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Abstract: Land use (LU) and land cover (LC) are two complementary pieces of cartographic informa-
tion used for urban planning and environmental monitoring. In the context of New Caledonia, a
biodiversity hotspot, the availability of up-to-date LULC maps is essential to monitor the impact of
extreme events such as cyclones and human activities on the environment. With the democratization
of satellite data and the development of high-performance deep learning techniques, it is possible
to create these data automatically. This work aims at determining the best current deep learning
configuration (pixel-wise vs. semantic labelling architectures, data augmentation, image prepos-
sessing, . . . ), to perform LULC mapping in a complex, subtropical environment. For this purpose,
a specific data set based on SPOT6 satellite data was created and made available for the scientific
community as an LULC benchmark in a tropical, complex environment using five representative
areas of New Caledonia labelled by a human operator: four used as training sets, and the fifth as
a test set. Several architectures were trained and the resulting classification was compared with a
state-of-the-art machine learning technique: XGboost. We also assessed the relevance of popular
neo-channels derived from the raw observations in the context of deep learning. The deep learning
approach showed comparable results to XGboost for LC detection and over-performed it on the LU
detection task (61.45% vs. 51.56% of overall accuracy). Finally, adding LC classification output of the
dedicated deep learning architecture to the raw channels input significantly improved the overall
accuracy of the deep learning LU classification task (63.61% of overall accuracy). All the data used
in this study are available on line for the remote sensing community and for assessing other LULC
detection techniques.

Keywords: New Caledonia; remote sensing; land use; land cover; deep learning: XGBoost; neural
network; neo-channels

1. Introduction

Maps of Land Use and Land Cover (LULC) are an elementary tool for environmental
planning and decision-making. As the name implies, the term comprises two related, but
different pieces of information about a geographical location, the land use (LU) according
to its function in terms of human use (such as farm, airport, road, etc.), and the land
cover (LC) according to the physical/chemical material (such as vegetation, bare soil, etc.).
Both LC and LU classes, normally defined in hierarchical schemes, play an important
role for planning and management of the natural and built environment at different
granularities [1]. A primary data source to generate LULC maps is remotely sensed imagery,
which serves as a basis for either photo-interpretation by a human operator, or automated
classification with suitable classification algorithms. Remote sensing imagery at different
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wavelengths of the electromagnetic spectrum has proven effective for environmental
monitoring at various spatial and spectral resolutions [2,3]. In particular, recent satellites
observe the Earth’s surface with small ground sampling distances (GSD) and high temporal
revisit rates [4], which makes them suitable for environmental monitoring of remote
territories, where other data sources are difficult to sustain the monitoring.

A case in point is New Caledonia, a biodiversity hotspot [5,6] whose monitoring on
a regular, periodic basis is essential for environmental management and conservation.
New Caledonia is a tropical high-island with a comparatively small population distributed
unevenly across its territory, large areas of dense vegetation, and considerable, intense
mining activities that have led to significant erosion phenomena [7]. The resulting complex
environment [8–10] requires environmental monitoring at a fine scale by the use of very
high spatial resolution satellite imagery. The Government of New Caledonia has com-
missioned the production of an LU map of the entire territory from the New Caledonia
Environmental Observatory, using 2014 SPOT6 satellite images [11]. That map, available at
medium resolution (minimum mapping unit 0.01 km2), is widely used by the country’s
decision makers to monitor the environmental impact of mining and the decline of tropical
forests over the entire territory. However, the product at present covers only the south-
ern part of New Caledonia. Moreover, its creation, requiring a lot of human input, was
time-consuming and costly. No updates are foreseen for several years, for lack of resources.
Consequently, there is a need for automation.

Among comparisons of methods to classify LULC from satellite images on several
benchmark datasets, Deep Learning has recently stood out as a particularly effective
framework for automatic image interpretation [12]. Given large amounts of training data,
Deep Learning is able to extract very complex decision rules [13]. In image processing in
particular, Deep Learning is at the top of the state-of-the-art semantic image analyses [14]
(described in the Methods section), greatly enhanced by the particular design of the
convolutional deep networks. Indeed, on some tasks its performance matches or even
exceeds that of humans [15]. Additionally in optical satellite remote sensing, Deep Learning
has become a standard tool, as it appears to cope particularly well with the continuously
varying imaging conditions (illumination, sensor properties, atmospheric composition,
etc.) [16–18]. Deep Learning has been widely employed for remote sensing, including tasks
such as object recognition, scene type recognition or pixel-wise classification [19,20].

In this article, several Deep Learning architectures for LULC classification are com-
pared across five specific regions of South Province of New Caledonia. The goal is to
prepare an operational system for LULC monitoring for the South Province territory, since
its natural environment is subject to significant human pressures [21,22]. Many powerful
Deep Learning architectures in the field of remote sensing use two possible strategies:
“central-pixel labeling” or “semantic segmentation” (described in the Methods section).

We empirically compare a number of these promising Deep Learning architectures.
Moreover we also include a standard machine learning baseline, XGboost, which has
shown very good performances in several benchmarks related to classification [23]. Since
“neo-channels”, which are non-linear combinations of the raw channels, and texture filters
derived by arithmetic combinations of the raw image channels are widely used in the field
of remote sensing [24], we also assess the interest of such additional information when
using XGboost and Deep Learning, even if in the latter case, the technique is able to build
its own internal features by combining the raw information.

Finally, LU mapping is a considerably harder task than LC mapping. LC mapping
is generally obtained by photo-interpretation of satellite and/or aerial images, while LU
mapping typically requires the integration of exogenous data (road network map, flood
zones, agricultural areas, etc.) and ground surveys due to the difficulty of interpreting
satellite images. However, for this study these exogenous data sources are not available
and the LU mapping is also created by photo-interpretation. In addition, in this study,
the LU nomenclature has a higher number of distinct classes than the LC nomenclature.



Remote Sens. 2021, 13, 2257 3 of 22

We construct a two-step architecture and show that LU retrieval can be improved by first
classifying LC and then using its class labels as an additional input.

2. Materials
2.1. Study Area: New Caledonia

As part of a project commissioned by the New Caledonia Environmental Observatory
(OEIL), a large acquisition of SPOT6 satellite images (see Section 2.2 below) over New
Caledonia was carried out to create an LU map of all its provinces [11]. New Caledonia
is divided into three provinces: the South Province, the North Province and the Islands
Province. These have different administration and funding mechanisms. In the present
study we concentrated on the South Province, for which data were available, including for
the five sites with reference data, totaling 128.4 km2.

In New Caledonia, natural environments account for most of the territory and 90% of
the South Province is covered by vegetation. Primary vegetation units (particularly dense
humid forests and sclerophyll forests) have regressed in favor of secondary ones (savannas
and sclerophyll shrublands). About 46% of the study area is composed of sparse forests,
dense humid forests, dry forests and mangroves. About 44% is occupied by shrubs and/or
herbaceous vegetation, with little or no vegetation occupying the rest. Agricultural land
comes second with 5%. Sealed or barren surfaces, including urban and mining operations,
occupy only 3% of the Southern Province. Wetlands, such as submerged areas, share the
remaining 2% with water bodies [25].

In the South Province, five areas of interest were selected (Figure 1). They are dis-
tributed throughout the region and contain a variety of environments, including mining
areas, urban areas and tropical forests. They were chosen to, as much as possible, reflect
the diversity of the territory. From these zones, data sets were constructed for training,
validation, and testing. The description, extent and surface of the five areas are described in
the Table 1. The data were projected according to the reference coordinate system RGCN91-
93/Lambert New Caledonia (EPSG:3163). In addition to the areas shown in Figure 1,
the top left (x1,y1) and bottom right (x2,y2) coordinates are described in Table 1. These
training and testing areas (see Figures S1–S3) can be downloaded and used as benchmarks
to compare the LULC classification techniques at [26].

Figure 1. Map of New Caledonia and its Provinces (in blue the South Province, in red the North Province and in green the
Islands Province). The South Province, zoomed in on the right, shows the four areas selected for the training (in magenta)
and the area selected for the test (in cyan).
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Table 1. Coordinates (projected according to the reference coordinate system RGCN91-93/Lambert
New Caledonia) and surfaces of the five study areas.

Area (x1; y1) (x2; y2) Surface

Test1 (419,828; 285,110) (423,328; 288,915) 13.3 km2

Train1 (382,983; 276,240) (387,031; 281,621) 21.8 km2

Train2 (416,813; 244,503) (421,228; 248,117) 25.3 km2

Train3 (448,857; 220,743) (453,938; 225,718) 52.1 km2

Train4 (479,224; 221,634) (487,729; 227,756) 15.9 km2

2.2. Data Collection

The SPOT6 data, recorded in the course of 2013–2014, were radiometrically corrected
and assembled into a mosaic covering the total area of 18,575 km2 of New Caledonia. The
Red, Green, Blue and Near Infra-Red (RGB and NIR) channels were available at 1.5 m
resolution. The data were provided as ortho-rectified tiles based on the local authorities’
10-meter DTM, for a total of 12 images, which are detailed in Table 2.

Table 2. Tile name and acquisition date of the SPOT6 images covering the South Province of
New Caledonia.

Tiles Name Acquisition Date

spot6_pms_201306292238055_ort_1119497101 29 June 2013
spot6_pms_201406282239012_ort_1119498101 28 June 2014
spot6_pms_201406212242046_ort_1119505101 21 June 2014
spot6_pms_201406282239047_ort_1119509101 28 June 2014
spot6_pms_201407122232016_ort_1119525101 12 July 2014
spot6_pms_201407172243021_ort_1119527101 17 July 2014
spot6_pms_201407242239020_ort_1119528101 24 July 2014
spot6_pms_201407292250014_ort_1119529101 29 July 2014
spot6_pms_201407292250032_ort_1119530101 29 July 2014
spot6_pms_201407312236004_ort_1119532101 31 July 2014
spot6_pms_201408122243031_ort_1119533101 12 August 2014
spot6_pms_201410032243032_ort_1119534101 3 October 2014

A few images were available, explaining the remaining cloud cover (≈10%) despite the
mosaic. In addition, the images were acquired early in the morning and, as the Southern
Province is a high relief area, the south-southwest oriented hillsides show significant
shadows and prevent observation on some mountain sides. As a high tropical island, New
Caledonia experiences very little seasonal variation. However, there are periods of drought
that can last from 3 to 6 months, so remote sensing images may have large radiometric
differences between them despite showing the same LULC. This variation was considered
negligible for this study, as Deep Learning normally copes well with multimodal data
distributions [27]. It is on the basis of these satellite images that LU and LC labelling was
carried out over the five study areas.

2.3. Classification System

There are two main, complementary ways to classify objects on the Earth’s surface:
LC, which amounts to the type of physical material visible at a given location, and LU,
which categorizes the location according to its function (natural or for human use).

In this study, different classes were delimited by vectors and then labelled according
to the two nomenclatures. The classes chosen for the different nomenclatures were directly
inspired by the previous work regarding LU accomplished by the New Caledonia Envi-
ronmental Observatory [11]. This nomenclature is itself based on the CORINE land cover
inventory [28].
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For LC, a first classification was carried out taking into account only the surface cover,
for a total of five classes shown in the Table 3, numbered from 1 to 5 in column L.

Table 3. Land cover nomenclature representing five classes numbered from 1 to 5 (column L).

L Description
1 Buildings
2 Bare soil
3 Forest
4 Low-density vegetation
5 Water surfaces

For LU, two levels of hierarchy were established. The first level (column L1 of
Table 4) separated three classes: the urban or built-up areas, the undeveloped areas, and
the wetlands. The second level (column L2 of the Table 4) subdivided each of these
classes into several subclasses as presented in the Table 4. These classes were identified in
particular for their significance for land management and conservation in New Caledonia
and were derived from thematic research conducted by the OEIL which, as previously
mentioned, compiled a similar LU nomenclature. For example, mines are common in New
Caledonia and need to be closely monitored because of their high potential environmental
impact. Identifying them is important for tasks such as monitoring forest fragmentation
or preventing soil erosion. Compared to the original nomenclature proposed by OEIL,
agricultural land was removed because it was mainly pasture areas, indistinguishable in
this form from an area of low-density vegetation by photo-interpretation.

Table 4. Land use nomenclature described on two levels, the first level (L1) representing three classes
and the second level (L2) representing the 12 classes of the nomenclature (C).

L1 L2 Description C
1 Urban or built-up areas

11 Urban areas 1
12 Industrial areas 2
13 Worksites and mines 3
14 Road networks 4
15 Trails 5

2 Undeveloped areas
21 Dense vegetation, forests 6
22 Wooded savanna, forest patch border 7
23 bush, grassy savanna 8
24 Bare rocks 9
25 Bare soil 10

3 Wetlands
31 Water bodies 11
32 Engravements (dry river beds) 12

Clouds and shadows were masked in the satellite images and did not appear in the
nomenclatures. The cloud mask is a remote sensing product provided with SPOT6 data
and shadows can be detected with a simple heuristic approach that searches (almost)
black bodies [29]. Subsequently, for Deep Learning architectures, the different classes
were renamed from 0 to 12 (column C of the Table 4), where class 0 contained clouds and
shadows and was ignored during the learning process.

The LU and LC labelling were carried out jointly through photo interpretation by
a unique human operator. This ensured consistent results and also consolidated work,
since the two nomenclatures overlapped in a large portion of the territory (in particular,
the natural, uncultivated land). The pixel-accurate labelling of the test area is shown in
Figure 2.
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Figure 2. (a) SPOT6 remote sensing image (2334 × 2537 pixels), (b) manually classified according to the LC nomenclature
Table 3 and (c) according to the LU nomenclature Table 4. The black pixels represent the mask layer brought by clouds
and shadows.

3. Methods
3.1. Use of Neo-Channels

The four raw channels of SPOT 6 used in this study were recorded in the R, G, B
and NIR wavelengths, respectively. On the basis of the characteristics of the raw chan-
nels, neo-channels were calculated to highlight the particularity of certain land types in
remote sensing [30,31] or complex objects such as urban infrastructures [32]. For example,
NDVI [33] was used to highlight vegetation cover. Neo-channels are potentially important
for XGBoost because the technique does not have the feature learning capabilities like Deep
Learning. The neo-channels used in this study were as follows:

• The luminance L from the colour system HSL (Hue, Saturation, Luminance)

L =
max(R, G, B) + min(R, G, B)

2
(1)

• c3 from the colour system c1c2c3 [34].

c3 = arctan
(

B
max(R, G)

)
(2)

• NDVI (Normalized Difference Vegetation Index) [33]

NDVI =
NIR − R
NIR + R

(3)

• MSAVI (Modified Soil-Adjusted Vegetation Index) [35]

MSAVI =
(NIR − R)× (1 + L)

NIR + R + L
(4)

• ExG (Excess Green Index) [36]

ExG =
2 × G − R − B

R + G + B
(5)

• MNDWI (Modified Normalized Difference Water Index) [37]

MNDWI =
G − NIR
G + NIR

(6)
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The NDVI, MSAVI and ExG [38] highlighted vegetation. L and c3 provided informa-
tion about contrast and illumination [34]. These neo-channels as well as the raw channels
were used as inputs for the model training.

3.2. XGBoost

To serve as baseline, we used a standard machine learning method called XGboost
(“Extreme Gradient Boosting”, [39]). It is a boosting scheme with decision trees as base
(weak) learners that are combined into a strong learner. XGBoost iteratively builds an
ensemble of trees on subsets of the data; weighting their individual predictions according
to their performance. An ensemble prediction is then computed by taking the weighted
sum of all base learners. The library is designed to be highly efficient and provides parallel
algorithms for tree boosting (also known as GBDT, GBM) that are very well suited for the big
data of remote sensing. XGboost is a state-of-the-art technique in supervised classification
that showed very strong performance on a wide variety of benchmark tasks [39].

To run an XGBoost model, neo-channels and multiple texture filters were used. The
filters were: dissimilarity, entropy, homogeneity and mean. Input of 64 × 64 windows
were used for labeling the central pixel. The training data were the same as for the Deep
Learning architectures.

3.3. Deep Learning Architectures

The internal parameters of the employed Convolutional Neural Network (CNN)
architectures were not changed with regards to the originally proposed ones. A CNN [40]
is a machine learning technique based on sequences of layers of three different types:
convolutional, pooling or fully connected layers. Convolution and fully connected layers
are usually followed by an element-wise, non-linear activation function.

In the frame of classification of visible satellite data into l classes, the first layer
of a Deep Learning architecture receives an input, generally an image of k channels of
n × m pixels. The convolutional layers act as filters that extract relevant features from the
image. Pooling layers then allow sub-sampling the filter responses to a lower resolution to
extract higher-level features with larger spatial context. The last layers map the resulting
feature maps to class scores. There are two possible strategies: “central-pixel labeling”,
where a fully connected layer maps the features computed over an entire image patch to a
1 × l vector of (pseudo-)probabilities for only the central pixel of the patch; or “semantic
segmentation”, where the high-level features are interpreted as a latent encoding and
decoded back to a l × n × m map of per-pixel probabilities for the entire patch, where the
decoder is a further sequence of (up-)sampling and convolution layers. The objective of
this coding-decoding sequence is to extract informative data from the inputs, remove the
noise signal and combine the information for classification purposes.

All architectures were trained with stochastic gradient descent using a similar protocol,
with a momentum of 0.9 and starting from an initial learning rate of 10−2. Every 20 epochs,
the learning rate is divided by 10 until reaching 10−6.

Neural networks do not perform well when trained with unbalanced data sets [41]. In
the case of “central-pixel labeling” architectures it is possible to make balanced data sets
with the initial pixels selection used for the learning. In the case of “semantic labeling” the
composition of the images makes it more difficult to precisely control the number of pixels
per class. We tried several methods, but found negligible differences in performance. All
reported experiments use the median frequency balancing method.

3.3.1. Central-Pixel Labeling

AlexNet, an architecture introduced by Alex Krizhevsky [42], is one of the first Deep
Learning architectures to appear on the scene. Inspired by the LeNet architecture in-
troduced by Yann LeCun [40], AlexNet is deeper with eight layers, the first five being
convolutional layers whose parameters are shown in Table 5, interleaved with max-pooling
layers (Figure 3). The sequence finishes with two fully connected layers before the final
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classification with a softmax. A ReLu type activation function is used for each layer. Data
augmentation and drop-out are used to limit overfitting.

Figure 3. The AlexNet architecture. The number of kernels is indicated at the bottom of each convolution layer, the rest of
the parameters are indicated in Table 5.

Table 5. Configuration of the different layers of Figure 3 representing the AlexNet architecture.

Layer Conv Kernels Stride Pad

conv1 11 × 11 96 4 0
conv2 5 × 5 256 1 2
conv3 3 × 3 384 1 1
conv4 3 × 3 384 1 1
conv5 3 × 3 256 1 1

maxpool 2 × 2 Na 2 0

ResNet (Deep Residual Network, [43]) is a Deep Learning architecture with many
layers that use skip connections, as illustrated in Figure 4. These skip connections allow
the bypassing of layers and add their activations to those of the skipped layers further
down the sequence. The dotted arrows in Figure 4 denote skip connections through a linear
projection to adapt to the channel depth.

By skipping layers and thus shortening the back-propagation path, the problem of the
“vanishing gradient” can be mitigated. Figure 4 represents a 34-layer ResNet architecture.
The first layer uses 7 × 7 convolutions, the remaining ones 3 × 3.
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Figure 4. Illustration of a ResNet architecture, the arrows above the layers depicting the “skip connections” in the
architecture. The number of kernels is indicated at the bottom of each convolution layer.

The DenseNet architecture [44] extends the principle of ResNet, with skip connections
to all following layers in a module called a “dense block”, as shown in Figure 5. The activa-
tion maps of the skipped layers are concatenated as additional channels. The architecture
then consists of a succession of convolution layers, dense blocks and average pooling.

Figure 5. Illustration of a dense block. The different colored arrows represent the skip connection made at different levels of
the dense block.

3.3.2. Semantic Labelling

Unlike “pixel labelling”, the “Semantic Labelling” approach classifies all pixels of an
image patch to obtain a corresponding label map. For this purpose, the architectures
SegNet, DeepLabV3+, and FCN are used. SegNet [45] is a neural network of encoder-
decoder types like DeconvNet [46] or U-Net [47]. The encoder in the Deep Learning
architecture is a series of convolutional and max pooling layers that encode the image into
a latent “feature representation”. Before each pooling step, the activations are also passed
to the corresponding up-convolution layer in the decoder, to preserve high-frequency detail
(see Figure 6).
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Figure 6. SegNet architecture. The number of kernels is indicated at the bottom of each convolution layer. The arrows
represent the activation layers used as inputs to the corresponding up-convolution layers.

The Fully Convolutional Networks (FCNs) [48] have convolution layers instead of fully
connected ones, preserving some degree of locality throughout. These layers include two
parts: the first part consisting of convolutional and max pooling to fulfil the function of the
encoder, and the second part comprises an up-convolution to recover the initial dimensions
of the image and a softmax to classify all pixels. In order to maximize recovery of all the
information during the encoding, skip connections are included similar to [43] architecture.

The DeepLab V3+ architecture [49] uses so-called “Atrous Convolution” in the encoder.
This makes it possible to apply a convolution filter with “holes”, as shown in Figure 7,
covering a larger field of view without smoothing.

Figure 7. (left) The normal function of a convolution layer or an Atrous convolution with a separation of 1. (right) An
atrous convolution with a separation rate of 6, only the red square will be used to calculate the result (blue square).

Atrous convolution is embedded in a ResNet-101 [50] or Xception [51] architecture,
delivering a pyramid of activations with different atrous rates (see Figure 8). This pyramid
accounts for objects of different scales and thus increases the expressive power of the model.
After appropriate resampling in the decoder, a semantic segmentation is obtained.
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Figure 8. DeepLab architecture illustration from the paper [49] showing the internal structure of the architecture, in
particular the activation pyramid present in the encoder.

3.4. Sampling Method

The SPOT6 satellite data for our five study areas were preprocessed to be fed into the
different Deep Learning architectures and the XGBoost model. First, the data were split
into three mutually exclusive parts: a learning set, a validation set and a test set totally
independent of the two previous ones.

Four of the five areas were used for learning and validation. The last, isolated scene
was then used as the test set. It contained all the classes for the two nomenclatures, the five
LC classes, and the 12 LU classes. In addition, this image contained all the environments
representing the New Caledonian landscape: urban, mining, mountainous and forest
environment with variations from the coastline to the inland mountain areas. It is on this
entire scene that the final confusion matrix and quality metrics were computed.

Several possible input channel combinations were tested for both XGBoost and Deep
Learning. For both LU and LC classification, a set of data consisting only of the four SPOT6
channels (Red, Green, Blue and Near Infra-Red), was used as a basis. The other data sets
were composed of these raw channels with six additional neo-channels: NDVI, MSAVI,
MNDWI, L, c3, and ExG.

In addition to these inputs, LC information can also be used to assess whether addi-
tional LC information can improve LU classification. To that end we first performed LC
mapping, then added the max-likelihood LC label as an input channel for the LU mapping.
The different variants are summarized in Table 6.

Table 6. Summary of all datasets used by machine learning methods.

DataSets Description

RGBNIR Dataset containing the raw channels: R, G, B and NIR
NEO Dataset containing all the neo-channels: L, c3, NDVI, MSAVI,

MNDWI and ExG
LCE Land cover produced by the human operator
LCM Land cover produced by a machine learning model
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3.5. Mapping and Confusion Matrix

After fitting the parameters of the different Deep Learning architectures as well as
XGBoost on the training set, they were run on the test set to obtain a complete mapping of
LC and LU as described above. Confusion matrices were extracted from these results. Four
quality metrics are used: Overall Accuracy (OA), Producer Accuracy (PA), User Accuracy
(UA) and the F1-score. The OA takes the sum of the diagonal of the confusion matrix. The
PA takes the number of well-ranked individuals divided by the sum of the column in the
confusion matrix. The UA takes the number of well-ranked individuals divided by the sum
of the line. Finally, the F1-score is calculated as the harmonic mean of precision and recall.
This last metric allows calculating the accuracy of a model by giving an equal importance
between the PA and the UA. Note that the shadow and cloud areas were not taken into
account in the confusion matrix.

For architectures using a “central-pixel labeling” method, the mapping was done pixel
by pixel using a sliding window with step size 1. In each window only the central pixel
(i.e., row 33, column 33 of the window) was classified. To sidestep boundary effects, a
buffer of 32 pixels at the boundary of the scene was not classified.

For “semantic labeling” architectures, we empirically used a sliding window with
step size 16. With bigger steps the results deteriorated, and smaller ones did not bring
further improvements. Every pixel was thus classified multiple times, and we averaged
the resulting per-class probabilities. Finally, the class with the highest score was retained as
a pixel label.

4. Results
4.1. Evaluation of Land Cover Classification

The nomenclature used for the LC detection is described in Table 3. The comparison
of the classification performances of different models (XGBoost, several Deep Learning
architectures) is shown in Table 7 with the RGBNIR dataset. The best results for the “central-
pixel labeling” and “semantic labeling” methods for each metrics of accuracy are presented
in bold. The results on the four training areas for the LC classification are presented in
Table A1, Appendix A.

Table 7. Results of Deep Learning and XGboost architecture for the LC detection task with RGBNIR as
input. OA, UA, and PA mean respectively “overall accuracy”, “user accuracy”, and “producer accuracy”.

Architectures OA PA UA F1-Score

XGboost 77.55% 72.39% 76.93% 74.60%
AlexNet 73.29% 66.77% 78.98% 72.36%
ResNet 79.13% 73.18% 82.55% 77.58%
DenseNet 79.55% 73.10% 83.13% 77.79%
SegNet 79.54% 73.00% 82.16% 77.31%
DeepLab 81.41% 75.15% 84.37% 79.49%
FCN 80.48% 74.66% 83.99% 79.05%

For the LC detection task all tested methods reached overall accuracies between
73% (AlexNet/“central-pixel labeling”) and 81% (Deeplab/“semantic labeling”). The
XGboost baseline performed on par with the best Deep Learning methods, except for lightly
lower overall accuracy. Excluding the basic AlexNet architecture, most Deep Learning
architectures obtained similar performances. Most models showed UA higher than PA, i.e.,
recall (percentage of total relevant results correctly classified) was higher than precision
(percentage of relevant results).

4.2. Evaluation of Land Use Classification

Using the same input channels as in the previous section, the same models were
trained for the more complex LU classification task. Here the algorithms had to differentiate
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between 12 land type classes for the classification, as described in the nomenclature in
Table 4. Table 8 presents the results of the LU classification on the test area and Table A2, in
the Appendix, presents the results of the LU classification on the four training areas.

Table 8. Results of Deep Learning architecture and XGBoost for the LU detection task with RGBNIR
as input.

Architectures OA PA UA F1-Score

XGboost 51.56% 42.61% 38.27% 40.32%
AlexNet 45.79% 33.93% 38.26% 35.97%
ResNet 55.96% 43.89% 49.58% 46.56%
DenseNet 59.59% 46.18% 55.00% 50.21%
SegNet 58.36 37.16 40.48 38.75%
DeepLab 61.45% 49.77% 51.04% 50.40%
FCN 56.07% 49.59% 47.22% 48.38%

For the LU detection task, all deep learning techniques except AlexNet outperformed
XGBoost. Differences were significant, with up to 15 percent points in OA. As in the
previous section, the best performing “single-pixel” architecture is DenseNet and the best
“semantic labeling” network is DeepLab. Interestingly, DenseNet reached the best PA,
although DeepLab dominated the remaining metrics.

For the remainder of this study, the best performing “single-pixel” and “semantic
labeling” were selected. There was little difference between the architectures, so the
architectures with the best F1-score for the LU classification were chosen arbitrarily.

4.3. Influence of Neo-Channels and Land Cover as Input on the Learning

The first part of Table 9 presents the results of the two strongest architectures, DenseNet
and DeepLab, when neo-channels were used as input. In most cases, adding neo-channels
made little difference. Still, although feature learning should theoretically be able to approx-
imate them, some channel combinations did lead to noticeable improvements, typically
involving the c3 channel. Very few datasets managed to outperforme the initial RGBNIR
dataset by more than 0.5% on the different accuracy metrics (bold figures in Table 9). Similar
results were observed for the LC task.

Table 9. Land use of DenseNet and DeepLab architectures learned from the combination of raw channels and neo-channels.

DenseNet DeepLab
Datasets OA PA UA F1-Score OA PA UA F1-Score

RGBNIR 59.59% 46.18% 55.00% 50.21% 61.45% 49.77% 51.04% 50.40%
NEO 57.03% 45.26% 52.21% 48.49% 57.53% 46.04% 51.74% 48.72%
RGBNIR+NEO 59,48% 46.67% 53.91% 50.03% 59.83% 47.55% 50,08% 48.78%
RGBNIR+c3 61.78% 48.22% 55.14% 51.45% 60.32% 48.51% 51.1% 49.77%
RGBNIR+L+c3 57.99% 46.84% 52.86% 49.67% 61.51% 50.25% 52.44% 51.32%
RGBNIR+c3+ExG 60.89% 47.28% 55.71% 51.15% 60.77% 47.31% 49.81% 48.05%
RGBNIR+LCE 74.90% 58.55% 61.36% 59.92% 73.56% 56.09% 61.06% 58.47%
RGBNIR+LCM 62.08% 50.31% 53.86% 52.02% 63.61% 50.74% 51.36% 51.05%

The best performing architectures were selected and used for an LU detection task
with the LC as input on top of the raw channels. We ran two variants, an LCM (Land Cover
Model) which used the LC predictions of the deep learning model; and an LCE (Land
Cover Expert), which used the ground truth values, i.e., this version served as an upper
bound of what LU performance could be if a perfect predictor for LC was available (see
Table 9).
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Due to the closeness between certain LC and LU classes (e.g., forest), LCE achieved
results closer to 75% of OA for both architectures. Note that this is an upper bound of how
much LU information can be extracted from known LC, hinting at the complexity of the
problem and the limits of deriving LU only from image data.

More interestingly, we also observed improved LU classification when adding LC
labels as additional input to the architecture. The two-step approach appeared to simplify
the task. At this stage it is not completely clear why that was the case, as the LC labels
are obviously information that the respective architecture could find on its own, and the
high performance of XGBoost makes it unlikely that extracting the LC labels exhausted
the capacity of the chosen architectures. A gain was also observed for the OA and the UA
when the LCM was added as input to the model, with similar results for the PA.

4.4. Confusion Matrix of the Best Deep Learning Model for LULC Classification

The results of the best performing architecture for the LULC classification task,
DeepLab, is detailed with two confusion matrices. Table 10 shows The LC classifica-
tion task with the raw channels as input, and the LU classification task with the LCE in
addition to the raw channels, is in Table 11. The resulting maps of the LU labelling task are
shown in Figure 9.

Table 10. Land cover confusion matrix of DeepLab.

Predicted
Buildings Bare Soil Forest Low-Density Vegetation Water Surfaces

Buildings 0.43 0 0 0 0
Bare soil 0.24 0.84 0.02 0.04 0.07
Forest 0.18 0.02 0.78 0.12 0.05
Low-density vegetation 0.15 0.14 0.19 0.84 0.01
Water surfaces 0 0 0.01 0 0.87

Table 11. Land use confusion matrix of DeepLab + LCM.
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Figure 9. (a) SPOT 6 images of the test area with a zoom in two specific zones, (b) 1 and (c) 2. (d–f) LU classification by a
human operator of these areas compared to (g–i) the output of the DeepLab architecture.

5. Discussion

In New Caledonia, for both LC detection and LU detection, the best Deep Learning
techniques show good performance in overall detection accuracy on the test set relative
to a human operator (respectively 81.41% and 63.61%). The two baseline techniques: XG-
Boost and AlexNet, are easy to implement and require low CPU time consumption. They
achieved satisfactory performance on the LC classification (respectively 77.55% and 73.29%)
task in New Caledonia but, as expected, showed their limitations for the challenging LU
classification task (respectively 51.56% and 45.79%), with XGBoost performing slightly bet-
ter on both tasks. In this particular case, standard remote sensing classification techniques
using neo-channels and textures were slightly more effective than a basic deep learning
architecture (AlexNet) using raw channels as input.

When using more advanced Deep Learning architectures, a clear improvement ap-
peared. While the differences were rather small for LC classification, quite important gains
could be obtained for LU by selecting the right architecture. In this study, two types of ar-
chitectures were tested: “semantic labelling” architecture and “pixel labelling” architecture.
Among them, DeepLab (“semantic labelling”) and DenseNet (“pixel labelling”) stood out
and showed similar results. The “pixel labeling” architectures outperform the “semantic
labeling” ones on the training set presented in the appendix. However, these architectures
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have equal performances on the test set. The “pixel labeling” architectures seem to be more
sensitive to overfitting, especially the ResNet architecture.

Nevertheless, due to lower CPU time consumption, it could be interesting to use
a “semantic labeling” approach when dealing with very high resolution remote sensing
images. Furthermore, the resulting LULC maps from the “pixel labelling” architectures are
usually noisy with many isolated pixels surrounded by pixels from a different class. The
resulting frontiers between classes can look fuzzy. On the contrary, the maps generated by
the “semantic labelling” are much more homogeneous, though the surfaces of the predicted
classes depend on the size of the chosen sliding window for subsampling the area and do
not respect the observed frontiers between classes.

In this study, even if we used a balanced data set for training, none of the four training
areas contained all classes of the LULC nomenclature; only the area Test1 (Table 1) included
all possible labels. Indeed, there are great inequalities in the distribution of classes, with
the vegetation class covering more than 90% of the New Caledonian territory. The test set
was used as is, without any class balancing, so as to correspond to a realistic, complete
mapping task.

The accuracy of LC classification was globally high with a global accuracy of 81.41%
on the test set for the best model. Table 10 showed that the building class detection was
the most difficult task in this study. The model tended to overestimate the extent of this
class, creating many false positives on other classes, especially on bare soil. This could be
explained by the proximity of these classes around buildings (Figure 9).

A slight confusion between forest and low density vegetation, as well as between bare
soil and low density vegetation was also noted. However, distinguishing these classes
is a difficult task even for a human operator. It should be noted that at this scale it was
not possible to provide accurate field data. Most of the boundaries between classes were
established by photo-interpretation. Unlike other learning tasks that are rely on perfectly
controlled data, the train and test data sets for LULC classification are never error-free.
It is therefore difficult to know whether classification errors are due to a lack of model
performance or to mislabeling.

The LU and LC were fairly similar because of the many areas not subject to direct
human use. The main differences occurred in the division of the urban fabric. It is far
more complex to qualify this type of area, and human expertise is often necessary but
subjective. For example, the difference in urban fabric between residential and industrial
areas is open to misinterpretation. One might think that buildings with very large roofs,
such as warehouses, belong to the industrial class, but this classification quickly becomes
subjective, as schools, sports complexes, etc. also correspond to this criterion but, belong to
the residential area. Only on-the-ground knowledge would remove these ambiguities.

The LU classification remained a very challenging task with the score of 63.61% on
the test set for the best deep learning architecture with a clear improvement compared to
XGBoost (51.56%). The water surfaces and worksites were well detected by the model, but
the other classes such as trails, bare rocks, and bare soil had very low recognition rates
(see Table 11). Indeed, from a radiometric point of view, it is difficult to distinguish a trail
from bare ground. Distinguishing between these classes requires a broad knowledge of the
ground and a high level of cognitive reasoning (a trail is a bare ground 3 to 5 m wide with
a particular wire form). We hoped that Deep Learning models would be able to distinguish
this type of class, but it seems that there was not enough extra information in our data
set to handle this task accurately (such as exogenous information or large-scale vision).
The same difficulty then stood for engravement and bare soil classes. Moreover, the Deep
Learning techniques barely distinguished mines and bare soil classes, but this task is very
difficult to perform, even for a human operator, without contextual information and based
only on a small picture (128 × 128 pixels).

As stated in the introduction, a major challenge is to monitor the forest area, as a
spatial understanding of biomass and carbon stock in tropical forests. It is crucial for
assessing the global carbon budget. Similarly, detecting the bare soil area changes is an
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important task in order to limit the erosion. The accuracy of detection for the Forest class
reached 0.78 as detailed in Table 10. This class can be confused with the Low-density
vegetation class (19% of mislabeling between those two classes) and the Bare Soil class was
similarly confused with the Low-density vegetation class (14% of mislabeling). For those
specific classes, these results are significantly better than those obtained with the machine
learning techniques (gain around 10% of accuracy) and the monitoring of forest and bare
soil areas would be significantly improved using deep learning techniques.

Even with all these imperfections on the train and test set, the results showed there is
a real added value in using Deep Learning techniques in the frame of LULC detection in
a complex environment such as a tropical island. The Deep Learning architectures were
applied to a completely different geographic region in the Southern Province and with a
different climate (area located east of the mountain range and exposed to rain and wind),
they overcame these challenges with up to 80% accuracy for the LC classification task.
Other Deep Learning applications on LC manage to achieve similar results [52,53].

Unlike the “Corine Land Cover” classification, the agriculture areas class do not
appear in the Level 1 (L1) and Level 2 (L2) nomenclature since this class could not be
distinguished using standard deep learning approaches from low-density vegetation class.
Likely, this is due to the size of the sliding window, not large enough to catch the features
that can be computed to distinguish the two classes. Further work based on a multiscale
approach could be useful to overcome this issue.

Our findings also showed that adding the LC output as input for the LU classification
can improve the accuracy, suggesting that it could be interesting to perform a hierarchical
approach for the LULC task. This hierarchy of concept could also be used to improve the
interpretability and explicability of results. Indeed, understanding how Deep Learning
combines information to effectively classify land use classes remains a challenging task,
but recent research using ontologies could be useful to achieve this goal [54]. This idea
could also highlight missing exogenous information (elevation, cadastre, etc.) in addition
to remote sensing data to improve LULC detection. Unifying the most difficult classes
to detect could improve the performance of the LU classification results. The difficult
classes would then be moved to a different, more accurate level of the classification, for
example, an L3 level in Table 4. Another path for improvement consists in including cloud
and shadow detection in the classifier and using post-processing filters [55] and heuristics
(object-oriented rules. . . ).

These results presented here seem robust since, at a resolution of 1.5 meters and for
an image of 64 × 64 pixels, the receptive field equals approximately 0.01 km2. At this
resolution and area, it is possible for a human operator to identify the type of land and
its use. We investigated alternative sizes of 32 × 32 pixels or 128 × 128 pixels, with step
size 8, and dimilar results were obtained. Due to hardware limitations of the graphic card,
implying a drastic reduction of the batch size, we did not further pursue the 128 × 128
pixel configuration. The larger number of individual samples at size 32 × 32 did not seem
to make much difference. Hence, we settled for 64 × 64 pixels, striking a compromise
between image size and number of samples.

6. Conclusions

In this study, machine learning techniques such as Deep Learning and XGBoost were
compared for LULC classification in a tropical island environment. For this purpose, a
specific data set based on SPOT6 satellite data was created and made available for the
scientific community, comprised of five representative areas of New Caledonia labelled
by a human operator: four used as training set, and the fifth one as test set [26]. The
performance of XGBoost managed to stand up to Deep Learning for LC classifications
but, as for many applications in image processing, the best deep learning architectures
provided the best performances. The standard machine learning approach is clearly behind
on the more complex LU domains which require a higher level of conceptualization of the
surroundings to obtain good results. Though the framework can be complex to handle,
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the Deep Learning approach for LULC detection was easy to implement since there is no
significant gain to pre-process the data by computing neo-channel or texture-based input
in contrast to conventional remote sensing techniques.

Specific to the deep learning approach, the two methods: “semantic” labeling and
“pixel labeling” provided equivalent performances for the most efficient architectures:
DeepNet and DeepLab, whose internal structure was not modified.

Our findings also showed that adding the LC output as input for the LU classification
improved the accuracy, suggesting that a hierarchical approach could be interesting to
perform the LULC task. Further work on this classification is necessary to obtain better
results, but it is a step forward towards the development of an automatic system allowing
the monitoring of the impact of human activities on the environment by the detection of
the forest surface change and bare soil areas.

In future work, we aim to apply the classifier to the rest of New Caledonia, including
the Northern Province and the Islands Province. Additional information will be necessary
to cover the specific conditions in those new regions. In terms of mapping area, it may be
interesting to also include the maritime environment, in particular the many islets and reefs
of the New Caledonian lagoon. We also plan to adapt the classification to use Sentinel-2
instead of SPOT6 as input for LULC classification. While the Sentinel-2 sensor has lower
spatial resolution, its spectral resolution is better and it offers a revisit times of only 5 days.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/12/2257/s1, Figure S1: SPOT 6 remote sensing images of the five areas of interest, Figure S2:
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Appendix A

Table A1. Results of Deep Learning architecture and XGBoost for the LC detection task with RGBNIR
as input on the training set.

Architectures OA PA UA F1-Score

XGboost 80.26% 81.91% 82.73% 82.23%
AlexNet 93.00% 92.78% 93.96% 93.37%
ResNet 99.00% 99.33% 99.31% 99.32%
DenseNet 99.00% 99.35% 99.09% 99.22%
SegNet 94.57% 96.08% 91.33% 93.64%
DeepLab 94.64% 96.03% 93.91% 94.96%
FCN 95.84% 96.90% 94.54% 95.71%

https://www.mdpi.com/2072-4292/13/12/2257/s1
https://www.mdpi.com/2072-4292/13/12/2257/s1
https://doi.org/10.23708/PHVOJD
https://doi.org/10.23708/PHVOJD
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Table A2. Results of Deep Learning architecture and XGBoost for the LU detection task with RGBNIR
as input on the training set.

Architectures OA PA UA F1-Score

XGboost 59.29% 59.13% 54.26% 56.59%
AlexNet 82.00% 84.08% 79.37% 81.66%
ResNet 95.00% 96.54% 95.69% 96.12%
DenseNet 96.00% 96.58% 96.41% 96.49%
SegNet 78.79% 66.74% 70.16% 68.41%
DeepLab 86.58% 89.94% 81.63% 85.59%
FCN 85.34% 89.30% 78.87% 83.76%
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