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A B S T R A C T   

Ecosystem models forced by future climate simulations outputs from the Coupled Model Intercomparison Project 
Phase 5 (CMIP5) simulate a substantial decline of tropical marine animal biomass over the course of the 21st 
century. Regional projections are however far more uncertain because of well-known biases common to most 
CMIP5 historical simulations that propagate within the food web. Moreover, the model outputs for high trophic 
levels marine fauna suffer from lack of validation based on in situ data. In this study, we implement a “bias- 
mitigation” strategy to reduce the physical oceanography and biogeochemical biases simulated by three CMIP5 
models under the future RCP8.5 scenario. We force two very different micronekton models with these “bias- 
mitigated” outputs to infer the future micronekton changes in the Coral Sea: a 3-D deterministic population 
dynamics model; and a 3-D statistical model based on in situ hydro-acoustic data. These two models forecast a 
consistent pattern of micronekton abundance changes in the epipelagic layer (0–150 m) by 2100 for three 
different climate forcing used, with a marked decrease south of 22◦S and a smaller increase further north mostly 
related to temperature and chlorophyll changes. In contrast, changes in the vertical patterns of micronekton 
predicted by the two models considerably differ in the upper mesopelagic layers (150–450 m) and lower 
mesopelagic layer (450–1000 m), highlighting the structural sensitivity in model type. Since micronekton are 
prey of all larger marine predators, those discrepancies in vertical structures of micronekton may hamper our 
potential to predict how top predators may evolve in the future.   

1. Introduction 

The range of global biomass estimates for mid-trophic level com-
munities (1–20 cm organisms living between 0 and 1000 m, also called 
micronekton) is extremely large, with proposed values ranging between 
0.5 and 19.5 billion metric tons for migrant mesopelagic organisms 
alone (e.g., Irigoien et al., 2014; Proud et al., 2017, 2018; Anderson 
et al., 2019). Micronekton play a central role in the pelagic ecosystem as 
they constitute food for predators, including commercially targeted 
species, such as tuna (Bertrand et al., 2002; Duffy et al., 2017; Olson 

et al., 2014), and emblematic marine species, such as whales and sea-
birds (Lambert et al., 2014; Miller et al., 2018). In addition, this com-
munity may represent a potential food resource for human and 
aquaculture (St. John et al., 2016). Many species of micronekton 
migrate daily between the surface layer (0–200 m) during night-time 
when they feed and the mesopelagic layer (200–1000 m) during the 
daytime, to avoid visual predation (Bianchi and Mislan, 2016; Klevjer 
et al., 2016). This diel vertical migration (DVM) contributes largely to 
the downward flux of nutrients and particulate organic matter via 
respiration and excretion processes (e.g., Ariza et al., 2015; Bianchi 
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et al., 2013; Drazen and Sutton, 2017; Gorgues et al., 2019). Despite 
some recent efforts (Fig. 1 in Hidalgo and Browman, 2019), knowledge 
of mid-trophic level fauna is still limited because of the scarcity of ob-
servations (e.g., from dedicated scientific cruises) for such a very diverse 
group of organisms (Duffy et al., 2017; Olivar et al., 2017, Glover et al., 
2018; St. John et al., 2016). 

In this study, we aimed at exploring future changes of mid-trophic 
levels organisms in the Coral Sea, covering more than 4 700 000 km2 

in the southwest Pacific (Ceccarelli et al., 2013). The ecosystem of the 
Coral Sea exhibits large richness of micronektonic species (e.g., Allain 
et al., 2012; Olson et al., 2014; Williams et al., 2014; Young et al., 2010) 
as well as top predators: cetaceans (Mannocci et al., 2014), sharks 
(Boussarie et al., 2018) and seabirds (Weimerskirch et al., 2017). This 
ecosystem, referred to as the Archipelagic Deep Basins Longhurst region 
(Le Borgne et al., 2011; Longhurst, 2007) is expected to have low and 
moderate vulnerability to climate change in 2035 and in 2100, respec-
tively (Bell et al., 2013). However, the uncertainties around these pro-
jections have not been ascertained and predicting the fate of 
micronekton has not been examined in the region. Moreover, an 
important effort to collect in situ data on micronecton was done since 
2011 in the region, that opened opportunity to decrease the incertitude 
concerning the future of the micronekton. 

The future response of the marine food web to anthropogenic forcing 
largely relies on projections performed with ecosystem models forced by 
outputs from global climate simulations (Barange et al., 2014; Blanchard 
et al., 2012; Bryndum-Buchholz et al., 2019; Cheung et al., 2010). Most 
of these studies project a decrease of marine animal biomass at low and 
mid-latitudes in response to a declining primary production associated 
with predicted climate changes (Bopp et al., 2013). However, only a few 
studies have specifically discussed the evolution of mid-trophic levels 
organisms in response to these changes (Bryndum-Buchholz et al., 2019; 
Cheung et al., 2016a; Kwiatkowski et al., 2019; Lotze et al., 2019). For 
instance, Lefort et al. (2015) predicted a decrease of growth rate and 

maximum size of micronekton species, with the largest decrease for 
epipelagic and mesopelagic communities in the tropical central Pacific, 
Atlantic and Indian Oceans. While these projections indicate a broad 
decline in tropical marine animal biomass, the dynamic and biogeo-
chemical simulations exhibit large biases and discrepancies at regional 
levels that propagate within the food web, resulting in substantial 
regional uncertainties (Bonan and Doney, 2018; Payne et al., 2016). 

Indeed, the oceanic components of the climate models from the 
Coupled Model Intercomparison Project 5 (hereafter CMIP5, Taylor 
et al., 2012) display substantial present-day physical and biogeochem-
ical biases in the western Pacific, including a cold tongue that penetrates 
too far into the western Pacific (e.g. Li et al., 2015). Those biases can 
propagate into lower and upper trophic levels when coupled to popu-
lation dynamic models, potentially limiting the reliability of mid-trophic 
organisms biomass projections (Lehodey et al., 2013; Payne et al., 
2016). In addition, projections of the future oceanic physical and 
biogeochemical states also differ depending on the model considered. 
Here, we develop a “bias-mitigation” strategy to minimize the climato-
logical biases of the coupled CMIP5 models while keeping the inter- 
model diversity through dedicated ocean biogeochemical model exper-
iments. These latter are forced by observationally derived boundary 
conditions onto which future anomalous atmospheric changes computed 
from three CMIP5 models are applied. This strategy, widely applied in 
atmospheric sciences (e.g., Knutson et al., 2008; Dutheil et al., 2019), 
has rarely been applied in ocean science (e.g., Matear et al., 2015). 

These simulations provide three plausible future oceanic conditions 
(e.g., temperature, salinity, currents, dissolved oxygen concentration, 
primary production) for two different types of micronekton models: the 
Spatial Ecosystem and Population Dynamics Model (SEAPODYM), an 
end-to-end deterministic ecosystem model that includes a micronekton 
representation (Delpech et al., 2020; Lehodey et al., 2008; 2010a,b; 
2015a,b); and the 3-D statistical model of Receveur et al. (2019), which 
uses observed acoustic data to relate micronekton vertical distribution 
to environmental conditions. The use of the different oceanic forcing 
and ecosystem models allows disentangling the relative importance of 
oceanic conditions and micronekton models on the uncertainties of 
future micronekton changes in the Coral Sea. 

2. Material and methods 

Physical and biogeochemical inputs necessary to force the two 
micronekton models were extracted from simulations performed with 
the NEMO-PISCES ocean biogeochemical model (Fig. 1). This model was 
forced by atmospheric variables extracted from one reanalysis for the 
hindcast period (1979–2009) and from the same reanalysis onto which 
forecast (2010–2100) atmospheric trends computed from the atmo-
spheric outputs of the three CMIP5 climate coupled models were added. 
The following paragraphs describe in detail each step of this modelling 
strategy. 

2.1. Hindcast and forecast surface atmospheric forcing 

For the hindcast period (1979–2009, labelled CTL), the atmospheric 
fields that are representative of observed variability and used to force 
the ocean model were derived from an adjusted version of the ERA- 
interim reanalysis: Drakkar Forcing Sets (DFS5, Dussin et al., 2016) 
(Fig. 1A). 

For the forecast period (2010–2100), the scenario selected was the 
Representative Concentration Pathway 8.5 (RCP8.5), for which the 
radiative forcing due to aerosols and greenhouse gases reaches 8.5 W. 
m− 2 by 2100 (van Vuuren et al., 2011). However, we did not directly use 
the surface atmospheric fields from the CMIP5 global coupled climate 
models to force our ocean biogeochemical model. These global models 
share prominent biases in their representation of the present-day trop-
ical Pacific climate (e.g., Cai et al., 2015; Brown et al. 2020), which 
could hamper the reliability of future physical and biogeochemical 

Fig. 1. Modeling framework detailing the combination of atmospheric forcing 
models (A), physical and biogeochemical oceanographic model (B) and 
micronekton biological models (C) with their respective outputs (D) used in the 
analysis. CTL = ’control simulation’; GFDL, IPSL and MIROC acronyms are 
given in Table 1; SEA = ’SEAPODYM’; NASC = ’Nautical Area Scat-
tering Coefficient’. 
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projections (e.g., Xie et al., 2015). To avoid including known CMIP5 
present-day biases in our surface atmospheric forcing, we developed a 
method to minimize biases in the atmospheric forcing (referred as “bias- 
mitigated” method). The method consisted in using, for the forecast 
period, the same forcing dataset (DFS5) as used for the hindcast period 
(1979–2009), repeated three times (to cover the 90-years 2010–2100 
period: 2010–2039, 2040–2069, 2070–2100), onto which forecast sur-
face forcing anomalies from three selected CMIP5 coupled climate 
models were added (Fig. 1A). These anomalies were computed relative 
to the 1979–2009 period for filtered (31-years Hanning filter) zonal and 
meridional wind stress, air temperature and humidity at 2-m, shortwave 
and longwave radiations, snowfall and precipitation. The subseasonal to 
decadal variations of this forecast forcing dataset was hence fully con-
strained by the reanalysis while the anthropogenic filtered trends over 
the 2010–2100 period was set to the one projected by each selected 
CMIP5 model. This method allowed constraining the background state 
and natural climate variability to remain close to the observations, while 
applying the low-frequency changes induced by the anthropogenic 
perturbations derived from CMIP5 models. 

To account for the diversity of the regional changes projected by 
global CMIP5 models, we applied our bias-mitigated strategy using 
global projections from three different CMIP5 models: the GFDL-ESM2G 
model (Dunne et al., 2012), the MIROC-ESM model (Watanabe et al., 
2011) and the IPSL-CM5-MR model (Dufresne et al., 2013) (Table 1). For 
simplicity, we referred to our bias-mitigated simulations with each 
CMIP5 model as GFDL, MIROC and IPSL, respectively. 

2.2. Hindcast and forecast physical and biogeochemical ocean states 

While most CMIP5 models project relatively consistent oceanic 
changes in response to warming at a global scale (e.g., for sea surface 
temperature), these projections are generally far less consistent at 
regional scales. Such a spread is particularly visible in forecast marine 
biogeochemical projections (e.g., Bopp et al., 2013; Fu et al., 2016; 
Kwiatkowski et al., 2017; Moore et al., 2018) and arises from dynamical 
(Wang et al., 2014) and biogeochemical model differences (Laufkötter 
et al., 2015). Here, we proposed to use a single ocean-biogeochemical 
model so that observed differences in a projected micronekton bio-
masses by one specific micronekton model may be attributed only to 
differences in the anthropogenic trends derived from the above 
mentioned CMIP5 models. 

The four atmospheric fields (CTL, GFDL, MIROC and IPSL) were used 
to force the NEMO (Nucleus for European Modelling of the Ocean; 
Madec, 2008) dynamical ocean model that includes the biogeochemical 
component PISCES (Pelagic Interaction Scheme for Carbon and 
Ecosystem Studies; Aumont et al., 2015). PISCES is a Nutrient-Phyto-
plankton-Zooplankton-Detritus model (Aumont et al., 2015), which 
explicitly simulates the cycle of five nutrients (nitrate, ammonium, iron, 
silicate, and phosphate), as well as two types of phytoplankton (nano-
phytoplankton and diatoms), two sizes of zooplankton (micro- and 
meso-zooplankton), two sizes of detritus (small and large particulate 
organic carbon) and dissolved organic carbon. We used the ORCA2 grid 
configuration, in which the zonal resolution is set to 2◦, and meridional 

resolution ranges from 0.5◦ at the equator to 2◦ toward the poles. The 
model grid is tripolar, with two poles in the Northern Hemisphere (over 
North America and Siberia) and one centered over Antarctica. The 
model uses 31 z-levels (ranging from 5 m to 5500 m) in the vertical, with 
20 of these levels lying in the upper 500 m. Details about this model 
configuration can be found in Aumont et al. (2015). 

We obtained four ocean simulations of the dynamical and biogeo-
chemical variables necessary to force our two micronekton models: one 
control simulation (labelled CTLNM, 1979–2009) representative of the 
hindcast oceanic conditions and three simulations representative of 
three plausible future oceanic conditions built using our bias-mitigated 
forcing from the three CMIP5 models (labelled GFDLNM, MIROCNM and 
IPSLNM, 2010–2100, Fig. 1B). 

The IPSL simulation displayed significant biases over the historical 
period compared to observations. North of 15◦N, surface temperatures 
were too warm by up to 1 ◦C (Fig. S1AB) while they were too cold by up 
to 1 ◦C south of 15◦S, resulting in an overestimation of the meridional 
SST gradient and a root mean squared error (RMSE) of 0.62 ◦C. Tem-
peratures at depth were generally colder than observations at 250 m (by 
up to 2 ◦C) and warmer at 600 m (by up to 1 ◦C) resulting in a mean 
RMSE of 1 ◦C (Fig. S1D). Finally, surface chlorophyll concentrations 
were underestimated (Fig. S1F) by 33% over most of the domain (RMSE 
of 0.052 mg.m3). The NEMO-PISCES simulation systematically reduced 
these historical biases: the surface warm bias was weaker and more 
spatially homogeneous (RMSE of 0.5 ◦C), the bias at depth was reduced 
(RMSE of 0.62 ◦C) and the surface chlorophyll underestimation was 
reduced (by 20%, RMSE of 0.035 mg.m3). These weaker biases for the 
present climate indicated that our forced NEMO-PISCES modelling 
strategy more adequately reproduced the ocean dynamical and 
biogeochemical structures in the Coral Sea than coupled ocean atmo-
sphere CMIP5 models (this result not only applied to the IPSL model but 
also to the GFDL and MIROC models; not shown). Moreover, the season 
cycle in the Coral Sea of the SST and chlorophyll was closer to the ob-
servations in terms of absolute values for the NEMO-PISCES simulation 
than for the IPSL simulation (Fig. S1GH). The improved representation 
of the spatial structures and of the season cycle of chlorophyll and 
temperature with our bias mitigation strategy were expected to lead to 
more reliable future ocean states. Fig. S2 compared future projections 
for the IPSL and our NEMO-PISCES simulations and demonstrated that 
our bias-corrected strategy led indeed results in significant differences in 
terms of temperature and chlorophyll projections: our bias-corrected 
simulation projected a warming weaker than the one simulated by the 
IPSL model and an increased in surface chlorophyll north of 25◦S, in a 
region where the IPSL model generally project a decrease. 

From those, we computed one hindcast ocean climatology over the 
1979–2009 period (CTLNM_CLIM), and three forecast ocean climatologies 
over the 2070–2100 period calculated from the three climate change 
simulations (GFDLNM_CLIM, MIROCNM_CLIM and IPSLNM_CLIM). Forecast 
relative changes were computed in % change relative to hindcast 
climatological values (e.g., IPSLNM_RC = 100*(IPSLNM_CLIM- CTLNM_CLIM) 
/CTLNM_CLIM). 

2.3. Micronekton models 

2.3.1. The SEAPODYM model 
The first micronekton model used was SEAPODYM, which has been 

widely used to predict Pacific tuna biomass and spatial distribution from 
the simulated micronekton in response to climate change and to support 
Pacific Island resource management (Johnson et al., 2018; Lehodey 
et al., 2010a,b, 2013, 2015a,b; Senina et al., 2016). The SEAPODYM- 
MTL (MTL: Mid Trophic Level) sub-model simulates several functional 
groups of micronekton for the oceanic epi-, upper meso- and lower 
meso-pelagic layers in the upper 1000 m (Lehodey et al., 2010a,b, 
2015a,b). The spatial and temporal dynamics of production and biomass 
are modelled with a system of advection–diffusion-reaction equations 
driven by ocean temperature, horizontal currents and primary 

Table 1 
Ocean-Atmosphere coupled models and their related modelling centers used in 
this study (Taylor et al., 2012).  

Modeling centers Coupled 
models 

Institut Pierre Simon Laplace (IPSL) IPSL-CM5A- 
MR 

Geophysical Fluid Dynamics Laboratory (NOAA GFDL) GFDL-ESM2G 
Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University of 
Tokyo), and National Institute for Environmental Studies 
(MIROC) 

MIROC-ESM  
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production (Table 2). Currently, there are six groups of micronekton 
defined according to the DVM patterns of mesopelagic organisms be-
tween three broad epipelagic, upper and lower mesopelagic vertical 
layers: epipelagic, upper mesopelagic, lower mesopelagic, migrant 
upper mesopelagic, migrant lower mesopelagic and highly migrant 
lower mesopelagic. The euphotic depth Zeu is used as a reference to the 
depth boundaries of the vertical layers, i.e., 0–1.5*Zeu (about 0–150 m) 
for the epipelagic layer, 1.5–4.5*Zeu (about 150–450 m) for the upper 
mesopelagic layer and 4.5–10.5*Zeu (about 450–1000 m) for the lower 
mesopelagic layer. During the day, only the epipelagic group inhabits 
the epipelagic layer. During the night, this layer also hosts the migrant 
upper mesopelagic and highly migrant lower mesopelagic groups. The 
resident and migrant upper mesopelagic groups inhabit the upper 
mesopelagic layer during the day. During the night, this layer is 
inhabited by the resident upper mesopelagic and the migrant lower 
mesopelagic groups. Finally, the lower mesopelagic layer is inhabited by 
resident, migrant and highly migrant lower mesopelagic groups during 
the day but only the resident lower mesopelagic during the night (as the 
other groups have migrated upward, in the other layers, during the 
night). 

The SEAPODYM-MTL model were forced by the four physical- 
biogeochemical outputs (CTLNM, GFDLNM, MIROCNM and IPSLNM) 
detailed in Section 2.2, resulting in four SEAPODYM simulations: 
CTLSEA, IPSLSEA, GFDLSEA, and MIROCSEA (Fig. 1C). From those, we 
computed one hindcast climatology (CTLSEA_CLIM, over the 1979–2009 
period), and three forecast climatologies (IPSLSEA_CLIM, GFDLSEA_CLIM, 
and MIROCSEA_CLIM, over the 2070–2100 period). Forecast relative 
changes were computed relative to hindcast climatological values (e.g., 
IPSLSEA_RC = IPSLSEA_CLIM/CTLSEA_CLIM – 1). A 1◦ horizontal resolution 
was employed. 

2.3.2. Acoustic model 
We compared SEAPODYM projections with those obtained by a 3-D 

statistical model developed by Receveur et al. (2019) which related 
micronekton vertical distribution obtained from acoustic data to envi-
ronmental conditions in the Coral Sea region. Acoustic data collection, 
statistical methods and validation of micronekton biomass estimate in 
the New Caledonia EEZ were extensively detailed in Receveur et al. 
(2019). We briefly summarized its major components here. 

Data were collected during six cruises in the study area 156◦E–175◦E 
and 14◦S–27◦S from 2011 to 2017, using an EK60 echo sounder (SIM-
RAD Kongsberg Maritime AS, Horten, Norway). After data processing, 
38 kHz acoustic data was echo-integrated to provide the Nautical Area 
Scattering Coefficient (NASC, m2nmi− 2), a proxy for the micronekton 
biomass (Irigoien et al., 2014; MacLennan, 2002; Proud et al., 2017). 
The final dataset gathered 16,715 acoustic vertical profiles ranging be-
tween 10 and 600 m depth, transition periods at dawn and dusk were 
excluded. A machine-learning model (Receveur et al., 2019) was used to 
robustly relate acoustic vertical profiles to the following explicit envi-
ronmental variables: speed of the wind (measured by satellite), 0–600 m 
mean temperature and 0–600 m mean salinity (reprocessed data from at 
sea observation and satellite measurement), 0–600 m mean oxygen 
(reprocessed data from at sea observation), surface chlorophyll 

(measured by satellite), bathymetry (reprocessed from sonar data) and 
sun inclination. By integrating the predicted acoustic value (NASC) from 
the model over given depth ranges, we obtained a proxy of the micro-
nekton biomass (i.e, the “acoustic” biomass) over the vertical layers. 

We used here the same approach as Receveur et al. (2019) except 
that several environmental variables (mean temperature, mean oxygen, 
mean salinity, surface chlorophyll, winds) used to fit the acoustic data 
were extracted from the CTLNM_CLIM dataset rather than from observa-
tions (see Table 2 and Receveur et al., 2019). In order to validate the use 
of CTLNM_CLIM variables to predict realistic NASC values, the statistical 
model was fitted based on CTLNM_CLIM variables and compared to that 
based on in situ variables. 

Finally, the acoustic statistical model was used to predict NASC 
values from the four physical-biogeochemical outputs (CTLNM, GFDLNM, 
MIROCNM and IPSLNM), resulting in four acoustic model simulations: 
CTLNASC, IPSLNASC, GFDLNASC, and MIROCNASC (Fig. 1C). From those, we 
calculated the four climatologies over the same periods as SEAPODYM 
(CTLNASC_CLIM over the 1979–2009 period; and IPSLNASC_CLIM, 
GFDLNASC_CLIM, and MIROCNASC_CLIM over the 2070–2100 period). 
Forecast relative changes were computed relative to hindcast climato-
logical values (e.g., IPSLNASC_RC = IPSLNASC_CLIM/CTLNASC_CLIM – 1). 

2.3.3. Micronekton model inter-comparison 
The NASC values were integrated vertically following the same 

vertical layers defined in SEAPODYM, i.e. proportionally to the euphotic 
depth (Section 2.2). The relative changes predicted from SEAPODYM 
and from the acoustic model were compared using Spearman correlation 
coefficient and for the three bias-mitigated forcing (i.e., IPSLNASC_RC and 
IPSLSEA_RC; GFDLNASC_RC and GFDLSEA_RC; and MIROCNASC_RC and 
MIROCSEA_RC). 

2.3.4. Micronekton biomass–physical projections comparison 
Linear models were fitted to the SEAPODYM and acoustic model to 

test the influence of changes in each physical parameter on estimates of 
micronekton biomass. For each micronekton model and for the three 
bias-mitigated forcing, the relative biomass change (e.g., IPSLNASC_RC) 
was explained as a function of relative change of the six environmental 
variables (wind, mean temperature, mean oxygen, mean salinity, sur-
face chlorophyll and currents extracted from IPSLNM_RC for example). 
Variables were ranked in importance based on the absolute value of the 
t-statistic for each linear model parameter (Kuhn et al., 2020). 

3. Results 

3.1. Validation of the micronekton acoustic model using NEMO-PISCES 
variables 

NASC values predicted with the acoustic model displayed similar 
spatial pattern when using in situ oceanographic data or CTLNM_CLIM 
simulation outputs, with larger values south of 22◦S (near New Cale-
donia) and smaller values to the north (Fig. 2A). Predictions based on in 
situ data were, however, higher than those derived from CTLNM_CLIM data 
in the southern region. NASC values predicted from observed data 

Table 2 
Covariates used as forcing for the SEAPODYM and for the acoustic models. The last column gives the in situ sources used to validate the acoustic modeling. For salinity, 
1 PSU is approximately equal to 1 g/kg; “-“ indicate that the covariate was not used in the model.  

Variable Unit SEAPODYM Acoustic model Sources to validate the acoustic modeling References 

Currents m/s Mean by vertical layer – – – 
Norm of winds m/s – Surface Cross-Calibrated Multi-Platform (CCMP-v2) Wentz et al., 2015 
Temperature ◦C Mean by vertical layer 0–600 m mean ARMOR3D Guinehut et al., 2012 
Oxygen mmol/m3 Mean by vertical layer 0–600 m mean CARS2009 Ridgway et al., 2002 
Salinity PSU (Practical Salinity Unit) – 0–600 m mean ARMOR3D Guinehut et al., 2012 
Chlorophyll mg/m3 Surface Surface GlobColour (MODIS/VIIRSN) Saulquin et al., 2009 
Bathymetry km – Yes ETOPO1 Amante and Eakins, 2009 
Sun inclination ◦ Yes Yes Calculated from position and date Blanc and Wald, 2012  
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display a minimum located near 18◦S, while this minimum was further 
north ca. 16◦S with CTLNM_CLIM simulation. Some discrepancies were 
also evidenced at smaller scale, with, for instance, a local minimum 
around the Chesterfield reefs when using in situ oceanographic data but 
not present when using CTLNM_CLIM simulation (because of the relatively 
coarse resolution of the model that does not adequately represent the 
associated bathymetry). Despite these biases, there was good agreement 
between NASC values predicted from in situ and CTLNM_CLIM simulation, 
with a significant correlation coefficient of 0.81 (Fig. 2B). The slope 
coefficient was weaker than 1 (0.58), reflecting the overall underesti-
mation of NASC when using NEMO-PISCES instead of in situ data (mostly 
stemming from the southern domain underestimations). Despite the bias 
to a lower range of values and the local discrepancies described above, 
results from the acoustic model with CTLNM_CLIM variables was suffi-
ciently accurate to assess the evolution of NASC using climate change 
projections 

3.2. Hindcast situation of predicted micronekton biomasses 

Hindcast patterns of micronekton biomasses within the epipelagic 
layer (Fig. 3, top panels) were similar for the NASC (CTLNASC_CLIM) and 
SEAPODYM (CTLSEA_CLIM) models, with a larger abundance south of 
25◦S compared to the northern part of the domain. While the acoustic 
model simulated a maximum at the southwestern boundary of the 
domain (i.e. in the Australian EEZ), the SEAPODYM model simulated a 
maximum at the southeastern boundary (i.e. close to the New Zealand 
EEZ). The correlation coefficient for the epipelagic biomasses between 
the two models was 0.79 (R2 = 0.63). 

In contrast, the vertical pattern simulated by the two models differed 
considerably for the two mesopelagic layers (Fig. 3, middle and bottom 
panels). Both model simulations exhibited large values south of 25◦S 
latitude in the two mesopelagic layers but the biomass spatial distribu-
tion greatly differed in the northern part of the domain. The acoustic 
model simulated a hotspot north of the Fijian EEZ, which was absent in 

the SEAPODYM outputs. These mismatches resulted in insignificant 
spatial correlations between NASC and SEAPODYM values for both the 
upper meso-pelagic (R2 = 0.062) and lower mesopelagic (R2 = 0.064) 
layers. 

3.3. Micronekton projected changes 

3.3.1. Biomass pattern changes 

3.3.1.1. Epipelagic layer. Fig. 4 displayed the biomass response to 
climate change in the epipelagic layer simulated by the two micronekton 
models for the three bias-mitigated forcing used. There was general 
agreement between the two models for projected changes, with the 
pattern correlations (e.g., pattern correlation for the pooled relative 
change values on Fig. 4 ‘GFDL-SEAPO’ and ‘GFDL-NASC’ panels) be-
tween each of the two models and the three bias-mitigated forcing being 
significant and positive (Table 3). Both micronekton models both indi-
cated a forecast biomass decrease in the southern part of the Coral Sea, 
south of the latitude 21◦S, for the three bias-mitigated forcing. The 
amplitude of the projected decrease in the southern part was however 
smaller for the acoustic model (e.g., ~− 5% on average south of 20◦S in 
IPSLNASC_RC) compared to the SEAPODYM model (~− 20% on average 
south of 20◦S in IPSLSEAPO_RC). The northern part of the domain gener-
ally experienced a biomass increase but this prediction was less 
consistent among the three bias-mitigated forcing. The two micronekton 
models predict a maximum increase in the Fijian economic zone when 
based on IPSLNM and GDFLNM. Projected patterns and amplitude based 
on MIROCNM however differed in the northern part compared to those 
on IPSLNM and GDFLNM for each micronekton model. For the acoustic 
model, MIROC forcing only induced a small increase (~+1% on average 
in IPSLNASC_RC) in a very narrow latitudinal band located in the central 
part of the Coral Sea [20◦S, 17◦S] and a further decrease north of 17◦S 
(~− 6% on average in IPSLNASC_RC). These changes differed compared to 
the other acoustic projections (~+14% in IPSLNASC_RC and ~+12% in 

Fig. 2. Micronekton NASC (m2nmi− 2) acoustic spatial predictions (2000–2010) based on in situ oceanographic data (A, left) and on NEMO-PISCES oceanographic 
data (A, right), and scatter plot of pooled values with NASC predicted based on in situ oceanographic data (x-axis) and on NEMO-PISCES oceanographic data (y- 
axis) (B). 
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IPSLNASC_RC on average north of 20◦S). For the SEAPODYM model, the 
MIROC forcing induced a larger increase (~+20% on average north of 
20◦S) that was shifted to the west in the northern part compared to the 
IPSL and GFDL forcing (respectively ~+3.2% and ~+4% on average 
north of 20◦S). 

Overall, both micronekton models generally predicted a very 
consistent decrease of the epipelagic biomass in the southern Coral Sea 
and a more variable increase to the north (Fig. 4), resulting in a future 
decrease of the meridional gradient of micronekton biomass character-
izing hindcast conditions (Figs. S3 and S4). 

3.3.1.2. Upper mesopelagic layer. Patterns of biomass changes in the 
upper mesopelagic layer projected by the SEAPODYM model (Fig. 5, 
bottom panels) resembled those for the epipelagic layer (Fig. 4, bottom 
panels), with a decrease in the southern part of the domain (~− 15% on 
average south of 20◦S and for the three bias-mitigated forcing) and an 
increase in the north (~+8% on average north of 20◦S and for the three 
bias-mitigated forcing). Patterns slightly varied depending on the bias- 
mitigated forcing considered, with a maximum increase around the 
Solomon Islands for MIROCSEA_RC and near Vanuatu and Fiji for 
GFDLSEA_ RC and IPSLSEA_RC. 

Patterns projected by the acoustic model were less consistent be-
tween the different bias-mitigated forcing. The decrease in the south 
identified in all the SEAPODYM projections only occurred using IPSL-
NASC_RC in the acoustic model. Similarly, GFDLNASC_RC and IPSLNASC_RC 
showed a biomass increase north of the latitude 13◦S, while the signal 
was opposite in MIROCNASC_RC. As a result, predicted acoustic patterns 
were not well correlated to SEAPODYM patterns in the upper mesope-
lagic layer compared to the epipelagic layer (Table 3). 

3.3.1.3. Lower mesopelagic layer. Lower mesopelagic layers projected in 
the SEAPODYM model (Fig. 6, bottom panels) displayed a meridional 
dipolar structure similar to those of the epipelagic and upper mesope-
lagic layer (Figs. 4 and 5, bottom panels) for the three bias-mitigated 
forcing. The relative northern biomass increase was however more 
pronounced (~+15% on average north of 20◦S and for the three bias- 
mitigated forcing) for that layer compared to the epipelagic and upper 
mesopelagic layers (respectively ~+2% and ~+6% on average north of 
20◦S and for the three bias-mitigated forcing). 

In contrast, projected patterns with the acoustic model in the lower 
mesopelagic layer (Fig. 6, top panel) differed from the patterns in two 
other layers (Figs. 4 and 5, botom panels) and for the different bias- 

Fig. 3. Hindcast (1979–2009) micronekton biomass simulated by (left column) the SEAPODYM model (in g/m2) and (second column) the acoustic model (m2nmi− 2) 
and (right column) relationship between the biomass in the two models over (top) the epipelagic zone (about 0–150 m), (middle) the upper mesopelagic zone (about 
150–450 m), and (bottom) the lower mesopelagic zone (about 450–1000 m). The blue line on right panels indicate the linear regression slope. EEZ used in the 
manuscript (black outlines) are indicated on the first map (PNG: Papua New Guinea; SB: Solomon island; AU: Australia; NC: New Caledonia, VU: Vanuatu; FJ: Fiji; 
NF: Norfolk islands; NZ: New Zealand). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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mitigated forcing used. While GFDLNM and IPSLNM forcing induced a 
biomass increase almost everywhere (~+8% on average for all 
GFDLNASC_RC and IPSLNASC_RC values) with similar patterns, MIROCNM 
forcing induced a strong biomass decrease north of 20◦S (~− 13% on 
average in MIROCNASC_RC north of 20◦S). The correlations between 
projected patterns between the acoustic model and SEAPODYM were 
insignificant (Table 3). 

3.3.2. Total biomass changes 
Fig. 7 displayed the inter-model (GFDL, IPSL and MIROC) mean 

changes in micronekton biomass for each layer and averaged over two 
homogenous spatial boxes. Both acoustic and SEAPODYM models pro-
jected a biomass decrease in the southern box for the epipelagic layer 
(− 10.2% and − 29.4% respectively) and for the upper mesopelagic layer 
(− 2% and − 24.3% respectively). In contrast, the biomass was projected 
to slightly increase in the northern box for the epipelagic layer for both 
micronekton models (+2.4% and + 8.3% respectively). Relative changes 
were less consistent for the lower mesopelagic layer with a large 

increase in the north and a large decrease in the south (respectively +
23% and − 17.9%) predicted by SEAPODM while acoustic projections 
showed little change in the north and an increase in the south (+6.8%). 
All temporal trends were significant except in the lower mesopelagic 
layer for NASC values. 

The interannual variability between 1979 and 2100 was important 
for both the acoustic and SEAPODYM models and for all layers (Fig. 7). 
In SEAPODYM simulations, interannual biomass variations were larger 
for the epipelagic layer compared to the lower mesopelagic layer, 
whereas acoustics simulations displayed larger interannual variability in 
lower mesopelagic projections. 

3.3.3. Drivers of the biomass changes 
The environmental response to climate change simulated by NEMO- 

PISCES over the Coral Sea was generally consistent for the three 
different bias-mitigated forcing, with the exception of salinity (Fig. S5). 
Results from multi-linear regressions indicated that projected changes in 
chlorophyll and temperature exerted a strong control on the future 
evolution of epipelagic biomass in the Coral Sea (Table 4). Conversely, 
salinity and current had the lowest influence among parameters tested, 
both for SEAPODYM and NASC projections. When comparing the in-
fluence of environmental variables across bias-mitigated forcing, there 
was, a general consistency concerning the most influential parameters. 

Fig. 4. Relative change (in %) of micronekton biomass in the epipelagic zone (about 0–150 m) between 2070 and 2100 and 1979–2009 projected for (top) the 
acoustic model and (bottom) SEAPODYM forced with three bias-mitigated physical and biogeochemical models (GFDL, IPSL and MIROC; see Table 1 for explanations 
of the acronym; see Section 2 for details). Grey box shows the region used to produce Fig. 7. Note that color scales are different for the NASC and SEAPODYM 
predictions. 

Table 3 
Spearman pattern correlations between SEAPODYM relative change and NASC 
relative change for the three atmospheric forcing and by vertical layer. (*) in-
dicates significant results for a 0.01 threshold.   

Epipelagic Upper mesopelagic Lower mesopelagic 

GFDL 0.73 (*) − 0.31 (*) − 0.12 
IPSL 0.54 (*) 0.34 (*) − 0.16 
MIROC 0.71 (*) − 0.45 (*) − 0.7 (*)  
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4. Discussion 

4.1. Summary of the results 

The present study provided the first assessment of the future changes 
expected for mid-trophic level organisms in the Coral Sea, a well-known 
biodiversity hot spot (Payri et al., 2019; Ceccarelli et al., 2013). Two 
micronekton models forced by three different bias-mitigated forcing 
datasets predicted relatively consistent patterns of biomass change in 
the epipelagic layer (~0–150 m) by 2100, with a marked decrease south 
of 22◦S and a weaker increase further north. In contrast, spatial patterns 
of biomass change differed considerably between the two micronekton 
models in the two mesopelagic layers. The SEAPODYM model generally 
predicted a meridional dipolar pattern in both mesopelagic layers 
similar to the one predicted for the epipelagic layer, and was relatively 
consistent across the three bias-mitigated forcing. In contrast, the 
acoustic model projected different patterns in mesopelagic layers 
compared to the epipelagic layer with less consistent patterns between 
the different bias-mitigated forcing. 

4.2. Considerations on the physical modelling strategy 

The two micronekton models were forced by the NEMO-PISCES 
simulations based on a bias mitigated strategy. For the hindcast 
period, this strategy allowed to simulate more reliable conditions 
compared to the uncorrected CMIP5 simulations (Fig. S1). The strategy 
modified the forecast conditions too (Fig. S2). For instance, the chlo-
rophyll spatial pattern changes differed between our NEMO-PISCES 
simulation and the CMIP5 IPSL simulation: a north–south dipole 
appeared in our simulation that was weaker and more pronounced to the 
north in the CMIP5 IPSL simulation. 

Noteworthy, our bias-mitigated strategy assumed that CMIP5 biases 
were stationary over time, i.e. that model projections were independent 
from their present-day biases. However, recent publications question 
this assumption. For instance, Li et al. (2016) showed that the cold 
tongue bias in the equatorial Pacific simulated by most CMIP models 
induces an overestimation of the projected warming in the western 
Pacific, hence pointing to an influence of present-day SST biases on 
CMIP5 models in this region. This work should be seen as a first attempt 
to simulate the trends of the micronekton biomasses in the WSTP. 
Further developments are however needed to refine the bias correction 
strategy used by reducing further present-day NEMO-PISCES biases in 
our region of interest but also by correcting future CMIP5 forcing using 
bias mitigation technics such as emergent constraint method in the re-
gion (e.g. Dutheil et al., 2019; Brown et al. 2020). 

4.3. Comparison with previous studies 

Several studies focusing on future changes of marine animals have 
projected a decline of marine biomass in the tropical regions (Cheung 
et al., 2016b; Kwiatkowski et al., 2019; Lotze et al., 2019). Bryndum- 
Buchholz et al. (2019) noted a micronekton biomass decrease reaching 
~ − 15% for 0–30 cm length organisms for the whole South Pacific 
Ocean, and Lefort et al. (2015) noted a ~ − 20% decrease for the whole 
Pacific Ocean. However, how the ecological changes may play out at 
regional scale had not been comprehensively explored and understood. 
Our predictions were consistent with Bryndum-Buchholz et al. (2019) 
and Lefort et al. (2015), as we found a mean decrease of the micronekton 
biomass over the whole Coral Sea (~− 10% for combined outputs of both 
models). However, our study provided additional insights on these 
projected changes, demonstrating heterogeneous changes vertically and 
horizontally with an important regional spatial variability. Within the 

Fig. 5. Same as Fig. 4 but for the upper-mesopelagic zone (about 150–450 m).  
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Coral Sea, both micronekton models predicted a dipole pattern of the 
projected changes in the epipelagic layer, across the three bias-mitigated 
forcing, with an increase of micronekton abundance in the north (about 
+ 2.4% and + 8% for the acoustic and SEAPODYM models respectively) 
and a decrease south of 22◦S (about − 10% and − 30% for the acoustic 
and SEAPODYM models respectively). These contrasted spatial changes 
were consistent with the global map of changes shown by Lefort et al. 
(2015). The differences in projections among the three vertical layers 
based on the acoustic model showed that the integration of a 3-dimen-
sional structure is needed for a complete and robust understanding of 
the future change of micronekton biomass. 

Our marine biomass projections were sensitive to the micronekton 
model used and also the climate forcing, especially in the mesopelagic 
layers. Many sources of uncertainty exist when marine biomasses are 
projected in the future: the structure of the model (e.g., age-structured, 
length-structured, individual based model); the methodology to esti-
mate model parameters (e.g., based or not on comparison to observed 
values); the type of forcing applied; and the scenario used to produce the 
forcing. Among these, several studies pointed out that the largest un-
certainties were mostly linked to the scenario considered, especially for 
the marine ecosystems (Bonan and Doney, 2018; Cheung et al., 2016a; 
Payne et al., 2016). In the present study, we presented bias mitigated 
forcing for only one scenario, RCP8.5, the highest emissions scenario. 
Therefore, using additional scenarios and especially the ones including 
greenhouse gas mitigation policies (e.g., SSP2) would further help 
quantify the uncertainty of future projections. Also, while regional 
downscaling of climate model outputs will become available, it will be 
essential to investigate the sensitivity of these results using higher 
spatial resolution. 

4.4. Main drivers of the biomass changes 

Chlorophyll changes displayed a dipolar structure located at ~ 22◦S, 
qualitatively matching the seasonal boundary between the oligotrophic 
waters of the Coral Sea and the more productive waters found in the 
Tasman Seas (Menkes et al., 2015). Biogeochemical model outputs 
indicated that oligotrophic waters to the north were expected to become 
more productive while chlorophyll-rich waters to the south should 
become less productive, hence reducing the meridional chlorophyll 
gradient in the Coral Sea region (Fig. S5). In NEMO-PISCES future 
simulations, density (thermal) stratification tended to increase under 
global warming as expected which resulted in increased nutrient strat-
ification thus reducing the amount of nutrient fluxes in the surface layer 
and in turns reducing primary production. The chlorophyll-change 
patterns were consistent with the epipelagic biomass decrease in the 
south and increase in the north. This positive relationship between 
primary production and mesopelagic organisms has been well docu-
mented for present-day oceanic conditions (Boersch-Supan et al., 2017; 
Escobar-Flores et al., 2013; Irigoien et al., 2014; Receveur et al., 2020a). 

Our results pointed towards an increase (or relatively smaller 
decrease) in epipelagic micronekton biomass in waters experiencing 
enhanced warming using both SEAPODYM and acoustic models 
(Fig. S5). Aside its direct influence on micronekton, the temperature 
influences the primary production following two counteracting mecha-
nisms: (1) an enhanced warming leads to faster metabolic processes and 
therefore higher primary production; and (2) enhanced surface warming 
also leads to increased upper ocean stability, reducing the efficiency of 
vertical mixing to bring more nutrients to the photic layer, and may 
therefore reduces primary production. A combination of these two 
counteracting processes certainly occurs in the Coral Sea. At the regional 
level, the statistical correlation between temperature, and secondary 
and tertiary biomasses become less clear due to the increasing influence 

Fig. 6. Same as Figs. 4 and 5 but for the lower-mesopelagic zone (about 450–1000 m).  
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of other mechanisms operating at this scale. These mechanisms include 
transport by currents, water mass dynamics, mesoscale aggregation and 
topographic effects. The effect of temperature discussed in the present 
study certainly encompasses more complex interactions with notably 
changes in vertical stratification that leads to changes in micronekton. 

In SEAPODYM, with the change in primary production propagating 
to zooplankton and micronekton, the projected warming leads to faster 

turnover of organisms. A higher temperature generates a higher rate of 
natural mortality and earlier recruitment age (then, production) in the 
functional group. As a result, for a same amount of primary production, 
a warmer environment leads to lower biomass but higher production of 
micronekton. The relationship between the acoustic values and tem-
perature is more complicated. It is the shape of a complete vertical 
profile that is linked to the environmental parameters, and moreover the 
link was estimated based on a Machine learning model that does not 
have a simple fitted relationship (Receveur et al., 2019). 

The present study is a first step to estimate how changes in micro-
nekton may affect higher trophic levels. However, to achieve this goal, it 
is also essential to understand how the transfer efficiencies from (1) 
gross and net production to (2) micronekton and (3) higher trophic level 
organisms will change in the future. These energy efficiency changes are 
indeed as important, if not more, than absolute changes in biomass 
(Delpech et al., 2020). 

4.5. Improve prediction reliability 

Our results revealed large differences in the micronekton biomass 
changes projected by SEAPODYM and the acoustic model for the 
mesopelagic layers, highlighting the need to improve our understanding 
and modeling of this deeper biological component. 

Micronekton is composed of many species but both SEAPODYM and 
the acoustic model simulate a generic micronekton biomass without 
considering species specificities. However, each micronekton species 
has a specific habitat (Duffy et al., 2017; Receveur et al., 2020b). If a 
habitat becomes unsuitable for a given species, its abundance may 
decline by negatively affecting eco-physiological performances (e.g. 

Fig. 7. Mean relative change of micronekton biomass (vertical axis) are presented for the acoustic model (purple) and SEAPODYM (yellow), relative to 1979–2009 
(period identified by the grey square) for each vertical layer (rows) and for the two spatial regions (columns, see previous Figures) and on average over the three bias- 
mitigated forcing. Thick colored lines show a linear trend fitted and colored number give the mean change for the last 30 years. The black horizontal lines identify the 
zero. All temporal trend were significant except in the lower mesopelagic layer for NASC values. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Table 4 
Ranks of influence of physical and biogeochemical variables in linear statistical 
models to predict epipelagic values based on acoustics modeling and SEAPODM 
(rows) and for the three climate forcing (columns). Variables are ranked based 
on the absolute value of the t-statistic for each linear model parameter (Kuhn 
et al., 2020). The last two columns give the mean rank across the three climate 
forcing and the final importance rank per physical and biogeochemical 
variables.  

ACOUSTIC GFDL IPSL MIROC Mean Final rank 

Chlorophyll 1 2 1 1.3 1 
Wind 5 1 6 4.0 4 
Salinity 4 6 4 4.7 5 
Oxygen 3 3 5 3.7 3 
Temperature 2 4 2 2.,7 2 
Current 6 5 3 4.7 6  

SEAPODYM GFDL IPSL MIROC Mean Final rank 
Chlorophyll 1 4 1 2.0 1 ex-aequo 
Wind 6 2 5 4.3 4 
Salinity 4 6 4 4.7 5 
Oxygen 3 3 2 2.7 3 
Temperature 2 1 3 2.0 1 ex-aequo 
Current 5 5 6 5.3 6  
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metabolic rates or growth) (Hillebrand et al., 2018; Pörtner, 2001) or it 
distribution may shift to cooler waters (Pecl et al., 2017). New envi-
ronmental conditions may be also physiologically tolerable via accli-
matization (an adjustment of physiology like oxygen tolerance by 
individual) or adaptation (increased abundance and reproduction with 
some genotype changes over generations) (Parmesan, 2006). Our 
models do not account for such biological plasticity since acoustic and 
SEAPODYM models were constructed respectively from statistically and 
deterministic relationships derived from a total micronektonic biomass. 
So far, given the micronekton species diversity already observed 
(Receveur et al., 2020b; Payri et al., 2019), the understanding of climate 
change effect on individual species cannot be envisioned in the near 
future in the Coral Sea. Moreover, the acoustic response of species 
communities may differ between regions or seasons characterized by 
different temperature regimes. In the future, it will be crucial to un-
derstand the fundamental differences in the way temperature affects 
each of the two micronekton models. 

Further investigations are needed to understand why SEAPODYM 
and acoustic projections agreed well for the epipelagic layer but not for 
the mesopelagic layers. As the acoustic model uses complete acoustic 
vertical profiles (0–600 m) as an unit to explore, its predictions are ex-
pected to be equally reliable through the entire water column. However, 
the acoustic signal that is modelled may be not coherent enough over the 
full spatial domain and all seasons if sampled species communities are 
too different. About SEAPODYM, the model is layer-dependent and is 
sensitive to the way DVM is parameterized. Reliable predictions in one 
vertical layer does not ensure reliable predictions in the others. 

In order to be able to fully explain the discrepancies in mesopelagic 
layers, a better understanding is required for transforming acoustic es-
timates into biomass. This would theoretically require the knowledge of 
the species composition of the micronekton community and how indi-
vidual targets respond acoustically, a significant challenge given exist-
ing knowledge of community composition in the Coral Sea. Ideally a 
program of in situ sampling with appropriate trawls to identify the 
species composition of the different layers would resolve this uncer-
tainty and lead to improved model reliability. This would allow (1) to 
link species to their environmental tolerances, (2) to characterize the 
micronekton communities by vertical layers and finally (3) to poten-
tially assess biomass from acoustic signal for a better comparison with 
the biomass units used in SEAPODYM. It is also possible to reverse the 
comparison, i.e., transform the SEAPODYM outputs into acoustic values 
and make the comparison in the space of acoustic. This second option 
would require less specific knowledge on each species acoustic answer 
and appeared more feasible (Handegard et al., 2013). 

4.6. Concluding remarks 

We used an innovative bias-mitigated framework of atmospheric, 
oceanographic, and biogeochemical modelled variables to predict a 
decrease of micronekton biomass in the Coral Sea by 2100 for two 
micronekton models forced by 3 CMIP5 outputs under the RCP8.5 sce-
nario. While micronekton biomass projections were consistent between 
both micronekton models and the three physical-biogeochemical model 
forcing used for the epipelagic layer, this was not the case for the two 
mesopelagic layers. Those inconsistencies emphasized the need to better 
observe and understand the micronekton species compositions and their 
acoustic responses to more robustly model their biomass distributions 
and to provide a more reliable assessment of the future ocean. Finally, 
our results also emphasized the need to better understand the mecha-
nisms and processes (i.e., influence of physical and biogeochemical 
parameters on the different trophic level and the energy transfer across 
the trophic levels) that lead to biomass changes. 
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