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Matters arising

Caution over the use of ecological big data 
for conservation

Alastair V. Harry1,2 ✉ & J. Matias Braccini1

arising from N. Queiroz et al. Nature https://doi.org/10.1038/s41586-019-1444-4 (2019) 
 

Highly collaborative and data-intensive ecology studies are at the fore-
front of innovative solutions to global issues in conservation and natural 
resource management1,2. In their spatial risk assessment of industrial-
ized fishing, Queiroz et al.3 use big data and collaborative science to 
outline a global conservation blueprint for pelagic sharks. In Austral-
ian waters, their analysis incorrectly identified global risk ‘hotspots’ 
in areas that are not subject to fishing and where spatial closures and 
other management measures are already in place to protect sharks. 
We highlight the potential for large-scale global analyses to misdirect 
conservation efforts if not aligned with regional needs and priorities.

Although ecologists have enthusiastically adopted collaborative, 
data-driven approaches in recent years, limited attention has been 
given to the challenges in this emergent field, including the potential 
for these often highly impactful studies to confound management and 
conservation actions4. We applaud the collaborative effort by Quei-
roz et al.3 in assimilating satellite tagging data on 1,800 large pelagic 
and neritic sharks generated by 153 authors. However, we also caution 
against the use of data-intensive methods for guiding policy at the 
global scale without proper acknowledgement of their risks, complexi-
ties and limitations.

In their paper, Queiroz et al.3 identify Australia’s North West Shelf 
(NWS) as a global fishing exposure hotspot for sharks on the basis 
of spatial overlap with purported drifting longline and purse seine 
fishing vessel movements, despite no such fishing having occurred 
during the past two decades in this area. When we downscaled the 
approach of Queiroz et al.3, we found errors in the data used to evalu-
ate fishing exposure in these waters that were derived using a machine 
learning approach applied to vessel automatic identification system 
(AIS) location data5.

In Western Australian state waters—an area larger than the Bering 
Sea—99.8% of longline and 100% of purse seine AIS data were incorrectly 
classified by the machine learning algorithm (Table 1 and Fig. 1). Incor-
rect classifications included movement data from other types of com-
mercial fishing vessels as well as non-fishing vessels. For example, 95% 
of the data for purse seines in Western Australia waters were attributed 
to the movements of the research vessel of our agency (which, inci-
dentally, does not undertake purse seine or drifting longline surveys).

The area of the NWS identified as highest risk falls within a spatial 
closure of 0.8 million km2 in which directed shark fishing has been 
prohibited since 20056. Although an area to the northeast remains 
open to shark fishing, none has occurred since 20096 and a network of 
State and Commonwealth marine reserves has since been implemented 
over much of that area. Fishery-independent surveys carried out over 
a 17-year period confirm stable or increasing relative abundance and 

size of large sharks in the region6. Historically, the waters adjacent 
to the NWS shelf were indeed important fishing grounds for foreign 
drifting longline vessels before their exclusion from Australian waters 
in 19977, and for Australian vessels in the subsequent years8. Contem-
porary longlining by a domestic tuna and billfish fishery still occurs, 
although these vessels were absent from the AIS data used by Queiroz 
et al.3. Since 2005, the intensity of this fishery has decreased and its 
footprint shifted to the southwest9.

The approach of Queiroz et al.3 fared better at the scale of the entire 
Australian Exclusive Economic Zone and offshore territories (10.2 mil-
lion km2), where the tuna and billfish longline fleet operating off east-
ern Australia was correctly classified (Fig. 1). However, 51% of drifting 
longline data were still incorrect (Table 1) and, notably, several demersal 
trawlers were also misclassified as being part of the longline fleet. Data 
from these vessels led to the incorrect identification of another pelagic 
longline risk hotspot within the Great Barrier Reef Marine Park (Fig. 1), 
where this fishing method is not permitted. In the case of both the 
NWS and Great Barrier Reef, the fishing exposure hotspots identified 
were due to fewer than five vessels being misclassified, highlighting a 
presumably unexpected level of sensitivity in the analysis.

As illustrated here, although patterns identified in global analy-
ses may be broadly informative, they can also be incorrect or misin-
formative at regional levels where there is the scope for misallocating 
resources for conservation and management. Framed alternatively, 
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Table 1 | Summary of machine-learning classified fishing 
effort data

Western Australia Australia and offshore 
territories

Total area (million km2) 2.27 10.2

Gear type Longline Purse seine Longline Purse seine

Total classified vessels 11 3 76 15

Incorrectly classified 
vessels

9 3 24 11

Fishing hours 41,074 2,650 190,355 7,511

Incorrect fishing hours (%) 99.82% 100% 51% 82%

The machine-learning classified fishing effort data used by Queiroz et al.3 to evaluate the 
risks to sharks from fishing in Western Australian and Australian maritime jurisdictions. The 
table shows the total number of vessels classified as using longlines or purse seine, and their 
respective fishing hours, along with the number of vessels and percentage of fishing hours 
found to be incorrect. Australia and offshore territories includes all offshore and sub-Antarctic 
territories and the Australian Antarctic Territory.
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what constitutes an acceptable level of accuracy at the global level 
may be unacceptable at the regional or local level. The sheer volume 
of data alone cannot overcome issues of potential bias and, in some 
cases, can magnify them10,11.

These challenges point to a greater role for authors of global stud-
ies in harmonizing their research outcomes with regional needs and 
priorities. Strategies for aligning research that makes use of the large 
number of contributing authors could involve consultation with natu-
ral resource managers or the use of regional focus groups to identify 
errors and inconsistencies. In this case, examination of the substantial 
body of publicly available, annually published status reports for the 
relevant Australian fisheries, or engagement with Australian fisheries 
scientists, would have revealed the errors.

Big-data research driven by multi-author collaboration has reshaped 
the speed and scale at which science is conducted and delivered, with 
impact and reach often far exceeding traditional studies. The respon-
sibility lies with practitioners to ensure that these methods are used 
appropriately given their potential to influence decision-making.

In Western Australia, the findings of Queiroz et al.3 risk undermining 
confidence in the science-based management controls that are already 
implemented to protect the mature biomass of long-lived dusky shark 
(Carcharhinus obscurus) and sandbar shark (C. plumbeus) stocks in the 
region12. Off the southern Great Barrier Reef, the incorrect identification 
of a global longlining hotspot has the potential to undermine regional 
advice for the conservation of tiger sharks (Galeocerdo cuvier) and white 
sharks (Carcharadon carcharias), which have seen major population 
declines over recent decades13.

The demand for solutions to global-scale environmental prob-
lems has necessitated changes to the prevailing culture of individual, 
investigator-driven ecology14. Queiroz et al.3 provide a powerful dem-
onstration of what can be achieved when ecologists work collectively by 
leveraging their data and expertise to approach these problems in new 
ways. An ongoing challenge of this and similar studies is how to provide 
globally relevant advice without superseding that of practitioners 

working at the regional level. A balanced and critical view of highly 
collaborative and data-intensive approaches is essential if the oppor-
tunities they provide are to be fully realized.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The results of the manual vessel review are available on GitHub (https://
github.com/alharry/sharkMA).
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Fig. 1 | Machine-learning-classified fishing effort data (0.1° × 0.1° grid cells) 
used to evaluate the risk to sharks from pelagic longline and purse seine 
fishing in waters under Australian jurisdiction. a, Data used in the original 
analysis by Queiroz et al.3. b, Data that were correctly attributed to longline and 
purse seine fishing vessels. The NWS and the southern Great Barrier Reef (GBR) 
were identified as globally important ‘hotspots’ based on the spatial overlap of 

longline fishing and shark density. Grey shading shows the waters under 
Australian jurisdiction. The green line denotes the boundary of the Great 
Barrier Reef Marine Park. The blue line denotes the Western Australian 
maritime jurisdiction. Dark grey shading within Western Australian waters 
denotes the NWS. This figure was created with the statistical software R 
v.4.0.215. Scale bars, 800 km.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection Data were downloaded from Global Fishing Watch

Data analysis All data analysis was carried out using R

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Processed fishing vessel movement data presented in Figure 1 were downloaded from Global Fishing Watch [https://globalfishingwatch.org/; accessed 6th August 
2019]. The results of the manual vessel review summarized in Table 1 are available on GitHub [https://github.com/alharry/sharkMA]. 
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Reply to: Caution over the use of ecological 
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Alex R. Hearn19,66,67, John C. Holdsworth68, Bonnie J. Holmes69,109, Lucy A. Howey70, 
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A. Peter Klimley19,79, Alison A. Kock42,80,81,82, Pieter Koen83, Felipe Ladino23, 
Fernanda O. Lana10,84, James S. E. Lea37,85, Fiona Llewellyn60, Warrick S. Lyon54, 
Anna MacDonnell53, Bruno C. L. Macena10,13, Heather Marshall21,86, Jaime D. McAllister87, 
Michael A. Meÿer15, John J. Morris72, Emily R. Nelson56, Yannis P. Papastamatiou25,  
Cesar Peñaherrera-Palma19,88, Simon J. Pierce89, Francois Poisson20, Lina Maria Quintero23, 
Andrew J. Richardson90, Paul J. Rogers59, Christoph A. Rohner89, David R. L. Rowat91, 
Melita Samoilys92, Jayson M. Semmens87, Marcus Sheaves8, George Shillinger19,24,93, 
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replying to A. V. Harry & J. M. Braccini Nature https://doi.org/10.1038/s41586-021-03463-w 
(2021)

Our global analysis1 estimated the overlap and fishing exposure risk 
(FEI) using the space use of satellite-tracked sharks and longline fishing 
effort monitored by the automatic identification system (AIS). In the 
accompanying Comment, Harry and Braccini2 draw attention to two 
localized shark–longline vessel overlap hotspots in Australian waters, 
stating that 47 fishing vessels were misclassified as longline and purse 
seine vessels in the Global Fishing Watch (GFW)3 2012–2016 AIS fishing 
effort data product that we used. This, they propose2, results in misi-
dentifications that highlight fishing exposure hotspots that are subject 
to an unexpected level of sensitivity in the analysis and they suggest 
that misidentifications could broadly affect the calculations of fishing 
exposure and the central conclusions of our study1. We acknowledged 

in our previously published paper1 that gear reclassifications were likely 
to occur for a small percentage of the more than 70,000 vessels studied, 
however, here we demonstrate that even using much larger numbers 
of vessel reclassifications than those proposed by Harry and Braccini2, 
the central results and conclusions of our paper1 do not change.

In our use of a third-party dataset such as GFW3, we stated clearly1 
that the dataset is undergoing continuous refinement to correct for 
acknowledged contamination of some gear types with others in some 
regions (for example, drifting longlines with bottom-set longlines off 
New Zealand1). The characterization of GFW vessels (gear) is under-
taken using two convolutional neural networks that were trained3 
on 45,441 marine vessels (fishing and non-fishing) that identified six 

https://doi.org/10.1038/s41586-021-03464-9
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classes of fishing vessels and six classes of non-fishing vessels with 
95% accuracy, as stated in our paper1. It is inevitable, therefore, that for 
some of the more than 70,000 AIS-monitored fishing vessels analysed, 
the gear was misclassified. Fortunately, a growing number of nations 
now maintain publicly accessible, online vessel registries to promote 
transparency and science within the fishing sector. For example, the 
European Union (EU) releases identifying information (including vessel 
name, identification numbers and fishing gear) for all fishing vessels 
registered to any EU country4. This eliminates the need to develop and 

refine models to estimate this information, as was the case for most of 
the vessels that we analysed. For countries that have not adopted this 
practice, including Australia, models provide necessary estimates in 
lieu of official information.

Since the publication of our paper1 there have been further improve-
ments, including the recent data of AIS longline fishing effort for 2018 
with updated gear assignments based on convolutional neural networks 
and data for more vessels. Mapping the new data (Fig. 1) shows that, 
indeed, the fishing effort by 12 vessels in Australia’s Northwest Shelf 

4.9 × 10–7 1.0 × 1001 939

g hg h

Number of days �shing FEI

5.4 × 10–7 1.0 × 1001 501

e fe f

Number of days �shing FEI
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c dc d

Number of days �shing FEI

3.2 × 10–7 1.0 × 1001 1,886

a ba b
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Fig. 1 | Comparing AIS longline fishing datasets. a–h, Comparison of GFW 
data of AIS longline fishing effort (a, c, e, g; fishing days, where 1 day = 24 h 
fishing effort) and spatial overlap intensity (FEI) with pelagic sharks (b, d, f, h) 
for three GFW datasets of longline fishing effort and Queiroz et al.1. The 
original 2012–2016 AIS longline fishing effort and FEI (a, b) was compared with 

the new data releases of GFW fishing effort for 2012–2016 (c, d), 2012–2018 (e, f) 
and 2018 only (g, h). These analyses show minor global differences across the 
datasets even in the light of improvements in gear characterization algorithms 
and further verification with additional fishing vessel metadata.



E22 | Nature | Vol 595 | 8 July 2021

Matters arising

(NWS) is now removed, indicating that these few longline and purse 
seine vessels were not classified accurately in the GFW 2012–2016 data 
product. However, the GFW 2018 product does not show the reclassifi-
cations proposed off the southern Great Barrier Reef (GBR); therefore, 
further verifications are needed to correct those.

We agree that the space use hotspot for tiger shark (Galeocerdo 
cuvier) in Australia’s NWS does not overlap with AIS-monitored longline 

fishing effort in that area based on the GFW 2012–2016 data product 
that we used. Therefore, an important question raised2 is whether the 
reclassification of the gear types of 47 vessels directly affects the cal-
culations of fishing exposure and our conclusions. In our paper1, the 
area (at the 1° × 1° grid cell scale) covered by AIS longline fishing effort 
in Western Australia is 0.4% of the global coverage and the southern 
GBR area represents only 0.06%. Within the Oceania region used in our 
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Fig. 2 | Example effects of random deletions of fishing effort data on 
exposure risk patterns. a–e, The percentage of randomized deletions from 
100 repeats that resulted in a species exposure risk estimate occurring within 
the high (red), moderate (yellow) or low (green) risk category at each level of 
deletion (1%, 5%, 25%, 50% or 75%) of fishing effort grid cells per sub-region.  
a, North Atlantic. b, Eastern Pacific Ocean. c, Southwest Indian Ocean.  
d, Northwest Oceania. e, Eastern Oceania. The map that shows the locations  
of sub-regions is provided in Supplementary Fig. 1. CCA, white shark 
(Carcharodon carcharias); CFA, silky shark (Carcharhinus falciformis); CLE, bull 

shark (Carcharhinus leucas); GCU, tiger shark (Galeocerdo cuvier); IOX, shortfin 
mako shark (Isurus oxyrinchus); LNA, porbeagle shark (Lamna nasus); PGL, blue 
shark (Prionace glauca). Overall, only 6 out of 36 species–region combinations 
(16.7%) showed significant differences in the proportion of 100 randomizations 
per combination that each resulted in exposure risk falling within higher, 
moderate and lower risk categories when comparing 1% and 75% of random 
deletions of fishing effort data. Detailed summaries are provided in 
Supplementary Tables 1–7.
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paper, Western Australia comprises 2.2% and GBR 0.35%. Therefore, the 
areas comprising reclassifications provide a minor contribution to the 
spatial overlap and FEI values that we calculated not only globally but 
also within the Oceania region.

To check our results within the global context, we compared the spa-
tial overlap of sharks and longline fishing effort in our paper1 with the 
new releases of GFW fishing effort data that have been made available 
since the publication of our paper (Fig. 1 and Extended Data Table 1). 
The new releases of GFW data take into account refinements in the 
algorithms used to classify vessel (gear) types and new knowledge from 
metadata on the gear of the vessels. We find that—globally—the GFW 
longline fishing patterns remain almost identical (Fig. 1). Spatial overlap 
and exposure patterns also remain very similar. For example, the mean 
monthly spatial overlap estimate for all oceans of 24% presented in 
our paper is within the range (19–29%) calculated using the new GFW 
data (Extended Data Table 1). In the Exclusive Economic Zone (EEZ) of 
Australia, the number of FEI grid cells actually increased from 151 to 155 
between the original GFW data (2012–2016) and the updated 2012–2018 
data, whereas in the EEZ of western Australia the number decreased 
from 50 to 37 grid cells between datasets. For Oceania (including Aus-
tralian shelf waters), the spatial overlap of 24% in our paper is within 
the 17–25% range estimated with newer GFW data. We also find that the 
spatial overlap–FEI plots remain largely unchanged across the four GFW 
datasets (Extended Data Fig. 1). Therefore, the NWS vessel reclassifica-
tions are minor and affect a single hotspot for tiger sharks.

To address the potential issue raised by Harry and Braccini2 that 
longline vessel reclassifications occur more broadly and may alter 
results in substantial ways, we randomly deleted 1% of grid cells that 
contained longline fishing effort per ocean region to simulate reclas-
sification of longline vessels to other gears and this randomization 
was repeated 100 times. This is more extreme than simply removing a 
few individual vessels because each replicate removes 1% of grid cells, 
each comprising summed fishing effort from single or multiple ves-
sels. Extended Data Table 2 shows that of the 30 species–region pairs 
available for analysis, we found that only 7% of species–region pairs 
changed from highest (red) to moderate (yellow) fishing exposure risk, 
whereas 3% changed from moderate to highest risk after the simulated 
‘reclassification’. We repeated this for 5% random deletions. Even at 
this much higher level of longline gear reclassification, we obtained 
the same results (Extended Data Table 3).

To examine what level of localized reclassification may lead to a 
breakdown of the fishing exposure risk patterns that we found, we 
randomly deleted 1%, 5%, 25%, 50% and 75% of fishing effort grid cells 
within five sub-regions (Supplementary Fig. 1) and recalculated spatial 
overlap and FEI for four key species per sub-region (Fig. 2 and Supple-
mentary Methods). Results reveal no change in patterns of overlap and 
FEI for the four key species for the random deletion of up to 75% of data 
for regions in which shark spatial densities and fishing effort were both 
high and spatially extensive (for example, the North Atlantic (Fig. 2a)). 
Patterns change marginally above deletion of 25% of data for some 
species in other sub-regions in which fewer vessels and sharks were 
tracked (Fig. 2b, d). Seasonal patterns in exposure risk also remained 
largely unchanged albeit with larger differences at higher levels of 
fishing effort deletions (Supplementary Fig. 2). Levels of inaccuracy 
as high as we simulated in these tests are not evident in worldwide 
GFW vessel classifications3. Clearly, our results are not as sensitive to 
minor changes in sub-region vessel reclassifications as suggested by 
Harry and Braccini2.

Harry and Braccini2 emphasize that regional results should not be 
overlooked within a global-scale study. We agree, which is why we pro-
vided region-specific results for individual species that were discussed 
in detail in our paper1 (see supplementary results and discussion 2.6 of 
ref. 1), in which each regional analysis was informed by regional experts 
among the authorship, including for Western Australia. Although con-
tinued refinements to fishing gears ascribed to AIS-monitored vessels in 

the GFW dataset are useful, we disagree with Harry and Braccini2 about 
the levels of fishing threatening large sharks in Australia’s NWS where 
we identified the space use hotspot for tiger sharks. They incorrectly 
assert that longline fishing has not occurred for two decades in Aus-
tralia’s NWS2. Longline and gillnet fishing not only occurred historically 
in the NWS and offshore to the boundary of Australia’s EEZ5, but also 
continues to occur there through illegal, unreported and unregulated 
fishing6–8 by vessels that are not equipped with or that do not use AIS, 
which we discussed in our paper1. Illegal, unreported and unregulated 
fishers are known to target sharks—including tiger sharks9—for fins, 
an ongoing threat that has been a major problem in Australia’s NWS7, 
which overlaps with the tiger shark hotspot8. Therefore, it cannot be dis-
counted that the shark hotspot overlaps with non-AIS monitored fishing 
activity, especially as more than 0.5 million km2 of the NWS remains 
open to commercial shark fishing10. Furthermore, the 55-year-long 
shark control program along 1,760 km of coastal northeastern Australia 
shows a long-term decline in the abundance of tiger sharks11,12; this is 
a region with movement and genetic connectivity with tiger sharks of 
the NWS13. In our view, Harry and Braccini2 overlook existing threats to 
tiger sharks and other shark species from fishing in the NWS.

As a consequence, we disagree with the opinion that existing 
science-based management has been undermined by our results or 
conclusions. Rather, in our paper1 we highlighted specifically the need 
to incorporate tracking and other spatial data into scientific assess-
ments. However, this should not be misinterpreted as spatial data rep-
resenting a regional management tool to replace assessments that rely 
on other types of data, such as time-series catch data. Indeed, a review14 
cited in our paper identifies examples in which marine animal tracking 
and space use data informed policy, and it is evident that these data 
were never used in isolation from existing management regimes or 
complementary scientific assessments. Our paper1 emphasizes the 
need for a holistic approach to shark management that should also 
incorporate dynamic, spatial data.

Reporting summary
Further information on experimental design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data used to prepare the maps (shark relative spatial density, 
longline-fishing effort and shark–longline-fishing overlap and FEI) 
are available on GitHub (https://github.com/GlobalSharkMovement/
GlobalSpatialRisk).

Code availability
Code used to prepare the maps (shark relative spatial density, 
longline-fishing effort and shark–longline-fishing overlap and FEI) 
is available on GitHub (https://github.com/GlobalSharkMovement/
GlobalSpatialRisk).
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Extended Data Fig. 1 | Comparing shark exposure risk between AIS longline 
fishing effort datasets. a–d, Estimated exposure risk of sharks to capture by 
GFW AIS longline fishing effort across ocean regions for Queiroz et al.1 (a) 
compared with three improved data releases since the paper was published (b–d). 

The plots show minor effects of any changes on estimates of shark exposure 
risk from AIS longline fishing effort and confirm the global results and 
conclusions of our paper. a, Data from Queiroz et al.1. b, Data from GWF  
2012–2016. c, Data from GWF 2012–2018. d, Data from GWF 2018.
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Extended Data Table 1 | Mean monthly spatial overlap estimates (%) of pelagic shark space use and AIS longline fishing effort 
for different AIS datasets
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Extended Data Table 2 | Effect of 1% random deletion of fishing effort grid cells within each region on risk exposure estimates

The results show minor effects of substantial removal of longline fishing effort. Before/after denotes before/after deletion. Red denotes the highest risk exposure category, green indicates the 
least risk. The ‘after’ colour represents the category with the highest percentage of occurrence after 100 randomizations. No change in colour between before/after indicates no change in 
spatial overlap and exposure risk of species from AIS longline fishing effort. White indicates that no tracking data are available to undertake analysis. There are no changes from high to low, or 
vice versa.
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Extended Data Table 3 | Effect of 5% random deletion of fishing effort grid cells within each region on risk exposure 
estimates

The results show minor effects of substantial removal of longline fishing effort. Before/after denotes before/after deletion. Red denotes the highest risk exposure category, green indicates the 
least risk. The ‘after’ colour represents the category with the highest percentage of occurrence after 100 randomizations. No change in colour between before/after indicates no change in 
spatial overlap and exposure risk of species from AIS longline fishing effort. White indicates that no tracking data are available to undertake analysis. There are no changes from high to low, or 
vice versa.
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paper. We also carried out new analyses using newer data releases of global longline fishing effort data that were freely available 
from Global Fishing Watch (www.globalfishingwatch.org).

Research sample In this Reply, the additional data used were the Global fishing Watch updated data release for AIS-monitored longline fishing effort in 
2012-2018. 

Sampling strategy Global longline fishing effort data were obtained for automatic identification system (AIS) monitored vessels >300 gross tons.

Data collection Global longline fishing effort data for automatic identification system (AIS) monitored vessels >300 gross tons were made available by 
the Global Fishing Watch.

Timing and spatial scale Global for 2012-2018.

Data exclusions No relevant data were excluded.

Reproducibility No experiments as such were conducted, rather our data are based on satellite tracked movements of individual pelagic sharks and 
fishing vessels.

Randomization Randomization procedures were used when removing 1, 5, 25, 50 and 75% of the AIS data for breakpoint sensitivity analysis. 
Methods are fully described in the Reply and Supplementary Information files.

Blinding Blinding is not relevant to this type of study because our original data were based on movements of wild animals and fishing vessels.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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