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Abstract: Monitoring precipitation in mountainous areas using traditional tipping-bucket rain gauges
(TPB) has become challenging in sites with strong variations of air temperature and wind speed
(Ws). The drop size distributions (DSD), amount, and precipitation-type of a Parsivel OTT2 disdrom-
eter installed at 4730 m above sea level (close to the 0 ◦C isotherm) in the glacier foreland of the
Antisana volcano in Ecuador are used to analyze the precipitation type. To correct the DSDs, we
removed spurious particles and shifted fall velocities such that the mean value matches with the fall
velocity–diameter relationship of rain, snow, graupel, and hail. Solid (SP) and liquid precipitation
(LP) were identified through −1 and 3 ◦C thresholds and then grouped into low, medium, and high
Ws categories by k-means approach. Changes in DSDs were tracked using concentration spectra and
particle’s contribution by diameter and fall velocity. Thus, variations of concentration/dispersion and
removed hydrometeors were linked with Ws changes. Corrected precipitation, assuming constant
density (1 g cm−3), gives reliable results for LP with respect to measurements at TPB and overes-
timates SP measured in disdrometer. Therefore, corrected precipitation varying density models
achieved fewer differences. These results are the first insight toward the understating of precipitation
microphysics in a high-altitude site of the tropical Andes.

Keywords: particle size distribution; DSD; disdrometer; Parsivel; inner tropics; windy conditions;
precipitation; tropical glaciers; Antisana

1. Introduction

An adequate measurement of precipitation reaching the ground is essential to picture
its spatial and temporal variability accurately. This allows to reduce the uncertainty in
hydrological simulations [1], to improve forecasting and early warning tools [2,3], and
appropriate water management [4,5]. However, this becomes challenging in mountainous
regions, where the observations of solid and liquid precipitations are strongly affected by
wind [6].

A rain gauge acts as an obstacle that disturbs the incoming airflow originating turbu-
lence and eddies around, resulting in deflected trajectories of some hydrometeors away
from the funnel region and missing the gauge orifice [7,8]. The reduction of particle flow
over the gauge (under-catch) due to wind effect depends on wind speed, precipitation
type, rainfall intensity, and the aerodynamic design of the rain-gauge [9–12]. It is especially
true for solid precipitation collected by unshielded gauges, where analyzing the measured
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precipitation characteristics becomes more complex [13–15]. Thus, from the literature, it is
concluded that traditional rain gauges are little reliable for precipitation collection under
windy conditions.

To analyze the impact of the wind speed on the measurements of solid and liquid
precipitation, a Parsivel OTT2 disdrometer was installed near the glacier of Antisana
volcano in Ecuador at 4730 m above sea level (m asl) (Figure 1). Disdrometers are a
practical alternative due to the low maintenance required, including for harsh conditions.
Among the advantages of this device, are: (1) it avoids contact with particles due to its
optical method of measurement [16,17]; (2) due to its sensitivity, it can measure events with
precipitation less than 0.1 mm h−1 with a high temporal resolution [18,19]; (3) it offers the
possibility of detecting the type of precipitation [16,20]. These characteristics make the
gathered data a valuable information source about the fine-scale structure of precipitation
which is currently limited to only the páramo zone (high altitude wet grassland) around
3780 m asl [21].
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However, disdrometers are prone to record erroneous fall velocity raindrops mostly 
due to particles falling through the edges of the sample area [23], in addition to strong 
winds leading to misclassification of particles [24]. Several studies show that the Parsivel 
OTT2 tends to overestimate the fall velocity of small raindrops [17,25] and underestimate 
the fall speed of small snowflakes [26,27] and large raindrops [20,28,29]. To the authors’ 
best knowledge, the evaluation of the impact of corrections for different fall velocities on 
solid and liquid precipitation is missing to date. 

Figure 1. (a) Map of study area respect to city of Quito and the Ecuadorian Andean mountain
range. (b) Topography of Antisana massif and locations of AWS PRAA, AWS ORE and P8 rain
gauge. The Antisana icecap outline was taken from Basantes-Serrano [22]. The elevation was
presented in meters above sea level (m a.s.l). (c) Photography of AWS PRAA. (d) Disdrometer
Parsivel OTT2. (e) Pluviograph Texas electronics TE 525WS with rubber funnel used as a reference
for liquid precipitation under low wind speed conditions.

However, disdrometers are prone to record erroneous fall velocity raindrops mostly
due to particles falling through the edges of the sample area [23], in addition to strong
winds leading to misclassification of particles [24]. Several studies show that the Parsivel
OTT2 tends to overestimate the fall velocity of small raindrops [17,25] and underestimate
the fall speed of small snowflakes [26,27] and large raindrops [20,28,29]. To the authors’
best knowledge, the evaluation of the impact of corrections for different fall velocities on
solid and liquid precipitation is missing to date.

Therefore, the measured particle size distributions (DSDs) need to be corrected to
compute precipitation adequately. The methods developed to correct DSD are based on
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the removal of hydrometeors outside of a threshold range of the empirical fall velocity–
diameter relationship [17,20], while others establish a threshold to remove particles out of
a diameter range [30]. However, they seem inappropriate for the study site since they were
conceived for only rainfall (liquid precipitation) and high latitudes. Instead, the method
proposed by Raupach and Berne [25] has been recommended and employed by various
studies (e.g., [29,31–33]) due to its general applicability. For this reason, we will adopt this
latter approach to a mountainous region in the inner tropics to correct the DSDs.

Hence, this study aims to compare the DSDs of solid and liquid precipitation records
after corrections and under different wind speed regimes. The phase selection is based on
air temperature thresholds measured in a nearby station at a similar altitude and comparing
the corrected precipitation to reference measured values. To validate corrections, we employ
a tipping bucket rain gauge as a reference for low wind regime where the under-catch issue
is minor, while for solid precipitation, we present the differences concerning measured
values in the Parsivel disdrometer since our study lacks a reference instrument. The
document is organized as follows: Section 2 presents the study area, the measurement
devices, and the quality control applied to select only suitable records. In Section 3, we
presented the adaptations generated to correct solid and liquid DSDs’ fall velocity and
recalculate the bulk precipitation (i.e., precipitation derived from DSD moments). Section 4
presents the records classified by wind speed and evaluates the changes in corrected DSDs
and corrected precipitation. Discussion and conclusions are drawn in Section 5.

2. Sites, Data, and Methods
2.1. Site

The Antisana is a stratovolcano located 40 km east of the city of Quito in the Eastern
Cordillera of Ecuador (Figure 1a). The Glacier 12 is located in the southwestern sector of
the Antisana volcano, draining from the summit at 5720 to 4740 m asl. Part of the glacier
melting drains downstream and joins to the paramo runoff and together drains toward
the ‘Mica-Quito Sur’ reservoir that supplies freshwater for the Quito city [34]. The PRAA
(Proyecto Regional Andino de Adaptación al Cambio Climático) automatic weather station
(AWS) is located at 4730 m asl (0◦29′44′ ′ S, 78◦09′35′ ′ W) near the glacial snout in a narrow
valley formed between the volcano summit and moraines shaped by the glacial retreat
(Figure 1c).

Precipitation occurs due to the adiabatic cooling of moist air from the Amazon basin
(a single maximum between June and July and a minimum in February). These air masses
are pushed by the trade winds and condense as they rise on the eastern slopes of the
Andes [35]. Similarly, due to its location on the border of the inter-Andean plateau, the
area also receives a contribution from the inter-Andean valley regime (with two wet
seasons in February–May and October–November). Both conditions generate a complex
regime with substantial precipitation throughout the year (Figure 2), accumulating annually
837 ± 122 mm near the moraine, depending on the El Niño-Southern Oscillation phase [36].
The almost homogenous precipitation throughout the year and the topographical features
justifies the large extension of Glacier 12 compared to others located on the western side of
the volcano [22].

The monthly temperature remains homogeneous throughout the year at around
1.92 ◦C (according to Figure 2a) with a maximum between February–May (2.57 ◦C) related
to the period of higher humidity and cloudiness [37], while the minimum between June–
September (1.04 ◦C) is related to the decrease in cloudiness and increase in wind speed
(Figure 2b). The 0 ◦C isotherm varies between 4800–5100 m asl [38] in agreement with
the equilibrium line altitude of the glacier around 5030 m asl [39]. However, radiative
cooling and katabatic winds intensify during the night and early morning and cause the
temperature to drop around 0 ◦C [37,40]. In the afternoon, the warm air from the páramo
and moraine zones creates a warm upslope flow that reaches the site. Hence, the area is
exposed to local winds coming from the icecap in the NE direction and from the lower
areas between W and NW directions. The Eastern Cordillera is also exposed to the easterly
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trade winds that strengthen during the boreal summer (June–September), resulting in gusts
above 6 ms−1 (Figure 2c) and monthly values around 4 m s−1 (Figure 2b). Table 1 shows a
summary of 15-min measurements at PRAA station for the July 2019–July 2020 season.

Water 2021, 13, x FOR PEER REVIEW 4 of 31 
 

 

 

Figure 2. (a) Monthly precipitation values (blue line) measured at P8 rain gauge for 2005−2014 and 2019−2020 period. The 

same for air temperature (red line) measured at AWS PRAA station for 2010−2017 and 2019−2020 period. (b) Mean monthly 

wind speed (green line) at AWS PRAA station for 2012−2016 and 2019−2020 period. Verticals bars represent the monthly 

standard deviation computed for each cycle. (c) Wind rose displaying wind directions at the PRAA station for the 

2019−2020 period. 

The monthly temperature remains homogeneous throughout the year at around 1.92 

°C (according to Figure 2a) with a maximum between February–May (2.57 °C) related to 

the period of higher humidity and cloudiness [37], while the minimum between June–

September (1.04 °C) is related to the decrease in cloudiness and increase in wind speed 

(Figure 2b). The 0 °C isotherm varies between 4800–5100 m asl [38] in agreement with the 

equilibrium line altitude of the glacier around 5030 m asl [39]. However, radiative cooling 

and katabatic winds intensify during the night and early morning and cause the temper-

ature to drop around 0 °C [37,40]. In the afternoon, the warm air from the páramo and 

moraine zones creates a warm upslope flow that reaches the site. Hence, the area is ex-

posed to local winds coming from the icecap in the NE direction and from the lower areas 

between W and NW directions. The Eastern Cordillera is also exposed to the easterly trade 

winds that strengthen during the boreal summer (June–September), resulting in gusts 

above 6 ms−1 (Figure 2c) and monthly values around 4 m s−1 (Figure 2b). Table 1 shows a 

summary of 15-min measurements at PRAA station for the July 2019–July 2020 season. 

Table 1. Summary of 15 min data series at PRAA station for July 2019–July 2020 monitoring period. 

P5 and P95 correspond to percentile 5 and 95, respectively. Rain rate corresponds to measured val-

ues at Parsivel disdrometer. P05 and P95 are the percentiles 5 and 95, respectively. 

 
T Air 

(°C) 

RH 

(%) 

q 

(g kg−1) 

T Dewpoint 

(°C) 

Wind Speed 

(m s−1) 

Rain Rate 

(mm h−1) 

P05 −0.9 48 4.1 −6.7 0.6 0.03 

P95 5.6 99 7.9 2.2 12.2 4.08 

Mean 2.1 81 6.3 −1.2 4.6 1 

  

Figure 2. (a) Monthly precipitation values (blue line) measured at P8 rain gauge for 2005–2014 and 2019–2020 period.
The same for air temperature (red line) measured at AWS PRAA station for 2010–2017 and 2019–2020 period. (b) Mean
monthly wind speed (green line) at AWS PRAA station for 2012–2016 and 2019–2020 period. Verticals bars represent the
monthly standard deviation computed for each cycle. (c) Wind rose displaying wind directions at the PRAA station for the
2019–2020 period.

Table 1. Summary of 15 min data series at PRAA station for July 2019–July 2020 monitoring period.
P5 and P95 correspond to percentile 5 and 95, respectively. Rain rate corresponds to measured values
at Parsivel disdrometer. P05 and P95 are the percentiles 5 and 95, respectively.

T Air
(◦C)

RH
(%)

q
(g kg−1)

T Dewpoint
(◦C)

Wind Speed
(m s−1)

Rain Rate
(mm h−1)

P05 −0.9 48 4.1 −6.7 0.6 0.03

P95 5.6 99 7.9 2.2 12.2 4.08

Mean 2.1 81 6.3 −1.2 4.6 1

2.2. Measuring Devices
2.2.1. Rain Gauge

The PRAA station has a Texas Electronics TE525WS tipping bucket pluviograph (TPB)
of 20.32 cm collector diameter, 0.254 mm/tip resolution, and ±1% accuracy at rainfall rates
up to 25.4 mm h−1. This rain gauge was set to collect data every 15 min and includes a
CS705 rubber funnel (Figure 1e) to improve solid precipitation collection. According to the
manufacturer, a delay of few minutes is expected for liquid precipitation; meanwhile, a
delay of several hours (up to tens) for solid precipitation [41]. This delay occurs because
snowflakes and graupel often obtain stuck on the wall of the rubber funnel. Therefore,
melting conditions like warm temperatures (above 0 ◦C) or sufficient solar radiation are
necessary before snowflakes or freezing particles can be transformed into water droplets
that can slide down making tip the tipping bucket rain gauge. For events occurring in late
afternoon or night sometimes will take hours to be measured.

Although factors have been proposed to correct the precipitation under-catch for
cylindrical-type gauges [12], we did not correct the measured values in our study due to the
lack of a more accurate rain gauge that may serve as a reference. Hence, the measurements
returned by the TPB will be taken as a reference to validate the calculated precipitation
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from corrected DSDs during rainfall records with low wind speed where the expected
wind-induced error would be less than 10% according to published literature [11,42,43].

2.2.2. Disdrometer

The Parsivel OTT2 disdrometer is a laser sensor that produces a horizontal strip of
light of 780 nm, 180 mm long (L), 30 mm wide (B), and 1 mm thick on average. The
emitter and receiver are integrated into protective housing. The size and fall velocity of the
hydrometeors are estimated from the time and amplitude of the signal attenuation when a
particle crosses the laser beam [16,26].

Raindrops falling through the beam are assumed as spheres for diameters less than
1 mm, while for drops between 1 and 5 mm the drop axis ratio varies linearly from 1 to 0.7.
For drops larger than 5 mm, the axis ratio is set to 0.7 [20]. In the case of snowflakes, the
processing software takes the maximum attenuation as the diameter of equivalent spherical
particles [16]. The sampling area of the disdrometer is 54 cm2, but the effective area (Ai)
depends on the size of hydrometeors according to Equation (1) [20] taking the full diameter
(Di in mm) of each particle when it is measured. This correction is helpful to compute the
drop concentration and precipitation rate (Section 3.3).

Ai = 10−6 × L
(

B− Di
2

)
(1)

The Parsivel OTT2 can record particles from 0.2 mm diameter and precipitation lower
than 0.01 mm h−1. The measurements are stored into a matrix of 32 diameter-classes × 32 fall
speed-classes bins, spanning from 0 mm to 26 mm diameters and from 0 to 22.4 m s−1

fall velocities [44]. This matrix corresponds to the size and velocity distribution (DSD)
and constitutes the physical signature of cloud formation and precipitation [45,46]. From
DSD, the disdrometer determines main bulk properties, including precipitation, rainfall
intensity (or rain rate), and provides the precipitation type (drizzle, rain, hail, snow, or
mixed) following Table 4680 of the SYNOP codes [44]. The manufacturer does not provide
information about computations (i.e., approach, density). Only a status flag about the
quality of the measurement is provided. For example, value 0 indicates regular operation,
while value 1–2 indicates a dirty glass, while value 3 indicates that the laser is out of
order [44]. The latter indicator is useful for filtering observations in the quality control stage.
Within the PRAA station, the disdrometer had a north–south orientation perpendicular to
the preferred east–south wind speed direction (Figure 2c) as specified by the manufacturer.

The PRAA station was set in such a way that the disdrometer information is stored
in two files. The first one corresponds exclusively to the DSD measured in precipitation
events recorded as telegrams. The first 32 values represented the number of particles in
each bin of the 32 diameter-classes at the first velocity range (0–0.1 m s−1), the second
32 values correspond to the 32 diameter classes at the second velocity range (0.1–0.2 m s−1),
and so on, until complete the 32 velocity ranges [44], while in the second file we recorded
the rainfall rate, bulk variables (e.g., reflectivity, kinetic energy), precipitation type, and
disdrometer status every 15 min. The internal clock and the data logger were synchronized
with a portable computer to avoid delays in the sampling intervals during each field trip.

2.2.3. Additional Measurements

To measure the air temperature (Ta) and relative humidity (RH) the PRAA station
was equipped with a Vaisala HMP155A probe housed into a radiation shield and placed
two meters above the ground. To monitor wind speed (Ws) and direction, a 05103 Young
anemometer was installed on a three-meter-high wind tower (Figure 1c). All variables
recorded corresponded to the mean of all measurements taken every 30 s, except for wind
direction which corresponds to a single measurement every 15 min.

The specific humidity (q) (g kg−1) was calculated from Ta and RH following Garratt,
(1992), and the dew point temperature (Td) was computed by Equation (2), following
the Magnus formula. The r factor relates the pressure variation according to RH and Ta
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to obtain the actual vapor pressure (in hPa) P = P0er. The parameters P0 = 6.112 hPa,
bd = 17.67 ◦C, and cd = 243.5 ◦C were taken from Bolton [47].

Td =
cd r

(bd − r)
with r(Ta, RH) = ln(RH/100) + bdTa/(cd + Ta) (2)

To characterize the site conditions in Section 2.1 we employed monthly temperature
and wind speed computed from retrieved 15-min data between 2012–2016 and 2019–2020.
Finally, to characterize the precipitation regime (Figure 2a), we used the available monthly
precipitation measured at the P8 rain gauge between 2005–2015 and 2019–2020. This Hobo-
type tipping bucket was located at 4700 m asl in the AWS PRAA vicinity (Figure 1b) and
allows the quantification of liquid precipitation only.

2.3. Study Period and Quality Control

Continuous monitoring was performed between 13 July 2019 and 27 July 2020 (380 days).
During this period, there were gaps only between 22–23 November 2019, due to routine
maintenance and replacement of the anemometer out of order. To fill gaps of wind speed
between 13 July and 23 November 2019, the measurements performed with the same
type of anemometer at the ORE AWS were used. This station is located at 4850 m asl in
the northwestern flank of the Antisana volcano (Figure 1b). Despite the differences in
altitude and orientation, both locations showed a good correlation (r2 = 0.82) and statistical
significance (p < 0.01) at daily timescale for the 233 measurements available between
24 November 2019, and 27 July 2020. This ensured the reliability for fill the gap with the
AWS ORE wind speed. Inspecting Ta and RH, values were within range and no corrections
were applied.

Conversely, disdrometer data were filtered in order to remove erroneous measure-
ments quoted by status flags and those with errors in DSD storage. Only measurements
with both bulk variables and correct DSD measurements available were retained. Besides,
trace amounts of precipitation with a rain rate less than 0.01 mm h−1 were discarded
in order to remove suspicious particles originated from instrument noise or dust parti-
cles [30]. Apart from 15 min measurements, we averaged meteorological conditions and
integrated the DSD to obtain 30- and 60-min values, which will serve to assess the corrected
precipitation over different time steps of aggregation.

3. Methods
3.1. Pre-Processing of Diameter Size Distributions (DSD)
3.1.1. DSD Matrix Expansion

Before applying a finer velocity, correction is mandatory to resize the original matrix
of 32 × 32 (diameters × velocities) to 32 × 224 (diameters × velocities). This means that
the diameter bins were kept unchanged, whereas the velocity bins were expanded. The
first 10 velocity class bins remained the same as the original because their width is thinner
than 0.1 ms−1 [44]. In contrast, the velocity class bins from the 11th to 32nd were split
into bins of 0.1 ms−1 width. In order to redistribute the number of particles, random
integers following the Latin-Hypercube method [48] were generated. Then, the original
number of hydrometeors per bin was rearranged into the expanded vector. This procedure
was repeated 100 times in each original bin such that the final values of the expanded
vector correspond to the integer part of the average in this assemble. The non-integer
difference was added to the central element of each vector keeping the sum of elements
unchanged [25].

3.1.2. Diameter Based DSD Filtering

In order to remove hydrometeors that suffered deviations in their fall path to the
ground, an adapted procedure using a chain of filters (F) is proposed as follows:

• F1: The particles with diameter D < 0.25 mm were removed because they are outside
the sensitivity range of the instrument due to their low signal-to-noise ratio [17].
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• F2: Measurements during high wind speeds are prone to particles misclassification
causing large particles of DSD to appear with slow fall velocity. Therefore, particles
with D > 10 mm and v < 1 ms−1 were removed as suggested by Friedrich et al. [24].

• F3: Particles with diameter D < 2 mm and fall velocities 60% smaller than the fall
velocity–diameter relationship of rain were removed to filter hydrometeors related to
splashing [24]. These particles would have hit the housing of the disdrometer, breaking
apart and rebounding back into the sampling area appearing as slow raindrops in the
measured DSD.

• F4: Finally, particles with D > 20 mm were also removed because storms with large
hail are more recurrent in mid-latitudes and rarely occur in the tropics [49]; therefore,
the last two diameter bins were left empty.

3.2. Correction of DSD
3.2.1. DSD Decomposition

The Antisana area, due to its location on the equator, is exposed to strong daily
variations in temperature and humidity [37,40]. These changes influence theirvertical
profiles and modify the height of the 0 ◦C isotherm [50] driving phase changes that
originate different types of hydrometeors [51]. Since the site is located near the 0 ◦C
isotherm, this suggests that precipitation may be composed of a mixture of several types of
hydrometeors, and the proportion of which will depend on meteorological conditions [52].
Different hydrometeor types thus may coexist for the same diameter.

Therefore, it is necessary to decompose the filtered DSDs into individual DSDs for each
hydrometeor type before applying any diameter-based correction. First, the fall velocity–
diameter relationship was calculated for raindrops (R), snow (S), wet snow (WS), graupel
(G), lump graupel (LG), soft hail (SH), fresh hail (FH), and lump hail (LH). The relationships
and diameters selected (Table 2) were based on the most common formulations for these
hydrometeors found in the literature [24,53–56]. A correction factor was applied to the
fall velocity values in order to consider the velocity increase caused by the decrease in
air density [57]. This correction was calculated for the pressure (562 hPa at 4730 m asl),
and the values of air temperature and relative humidity of the site according to Foote and
Dutoit [58] and Atlas et al. [59].

Table 2. Diameter range and fall velocity–diameter relationships used for the discrimination between:
rain ([53], GK49; [59], AT73; [17], AM18), snow ([56], FH20; [54], LH74) wet snow (FH20), graupel
(LH74), lump graupel (LH74), soft hail ([55], KN83; [24], FR13), fresh hail (KN83, FR13) and lump
hail (KN83, FR13).

Type of Hydrometeor Diameter Range (mm) Fall Velocity (m s−1)

Rain 0.25 ≤ D ≤ 8 AM18 9.65 − (10.3 e−0.6D) GK49, AT73

Snow 0.5 ≤ D ≤ 9FH20 0.79D0.27 FH20, LH74

Wet Snow 0.5 ≤ D ≤ 9 FH20 4.65 − (5 e−0.95D) FH20

Lump Graupel
0.5 ≤ D ≤ 5 LH74

1.3 D0.66 LH74

Graupel 1.16 D0.46 LH74

Soft Hail

5 ≤ D ≤ 20 FR13

8.445(0.1D)0.553 KN83

Fresh Hail 12.43(0.1D)0.5 FR13

Lump Hail 10.58 (0.1D)0.267 KN83

Then, we classified the particles of the DSD according to their fall velocity and di-
ameter. For this purpose, we computed the absolute value of the difference between the
corresponding velocity class of the bin and the determined by the fall velocity–diameter
relationship for the eight types of hydrometeors. In this step, only hydrometeors type
inside each diameter range were considered (Table 2). The particles were allocated into
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the type of hydrometeor that minimized the above-mentioned absolute difference. To
reduce the possibility that spurious raindrops and splashing raindrops were classified as
graupel or hail in the comparison, the following preferred search order was assigned: rain,
wet snow, lump graupel, graupel, snow, lump hail, fresh hail, and soft hail. This process
was repeated for all bins of the expanded DSD such that the individual DSDs of each
hydrometeor type was composed of particles that fell as close to their expected velocity
as possible.

3.2.2. Velocity Class per Diameter Shifting

Once the individual DSDs of each hydrometeor type were obtained, we followed
Raupach and Berne [25] to shift the recorded particles for each particle diameter class such
that the mean velocity (from all velocity classes) aligns with the expected value according
to the fall velocity–diameter relationship for each type of hydrometeor. This led to shifting
each column up or down according to the difference between the mean fall velocity per
diameter and the expected value.

Afterward, particles that fell through the edges of the sampling area appeared as
faster or slower than the corresponding value for their fall velocity–diameter relationships.
To avoid misinterpretation between splash-generated particles or fast rain particles, an
additional filter (F5) was applied to remove particles outside the ±60% of the expected fall
velocity according to each hydrometeor type [20,23]. Thus, the sum of all particles removed
by filters F1 to F5 is represented by the net filter FT, and the “DSD corrected” resulted from
regrouping the individual corrected DSDs for each type of hydrometeor. Finally, to return
this DSD from the extended dimension to the original 32 × 32 diameter–velocity classes,
we merged the particles in the bins corresponding to the original velocity ranges at each
diameter. In the section Results, we will analyze the structure of corrected DSD through
particle spectra, mean particle contribution per diameter, per fall velocity bins, and also,
we will account for the hydrometeors type contribution for solid and liquid precipitation.

In order to measure the difference of particles in DSD corrected after applying the
filters/corrections, we computed the difference matrix (DSDdif) between the DSD mea-
sured by the disdrometer minus the corrected one. From this matrix, its Euclidean norm
was calculated, and then the logarithm was applied to obtain the logNorm transform
(Equation (3)).

logNorm = log10DSDdi f = log10

√∑
i,j

(
ni,jcorrected− ni,jmeasured

)2

 (3)

3.3. Calculation of Precipitation Rate

The drop concentration per unit of volume for the i-th discrete diameter class, N (Di)
(m−3 mm−1) is defined by Equation (4). Where ∆Di represents the interval width of each
bin centered at Di (mm), vj is the central velocity of the j-th velocity class of DSD, and ∆t
is the sampling interval generated every time step (e.g., ∆t = 900 s for 15 min). Ai (m2)
corresponds to the adjusted effective sampling area for each diameter class Di calculated
by Equation (1), and ni,j represents the number of particles in the i-th diameter class and
j-th velocity class.

N(Di) = ∑
j

ni,j

vj

1
Ai∆Di∆t

(4)

N(Di) allows defining the precipitation rate (mm h−1) for each type of hydrome-
teor Rhydrometeor by Equation (5) [60]. With a, and b the constants of the density-diameter
relationships expressed by the power-law ρ = aDb (g cm−3).

Rhydrometeor = 6aπ10−4
32

∑
i=1

D3+b
i v(Di)N(Di)∆Di = 6aπ10−4 ∑

i,j

ni,jD3+b
i

Ai∆t
(5)
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For raindrops, the water density 1 g cm−3 is broadly used, whereas density values are
reported in the literature for the other hydrometeors, for snowflakes are known the rela-
tionships derived by Brandes et al. [61] and Yu et al. [62] from Parsivel measurements. For
wet snow a constant value of 0.2 g cm−3 was reported by Zawadzki et al. [63]. Heymsfield
and Wright [64], and KN83 reported 0.31 and 0.44 g cm−3 values for graupel and lump
graupel, whereas Pruppacher and Klett [45] reported 0.5 and 0.7 g cm−3, respectively, for
soft hail is known the 0.61 g cm−3 value from KN83, and for lump hail had been reported
0.82 g cm−3 from KN83 and 0.91 g cm−3 from Knight et al. [65]. The fresh hail density was
reported between 0.61 g cm−3 from KN83 and 0.7 g cm−3 from List [66]. In view of the
above, we built 5 Models to encompass the reported values for each type of hydrometeor.
Models 1 to 4 employ a combination of different values of density, while Model 5 assumed
a constant density 1 g cm−3 for all hydrometeors. Table 3 shows the set of the values
chosen. The total precipitation rate (Rcorrected) results from the total contribution of all
types of hydrometeors according to each density model. The amount of precipitation is
calculated by Pcorrected (mm) = Rcorrected∆th with ∆th the sampling interval (in hours) (e.g.,
∆th = 0.25 for 15-min records).

Table 3. Set of density values (in g cm−3) for each type of hydrometeor in proposed models. For
models 1–4, we applied the snow density-diameter relationships reported by Brandes et al. [61]
(BR07) or Yu et al. [62] (YU20), while a constant value was assumed for the other hydrometeors.
Model 5 assumed the density of all hydrometeors equals water density (1 g cm−3). Thus, the given
values represent the a-parameter along with b = 0 fulfill the power-law expression ρ = aDb.

M1 M2 M3 M4 M5

Rain 1 1 1 1 1

Snow YU20 BR07 YU20 BR07 1

Wet snow 0.2 0.2 0.2 0.2 1

Lump graupel 0.7 0.7 0.44 0.44 1

Graupel 0.5 0.5 0.33 0.33 1

Soft hail 0.61 0.61 0.61 0.61 1

Fresh hail 0.7 0.7 0.61 0.61 1
Lump hail 0.91 0.82 0.9 0.82 1

To assess the performance of corrected precipitation (Pcorrected) with five models, we
use the correlation coefficient (r2), and the root mean square error (RMSE) to check vari-
ability and residual errors with respect to reference measurements (Pre f erence). We also
compared the accumulated Pcorrected respect to the accumulated Pre f erence during avail-
able records and different wind speed regimes to obtain the relative difference (Diff )
(Equation (6)) and the accumulated ratio (Acr) (Equation (7)) in order to quantify the
cumulative deviation.

Di f f =
∑ Pcorrected −∑ Pre f erence

∑ Pcorrected
(6)

Acr =
∑ Pcorrected

∑ Pre f erence
(7)

As we stated in the Introduction section, we used measurements from the tipping
bucket gauge (TPB) as a reference to compare low and medium wind speed records for
liquid precipitation, while for the solid precipitation case, we used the Parsivel uncorrected
measurements as a reference to compare the corrected solid precipitation since other
measurements are not available.
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3.4. Selection of Precipitation Types

The changes in temperature during precipitation events result in a transition between
different phases [52,67]. Such transitions are more complex in alpines zones like the Inner
Tropics where the temperature seasonal cycle is weak (Figure 2). For this reason, this study
focuses on instantaneous records of solid, liquid, and unclassified precipitation instead
of an event-wise analysis. To distinguish between solid and liquid precipitation phases
(PP) we followed the work of Wagnon et al. [68]. Precipitation records with Ta ≤ −1 ◦C are
considered as solid (PP = 0), and those with Ta ≥ 3 ◦C were considered as liquid precip-
itation (PP = 1). These temperature thresholds were derived through field observations
and meteorological measurements at AWS ORE (Figure 1). The measurements between
−1 and 3 ◦C correspond to unclassified precipitation type records which need further fil-
ters to ensure accurate phase forecasting. For this reason, only the DSDs corresponding to
solid and liquid precipitation will be analyzed.

In addition, the precipitation types reported by the disdrometer through the SYNOP
Code of Table 4680 [44] were related to a disdrometer precipitation phase (DPP). For
instance, drizzle (cods = 51, 52, 53), drizzle-rain (cods = 57, 58, 59) and rain (cods = 61,
62, 63) were considered as rainfall, DPP = 1. Snow (cods = 71, 72, 73) and snow grains
(cods = 77) were classified as snowfall, DPP = 0, whereas records detected as soft hail
(cods = 87, 88), hail (cods = 89, 90) and rain-snow mixture (cods = 67, 68, 69) were taken
as mixed precipitation, DPP = 0.5. Thus, we define a match record when DPP and PP
coincided (i.e., PP and DPP = 0 for solid precipitation, similarly with PP and DPP = 1 for
liquid precipitation). In contrast, a misclassified record corresponds to a mismatch (i.e.,
PP = 1 and DPP = 0 or 0.5, the same to PP = 0 for DPP = 1 or 0.5).

Since the type of precipitation is determined based on the size and typical speeds [17,44],
there is a possibility that a small contribution of particles in the DSD can come from
different hydrometeors. Therefore, the DSD of liquid precipitation based on the 3 ◦C
threshold can include a small percentage of particles classified as snow, graupel, or hail
according to the fall velocity–diameter relationship. Similarly, solid precipitation based on
the −1 ◦C threshold can include a small contribution of particles classified as raindrops.

3.5. Clustering of Solid and Liquid Precipitation by Wind Speed

Once the records of solid and liquid precipitation were identified, the unsupervised
learning clustering approach, k-means [69] was applied on the associated meteorological
variables. For partitioning the records of the two sets, we used the meteorological variables:
Air temperature (Ta), Dew point temperature (Td), Specific humidity (q), and Wind speed
(Ws). The number of groups to cluster solid and liquid precipitation was obtained by maxi-
mizing the silhouette criterion [70]. Considering this study aims to evaluate the impact of
the correction for different wind speeds, the mean group values of Ws were used to identify
low, mid and high wind speed regimes for both phases at which precipitation occurs.

Figure 3 summarizes the procedure described in the methodology. After pre-processing
and applying DSD corrections, the precipitation was computed. Then, we classified records
by air temperature into solid and liquid phases. Then, we applied the wind speed-based
clustering to identify distinct regimes in order to reveal the differences in DSD and between
corrected and measured precipitation.
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4. Results
4.1. Solid and Liquid Precipitation

A summary of the data acquired by the Parsivel OTT2 disdrometer at 15 min resolu-
tion and the corresponding cumulative values at 30 and 60 min are shown in Table 4. At
the 15 min scale, technical problems (i.e., power supply failures and data communication
problems) and erroneous measurements (i.e., reported by error flags) caused a missing
of 2.4% and 1.3% of the 36 496 gathered measurements. When inspecting records with
precipitation only, there were 7776 values, of which 5004 allowed us to correct recorded
DSD. Thus, precipitation was present in 22% of the measurements, of which 21% corre-
sponded to rain rates greater than 0.01 mm h−1. Finally, after applying the quality data
control, 4983 values with valid information for both the DSD, bulk variables and rain rates
greater than 0.01 mm h−1 were available. This means the common high-quality dataset,
which contains the solid, liquid, and unclassified precipitation records, corresponded to
14% of the total data gathered in the one-year monitored period.
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Table 4. Disdrometer data summary for the 15, 30, and 60 min time scales. Total number of records,
errors, records with precipitation, and with precipitation rate >0.01 mm h−1 are shown. The records
with valid DSD and the common high-quality records containing (1) correct DSD, (2) correct bulk
values, and (3) with precipitation > 0.01 mm h−1 are also shown. Identified records as solid, liquid
and unclassified precipitation are also included. The values in parentheses correspond to percentages
of solid, liquid, and unclassified precipitation with regards to the number of records of the high-
quality dataset.

Integration Time 15 min 30 min 60 min

Total records 36 496 18 248 9124

Retrieved measurements 35 603 17 769 8857

Error flags 486 118 74

Precipitation records 7776 4547 2711

Precipitation with R > 0.01 mm h−1 7724 4455 2595

Valid DSD 5004 2934 1680

Common high-quality records 4983 2876 1611

Identified Solid precipitation (Ta ≤ −1 ◦C) 159 (3%) 86 (3%) 40 (2%)

Identified Liquid precipitation (Ta ≥ 3 ◦C) 298 (6%) 217(7%) 152 (9%)

Unclassified precipitation (−1 ◦C < Ta < 3 ◦C) 4526 (91%) 2573 (90%) 1419 (89%)

The precipitation phase selection allowed us to identify 298 records as liquid precipi-
tation (6%), 159 as solid precipitation (3%). The remaining 4526 values (91%) corresponded
to unclassified precipitation within the interval −1 ◦C < Ta < 3 ◦C. This result was expected
due to the recurrent fluctuations of the 0 ◦C isotherm around the height of the site. The
accumulation of measurements at 30- and 60-min scales reduced the high-quality records.
Furthermore, the variability of temperature tends to decrease for larger time scales which
hinders to have extended intervals with Ta ≤ −1 ◦C and reduced the number of records
with solid precipitation, whereas the number of records above this threshold increased,
explaining the increase of unclassified and liquid precipitation contribution (Table 4).

In addition, the DPP and the PP of the 15 min records of solid and liquid precipitation
were examined (Table 5). For the solid precipitation, the disdrometer showed a hit rate
of 96%, whereas for the liquid precipitation case, the hit rate was 61% on average. The
air temperature and specific humidity during the records misclassified by the disdrom-
eter were similar to those well-catalogued (Table A1). However, relative humidity and
wind speed showed differences, especially in the records identified as liquid precipitation
(Ta ≥ 3 ◦C) but reported as snowfall or mixed. This could occur because the measured
particles under strong winds are prone to misclassification [24]. This affected the types of
precipitation reported by the disdrometer and highlights the need to apply an additional
filter to reclassify the phase precipitation in the disdrometer.

4.2. Clusters of Liquid and Solid Precipitation according to the Wind Speed Regime

The Silhouette criterion suggests 2 clusters for both solid and liquid precipitation by
using the k-means technique. Nevertheless, the Ws differences between clusters’ centers
were around 3.5 m s−1 for solid and 7.5 m s−1 for liquid precipitation as a consequence
of its large variability (Table 1). This means that the harsh environmental conditions
prevent obtaining measurements without disturbances. Thus, the number of groups was
manually set to three in order to obtain an intermediate cluster of wind regimes. Clusters
are hereafter referred to as low, medium, and high Ws regimes. The clusters’ centers
are shown in Table 6, which are interpreted as the more equidistant between Ws means
according to the Euclidean distance. The resulting clusters for solid precipitation were
renamed as solid with high wind (SHW), solid with moderate wind (SMW), and solid with
light wind (SLW). While for liquid precipitation, we obtain liquid precipitation with high
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wind (RHW), liquid precipitation with moderate wind (RMW), and liquid precipitation
with light wind (RLW).

Table 5. Comparison between the precipitation phase measured by the disdrometer (DPP) and the
classified precipitation in this study. The percentages of contribution of each subgroup (LW, MW,
HW) regarding liquid and solid precipitation are shown in parenthesis.

Disdrometer Precipitation Phase (DPP)

Identified Precipitation Snowfall Mix Rainfall

Liquid 73 (23.6) 46 (15.4) 179 (61)

RLW 6(4.6) 12(9.2) 112 (86.2)

RMW 26 (26) 21(21) 53 (53)

RHW 41 (60.3) 13 (19.1) 14 (20.6)

Solid 154 (96.8) 2 (1.3) 3 (1.9)

SLW 72(97.3) 1 (1.3) 1 (1.3)

SMW 56(96.6) 1 (1.7) 1 (1.7)

SHW 26 (96.3) 0 (0) 1 (3.7)

Table 6. Cluster means of solid and liquid precipitation records estimated at 15 min time scale by using K-means. N
represents the number of records per group, parentheses are show the contribution for each phase respectively.

Precipitation Phase
(Based on Ta) Cluster N (%) Ta (◦C) Td (◦C) q (g kg−1) RH (%) Ws (m s−1)

Liquid

RLW 130 (44) 3.57 2.32 7.96 91.67 2.62

RMW 100 (35) 3.66 1.3 7.41 84.88 5.92

RHW 68 (20) 3.93 0.28 6.87 77.32 11.93

Solid

SLW 74 (47) −1.39 −1.63 6.05 98.35 1.74

SMW 58 (36) −1.57 −2.04 5.87 96.64 3.68

SHW 27 (17) −1.5 −2.22 5.79 94.9 6.53

Light wind records (RLW + SLW) accounted for the 45% of all analyzed records
(Table 6). Moderate wind speed constituted about 35%, and high wind speed records
accounted for the remaining 20%. The performance of the disdrometer for the three solid
precipitation groups was good and achieved hit rate values greater than 95% (Table 5),
suggesting that the low temperature threshold of −1 ◦C performs well for discriminating
solid precipitation. For liquid precipitation the hit rate was 86% for RLW. For RMW this
score decreased to 53% together with a reduction of Td and q. The RHW displayed a hit
rate of 20% with a drop in q below 7 g kg−1 and Td near to 0 ◦C (Table 6). These highly
variable conditions during liquid precipitation could limit the disdrometer performance to
wind speeds lower than 6 ms−1 and RH over 85%.

4.3. The Corrected Drop Size Distributions (DSDs)

In this section, we compared the changes of DSD after the implementation of filters
and corrections described above. We also compared the differences between corrected solid
and liquid DSDs. We skipped unclassified precipitation to simplify the analysis. Almost all
particles of liquid precipitation had diameters D ≤ 8 mm between rain and snow curves,
and a negligible contribution of hail (<1%) had diameters between 12 and 20 mm. Similarly,
it occurred for solid precipitation, where most particles’ diameters span the area comprised
between the curves of wet snow and snow (Figure 4). Filters primarily removed particles
with D ≤ 1 mm that are faster than the fall velocity–diameter relationship of rain, wet
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snow, and wet graupel (F5). This was more frequent in RHW, RMW, and SHW subgroups
(Table 7) because wind speeds were higher than 5.92 m s−1. Filters also removed particles
of solid precipitation and RHW that passed through the sampling area with D ≤ 2 mm
and velocities lower than 2 ms−1 as a consequence of splashing effects. Inspecting the
DSDs (Figure 4), there were scarce and probably unrealistic particles with D ≥ 10 mm
and v ≤ 1 ms−1 and few particles with D ≥ 20 mm or D ≤ 0.025 mm, which caused low
percentages of particles removed (<0.001%). Hence, the removal produced by filters F1, F2,
and F4 were negligible for both precipitation phases.
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Figure 4. Scattergram of accumulated particle size distributions for each precipitation groups: solid with light wind (SLW at
first row), solid with moderate wind (SMW at second row), solid with high wind (SHW at third row), liquid with light wind
(RLW at fourth rows), liquid with moderate wind (RMW at fifth row) and liquid with high wind (RHW at sixth row). The
original DSDs measured are shown in first column; corrected DSDs correspond to second column. Third column shows
the bins affected by filters/corrections applied. Colorbar represents the logarithm of absolute values (Log*10) of DSDdif

including their sign. Red bins correspond to particles added and blue bins correspond to particles removed. Solid lines
indicate the fall velocity–diameter relationships for each type of hydrometeor: raindrops (black), wet snow (red), snow
(blue), lump graupel (green), graupel (brown), soft hail (light blue), lump hail (purple), and fresh hail (dark purple).
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Table 7. Mean percentages of removed particles by each filter applied in each group respect to measured DSDs. To account
the changes of DSDs after filters/corrections, the mean logNorm value and the mean number of particles before and after
corrections were included.

Particles Filtered (%) logNorm
(log (Particles))

Number of Particles

F1 F2 F3 F4 F5 FT Measured Corrected

Rain 1.8 × 10−4 4.4 × 10−4 0.74 1.4 × 10−4 11.56 12.3 2.85 1.01 × 104 9.34 × 103

RLW 2.9 × 10−4 6.2 × 10−4 0.24 0 5.62 5.12 2.77 9.68 × 103 8.91 × 103

RMW 1.1 × 10−4 4.6 × 10−4 0.83 2 × 10−4 14.06 11.23 2.84 1.09 × 104 1.02 × 104

RHW 0.7 × 10−4 3.2 × 10−4 1.55 3.2 × 10−4 19.25 18.36 3.01 9.29 × 103 8.97 × 103

Snow 0 2.1 × 10−4 4.25 0 7.02 11.28 3.04 1.82 × 104 1.65 × 104

SLW 0 2.8 × 10−4 5.11 0 4.49 9.61 3.08 1.91 × 104 1.71 × 104

SMW 0 0 3.92 0 7.44 11.36 3.04 1.78 × 104 1.63 × 104

SHW 0 0 2.62 0 13.07 15.69 2.96 1.66 × 104 1.55 × 104

In effect, the corrections removed around 5% of the particles in the DSDs of the RLW
group and promote the particles to align around the empirical curves employed. The
particles of resulting DSDs present two regions of preference, one zone with particles with
D ≤ 6 mm around the rain curve and another with D ≤ 4 mm around the wet snow curve.
Particles with D ≥ 10 mm and v ≤ 6 ms−1 were removed, and a small fraction of particles
(<1%) with v ≥ 8 ms−1 were aligned with the soft hail curve. In the RMW group, the
corrections removed 11% of the total particles and generated a distribution similar to RLW.
The particles with v ≥ 6 ms−1 were aligned around the rain curve, whereas particles with
v ≤ 6 ms−1 aligned around wet snow and wet graupel curves. The DSDs of the RHW group
were the most affected by the filters, particularly, F5 removed 19% of fast particles due to
margin faller effects enhanced by the wind speed increase [24,71]. Therefore, the corrected
DSD was narrow with diameter–velocity of particles concentrated up to D ≤ 4 mm and
v ≤ 6 ms−1.

Conversely, the DSDs of solid precipitation had a broader diameter spectrum (D ≤ 10 mm)
with particles’ diameter–velocity mainly concentrated between wet and snow curves. Flow
distortions around an exposed gauge device (like disdrometer) are proportional to wind
speed [11,42]. Thus, the increase of wind speed caused more snowflakes to be deflected [15],
reducing the frequency of direct collision to disdrometer housing and splashing effects.
Therefore, the F3 filter removed more particles related to the splashing effect in SLW
than SMW and SHW. The same snowflake deflection justifies the increase of fast particles
removed by F5 in SMW and SHW respect SLW (Table 7). Both filters affected mainly SHW
records which had narrow DSDs with particles up to 4 mm in diameter, while SLW had
particles up to 9 mm. As consequence, the corrections/filters also forced solid precipitation
DSDs to follow a bimodal distribution. One zone was around the rain and wet snow curves
with D < 4 mm, and the second zone was around wet graupel and snow curves.

Furthermore, Figure 5 shows the boxplot of the logNorm values calculated for each
phase’s subgroup in order to quantify the differences in DSDs produced by corrections.
SLW had the greater values because this subgroup has the greater number of particles
despite all filters FT removed 9.6% of measured particles. Hence, the difference was the
largest, contrary to RHW which achieved the largest filtered percentage but had the lowest
number of particles (Table 7). Consequently, DSDs of solid precipitation records were the
most affected by the corrections than liquid precipitation, and precipitation with high wind
speed (RHW and SHW) were more prone to corrections as was expected.
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4.3.1. Characteristics of Corrected DSD

Figure 6 shows the average particle concentration spectra for liquid and solid precip-
itation. The DSDs of RLW, RMW, and RHW had an initial maximum concentration at a
diameter of 0.31 mm; after corrections, this peak shifted towards 0.44 mm. As diameter
increases, the concentration for larger particles dropped abruptly up to 3.75 mm for the
RLW group. In RMW and RHW this decrease in concentration was damped to particles
with diameters 4.25 and 5.5 mm respectively. For solid precipitation groups, the filters
remove the fast particles with diameters 0.31 mm that reduced their initial concentration.
For particles between 0.43 ≤ D ≤ 1 mm, the concentration of corrected DSDs was similar
to the measured. The filters removed particles with larger diameters than D > 1 mm, which
decreased particle concentrations regarding the values measured. This difference was more
noticeable in SHW where the particle concentration dropped quickly after the peak at
0.44 mm with respect to SMW and SLW which retained particles with diameters larger than
5 mm. Thus, liquid precipitation DSDs were mostly concentrated up to diameters 3.75 mm,
while in solid precipitation having particles with diameters up to 6 mm was possible. After
these diameters, their concentration spectra were lower than 0.1 mm−3 mm−1 and were
not considered.

Moreover, the panels b and d of Figure 6 display the mean fall–velocity per diameter
for the liquid and solid precipitation groups. These values resulted from averaging the
fall–velocity of all particles in the corresponding diameter. Thus, the low fall–velocity
of snow and graupel were compensated with the high values attained by rain and hail
hydrometeors (Figure 4). The DSDs of liquid precipitation exhibit a peak of velocity
frequencies around 2.5–3.5 ms−1, corresponding to particles with 0.5–1.2 mm diameters
and another peak around 1–1.5 ms−1 for particles with diameters between 1.9–2.5 mm, in
agreement with the bimodal distribution around the rain and wet snow curves (Figure 4).
For the solid precipitation DSDs, the fall speed peaks around 2–2.5 ms−1 for particles
with diameters of 0.44–0.56 mm corresponding to melting snow and rain particles. The
region within 0.56 ≤ D ≤ 2.5 mm showed mean fall speed around 1.25 ms−1, which could
correspond to wet snow or graupel particles, whereas for particles within 2.5 < D ≤ 5 mm
this value decreased to around 0.5–1 ms−1 in agreement with the fall velocity–diameter
relationship of snow. For D ≥ 8 mm in both solid and liquid groups, there was a sudden
fall speed rise related to the presence of soft and lump hail particles.
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better visualization, raindrop size spectra values for D ≤ 1.5 mm are zoomed in the inset plot.

4.3.2. Composition Analysis of Corrected DSD

The major contribution by diameter in DSD occurred at 0.44 mm (Figure 7), which
allowed us to confirm that the particles’ diameter follows a unimodal distribution, in
agreement with the concentration spectra displayed in Figure 6. The 99% of DSD was
composed of particles up to 1.2 mm for liquid precipitation and up to 1.63 mm for the
solid case. DSDs with high wind speed (RHW and SHW) were concentrated between
0.31 ≤ D ≤ 0.81 mm, contrary to DSDs with low wind speed that had broader spectra.
This could occur because the wind enhanced the collisional breakup process, reducing the
concentrations of larger particles and modifying the DSDs [72].

Conversely, the fall speed of liquid precipitation follows a trimodal distribution, with
a major peak at 2.2 ms−1 corresponding to 0.44 mm diameter, which constitutes the highest
concentration (Figure 6a) and in turn the largest diameter contribution (Figure 7a). The
other two peaks correspond to 1.1 ms−1 and 4.4 ms−1 due to the concentration of particles
around the values in the snow and wet snow curves, respectively (Figure 4). Conversely,
the mean fall speed per diameter bins of solid precipitation DSDs followed a bimodal
distribution. The first peak at 1.1 ms−1 resulted from the particle concentration around
the theoretical snow curve (SLW and SMW in Figure 4) that converged toward that value.
The second peak occurred at 2.2 ms−1, corresponding to the rain fall velocity–diameter
relationship for D = 0.44 mm in agreement with the maximum particle concentration
(Figure 6c) and contribution (Figure 7c). The concentration of particles with D > 2 mm was
less than 10 particles m−3 mm−1 for solid and liquid cases (Figure 6a,c), explaining the
negligible diameter contribution beyond 2 mm and the slight velocity contribution beyond
5 m s−1 in Figure 7.
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Figure 7. Mean particles’ contribution per diameter and per fall velocity for liquid (a,b) and solid precipitation groups (c,d).
The percentages were derived from the total particles of each DSD before being averaged. Dashed line refers to measured
DSDs, while continuous line refers to the corrected DSDs.

Similarly, the decomposition of the measured DSDs (Section 3.2.1) allowed us to
quantify the percentage contribution of each type of hydrometeor (based on the fall
velocity–diameter relationship) for each subgroup (Figure 8). In general, the DSDs of
solid precipitation records contain 48% of raindrops and 52% of solid hydrometeors dis-
tributed among snow (17%), graupel (15%), wet snow (11%), and wet graupel (9%). In
SLW, precipitation was composed of rain (28%), snow (39%), graupel (22%), and wet snow
(11%), whereas in SMW and SHW, the proportion of raindrops (40%) and wet snow (12%)
increased, and the snow (19%) and graupel (12%) contribution decreased. These changes
in hydrometeors proportions could be related to the breakup of larger hydrometeors with
D > 2 mm induced by the wind speed increase [72]. Especially in SHW, the concentration
of small particles with D < 0.8 mm accounted for 90% of DSD (Figure 6). In contrast, liquid
precipitation DSDs were mainly composed of raindrops and wet snow particles. In RLW,
these hydrometeors contributed with 71% and 27% of the total precipitation, whereas, for
RMW and RHW the increase in wind speed could favor the breakup and also the melting
of snowflakes [73] which decreased the contribution of wet snow to around 14%.

4.4. Corrected Precipitation according to Particle Density Models

To assess corrected precipitation obtained through the five density models (Section 3.3),
we compare the corrected values for liquid precipitation with respect to TPB as reference.
We first focus on records under the low wind speed regime (RLW) to ensure reliable
measurements and to avoid the under-catch effect. For the 15 min records, all models
exhibit negative relative differences (Diff in Table 8) indicating that corrected precipitation
underestimate the amount of precipitation. This occurs because selected records are non-
continuous; thus, it was possible to introduce additional precipitation (as graupel, hail, or
snowflakes) in precedent records that could be measured in the current record affecting the
comparison. Similarly, the low correlations for all models occurred due to delays on the
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TPB suggesting that the 15 min timescale seems to be too short to derivate precipitation
properly in the study site.
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Figure 8. Boxplot of contribution (%) of each type of hydrometeor in solid and liquid precipitation groups. The acronyms
represent: raindrops (R), wet snow (WS), lump graupel (LG), graupel (G), snow (S), lump hail (LH), fresh hail (FH), and soft
hail (SH).

Table 8. Coefficient of correlation (r2), RMSE, relative difference (Diff ) and accumulated ratio (Acr)
between corrected precipitation following the five density models and TPB precipitation for 15, 30,
and 60 min timescales. Scores are displayed for low (RLW), moderate (RMW), and high wind speed
(RHW) groups and for all liquid precipitation records.

15 min 30 min 60 min

r2 RMSE Diff Acr r2 RMSE Diff Acr r2 RMSE Diff Acr

RLW

M1 0.18 0.44 −0.61 0.39 0.56 0.54 −0.51 0.49 0.76 0.69 −0.45 0.55

M2 0.19 0.44 −0.61 0.39 0.56 0.54 −0.51 0.49 0.76 0.69 −0.45 0.55

M3 0.19 0.44 −0.62 0.38 0.56 0.55 −0.51 0.49 0.76 0.69 −0.45 0.55

M4 0.19 0.44 −0.62 0.38 0.56 0.55 −0.52 0.48 0.76 0.69 −0.45 0.55

M5 0.17 0.46 −0.35 0.65 0.58 0.47 −0.2 0.8 0.78 0.51 −0.1 0.9

RMW

M1 0.42 0.36 −0.54 0.46 0.65 0.46 −0.49 0.51 0.68 0.73 −0.38 0.62

M2 0.42 0.36 −0.56 0.44 0.66 0.46 −0.50 0.50 0.69 0.73 −0.40 0.60

M3 0.43 0.36 −0.57 0.43 0.66 0.47 −0.53 0.47 0.69 0.74 −0.42 0.58

M4 0.42 0.37 −0.59 0.41 0.65 0.48 −0.54 0.46 0.69 0.75 −0.44 0.56

M5 0.42 0.40 −0.20 0.80 0.64 0.51 −0.15 0.85 0.66 0.84 0.04 1.04
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Table 8. Cont.

15 min 30 min 60 min

r2 RMSE Diff Acr r2 RMSE Diff Acr r2 RMSE Diff Acr

RHW

M1 0.58 0.30 −0.43 0.57 0.59 0.51 −0.54 0.46 0.70 0.77 −0.52 0.48

M2 0.54 0.32 −0.52 0.48 0.58 0.52 −0.57 0.43 0.70 0.80 −0.55 0.45

M3 0.59 0.30 −0.45 0.55 0.60 0.51 −0.56 0.44 0.72 0.78 −0.55 0.45

M4 0.55 0.32 −0.54 0.46 0.59 0.53 −0.60 0.40 0.72 0.81 −0.59 0.41

M5 0.53 0.64 0.37 1.37 0.55 0.53 −0.27 0.73 0.67 0.74 −0.23 0.77

Liquid Precipitation

M1 0.34 0.39 −0.55 0.45 0.59 0.51 −0.51 0.49 0.71 0.72 −0.45 0.55

M2 0.34 0.39 −0.58 0.42 0.59 0.52 −0.52 0.48 0.71 0.73 −0.46 0.54

M3 0.35 0.39 −0.57 0.43 0.6 0.52 −0.53 0.47 0.72 0.73 −0.47 0.53

M4 0.34 0.39 −0.59 0.41 0.59 0.52 −0.54 0.46 0.72 0.74 −0.48 0.52

M5 0.31 0.49 −0.15 0.85 0.58 0.5 −0.2 0.8 0.7 0.68 −0.1 0.9

Therefore, we aggregated the 15 min records to 30 and 60 min temporal resolution
and explore their behavior. Table 8 summarizes the scores achieved. The correlation of
all models tends to be better with these datasets. All models reached correlation values
greater than 0.55 and 0.75 for 30- and 60-min timescales, respectively. This can result from
the necessary time for hydrometeors’ raindrops to slip from the rubber funnel until they
arrive at the gauge orifice before causing tipping. Hence, longer time records compensate
for the delays at 15 min, yielding an improvement in the timing detection at TPB.

Aggregating the temporal resolution also avoided disruptions in records between pre-
cipitation events since most of them surpass the 30 min at the site. Therefore, we reduced
the loss of information between records. Furthermore, this minimizes the introduced solid
or unclassified precipitation corresponding to precedent records. This fact can justify the
reduction in the relative difference and in turn the reduction of underestimation at longer
timescales for all models (Table 8). The accumulated ratio was shortened regarding the
15 min scores. The corrected precipitation with the Models 1 to 4 reached similar perfor-
mance with slightly better performance of the Model 1 at 30 min records. (Table 8). M5
minimized the relative difference and maximized the correlation for the three time-scales.
Figure 9 shows the series of liquid precipitation measured in Parsivel OTT2 disdrometer
and the values computed with density models 1 and 5 respect to TPB.

Furthermore, we examined only records without previous precipitation one hour
before to reduce the possibility of measure introduced precipitation previous to the liquid
records. Figure 10 shows the comparisons for M1 and M5 after this events selection
at 60 min scale (following the better correlation coefficients). This imposed condition
allowed to reduce the RMSE and the relative difference of both models, with M5 presenting
the lowest difference for RLW. This demonstrates the delay effect of precedent time-step
precipitation over current liquid precipitation records at TPB and its influence on the
resulting scores.

Exploring the scores of M5 for RMW and RHW. The RMSE and Diff were the lowest,
whereas the accumulated ratio Acr was the maximum respecting to M1-M4 scores as well
(Table 8). This means that corrected precipitation with M5 densities reaches the minimum
differences with respect to TPB as displayed in Figures 9 and 10. M5 is thus the best model
to represent liquid precipitation despite the expected undercatch greater than 23% for wind
speed greater than 10 m s−1 for conventional cylinder rain gauges similar to TPB [11].
Therefore, this model (i.e., the corrections applied by assuming the same density for all
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hydrometeors) can be employed to correct liquid precipitation as it has been reported for
sites dominated by rainy conditions [25].
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Figure 9. Comparison of liquid precipitation series for different time-scales (columns) and for low (RLW), medium (RMW)
and high wind speed group (RHW). Values correspond to TPB measurements (black dashed line), Parsivel measurements
(yellow line) and corrected precipitation with density model 1 (M1 in red line) and 5 (M5 in blue line). In each plot, a
scatterplot is included of Parsivel, M4 and M5 respect to TPB as reference. The dashed gray line shows the slope m = 1.

For the solid precipitation for the solid precipitation case, TPB did not allow to collect
reliable instantaneous precipitation, and measurements did not represent the precipitation
variability (Figure 10). Thus, we compare the corrected values regarding to uncorrected
measurements. Comparing the corrected series with M5 with respect to the Parsivel series
for SLW over different time scales (Figure 11), this density model got Acr between 4.1 to 4.8
(Table 9). Since this disdrometer tends to overestimate the precipitation amount [74,75],
these factors would reveal M5 overestimates not only Parsivel values but also precipitation
amount. Thus, its application resulted in impractical differences. Therefore, the constant
density assumption (1 g cm−3) for all hydrometeors seems to be inadequate for the site
since liquid precipitation occurs only 7% of the time (Table 2). Conversely, models M1 to
M4 with variable density for hydrometeors yield better scores even for SMW and SHW
(Table 9), with M4 displaying the minimum differences (RMSE and Diff ) (Figure 11). The
fact that Acr was less than 1 allows us to argue that M4 values could better represent solid
precipitation. However, the lack of reference measurements prevents us to validate the best
density model for the zone for the case of solid precipitation.
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Figure 10. Comparison of liquid precipitation series at 60 min scale for low (RLW), medium (RMW)
and high wind speed (RHW) groups. Values correspond to TPB measurements (black dashed line),
Parsivel measurements (yellow line) and corrected precipitation with density model 1 (M1 in red
line) and 5 (M5 in blue line). Scatterplots of Parsivel, M4 and M5 respect to TPB as reference were
included. Dashed gray line shows m = 1 slope. For comparison purposes, we show only records
without any precipitation one hour before to guarantee that the TPB was empty.

Table 9. Root mean square error (RMSE), relative difference (Diff ), and accumulated ratio (Acr)
between precipitation corrected with five density models and Parsivel measurements for three
timescales. Scores are displayed for low (SLW), moderate (SMW), and high wind speed (SHW)
groups of solid precipitation.

15 min 30 min 60 min

RMSE Diff Acr RMSE Diff Acr RMSE Diff Acr

SLW

M1 0.84 0.71 1.71 2.49 0.88 1.88 1.15 0.88 1.88

M2 0.68 0.44 1.44 2.08 0.64 1.64 0.67 0.44 1.44

M3 0.35 0.29 1.29 0.97 0.37 1.37 0.65 0.52 1.52

M4 0.23 0.02 1.02 0.58 0.14 1.14 0.20 0.08 1.08

M5 3.49 3.08 4.08 9.80 3.60 4.60 5.37 3.82 4.82
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Table 9. Cont.

15 min 30 min 60 min

RMSE Diff Acr RMSE Diff Acr RMSE Diff Acr

SMW

M1 0.38 0.64 1.64 0.54 0.65 1.65 1.36 0.67 1.67

M2 0.24 0.29 1.29 0.28 0.27 1.27 0.85 0.36 1.36

M3 0.20 0.33 1.33 0.29 0.35 1.35 0.63 0.31 1.31

M4 0.08 −0.02 0.98 0.09 −0.04 0.96 0.23 0.00 1.00

M5 1.61 2.61 3.61 2.20 2.58 3.58 5.99 2.77 3.77

SHW

M1 0.23 0.25 1.25 0.67 0.48 1.48 0.44 0.33 1.33

M2 0.17 0.11 1.11 0.45 0.26 1.26 0.22 0.16 1.16

M3 0.11 0.04 1.04 0.33 0.17 1.17 0.14 0.11 1.11

M4 0.10 −0.10 0.90 0.18 −0.05 0.95 0.08 −0.05 0.95

M5 1.10 1.30 2.30 2.93 2.19 3.19 1.88 1.32 2.32

Solid Precipitation

M1 0.63 0.62 1.62 1.39 0.73 1.73 1.17 0.72 1.72

M2 0.49 0.35 1.35 1.11 0.44 1.44 0.71 0.37 1.37

M3 0.27 0.26 1.26 0.56 0.33 1.33 0.60 0.37 1.37

M4 0.17 −0.01 0.99 0.32 0.04 1.04 0.20 0.03 1.03

M5 2.61 2.69 3.69 5.49 2.98 3.98 5.29 3.04 4.04
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Figure 11. Measured values in disdrometer (black dashed line), and corrected solid precipitation according to density models 1
(M1 in yellow line), 4 (M4 in red line), and 5 (M5 in blue line) for low (SLW), medium (SMW) and high wind speed (SHW)
groups for different time-scales (columns). The TPB values (green line) were included just for reference due to the limitations of
this device prevent to measurement properly solid and unclassified precipitation. Scatterplots of M1, M4 and M5 respect to
Parsivel were included. Dashed gray line and dashed light-purple line show m = 1 and m = 4 slopes, respectively.
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5. Discussion and Conclusions

The high variability in temperature, humidity, and wind speed at the PRAA station
offered an excellent opportunity to analyze the changes in the DSDs under different
meteorological conditions and specifically under different wind speed regimes. Although
several methodologies have been developed to identify solid and liquid precipitation
through Ta, Td, RH, and albedo (e.g., [67,76,77]), establishing the required thresholds or
parameters to apply these procedures becomes a challenging task due to the lack of high-
quality measurements. Instead, we use simple thresholds found in the literature (e.g., [68])
that have been measured in situ at AWS-ORE ~3 km close to the study site. Besides, the
clustering approach was allowed to obtain isolated centers of wind speed values for three
different groups (wind speed regimes), instead of using arbitrary thresholds that may need
further analysis.

The −1 ◦C threshold employed to separate solid precipitation was less than the 0.5 ◦C
already used in the zone [37]. Conversely, the 3 ◦C threshold used to separate liquid
precipitation has been widely used in Tropical Ades [78]. Thus, the precipitation phase
observed during fieldwork was in accordance with the established though these thresholds.
The DPP reported by the disdrometer reach a hit rate of 96% for solid precipitation. In
contrast, its performance was limited by wind speed for liquid precipitation records.
Above 3 ms−1, the disdrometer presented shortcomings for detecting the hydrometeors
type correctly, and the hit rate decreased from 86%. This problem has already been
recognized in windy locations [79] since in sheltered areas, the precipitation type measured
in disdrometers agree with the rain gauges observations [52,80]. The ubication of the site
(4730 m asl) near the freezing level, the low precipitation intensity (~1 mm h−1), and the
high wind speed fulfill the critical conditions where a significant disagreement between
observer and automated weather sensor may occur [81]. This suggests the need to develop
a scheme with additional filters to reclassify the precipitation type when the wind speed
exceeds this threshold.

The filters application removed mostly fast particles with D ≤ 1 mm that fell through
the edges of the sampling area, especially in RHW and SHW groups since it has been
proven that the percentage of fast particles increases during windy periods [71]. The
filters also removed particles with fall velocity lower than 2 ms−1 related to splashing
effects, especially for SLW. The deflection of particles remains reduced during low wind
periods [42], favoring the frequency of collisions against disdrometer housing. In general,
filters removed between 5–18% of the liquid precipitation particles and 9–15% of the solid
precipitation particles. The high wind records were the most affected. Solid precipitation
records had a larger number of particles regarding liquid precipitation. Consequently,
SLW and SMW DSDs presented the most significant changes (greater logNorm values)
concerning those measured, whereas RLW had the lowest.

It is known that the wind increase enhances the frequency of collision and breakup
of larger particles [72], which may justify the reduction of the snowflakes fraction and the
inherent raindrop increase observed in SHW, RMW, and RHW. Therefore, it can be stated
the turbulence driven by wind speed controls: (1) the deflection/collision of particles and
resulting erroneous particles, and (2) the precipitation structure through the concentration
and dispersion of snow and rain particles. Despite not having a reference instrument to
validate the corrections as in Raupach and Berne [25], and Park et al. [29], the composition
of the corrected DSDs was similar to the results found in alpine areas (e.g., [30,79]).

The decomposition of DSDs using fall velocity–diameter relationships allows us to
recognize both solid and liquid precipitation that contain a contribution of raindrops and
snowflakes respectively, which varies depending on the temperature and wind speed. Thus,
the precipitation of the site results from a mixture of several types of hydrometeors. Liquid
precipitation contains 71% of raindrops which have a relatively well-defined fall velocity–
diameter relationship, while solid precipitation is composed of a variety of snowflakes,
graupel, and snow grains, whose shapes and dimensions will depend on the processes
influencing their formation and the path followed by particles toward the surface [54,82].
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The hydrometeors-type employed have been commonly used to describe the composition
of DSDs [24,27,52,56]. Indeed, by superimposing these fall velocity–diameter relationships
over the measured DSDs, almost 88% of the particles matched the envelope formed between
snow and rain curves.

Although the overall shape of both phases was similar for particles up to 1 mm, the
presence of larger particles in solid groups causes a smooth decrease in the particle concen-
tration similar to the reported in pre-alpine areas [56]. Similarly, the main contributions of
raindrops for liquid precipitation and snow/wet snow for solid precipitation explain the
mean fall speed values. Hence, concentration spectra and diameter–fall speed contribution
analysis combined with the changes in hydrometeors-type offered an alternative to relate
the changes in DSDs under different wind speed regimes.

In addition, the decomposition of the DSDs into individuals according to each hydrom-
eteor-types favored the density correction for precipitation rate calculations. Since liquid
precipitation records were composed primarily of raindrops, this correction was negligible,
and the resulting precipitation was slightly lower than the values measured in the disdrom-
eter because spurious particles were removed by filters. In this case, the constant density
assumption for all hydrometeors (Model 5) gave reliable results for RLW when compared
with precipitation collected on TPB as it has been reported for rainy conditions [25]. For
RMW and RHW, Model 5 also presents the minimum differences when compared to TPB
values. However, caution should be taken due to the expected under-catch greater than
23% for wind speeds greater than 10 m s−1 in conventional cylinder rain gauges [11] similar
to TPB.

In contrast, the density variation in solid precipitation exerts a major effect on the
corrected amount because these records presented a greater number of solid hydrometeors
(e.g., snowflakes and graupel) linked to (1) a greater number of particles concerning liquid
precipitation (Table 6), and (2) a higher proportion due to low temperatures. Therefore,
corrected precipitation with the M4 model displayed the best fit respect to Parsivel mea-
surements. Boudala et al. [60] and Zhang et al. [75] have proven that the density correction
is critical to avoid overestimating solid precipitation, as occurred with Model 5.

The lack of snowfall measurements did not allow us to validate the proper density
relationships for the site since the auxiliary snow depth probe was not available dur-
ing the study period. Therefore, experiments to gather in situ measurements together
with a reference gauge pit (like weighting precipitation gauges) should be conducted in
future work.

The low correlation coefficients between TPB and corrected precipitation proved the
delay issue of bucket-type gauge to detect properly liquid precipitation at 15 min records.
An adequate temporal resolution for measuring liquid precipitation in TPB may be 30 min,
whereas for the solid precipitation case, this device resulted in limitations with the inclusion
of the rubber funnel. This outcome was already recognized in cylindrical rain gauges
(similar to TPB), which presented a mean catch ratio of 10% and a zero-catch frequency
between 60% and 80% for windy conditions [14]. Similarly, preliminary comparisons in
the AWS-ORE showed that Davis bucket-type gauge underestimates 35% of precipitation
when compared to a shielded Geonor gauge.

These aspects, together with the harsh conditions in the study site, make precipitation
gaging a challenging task. Hence, the disdrometer became a powerful alternative to
overcome the difficulties associated with traditional contact pluviographs and provides
valuable information about precipitation characteristics.

The results presented in this work are unprecedented in the high altitudes of the
tropical Andes and represent an advance in the knowledge of the precipitation microphysics
of the study site, especially above 4700 m asl, where the snow cover outside glaciers varies
in several hours, and data are scarce. It will be interesting to replicate the approach
at different sites with present weather observers and reference instruments to test the
robustness of the methodology when replicated under different climatological conditions.
Further research should focus on taking advantage of longer disdrometer time series to



Water 2021, 13, 2576 26 of 29

assess the performance of satellite-based products and atmospheric modeling precipitation
in this important zone for water resources.
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Appendix A

Table A1. Mean meteorological conditions for rainfall, mixed and snowfall reported by disdrometer concerning liquid and
solid precipitation records.

Disdrometer
Precipitation

Identified Precipitation
(Based in Ta) N Ta (◦C) Td (◦C) q (g kg−1) RH (%) Ws (m s−1)

Rainfall

Liquid

179 3.63 2.26 7.93 90.97 4.19

Mix 46 3.68 0.71 7.11 81.23 6.58

Snowfall 73 3.81 0.17 6.82 77.26 9.46

Rainfall

Solid

3 −1.67 −2.38 5.72 94.9 6.71

Mix 2 −1.45 −1.70 6.01 98.15 3.53

Snowfall 154 −1.48 −1.87 5.94 97.16 3.21
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