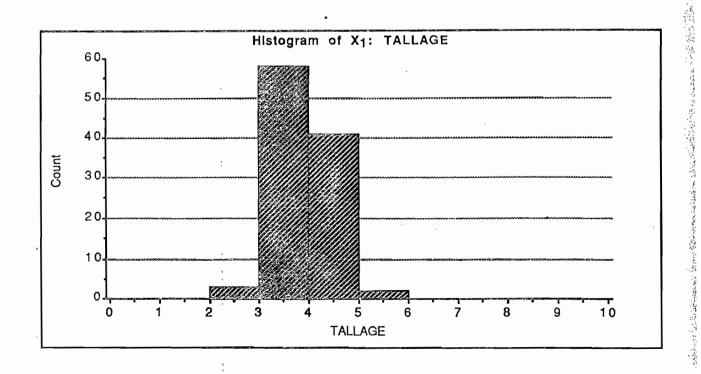

Group:	Count:	Mean:	Std. Dev.:	Std. Error:
Group 1	10	36.8	19.753	6.246
Group 2	18	40.333	26.384	6.219

One Factor: ANOVA X1: Recode of PGI-A Y1: FERT.POL


Comparison:Mean Diff.:Fisher PLSD:Scheffe F-test:Dunnett t:Group 1 vs. 2-3.533•19.698.136.369


3

2



TALLAGE DE 108

TALLAGE DES BC

ANNEXE 7: Photographies

Addenda: MISE AU POINT D'UNE TECHNIQUE DE PREPARATION D'ADN MITOCHONDRIAL DE RIZ

Afin de compléter les résultats donnés par la "génétique classique", il est interessant d'étudier directement l'ADN puisqu'il est le support même de l'hérédité. Un programme de biologie moléculaire est parallèlement mené au laboratoire par A. de KOCHKO.

On s'interesse, entre autres, à l'ADN mitochondrial: cet ADN est génétiquement actif,il porte des informations indispensables à la survie de la plante (codage de sous-unités d'enzymes intervenant dans la chaîne respiratoire etc...) mais en même temps le génome mitochondrial est suffisamment petit pour que l'on puisse observer, après digestion et électrophorèse en gel d'agarose, des diagrammes de restriction aux bandes nettes (là où l'ADN nucléaire présenterait des traînées illisibles).

D'autre part l'ADN mitochondrial est un marqueur du cytoplasme, à hérédité strictement maternelle (sauf quelques rares cas); il présente de ce fait non seulement un intérêt phylogénique puisqu'on a ainsi accès à la généalogie maternelle directe, mais il permet aussi d'étudier les relations nucléocytoplasmiques. De telles interactions, dont l'existence a été prouvée chez le Maïs, le Sorgho... sont aussi présentes chez le Riz. En particulier des travaux sont actuellement en cours sur le phénomène de stérilité mâle cytoplasmique: celle-ci apparait lorsqu'un cytoplasme est dans un contexte nucléaire donné alors que la fertilité est restaurée dans un autre contexte nucléaire, et cette stérilité mâle cytoplasmique s'accompagne de modifications du génome mitochondrial.

Nous avons voulu savoir si le cytoplasme (en particulier les mitochondries) n'intervenait pas dans certains de nos croisements car on observe de nettes différences entre des croisements réciproques.

C'est aussi sur ce dernier point que porte le travail d'A. de KOCHKO pour ce qui est de l'étude des ADNmt.

Il était nécessaire avant tout de mettre au point une technique d'extraction de l'ADN mitochondrial à partir de petites quantités de matériel végétal, les descendants des croisements étudiés étant en petit nombre.

On a pu seulement pendant le stage " tester" le protocole de préparation de l'ADN mitochondrial de Riz adapté d'après MIGNOUNA et al (1987), tel qu'il est décrit ci-dessous. Les tampons utilisés sont donnés en annexe.

PROTOCOLE DE PREPARATION DE L'ADN MITOCHONDRIAL DE RIZ D'APRES MIGNOUNA et al.

(revu et adapté par A. de KOCHKO)

Environ 5 gr de coléoptiles de six à sept jours <u>maximum</u> sont récoltés, mis à tremper 5 min. dans de l'eau de javel du commerce diluée 10 fois puis lavés à l'eau distillée et broyés rapidement en une poudre très fine dans de l'azote liquide.

La poudre est mise en suspension dans du milieu de broyage, passée au Potter puis filtrée sur deux épaisseurs de miracloth. Toutes ces étapes ont lieu dans la glace.

Le filtrat est centrifugé 2 fois à 4.000 tpm (centrifugeuse Sigma) pendant 20 sec.

Le surnageant est centrifugé à 13500 tpm (Sigma) pendant 15 min.

Le culot, constitué par la fraction mitochondriale brute, est resuspendu, à l'aide d'un pinceau, dans 4 ml de tampon B auquel on ajoute 20µg de DNase par gr. de tissu de départ, on potterise et on laisse incuber 30 min. en agitation lente à T° ambiante (ou 1h à 4°C).

On reprend dans 8 ml de tampon D et on centrifuge 15 min. à 13500 tpm (Sigma), à 4°C. Le culot est repris au pinceau dans 2ml de tampon D et est déposé sur un gradient discontinu de sucrose constitué par:

4ml de sucrose à 1,45M 3ml de sucrose à 1,3M 4ml de sucrose à 1,2M

dans un tampon: 10mM Tris

20mM EDTA 0,1% BSA pH= 7,2

On centrifuge 1h.30 à 20.000 tpm rotor SW2. Les mitochondries intactes qui se trouvent à l'interface 1,3-1,45M sont recueillies et diluées avec 6 ml de milieu B contenant 20 mM EDTA puis centrifugées 10 min. à 18.500 tpm (SS34) ou 13.500 tpm pdt 15 min (Sigma).

Le culot est resuspendu au pinceau dans 6 ml du même milieu et centrifugé une nouvelle fois 15 min. à 13500 tpm (Sigma).

Le culot de mitochondries purifiées est repris dans 4 ml de tampon de lyse auquel on ajoute de la protéinase K à raison de 0,1mg/ml soit 20 microlitres d'une solution à 20 mg/ml pour 4 ml, et on laisse incuber 30 min. à 37°C en agitation modérée (bain marie).

La déproteinisation se fait au phénol-chloroforme (1/1): on ajoute 4 ml de phénol-chloroforme, on agite longtemps mais pas fortement (5 min. au moins) et on centrifuge 5 min. à 5000 tpm (Sigma): les protéines restent dans la phase

phénol (phase inférieure), on récupère la phase supérieure contenant l'ADN.

Après trois extractions on retire le phénol restant dans la phase aqueuse en ajoutant 4 ml d'ether saturé d'eau: l'ether et le phénol se rassemblent après une courte centrifugation en une phase supérieure que l'on retire; on effectue cette opération deux fois de suite et l'ether restant est

évaporé à 60°C pendant 10 min.

Au volume final on ajoute de l'acétate de sodium à concentration finale de 0,3M après mélange, on additionne alors deux volumes d'éthanol absolu froid. On laisse précipiter les Acides Nucléiques au moins deux heures à -20°C. (de façon préférable la nuit, cette étape n'étant pas limitative dans le temps).

On centrifuge alors à 12.000 tpm (SS34) pendant15 min. ou 13.500 tpm pdt 15min. (Sigma), le culot est séché au dessicateur puis repris dans 400 µl de TE pH 7,6.

On procéde alors à une précipitation au froid avec NaOAc 0,3M et EtOH.

On centrifuge 10 min., le culot est rincé avec EtOH à 70%, on recentrifuge 5 min. puis le culot est séché au dessicateur pendant au moins 10 min. et enfin repris dans 20 à 30µl de TE. On peut laisser dans la glace pendant 1 heure avant de congeler l'échantillon ceci afin de faciliter la rehydradation de l'ADN.

Pour analyser l'ADN obtenu par cette technique, il faudra en faire un diagrame de restriction: on fait migrer par électrophorèse sur gel d'agarose les fragments d'ADN obtenus après digestion par des enzymes des restrictions.

REFERENCES BIBLIOGRAPHIOUES:

MIGNOUNA H, VIRMANI SS, BRIQUET M (1987)

Mitochondrial DNA modifications associated with cytoplasmic male sterility in rice.

Mol.Gen.Genet.

KADOWAKI, ISHIGE, SUZUKI, HARADA, SHINIYO (1986)

Differences in the characteristics of Mitochondrial DNA between Normal and Male Sterile Cytoplasms of Japonica Rice.

Japan. J. Breed., 36:333-339

SHIKANAI, YANG, YAMADA (1987)

Properties of the Circular Plasmid-like DNA B1 from Mitochondria of Cytoplasmic Male-sterile Rice.
Plant Cell Physiol. 28(7): 1243-1251

TAMPON D'EXTRACTION:

<u>pour un litre:</u>

0,5 M Mannitol 91,8 gr.

10 mM Tris 10 ml solution à 1M

1 mM EGTA380 mg.1 mM Dithiothreitol155 mg.10 mM Diethyldithiocarbamate de sodium1,71 gr.

0,2% BSA (à rajouter juste avant l'emploi)

pH= 7,2 (rajuster avec HCl)

TAMPON GRADIENT:

10 mM Tris 10 ml solution à 1M 20 mM EDTA 6.7 gr.

20 mM EDTA 6,7 gr. 0,1 % BSA (ajouter avant l'emploi)

pH = 7,2

TAMPON DE LYSE:

 2 % Sarkocylate de sodium
 20 gr.

 0,1 M NaCl
 5,84 gr.

 10 mM EDTA
 3,36 gr.

0,1 mg/ml Proteinase K (ajouter avant l'emploi)

TAMPON TE (Tris-EDTA):

10mM Tris 10ml solution Tris 1M 2ml solution EDTA

TAMPONB:

0,5M Mannitol 91,8 gr.

10 mM Tris pH 7,2 10 ml de solution à 1M

10 mM MgCl2 2,03 gr.

0,1% BSA (ajouter juste avant l'emploi) 10 µgr. DNase/gr. de tissu de départ

TAMPONC:

 0,5 M Mannitol
 91,8 gr.

 10 mM KH2PO4
 1,36 gr.

 0,15 M NaCl
 8,77 gr.

20 mM EDTA 40 ml solution 0,5M

0,1% BSA (ajouter juste avant emploi) pH = 7,2 ajuster avec de la potasse (KOH)

TAMPOND:

0.5 M Mannitol 91,8 gr.

10 mM Tris pH 7,2 20 mM EDTA 10 ml solution à 1 M 40 ml solution 0,5M

0,1% BSA à ajouter juste avant l'emploi.