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Abstract
Predicting regional climate variability is a key goal of initialised decadal predictions and the North
Atlantic has been a major focus due to its high level of predictability and potential impact on
European climate. These predictions often focus on decadal variability in sea surface temperatures
(SSTs) in the North Atlantic subpolar gyre (NA SPG). In order to understand the value of
initialisation, and justify the high costs of such systems, predictions are routinely measured against
technologically simpler benchmarks. Here, we present a new model-analogue benchmark that aims
to leverage the latent information in uninitialised climate model simulations to make decadal
predictions of NA SPG SSTs. This system searches through more than one hundred thousand
simulated years in Coupled Model Intercomparison Project archives and yields skilful predictions
in its target region comparable to initialised systems. Analysis of the underlying behaviour of the
system suggests the origins of this skill are physically plausible. Such a system can provide a useful
benchmark for initialised systems within the NA SPG and also suggests that the limits in initialised
decadal prediction skill in this region have not yet been reached.

1. Introduction

As the global climate continues to change in response
to anthropogenic influences (Bindoff et al 2013),
estimates of how climate might evolve in the near
term and on a regional level are becoming increas-
ingly important (Kushnir et al 2019). These estim-
ates can take the form of projections of the next cen-
tury using different shared socioeconomic pathways
from the 6th Coupled Model Intercomparison Pro-
ject (CMIP6) (Eyring et al 2016). They can also take
the form of initialised predictions of the next decade,
conducted as part of the Decadal Climate Prediction
Project (DCPP) (Boer et al 2016). Both of thesemeth-
ods utilise complex coupled climate models in which
external forcings such as greenhouse gases (GHGs)
and aerosols are prescribed.

Previous work has shown that sea surface tem-
peratures (SSTs) in the North Atlantic (NA) includ-
ing the subpolar gyre (SPG) can impact climate
both locally and remotely (Sutton and Hodson 2005,
Monerie et al 2018). In addition, they are potentially

predictable on decadal timescales (Collins et al 2006)
and successfully initialising them can provide skill
elsewhere (Dunstone et al 2011). Recent analysis
of the CMIP6 archive has shown an improvement
since CMIP5 in multiannual skill in SSTs in the NA
SPG, in both uninitialised and initialised simulations
(Borchert et al 2021). In addition, technologically
simpler benchmarks are a useful tool to help quantify
the uncertainty in climate model projections/predic-
tions (Brunner et al 2020).

Various types of analogue methods have been
proposed as skill benchmarks, with skill greater than
comparable dynamical forecast systems at particu-
lar lead times or in particular regions (Hawkins et al
2011, Ho et al 2013). These methods are based on the
underlying assumption that a pair of climate states
that are similar (analogous) will remain so for a cer-
tain amount of time, with the timescale dependent
on both their initial similarity and the rate of error
growth in the chosen variable/region (Lorenz 1969).

The simplest analogue consists of finding the
single most similar match in the observational
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record for the (non-contemporaneous) observed
data, where similarity is arbitrarily defined based on
the variable and statistic deemedmost relevant for the
particular problem at hand. However, due to lack of
long-term observations this natural analoguemethod
is likely less skilful than a composite or construc-
ted analogue approach (Dool 1994). In a construc-
ted analogue, several observed fields are combined
with potentially varying weights and the forecast is
the similarly weighted combination of the fields’ evol-
ution. Similar methods are also used to probe phys-
ical drivers of variability by, for example, construct-
ing atmospheric circulation analogues to determ-
ine the percentage of surface temperature variab-
ility driven by atmospheric dynamics (Deser et al
2016, O’Reilly et al 2017). Constructed analogues
have proven skilful for both seasonal forecasts and on
multiannual/decadal timescales (Dool 1994, Hawkins
et al 2011, Ho et al 2013, Yiou and Déandréis 2019).
However, on annual to decadal timescales, the skill in
the NA SPG has often remained substantially lower
than the surrounding regions using such constructed
analogues (Newman 2013, Suckling et al 2017), des-
pite the high skill in initialised predictions.

In terms of input data, as an alternative to prob-
ing the short observational record, model data can be
used. Assuming that the model data is an adequate
representation of reality, the increased amount of
data increases the likelihood of finding similar/ana-
logous climate states (Ding et al 2018, 2019, Brown
and Caldeira 2020). Within the CMIP archives there
exists a vast amount of catalogued climatemodel data;
3.3 PB in CMIP5 and projected to reach 18 PB in
CMIP6 (Balaji et al 2018).

Here, we aim to design an updated model-
analogue system to provide updated skill benchmarks
of the SPG. We aim to do this by leveraging the vast
CMIP5/6 archives. We focus on decadal timescales
(i.e. lead years 2–10 combined) as the ability of simple
models to largely capture the dynamics of theNA SPG
on these timescales (Born et al 2015), should reduce
the degrees of freedom and make the search for good
analogues more attainable (Dool 1994). Nonetheless,
our goal is not to downplay the value of initialised
decadal prediction systems, for which the globally
distributed skill in physically linked variables makes
them an impressive scientific and technical achieve-
ment. Instead, we specifically aim to leverage the lat-
ent physical information within uninitialised climate
model simulations that is not currently being used for
predictions, but which could be. Such an approach
could also avoid issueswith initialisation shock aswell
as model mean state biases, which remain an issue
for initialised prediction systems whether these biases
are removed before making the predictions (anomaly
assimilation) or in post-processing (Smith et al 2013).

When assessing our model-analogue based sys-
tem, we compare against initialised and uninitialised
simulations taken from the CMIP archive. In order to

simplify interpretation of our results, we focus on the
subset of models providing both uninitialised sim-
ulations and initialised predictions. We also discuss
single-forcing experiments that include, for example,
just the historical forcing due to anthropogenic aer-
osols, conducted as part of the Detection and Attri-
bution Model Intercomparison Project (Gillett et al
2016). In the next section, we describe the design and
construction of our model-analogue based system.

2. Methods

2.1. Designing the model-analogue system
The overall ambition of our model-analogue based
forecast system is to analyse observed climate fields,
determine the most similar simulated fields, and
use these simulations to create forecasts of real-
world SSTs, focussing on the NA SPG. This is dif-
ferent to some analogue or linear inverse modelling
approaches, where one dimensional time series’ of
predictors are used, based on external forcings or the
principal component time series’ of fixed patterns
of variability (Oldenborgh et al 2005, Zanna 2012,
Newman 2013, Eden et al 2015, Suckling et al 2017).
We use spatial inputs for two reasons: (a) to avoid pre-
determining the important patterns/modes of variab-
ility (within a given domain, e.g. the North Atlantic),
in case these cannot be adequately ascertained given
the limited observational record, and (b) the com-
bined size of the CMIP5 and CMIP6 archives means
we have very many simulated fields to choose from
and so donot necessarily require significant reduction
of the dimensionality of the problem.We furthermore
choose to target lead times of 2–10 years to focus on
decadal predictability and unless otherwise stated all
forecasts refer to these combined lead times.

Our initial hypothesis is that time mean SSTs
over some time window within some subregion of
the North Atlantic are linearly related to SPG SSTs
at a forecast lead time of 2–10 years (inclusive) com-
bined. This hypothesis is based on the space-scales
and mechanisms of observed and simulated long
period variability in theNorth Atlantic (Knudsen et al
2011, Ba et al 2014); for example, the slow northward
advection of SST anomalies (Vellinga and Wu 2004).
This hypothesis is further motivated by the fact that,
in order to compare observed and simulated fields, we
require a well observed (in time and space) field, such
as SSTs. In principle, our system could instead/also
ingest an atmospheric variable such as surface air
temperature, but we choose SSTs as oceanic memory
is likely to provide greater skill (given the forecast
variable is also SST). We could also ingest subsur-
face oceanic properties, whichmay provide improved
physical linkages, but a lack of long-term data is again
a drawback.

Such amodel-analogue prediction system is based
on the assumption that the mechanisms of variabil-
ity that link past and future variations in SST within
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Figure 1. Observed relationships. Top: Pearson correlation between running 35 year means of observed, gridded SSTs and
area-averaged SSTs in the SPG (top right box) at following lead years 2–10 inclusive (from HadISST1). Correlations are for the
period 1960–2019 but are masked where the sign of the correlation over this period and the period 1870–1990 are different.
Bottom: correlations between area-averaged SST in the SPG at lead times 2–10 and area-averaged SST in the SPG; subtropical
gyre (STG, bottom left box); and North Atlantic (NA, large box) as a function of running mean window length. Significance
estimated by bootstrapping random data with the same mean, variance, and auto-correlation as the SST time series and using the
same running mean window lengths.

the North Atlantic are not systematically different
between models and those seen in observations and
that the patterns of these relationships are stationary
in time. For example, the overall pattern of anomal-
ous NA SSTs that leads to a particular SPG SST (fore-
cast) anomaly is the same at the beginning of the 20th
century as during the present day. However, as this
is unlikely to be true for all models at all times, we
aim to combine many models and epochs. In addi-
tion, our system makes no attempt to correctly time
particular forcings and is a priori indifferent to inter-
annual changes in external forcings. That is, any real
world SPG SST variability that is directly driven by
external forcings (e.g. a volcano), will not contrib-
ute to the predictionsmade by this system—unless, or
until, this variability also has an imprint on NA SSTs.
This aspect is unlike historical simulations or initial-
ised (hindcast) predictions where the magnitude and

timing of forcing due to, for example, a volcanic erup-
tion can be prescribed.

The two key unknowns in this setup are the
length of the time window to be used when search-
ing for and choosing analogue fields, and the par-
ticular region (within the NA) over which to base
our analogue choice. To address both these points,
we regress observed, time-mean gridpoint SSTs in
the North Atlantic against future area-averaged SPG
SSTs (lead times 2–10 combined) using a variety
of time-mean window lengths. We use optimally-
interpolated observations from HadISST1 (Rayner
et al 2003). Figure 1(a) shows an example of the cor-
relation map when the time-mean moving window is
35 years. Note that, in order to satisfy our assump-
tion of stationarity, we ignore all gridpoints where
the sign of the regression slope differs between the
period 1960–2019 (most well observed period) and
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Figure 2. A schematic diagram of the steps taken to choose simulation segments and subsequently create the model-analogue
forecast, as described in section 2. An arbitrary subset (numbers #11, #153, and #219) of the 668 possible simulations (totalling
100 630 simulated years) is shown.

1870–1990 (period not dominated by mid 90s SPG
warming).

Figure 1(a) shows that there are strong correla-
tions throughout the North Atlantic, particularly in
the gyre regions. In terms of area averages, both the
subtropical and subpolar regions show strong neg-
ative correlations when the time-mean window is
35 years in length and there is also a peak at this times-
cale for the whole North Atlantic (figure 1(b)). This
peak suggests that 35 year mean SSTs are an optimal,
simple prediction criterion for SPG SSTs on decadal
timescales. Such a long timescale is perhaps not sur-
prising given the long period variability observed
within the SPG and wider North Atlantic. The 35 year
window, negative correlation, and strong links to the
subtropics, are also consistent with a role for Atlantic
multidecadal variability (AMV, full period of around
70 years (Kerr 2000)) in providing predictability in
the SPG (regardless of how AMV is driven). As such,
we choose the whole North Atlantic as our input
region.

2.2. Building the model-analogue system
Having chosen our input parameters based on ana-
lysis of observations, we now describe the method
by which we compare observations and simulations

(figure 2, part A) and subsequently create our fore-
casts (figure 2, part B), as follows:

Part A. Comparing observed and simulated SSTs

(a) All observations and simulations are regridded
on to a regular 1◦ × 1◦ grid. Annual data are used
throughout.

(b) Time-mean maps of observed North Atlantic
SST anomalies are produced for every possible
35 year window between 1870 and 2019 inclus-
ive (116 total) using observations fromHadISST
(Rayner et al 2003). The 1960–1990 climatology
is removed.

(c) We also create all possible 35 year time mean
NA SST anomalies in all available models and
experiments on the CMIP5 and CMIP6 archives
(using up to the first ten ensemble members),
denoted ‘simulation segments’. For each simu-
lation segment, a climatology is removed. This
is the 1960–1990 time-mean, ensemble mean
from that model’s historical simulations regard-
less of the experiment. We use the following
experiments from CMIP5: piControl, histor-
ical, rcp45, rcp85 (Taylor et al 2012). We use
the following experiments from CMIP6: piCon-
trol, historical, hist-nat, hist-aer, hist-GHG, hist-
stratO3, ssp126, ssp585 (Eyring et al 2016, Gillett
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et al 2016, O’Neill et al 2016). After quality con-
trol (for example, removing models with incom-
plete metadata, such as basin masks), the total
number of simulation segments is 100 630.

(d) For each of the 116 observed 35 year mean
North Atlantic SST anomalies (created in #2)
we compare to all 100 630 simulation segments
(from #3) by computing the root mean square
error (RMSE) between these two fields over our
input domain (the North Atlantic as shown by
the large box in figure 1(a)). Prior removal of the
respective climatologies ensures this step does
not merely return the same models that happen
to have the smallest mean state biases, which can
be as large as the signals we are trying to predict
(Smith et al 2013, Menary et al 2015).

(e) From each of the best (i.e. lowest RMSE) 100
simulation segments we store the subsequent ten
years of gridded SST data in order to create our
forecast. Note we do not allow overlapping seg-
ments from the same simulation. For example,
if a given simulation segment is chosen (e.g.
HadGEM3-GC3.1-LL, piControl, 35 year win-
dow fromyear 305–339 inclusive) thenwe do not
allow other segments from the same simulation
that encompass any of the same years, although
non-overlapping segments are allowed.

Part B. Creating the forecast

(a) Each of the 100, gridded, ten year forecast mem-
bers are first normalised to the same standard
deviation as the HadISST observations. This is
to ensure that the final forecasts are not dom-
inated by some models with very large variab-
ility. Normalisation is done for each gridpoint
and is based on the standard deviations over the
prior 35 year segment. That is, no information
is allowed to leak from the successive observa-
tions. The means are also adjusted to match the
observed mean over the previous five years. In
the absence of any additional skill provided by
our method, this step will result in forecasts with
similar skill to persistence of the previous five
year mean. The relative ensemble member dens-
ities before these steps are shown in figure 3(a).

(b) The ensemble mean of these 100 normalised
forecasts is then taken.

(c) Finally, lead times 2–10 inclusive are averaged
together.

This process results in SST forecast maps for each
start year from 1904 to 2019. These can be com-
pared with observations and other prediction meth-
ods to determine the relative skill of this model-
analogue based system. Specifically, we compare to
(a) ensemble mean hindcasts made with initialised
decadal prediction systems (from 1960 onwards), (b)
the nine year running mean of the ensemble mean

of uninitialised (i.e. historical) simulations from the
same modelling centres that provided hindcast simu-
lations (from 1870 onwards), and (c) hindcasts from
theMPI decadal prediction system that begin in 1900.

3. Results

3.1. The skill of the model-analogue system
Figure 3(a) shows the nine year running mean
observed SPG SST along with the equivalent fore-
cast using this model-analogue system. The system
shows high skill (measured by the anomaly correla-
tion coefficient, ACC) for thewhole period (r= 0.75),
which increases when just considering forecasts for
the period since 1960 (r = 0.82). Both of these skill
scores lie outside bootstrapped persistence (of previ-
ous five yearmean) forecasts using pseudo-time series
with the same mean, variance, and auto-correlation
as observed (whole period: r = 0.61; since 1960:
r = 0.74, 90% level).

In addition to the SPG, the skill of the model-
analogue system remains high globally (figure 4(a)).
This is despite the fact that the system is (a) only
choosing simulation segments based on their spa-
tial similarity to observations within the North
Atlantic (highlighted region), (b) does not include
any information about the timing of external for-
cings, and (c) that this analogue design was chosen
for its potential skill in the NA SPG only. For this full
period, we can also compare against initialised fore-
casts made using the unusually long initialised pre-
diction dataset of MPI-ESM-LR (figure 4(b)) (Müller
et al 2014) and un-initialised historical simulations
taken from the combinedCMIP5 andCMIP6 archives
(figure 4(c)). The initialised predictions with MPI-
ESM-LR and the CMIP5 + 6 combined uninitial-
ised simulations also show globally high skill, with the
exception of the Southern Ocean region. Nonethe-
less, within the NA SPG, there is a clear increase in
skill in themodel-analogue based system as compared
to either of these baselines (figures 4(h) and (i)).
For completeness, maps and comparisons of selected
individual forecasts are provided in supplementary
figure S1 (available online at stacks.iop.org/ERL/16/
064090/mmedia).

To further test the robustness of the skill of the
analogue system, we subsample our forecasts to just
the period since 1960, which allows us to also com-
pare against the combined CMIP5 and CMIP6 ini-
tialised prediction systems (figure 4(f)). This ‘well-
observed’ period also gives us more confidence in
the verifying observations that determine the skill of
our system as well as the observed North Atlantic
time mean SST patterns from which our system is
built. For this period, much of the skill of the model-
analogue based system exists in the North Atlantic
(figure 4(d), grey hatching denotes skill is less than
persistence), whilst the other systems continue to
show high skill globally outside of the Southern
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Figure 3. (a) Distribution of SPG area-averaged SSTs in all forecast ensemble members at all lead times in raw forecasts, i.e. after
Part A of the model-analogue system construction, but before being combined in Part B (see section 2). Also shown are time
series of annual mean (grey) and nine year running mean SPG SSTs from HadISST1 (blue; our forecast target). In addition, for
the same validity (i.e. comparable) times we show the model-analogue based lead years 2–10 (inclusive) forecasts using the
processed data (red), the nine year running mean from the uninitialised simulations (historical plus scenario; green) and the lead
years 2–10 forecasts from the initialised predictions since 1960 (only those systems including start dates from 1960 to at least
2010, purple). The length of the 35 year analogue comparison window and subsequent forecast length are shown for reference.
(b) Number of ensemble members for each start year that draw data from the labelled experiments, shown as a fraction of the
total available simulation segments using that experiment. Numbers in brackets denote the percentage of those simulation
segments that lie within 20 years of the associated observed segment (i.e. they are approximately contemporaneous). Grey line is
observed SPG SSTs for reference (identical to panel a).

Ocean (figures 4(e)–(g)). Given that our system is
designed based on observed variability in the North
Atlantic and specifically targets skill in the NA SPG
(cf figure 1), this is perhaps not surprising. Non-
etheless, that our target region remains the region
that compares most favourably against other meth-
ods, independently of the period chosen, suggests
that our underlying hypotheses/design choices are
valid. Furthermore, themodel-analogue based system
remains able to improve on the skill of initialised or
uninitialised simulations within parts of the NA SPG
(figures 4(h)–(l)). Nonetheless, the high skill of the
uninitialised systems since 1960 (figure 4(l)) is con-
sistent with a very strong role for external forcing in
this region (Borchert et al 2021).

3.2. The behaviour of the model-analogue system
Following the high skill of our predictions within the
North Atlantic SPG, it appears apposite to investig-
ate which experiments our system is choosing, given
the ten possible CMIP experiments totalling 100 630
simulation segments. For example, if some fraction
of an observed SST pattern is externally forced at a
given time, then we might expect to find simulation
segments that incorporate that forcing to be preferen-
tially chosen.

The most commonly chosen experiment,
weighted by its relative availability, is the historical

(figure 3(b)). Initially, the other commonly chosen
experiments are the piControl and the hist-aer, the
latter covering the same time-frame as the historical
experiment but only including emissions of anthro-
pogenic aerosols. For the first 50 years, hist-aer is
approximately 5 times more likely to be chosen than
the hist-GHG experiment, which includes instead
only emissions of GHGs. The use of simulation seg-
ments from the hist-aer experiment up to around
1950 corresponds with a gradual warming of the SPG
from 1900, which is sometimes associated with mod-
els that also encompass strong aerosol forcing (Booth
et al 2012). Given also that 52% of the hist-aer sim-
ulation segment start times are within 20 years of
the actual year (numbers in brackets in figure 3(b)),
this gives us confidence that our method is matching
simulated and observed SST patterns that are due to
similar tendencies (i.e. an increase) in aerosol for-
cing. Nonetheless, this information alone does not
mean that aerosols were necessarily the dominant
forcing of North Atlantic variability up to 1950 in
reality, merely that simulations with their inclusion
provide time mean SSTs more similar to observed
SST estimates than achieved by other experiments.

It is notable that the hist-nat experiment is chosen
up to around 1985, but is not chosen during the
period of particularly strong volcanic forcing associ-
atedwith the eruption ofMount Pinatubo in 1991, for
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Figure 4. The anomaly correlation coefficient (ACC) skill of lead time 2–10 (inclusive) forecasts, using the model-analogue
system (first column; (a), (d)), initialised predictions with MPI-ESM-LR (second column; (b), (e)), initialised predictions with a
combination of available CMIP5 and CMIP6 prediction systems (third column; (f)), and uninitialised forecasts from similar
CMIP5 and CMIP6 historical simulations (fourth column; (c), (g)). Top row shows skill over the full available period and second
row the skill over the common and well observed period since 1960. Hatching shows regions where skill is not significantly greater
than the 90% level of a persistence forecast of five year means to lead years 2–10 (estimated using pseudo-data with the same
mean, variance, and auto-correlation as observed). Final two rows show North Atlantic focussed difference between
model-analogue skill and the various baselines after first transforming ACC using the Fisher Z-transform. Here, hatching shows
regions where skill in the model-analogue system is not significantly greater than persistence at the 90% level. In panels a-g, the
black box denotes the domain over which the model-analogues were chosen, as shown also in figure 1 and described in section 2.
In panels (h)–(l), the black box denotes the subpolar region used for the skill of area-averages in figures 3(a) and 5. CMIP5+ 6
initialised models used: MPI-ESM-LR, MIROC5, NorCPM1, CanESM5, GFDL-CM2p1, MIROC6, CanCM4, IPSL-CM6A-LR,
bcc-csm1-1, GEOS-5. CMIP5+ 6 uninitialised models used: MPI-ESM-LR, MIROC5, NorCPM1, CanESM5, GFDL-CM2p1,
MIROC6, CanESM2, IPSL-CM6A-LR, bcc-csm1-1.

example. Either the inclusion of volcanic forcing has
too small an impact when part of a 35 year timemean,
or the addition of the associated anthropogenic for-
cings (i.e. the historical experiment) provides a bet-
ter match to observations (in terms of North Atlantic
SSTs).

From the middle of the 20th century onwards,
and in particular after the year 2000, the hist-
GHG experiment becomes relatively more important
(figure 3(b)). In the target observations, this period is
characterised by an anomalous warming of the STG
region and a relative lack of warming in the SPG,
the pattern of which the hist-GHG experiment is the
most able to reproduce. Although scenario experi-
ments are included (e.g. RCP4.5, RCP8.5, SSP126,
SSP585), none are chosen. This may be at least partly
due to our deliberate choice to treat all experiments as
separate entities, rather than attempt to concatenate
data from, for example, the historical and subsequent
scenario experiments. As such, the first 35 year mean
for a CMIP5 (CMIP6) scenario experiment begin-
ning in 2005 (2015) ends at the year 2040 (2050), for
which the mean state difference to present-day obser-
vations is presumably larger than can be found in
other, more contemporaneous, experiments. Future
work will aim to widen the effective pool of source
model data.

In summary, although a statistical prediction, the
consistency of the potentially important forcings in
reality with the timing of the choice of particular
experiments gives us some additional confidence in
our model-analogue based approach. However, our
experimental design that does not separate the mean
state from the variability (e.g. does not remove some
of the warming from future scenario simulations to
render them more plausible for earlier periods) may
also be a factor.

We probe our approach further by investigating
the sensitivity of our results (i.e. the skill in fore-
casts of SPG SSTs) to our choice of time-mean win-
dow (figure 5). If our system is in fact most skilful
at window lengths that are different to our observa-
tionally derived window length (35 years) then this
would imply either systematically different behaviour
between models and observations, or that the skill
of our system is not likely to be robust. However,
as a function of window length, the skill of our sys-
tem (figure 5) largely mirrors the correlation between
observed North Atlantic SSTs and subsequent fore-
casts of area-averaged SPG SSTs seen in figure 1(b).
That is, our system is more skilful when we choose
a window length that is most consistent with the
strongest observed relationships, giving us further
confidence in our method.
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Figure 5. The sensitivity of the skill of our model-analogue
based forecasts to the choice of running mean window
length using the full period.

3.3. Real SPG SST forecast with the
model-analogue system
Finally, having demonstrated the skill of our model-
analogue based prediction system and investigated
the physical basis of the predictions, we use it to
make a tentative real-world prediction of anomalous
North Atlantic SPG SSTs at lead times 2–10 inclus-
ive (figure 6). The system predicts an anomalously
cool decade in the central SPG compared to cli-
matology (i.e. 1960–1990), although the SPG as a
whole is not forecast to be cooler than climatology (cf
figure 3(a)). Note that hatched regions denote where
the ACC skill of our system since 1960 is not sig-
nificantly greater than persistence and thus less reli-
able. These cover a large part of the cool anomaly
and so the overall cooling in the central SPG may not
be reliable. This prediction is different to both the
ensemble mean uninitialised models (cf figure 3(a),
green lines) and initialisedmodels (figure 3(a), purple
lines), although the lead-time horizon for these is
limited and some single model studies do forecast
a cooling (Hermanson et al 2014). However, the
analogue-model based prediction of cooler central-
SPG SSTs would be consistent with the projected
North Atlantic warming hole associated with a weak-
ening of the Atlantic Meridional Overturning Circu-
lation (AMOC) seen in most climate models (Men-
ary andWood 2018). It is also broadly consistent with
the latest observations for 2020, which continue the
downward trend in SPG SSTs (figure 3(a)). On the
other hand, recent observational analyses forecast a
possible short-term strengthening of the AMOC in
the coming years (Desbruyères et al 2019, Moat et al
2020), which would likely eventually contribute to a
warmer SPG.

Figure 6. Actual anomaly forecast for the North Atlantic
subpolar gyre region for the period 2021–2030 inclusive
made using our model-analogue based system. The
anomaly is with respect to an observed climatology over the
period 1960–1990. Regions where the skill of the
model-analogue system since 1960 is not significantly
improved against persistence at the 90% level (see figure 4),
and thus the forecast may be less reliable, are hatched.

4. Summary and discussion

We have presented a model-analogue based method
to predict NA SPG SSTs on decadal timescales. We
have shown that our system has a high level of skill as
well as demonstrating that the behaviour of our sys-
tem is consistent with our initial hypotheses. This sys-
tem can serve as a useful benchmark in the NA SPG
for future initialised predictions using models from
CMIP6 and beyond. Combined with other empir-
icalmethods, such benchmarks can also help quantify
the uncertainty in climate predictions (Suckling and
Smith 2013, Brunner et al 2020).

Although the system we have designed does not
require that dedicated coupled climate model sim-
ulations are performed, and can thus be considered
a cheaper alternative, it does rely on these simula-
tions already existing. In addition, the computational
overheads involved in pre-processing 668 individual
model simulations comprising a total of 100 630
simulated years are not trivial. We estimate that we
used a total of 400 000 CPU hours on Jasmin, the
UK’s high performance storage and compute cluster
(Lawrence et al 2013), which represents approxim-
ately 0.3% of the cost of, for example, the UK Met
OfficeDCPP-Ahindcast experiments (LeonHerman-
son, pers. comm.). Compared to initialised predic-
tion systems, our system remains relatively simple to
modify and explore (cf figure 5).

Wehave demonstrated skilful predictions for both
the period since 1904 (our first start year) and since
1960. The skill in predictions since 1960 is higher
than in the full period, which may be related to the
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broadly upwards trend in SPG SSTs since this time
(figure 3(a)). Nonetheless, we also have more con-
fidence in the skill of our system during this recent
period. Further back in time, the gridded SST obser-
vations are increasingly sparse, which results in an
increasing number of grid cells relaxing towards cli-
matological values (Rayner et al 2003). Such ‘relaxing
to climatology’ violates our initial hypotheses, namely
that the pattern of SSTs in the North Atlantic is phys-
ically linked to the future evolution of SSTs in the
NA SPG and that these relationships are stationary.
To assess the stationarity of the SST pattern in the
source models, we also computed this relationship
in the piControl simulations. For some models, the
SST pattern was similar to observed (figure 1(a)), but
for others it was not, nor stationary within a given
model over a multi-century simulation (not shown).
As such, a future update to the system could be to
pre-select the allowable models based on a metric of
the similarity of this pattern. Nonetheless, in the cur-
rent proof-of-concept study, we choose not to a pos-
teriori change the experimental design. In addition,
we tested using a correlation-based measure of sim-
ilarity, rather than RMSE, in steps #4 and #5 of our
model-building methodology (see section 2). This
severely reduced the ultimate skill of our system. We
hypothesise that this was due to the inclusion of too
many simulation segments with large mean state off-
sets (despite similar anomalous patterns). If themean
state and variability are not independent, as has been
demonstrated in the North Atlantic (Menary et al
2015), this would likely lead to poor forecasts and thus
lower skill.

The CMIP initialised and uninitialised dynamical
models we have compared against are generally more
skilful than our model-analogue based method out-
side of the NA SPG, consistent with the construction
of the analogue system. The uninitialised historical
simulations contain the global pattern and precise
temporal evolution of the external forcings, while
the initialised systems also include global informa-
tion in their initialisation, all of which provide skill.
Nonetheless, despite these advantages, the model-
analogue based system is able to demonstrate com-
parable skill to these systems within the NA SPG
(figures 4(h)–(l)). This result demonstrates in prin-
ciple how a targeted approach to the creation of a
model-analogue system, involving the determination
of real-world linkages between precursor and fore-
cast variables, can provide high levels of prediction
skill. In future, a hybrid approach may be possible,
to synthesise the skill arising from different meth-
ods. Here, our goal was to design a system to provide
skilful forecasts of NA SPG SST on decadal times-
cales in order to provide an updated benchmark for
CMIP6 initialised prediction systems, which we have
achieved, and to provide a jumping-off point for
future analogue-based methods. This highlights the
potential, and untapped, power of large multi-model

archives of uninitialised simulations for making real-
world predictions. Finally, it also suggests that that
there remains yetmore skill to be realised through ini-
tialised decadal predictions with dynamical models.
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