
Earth-Science Reviews 220 (2021) 103681

Available online 14 May 2021
0012-8252/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Invited Review 

Radium isotopes as submarine groundwater discharge (SGD) tracers: 
Review and recommendations 

J. Garcia-Orellana a,b,*, V. Rodellas a,*, J. Tamborski c, M. Diego-Feliu a, P. van Beek d, 
Y. Weinstein e, M. Charette f, A. Alorda-Kleinglass a, H.A. Michael g,h, T. Stieglitz i, J. Scholten j 

a ICTA-UAB, Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain 
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A B S T R A C T   

Submarine groundwater discharge (SGD) is now recognized as an important process of the hydrological cycle worldwide and plays a major role as a conveyor of 
dissolved compounds to the ocean. Naturally occurring radium isotopes (223Ra, 224Ra, 226Ra and 228Ra) are widely employed geochemical tracers in marine envi
ronments. Whilst Ra isotopes were initially predominantly applied to study open ocean processes and fluxes across the continental margins, their most common 
application in the marine environment has undoubtedly become the identification and quantification of SGD. This review focuses on the application of Ra isotopes as 
tracers of SGD and associated inputs of water and solutes to the coastal ocean. In addition, we review i) the processes controlling Ra enrichment and depletion in 
coastal groundwater and seawater; ii) the systematics applied to estimate SGD using Ra isotopes and iii) we summarize additional applications of Ra isotopes in 
groundwater and marine studies. We also provide some considerations that will help refine SGD estimates and identify the critical knowledge gaps and research needs 
related to the current use of Ra isotopes as SGD tracers.   

1. Introduction 

Radium (Ra) is the element number 88 in the Periodic Table and it 
belongs to Group IIA, the alkaline earth metals. There are four naturally 
occurring radium isotopes (224Ra, 223Ra, 228Ra and 226Ra), which are 
continuously produced by the decay of their Th-isotope parents of the U 
and Th decay series (228Th, 227Th, 232Th and 230Th, respectively). The 
most abundant isotopes are 226Ra from the 238U decay chain, an alpha- 
gamma emitter with a half-life of 1600 y, and 228Ra from the 232Th 
decay chain, a beta emitter with a half-life of 5.8 y. There are two short- 
lived isotopes that also occur naturally, 223Ra and 224Ra, which are 
alpha-gamma emitters from the 235U and 232Th decay chains with half- 
lives of 11.4 d and 3.6 d, respectively. Uranium and thorium are widely 
distributed in nature, mainly in soils, sediments and rocks, and thus the 
four Ra isotopes are continuously produced in the environment at a rate 

that depends on the U and Th content and the half-life of each Ra 
isotope. 

Radium isotopes are widely recognized as important geochemical 
tracers in marine environments, mainly because i) they behave conser
vatively in seawater (i.e., lack of significant chemical and biological 
additions or removals); ii) they decay at a known rate and iii) they are 
primarily produced from water-rock and sediment-water interactions. 
Consequently, Ra isotopes have been traditionally used to trace land- 
ocean interaction processes (e.g., Charette et al., 2016; Elsinger and 
Moore, 1983a, 1983b; Knauss et al., 1978), which are also referred to as 
boundary exchange processes (e.g., Jeandel, 2016), as well as to esti
mate mixing rates, apparent ages or residence times, in particular in 
coastal and ocean waters (e.g., Annett et al., 2013; Burt et al., 2013a; Ku 
and Luo, 2008; Moore, 2000a, 2000b; Moore et al., 2006; Tomasky- 
Holmes et al., 2013), but also in aquifers (e.g., Diego-Feliu et al., 2021; 
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Kraemer, 2005; Liao et al., 2020; Molina-Porras et al., 2020) and hy
drothermal systems (e.g., Kadko and Moore, 1988; Neuholz et al., 2020). 

Whilst initially applied to study open ocean processes and to estimate 
different exchange processes across the continental margins, the most 
common application of Ra isotopes in the marine environment has un
doubtedly been the quantification of water and solute fluxes from land 
to the coastal sea, driven by Submarine Groundwater Discharge (SGD) 
(Fig. 1) (Ma and Zhang, 2020). Radium isotopes have been used to 
quantify SGD in a wide range of marine environments, including sandy 
beaches (e.g., Bokuniewicz et al., 2015; Evans and Wilson, 2017; 
Rodellas et al., 2014), bays (e.g., Beck et al., 2008; Hwang et al., 2005; 
Lecher et al., 2016; Zhang et al., 2017), estuaries (e.g., Luek and Beck, 
2014; Wang and Du, 2016; Young et al., 2008), coastal lagoons (e.g., 
Gattacceca et al., 2011; Rapaglia et al., 2010; Tamborski et al., 2019), 
salt marshes (e.g., Charette et al., 2003), large contintental shelves (e.g., 
Liu et al., 2014; Moore, 1996; Wang et al., 2014), ocean basins (e.g., 
Moore et al., 2008; Rodellas et al., 2015a) and the global ocean (e.g., 
Kwon et al., 2014). SGD is now recognized as an important process 
worldwide and plays a major role as a conveyor of dissolved compounds 
to the ocean (e.g., nutrients, metals, pollutants) (Cho et al., 2018; Moore, 
2010; Rodellas et al., 2015a). Thus, SGD has significant implications for 
coastal biogeochemical cycles (e.g., Adolf et al., 2019; Andrisoa et al., 
2019; Garces et al., 2011; Garcia-Orellana et al., 2016; Ruiz-González 
et al., 2021; Santos et al., 2021; Sugimoto et al., 2017). This review is 
focused on the application of Ra isotopes as tracers of SGD-derived in
puts of water and solutes to the coastal ocean but also aims to provide 
some considerations that will help refine SGD estimates and identify 
critical knowledge gaps and research needs related to the current use of 
Ra isotopes as SGD tracers. 

2. Radium isotopes used as SGD tracers: historical perspective 

2.1. Early days: radium isotopes as tracers of marine processes 
(1900–1990) 

Radium was discovered from pitchblende ore in 1889 by Marie 
Sklodowksa-Curie and Pierre Curie, representing one of the first ele
ments discovered by means of its radioactive properties (Porcelli et al., 
2014). This historic discovery initiated a remarkable use of Ra for 
medical, industrial and scientific purposes, including its use as an ocean 
tracer. Early oceanic investigations revealed elevated 226Ra activities in 
deep-sea sediments (Joly, 1908), but the first measurement of 226Ra 
activities in seawater was performed in 1911 to characterize the pene
trating radiation observed in the ionization chambers of ships at sea 

(Simpson et al., 1911). However, it was not until the publication of the 
first profile of Ra activities in seawater and sediments off the coast of 
California by Evans and Kip (1938), which suggested the influence of 
sediments on the increase of seawater 226Ra activities with depth, that 
the use of Ra isotopes to study oceanographic processes was considered. 
The first true application of Ra as an oceanic tracer was by Koczy (1958), 
who showed that the primary oceanic source of 226Ra was 230Th decay in 
marine sediments, and who initiated the use of one-dimensional vertical 
diffusion models to describe the upward flux and characteristic con
centration profiles of 226Ra. Shortly thereafter, Koczy (1963) estimated 
that approximately 1–5% of the actual 226Ra present in seawater was 
supplied by rivers. This was followed by a study of water column mixing 
and ventilation rates in the different oceans (Broecker et al., 1967). A 
global-scale picture of the distribution of long-lived Ra isotopes (226Ra 
and 228Ra) was first provided by the Geochemical Ocean Sections Study 
(GEOSECS – 1972–1978; e.g., Chan et al., 1977; Trier et al., 1972). 

In the mid 1960s, Blanchard and Oakes (1965) reported elevated 
activities of 226Ra in coastal waters relative to open ocean waters. The 
detection of significant activities of 228Ra in both surface and bottom 
waters led to the understanding that the distribution of Ra depended on 
sediments but also on other sources that introduced Ra into the oceans 
(Kaufman et al., 1973; Moore, 1969a, 1969b). Few years later, Li et al. 
(1977) observed higher concentrations of 226Ra in the Hudson River 
estuary compared with those observed either in the river itself or in the 
adjacent surface ocean water, proposing that 226Ra was released by 
estuarine and continental shelf sediments, which represents an impor
tant source of 226Ra to the ocean. This was further corroborated by 
measurements in the Pee Dee River-Winyah Bay estuary, in South Car
olina, USA, by Elsinger and Moore (1980) who concluded that Ra 
desorption from sediments could quantitatively explain the increase of 
226Ra in brackish water. Several studies followed these initial in
vestigations, highlighting the importance of coastal sediments in the 
release of long-lived Ra isotopes to coastal waters (e.g., Li and Chan, 
1979; Moore, 1987). 

Measurement of 226Ra and 228Ra in seawater samples was relatively 
complex prior to the wide-scale availability of high-purity germanium 
(HPGe) gamma detectors and the extraction of Ra from seawater using 
manganese-impregnated acrylic fibers. While 226Ra was measured in a 
few liters of seawater (5–10 L) by the emanation of 222Rn (Mathieu et al., 
1988), the measurement of 228Ra required greater volumes (often >>

100 L). The quantification of 228Ra proceeded either via the extraction of 
228Ac and the measurement of its beta activity or via the partial 
ingrowth of 228Th over a period of at least 4–12 months and the mea
surement via the alpha recoil of 228Th or via its daughter 224Ra by a 

Fig. 1. Record of published research articles that used the keywords 1) ‘radium’ and ‘submarine groundwater discharge’ (n = 511) and 2) ‘radium’ and ‘ocean’ (n =
477), as indexed by Web of Science. Articles related to NORM, radiation protection or sediment concentrations have been removed from the record of ‘radium’ 
and ‘ocean’. 
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proportional counter (Moore, 1981; Moore, 1969a, 1969b). The intro
duction of manganese-impregnated acrylic fibers for sampling Ra iso
topes in the ocean was also a key advance in the use of Ra as a tracer in 
marine environments (Moore, 1976; Moore and Reid, 1973). Before the 
development of this approach, large volumes of seawater and long and 
laborious procedures were required to concentrate Ra isotopes via 
BaSO4 precipitation (Kaufman et al., 1973; Moore, 1969a, 1969b; 
Moore, 1972; Trier et al., 1972). Since then, Ra isotopes in marine wa
ters are concentrated in situ with minimum time and effort by 
manganese-impregnated acrylic fibers. More recently, mass spectrom
etry has been used for 226Ra determination in seawater, such as thermal 
ionization mass spectrometry (TIMS) (e.g., Ollivier et al., 2008), mul
ticollector inductively coupled plasma mass spectrometry (MC-ICP-MS) 
(e.g., Te Hsieh and Henderson, 2011) or single-collector sector field 
(ICP-MS) (e.g., Vieira et al., 2021). 

The application of the short-lived 223Ra and 224Ra as tracers of ma
rine processes lagged the long-lived Ra isotopes by several years due to 
analytical limitations and because their potential use in oceanic studies 
was limited due to their shorter half-lives (11.4 d and 3.6 d for 223Ra and 
224Ra, respectively). Short-lived Ra isotopes were first applied to estu
arine mixing studies, which have time-scales of 1–10 days. Elsinger and 
Moore (1983a, 1983b) published one of the first studies on the distri
bution of 224Ra, 226Ra and 228Ra, which was focused on the mixing zone 
of the Pee Dee River-Winyah Bay and Delaware Bay estuaries (USA). 
They showed that the main source of Ra isotopes were desorption and 
diffusion from suspended and bottom sediments, which together 
contributed to the non-conservative increase of the three isotopes in the 
river-sea mixing zone. Shortly thereafter, Bollinger and Moore (1984) 
suggested that 224Ra and 228Ra fluxes in a salt marsh from the US eastern 
coast could be supported by bioirrigation and bioturbation (i.e., sedi
ment reworking and pumping driven by benthic fauna, respectively). 
Levy and Moore (1985) concluded that the potential use of 224Ra as a 
tracer required a much better understanding of its input functions in 
coastal zones. The authors classified Ra sources into two main groups: 
(1) primary sources that include desorption from estuaries and salt 
marsh particles and; (2) secondary sources such as dissolved 228Th 
present in the water column, longshore currents that may transport 
224Ra from other areas and in situ production from 228Th decay adsorbed 
on suspended particles or bottom sediments. 

2.2. Development period: radium isotopes as SGD tracers (1990–2000) 

Whilst the concept of SGD had been introduced in several early 
hydrological-based studies (e.g., Bokuniewicz, 1992; Bokuniewicz, 
1980; Capone and Bautista, 1985; Cooper, 1959; Freeze and Cherry, 
1979; Glover, 1959; Johannes, 1980; Kohout, 1966; Toth, 1963), the 
role of groundwater as a major conveyor of Ra isotopes to the coastal 
ocean was not established until the benchmark papers of Burnett et al. 
(1990), Veeh et al. (1995) and Rama and Moore (1996). Burnett et al. 
(1990) suggested that the high 226Ra activities in water from the 
Suwannee estuary (USA) and offshore were most likely supplied by 
submarine springs or seeps. Veeh et al. (1995) demonstrated that the 
“traditional” Ra sources to coastal waters (e.g., rivers, sediments) were 
insufficient to support the 226Ra activities in waters from the Spencer 
Gulf (South Australia), suggesting an external source for the excess 
226Ra, such as the “submarine discharge of groundwater from granitic 
basement rocks”. The importance of groundwater as a source of Ra to the 
coastal sea led Rama and Moore (1996) to apply for the first time the 
four naturally occurring Ra isotopes (which they defined as the radium 
quartet) as tracers for quantifying groundwater flows and water ex
change (North Inlet salt marsh, South Carolina, USA). One key finding of 
this study was that extensive mixing between fresh groundwater and 
saline marsh porewater occurred in the subsurface marsh sediment 
before discharging to the coastal ocean, resulting in a groundwater 
discharge that was not entirely fresh but included a component of 
seawater circulating through the coastal aquifer. This concept was 

previously demonstrated in a hydrology-based study in Great South Bay 
(NY, USA) conducted by Bokuniewicz (1992), and it decisively 
contributed towards defining the term SGD. 

Awareness of the volumetric and chemical importance of SGD was 
significantly increased by Moore (1996), who linked 226Ra enrichments 
in coastal shelf waters of the South Atlantic Bight to large amounts of 
direct groundwater discharge. Moore suggested that the volume of SGD 
over this several hundred-kilometer coastline was comparable to the 
observed discharge from rivers, although the SGD probably included 
brackish and saline groundwater. In a commentary on this article, 
Younger (1996) questioned the inclusion of salty groundwater as a 
component of SGD, and its comparison to freshwater discharge to the 
coastal zone via rivers. The rebuttal by Church (1996) argued that SGD, 
regardless of its salinity, is chemically distinct from seawater and 
therefore can exert a significant control on coastal ocean biogeochem
ical cycles. 

In the same year, Moore and Arnold (1996) published the design of 
the Radium Delayed Coincidence Counter (RaDeCC), an alpha detector 
system that allowed a simple and reliable determination of the short- 
lived Ra isotopes (223Ra and 224Ra) based on an original design of Gif
fin et al. (1963). Since its introduction, the RaDeCC system has become 
the reference technique for quantifying short-lived radium isotopes in 
water samples, as it allows a robust and rapid 223Ra and 224Ra deter
mination with a simple setup at a relatively low cost. The full potential 
of short-lived Ra isotopes was described shortly after, when Moore 
published two studies providing conceptual models to derive ages of 
coastal waters and estimate coastal mixing rates using 223Ra and 224Ra 
(Moore, 2000a,b). 

In the period of 1990–2000, these pioneering researchers opened a 
new era in Ra isotope application to SGD quantification, including the 
development of most of the conceptual models, approaches and tech
niques that are currently in use. 

2.3. Expansion period: the widespread application of Ra isotopes as SGD 
tracers 

The pioneering work on Ra isotopes of the 1990s, the increased 
understanding of the importance of SGD in coastal biogeochemical cy
cles, the technical improvements of Ra determination via HPGe and the 
commercialization of the first RaDeCC systems led to a rapid increase in 
the number of studies using Ra isotopes as tracers of SGD (Fig. 1). 
Hundreds of scientific articles have been published since then. During 
the 2000s, while some studies only used long-lived Ra isotopes as SGD 
tracers (e.g., Charette and Buesseler, 2004; Kim et al., 2005; Krest et al., 
2000), most studies combined measurements of short-lived Ra isotopes 
to estimate water residence times (or mixing rates) and long-lived Ra 
isotopes to quantify SGD fluxes (e.g., Charette et al., 2003; Charette 
et al., 2001; Kelly and Moran, 2002; Moore, 2003). However, a few 
studies quantified SGD fluxes by using only short-lived Ra isotopes 
(Fig. 2; Boehm et al., 2004; Krest and Harvey, 2003; Paytan et al., 2004). 
One of the first studies where SGD fluxes were derived exclusively from 
short-lived Ra isotopes (223Ra and 224Ra) was conducted at Huntington 
Beach (CA, USA) by Boehm et al. (2004). Their flux estimates based on 
223Ra and 224Ra were supported by a later analysis of 226Ra at this 
location and by the results of a hydrological numerical model (Boehm 
et al., 2006). At the same period, Hwang et al. (2005) and Paytan et al. 
(2006) used only short-lived Ra isotopes to estimate SGD fluxes of water 
and associated nutrients. Over the last decade there has been a growing 
volume of studies using only the short-lived Ra isotopes as tracers of SGD 
(e.g., Baudron et al., 2015; Ferrarin et al., 2008; Garcia-Orellana et al., 
2010; Krall et al., 2017; Shellenbarger et al., 2006; Tamborski et al., 
2015; Trezzi et al., 2016). This relative abundance of publications, in 
which only short-lived Ra isotopes are used, is in contrast with those 
conducted in previous decades, in which long-lived Ra isotopes were the 
most applied tracers (Fig. 2). 

The methodological advances in the measurement of short-lived Ra 
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isotopes have also contributed to their widespread application as tracers 
of other coastal processes, such as water and solute transfer across the 
sediment-water interface (also referred to as porewater exchange (Cai 
et al., 2014), groundwater age as well as flow rates in coastal aquifers 
(Kiro et al., 2013; Kiro et al., 2012; Diego-Feliu et al., 2021), secondary 
permeability in animal burrows (Stieglitz et al., 2013), transfer of 
sediment-derived material inputs (Burt et al., 2013b; Sanial et al., 2015; 
Vieira et al., 2020; Vieira et al., 2019), and horizontal and vertical coastal 
water mixing rates (Annett et al., 2013; Charette et al., 2007; Colbert and 
Hammond, 2007). Numerous new uses of the RaDeCC system have 
occurred in recent years, including the development of approaches to 
measure 223Ra and 224Ra in sediments (Cai et al., 2012; Cai et al., 2014) or 
228Ra and 226Ra activities in water (Diego-Feliu et al., 2020; Geibert et al., 
2013; Peterson et al., 2009; Waska et al., 2008), as well as quantification 
advancements and guidelines (Diego-Feliu et al., 2020; Moore, 2008; 
Selzer et al., 2021). There is still a widespread application of long-lived Ra 
isotopes, particularly to quantify SGD occurring over long flow paths 
(Moore, 1996; Rodellas et al., 2017; Tamborski et al., 2017a), SGD into 
entire ocean basins or the global ocean (Cho et al., 2018; Kwon et al., 
2014; Moore et al., 2008; Rodellas et al., 2015a) and as a shelf flux gauge 
(Charette et al., 2016). Some investigations have also considered how to 
combine short- and long-lived Ra isotopes to discriminate between 
different SGD flow paths and sources (e.g., Charette et al., 2008; Moore, 
2003; Rodellas et al., 2017; Tamborski et al., 2017a). 

3. Submarine groundwater discharge: terminology 

Initially, the concept of groundwater discharge into the oceans had 
been investigated largely by hydrologists, who considered the discharge 
of meteoric groundwater as a component of the hydrological cycle 
(Manheim, 1967). Thereafter, with the involvement of oceanographers 
interested in the influence of SGD on the chemistry of the ocean, the 
definition evolved, with SGD now encompassing both meteoric ground
water and circulated seawater (Bokuniewicz, 1992; Church, 1996; 
Moore, 1996; Rama and Moore, 1996). The interest in SGD has increas
ingly grown within the scientific community as it is now recognized as an 
important pathway for the transport of chemical compounds between 
land and ocean, which can strongly affect marine biogeochemical cycles 
at local, regional and global scales (e.g., Cho et al., 2018; Luijendijk et al., 
2020; Rahman et al., 2019; Rodellas et al., 2015a; Santos et al., 2021). 
SGD is also recognized to provide a wide range of ecosystem goods and 
services (Erostate et al., 2020; Alorda-Kleinglass et al., 2021) 

The definition of SGD has been discussed in several review papers in 
the marine geosciences field (e.g., Burnett et al., 2002; Burnett et al., 
2001; Burnett et al., 2003; Church, 1996; Knee and Paytan, 2011; 
Moore, 2010; Santos et al., 2012; Taniguchi et al., 2019; Taniguchi et al., 
2002). Here, we will adopt the most inclusive definition, where SGD 
represents “the flow of water through continental and insular margins from 
the seabed to the coastal ocean, regardless of fluid composition or driving 
force” (Burnett et al., 2003; Taniguchi et al., 2019). We are thus 
including those centimeter-scale processess that can transport water and 

associated solutes across the sediment-water interface, which are 
commonly referred to as porewater exchange (PEX) or benthic fluxes, 
and are sometimes excluded from the SGD definition because of its short 
length scale (<1 m) (e.g., Moore, 2010; Santos et al., 2012). We are also 
implicitly considering that groundwater (defined as “any water in the 
ground”) is synonymous with porewater (Burnett et al., 2003) and that 
the term “coastal aquifer” includes permeable marine sediments. The 
term “subterranean estuary” (STE), which is widely used in the SGD 
literature, is also used in this review to refer to the part of the coastal 
aquifer that dynamically interacts with the ocean (Duque et al., 2020; 
Moore, 1999), determined in the hydrological literature as the fresh- 
saline water interface or the mixing zone. 

Within this broad definition of SGD we incorporate disparate water 
flow processes, some involving the discharge of fresh groundwater and 
others encompassing the circulation of seawater through the subterra
nean estuary, or a mixture of both. These processes can be grouped into 
five different SGD pathways according to the characteristics of the 
processes (George et al., 2020; Michael et al., 2011; Robinson et al., 
2018; Santos et al., 2012) (Fig. 3): 1) Terrestrial groundwater 
discharge (usually fresh groundwater), driven by the hydraulic gradient 
between land and the sea; 2) Density-driven seawater circulation, 
caused by either density gradients along the freshwater-saltwater 
interface, or thermohaline gradients in permeable sediments; 3) Sea
sonal exchange of seawater, driven by the movement of the 
freshwater-saltwater interface due to temporal variations in aquifer 
recharge or sea level fluctuations; 4) Shoreface circulation of 
seawater, including intertidal circulation driven by tidal inundation (at 
beach faces, salt marshes or mangroves) and wave set-up; and 5) cm- 
scale porewater exchange (PEX), driven by disparate mechanisms 
such as current-bedform interactions, bioirrigation, tidal and wave 
pumping, shear flow, ripple migration, etc. Notice that whereas all of 
these processes force water flow through the sediment-water interface, 
the discharge of terrestrial groundwater (Pathway 1) and, to a lesser 
extent, density-driven seawater circulation (Pathway 2), which also 
contains a fraction of freshwater, are the only mechanisms that repre
sent a net source of water to the coastal ocean. Pathways 3–5 can be 
broadly classified as “saline SGD”; the summation of all five pathways is 
generally considered “total SGD”. 

4. Mechanisms controlling Ra in aquifers and SGD 

One of the main characteristics that makes Ra isotopes useful tracers 
of SGD is that coastal groundwater is often greatly enriched with Ra 
isotopes relative to coastal seawater (Burnett et al., 2001). The enrich
ment of groundwater with Ra isotopes is originated from the interaction 
of groundwater with rocks, soils or minerals that comprise the geolog
ical matrix of the coastal aquifer. Some studies have summarized the 
various sources and sinks of Ra isotopes in coastal groundwater (Kiro 
et al., 2012; Krishnaswami et al., 1982; Luo et al., 2018; Porcelli et al., 
2014; Tricca et al., 2001). The most common natural processes that 
regulate the activity of Ra isotopes in groundwater are: 1) radioactive 

Fig. 2. Number of research articles published in 5-year periods in which Ra isotopes have been used as tracers of SGD. The articles were classified according to the Ra 
isotopes used: only short-lived (223Ra and/or 224Ra), only long-lived (226Ra and/or 228Ra) or a combination of both. The search was performed using the words “SGD 
or Submarine Groundwater Discharge” AND “Ra or Radium” as keywords in “Web of Science” (n = 477). Reviews, method articles and studies not applying Ra 
isotopes as tracer of SGD-related processes were excluded from this classification. A total of 286 articles were considered in this classification analysis. 
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production from Th isotopes and decay; 2) adsorption and desorption 
from the aquifer solids and 3) weathering and precipitation. The transit 
time of groundwater in the coastal aquifer can also regulate the Ra ac
tivity in groundwater (Fig. 4). 

4.1. Radioactive production and decay 

Ra activity in groundwater is controlled, in part, by the production 
and decay rates of each radionuclide in both the groundwater and the 
geological matrix (Fig. 4). Radium isotope production depends on the 
continuous decay of Th isotopes (230Th, 232Th, 228Th, and 227Th) from 
the U and Th decay chains, which are predominantly contained in 
aquifer solids. Therefore, the U and Th content of the geological matrix 
regulates the production rate. Concentrations of U and Th can vary 
significantly depending on the host material (igneous rocks: 1.2–75 
Bq⋅kg− 1 of U and 0.8–134 Bq⋅kg− 1 of Th; metamorphic rocks: 25–60 
Bq⋅kg− 1 of U and 20–110 Bq⋅kg− 1 of Th; and sedimentary rocks: 
<1.2–40 Bq⋅kg− 1 of U and < 4 and 40 Bq⋅kg− 1 of Th) (Ivanovich and 
Harmon, 1992). For instance, carbonate minerals are enriched in U 
relative to Th, while clays are enriched in Th. As a consequence, 
groundwater flowing through formations with different lithologies have 
different activity ratios of Ra isotopes (e.g., 228Ra/226Ra AR, where AR 
means activity ratio), which can be used to identify and distinguish 
groundwater inflowing from different hydrogeologic units (Charette and 
Buesseler, 2004; Moore, 2006a; Swarzenski et al., 2007a) (see Section 
6). On the other hand, radioactive decay depends only on the activity of 
Ra isotopes in groundwater and their specific decay constants. 

Not all of the Ra produced in the aquifer is directly transferred to 
groundwater. The fraction of available Ra (i.e., the exchangeable Ra 
pool) includes the Th dissolved in groundwater (usually a negligible 

fraction) and mainly the Ra produced in the effective alpha recoil zone 
(i.e., by the Th bound in the outer mineral lattice and by the surface- 
bound, i.e., adsorbed Th) (Fig. 4). The decay of Th in the effective 
alpha recoil zone mobilizes part of the generated Ra from this zone to the 
adjacent pore fluid due to the alpha-decay recoil energy (Sun and 
Semkow, 1998; Swarzenski, 2007; Fig. 4). The extent of the effective 
alpha recoil zone is specific to each type of solid (i.e., mineralogy) and is 
a function of the size and of the surface characteristics of the aquifer 
solid grains (Beck and Cochran, 2013; Sun and Semkow, 1998; Swar
zenski, 2007; Diego-Feliu et al., 2021). The greater the specific surface 
area of solids in the aquifer, the greater the fraction of Th in the effective 
recoil zone and thus, the pool of Ra available for solid-solution exchange 
(Copenhaver et al., 1993; Porcelli and Swarzenski, 2003). The influence 
of alpha recoil can produce deviations in the groundwater Ra isotopic 
ratios in relation to that expected from host rock ratios, since each Ra 
isotope is generated after a different number of decay events in each of 
the decay chains. For instance, when Ra isotopes in groundwaters are in 
equilibrium with aquifer solids, the alpha recoil process alone may 
produce equilibrium 226Ra/228Ra ratios up to 1.75 that of the host rock 
238U/232Th ratio and 224Ra/228Ra equilibrium ratios ranging from 1 to 
2.2 (e.g., Krishnaswami et al., 1982; Davidson and Dickson, 1986; 
Swarzenski, 2007; Diego-Feliu et al., 2021). 

Several methods are described in the literature determining how Ra 
recoil can be estimated. These methods can be classified into five groups: 
(1) experimental determination of emanation rates of daughter radio
nuclides from aquifer solids into groundwater (Hussain, 1995; Rama and 
Moore, 1984); (2) experimental determination of the parent radionu
clide within the alpha-recoil zone (Cai et al., 2014; Cai et al., 2012; 
Tamborski et al., 2019); (3) theoretical calculations focused on deter
mining the alpha-recoil supply based on properties of the host material 

Fig. 3. Conceptual diagram of an unconfined coastal aquifer including the major Submarine Groundwater Discharge pathways, subdivided according to the driving 
mechanism: 1) Terrestrial groundwater discharge (usually fresh groundwater); 2) Density-driven seawater circulation; 3) Seasonal exchange of seawater; 4) 
Shoreface seawater circulation; and 5) cm-scale porewater exchange (PEX). Pathways 1, 2 and 3 could be extended farther offshore in systems with confined units. 

J. Garcia-Orellana et al.                                                                                                                                                                                                                       



Earth-Science Reviews 220 (2021) 103681

6

(e.g., density, surface area; Kigoshi, 1971; Semkow, 1990; Sun and 
Semkow, 1998); (4) mathematical fitting to advective transport models 
(Krest and Harvey, 2003), and (5) in-situ determination via supply rate 
of 222Rn (Copenhaver et al., 1992; Krishnaswami et al., 1982; Porcelli 
and Swarzenski, 2003). 

4.2. Adsorption and desorption 

In fresh groundwater, Ra is usually and preferentially bound to 
aquifer solids, although a small fraction is found in solution as Ra2+. The 
adsorption of Ra on solid surfaces depends on the cation exchange ca
pacity (CEC) of the aquifer solids, but also on the chemical composition 
of groundwater. The higher the CEC, the higher the content of Ra that 
may be potentially adsorbed on the grain surface of aquifer solids (e.g., 
Beck and Cochran, 2013; Beneš et al., 1985; Kiro et al., 2012; Nathwani 
and Phillips, 1979; Vengosh et al., 2009). The ionic strength of the so
lution, governed mainly by the groundwater salinity, has been recog
nized as the most relevant factor controlling the exchange of Ra between 
solid and groundwater (Beck and Cochran, 2013; Gonneea et al., 2013; 
Kiro et al., 2012; Webster et al., 1995). High ionic strength (i.e., high 
salinity) hampers the adsorption of Ra2+ due to competition with other 
cations dissolved in groundwater (e.g., Na+, K+, Ca2+) and promotes the 
desorption of surface-bound Ra due to cationic exchange. As a conse
quence, Ra is typically more enriched in brackish to saline groundwater 
than in fresh groundwater. Exceptions may include carbonate aquifers 
where mineral dissolution is more important than desorption in driving 
groundwater Ra activities. Thus, Ra activities in coastal groundwater 
may vary substantially, depending on the subsurface salinity distribu
tion, which is dynamic due to the interaction between the inland 

groundwater table elevation and marine driving forces (e.g., tides, 
waves and storms, mean sea-level). Other physico-chemical properties 
of groundwater, such as temperature and pH may also control the solid- 
solution partitioning (adsorption/desorption) of Ra in coastal aquifers. 
Beck and Cochran (2013) reviewed the role of temperature and pH, 
concluding that while there is a Ra adsorption with increasing pH, there 
is no clear effect of temperature on the adsorption of Ra onto aquifer 
solids. 

In order to estimate the relative distribution of Ra between solid and 
solution, a distribution coefficient, KD [m3⋅kg− 1], is commonly used. 
This coefficient is defined as the ratio of the cocentration of Ra on the 
solid surface per mass of solid [Bq⋅kg− 1] to the amount of Ra remaining 
in mass of the solution at equilibrium [Bq⋅m− 3], and considers the Ra 
chemical equilibrium processes of adsortion-desorption (KD = Raad

sorbed/Radesorbed), but not the processes of weathering. The distribution 
coefficient is one of the most relevant parameters for understanding the 
Ra distribution in coastal aquifers and for applying transport models of 
Ra in groundwater. Radium distribution coefficient values span several 
orders of magnitude depending on the composition of groundwater and 
aquifer solids, ranging widely from 10-2 to 102 m3⋅kg-1 (Kumar et al., 
2020; Beck and Cochran, 2013). Many authors analyzed the influence of 
different solid and water compositions within different experimental 
settings. The distribution coefficient is commonly determined by batch 
experiments (e.g., Beck and Cochran, 2013; Colbert and Hammond, 
2008; Gonneea et al., 2008; Rama and Moore, 1996; Tachi et al., 2001; 
Tamborski et al., 2019; Willett and Bond, 1995). The distribution co
efficient of Ra has also been determined by other methods such as 
adsorption-desorption modelling (e.g., Copenhaver et al., 1993; Webster 
et al., 1995); chromatographic columns tests (e.g., Meier et al., 2015; 

Fig. 4. Conceptual model of the main processes determining the abundance of Ra isotopes in groundwater from a coastal aquifer. Blue and brown colour represents 
the liquid and solid phases, respectively. The light brown color represents the effective alpha recoil zone for Ra isotopes, which depends on the aquifer solids and the 
energy of the Ra alpha particle (the recoil distance usually ranges, on average, between 300 and 400 Å (Sun and Semkow, 1998)). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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Relyea, 1982); and chemical equilibrium calculations (Puigdomenech 
and Bergstrom, 1995). 

4.3. Weathering and precipitation 

Radium isotopes are also supplied to groundwater by weathering 
processes, including dissolution and breakdown of rocks or minerals 
containing Ra that may occur during the flow of groundwater through 
the coastal aquifer. The intensity of weathering processes mainly de
pends on the physicochemical properties of groundwater, such as tem
perature, pH, redox potential or ionic strength, and on the 
characteristics of the geological matrix (e.g., mineralogy, specific sur
face area of aquifer solids) (Chabaux et al., 2003). Since the interaction 
between fresh and saline groundwater in the subterranean estuary is also 
often accompanied by a redox gradient (Charette and Sholkovitz, 2006; 
McAllister et al., 2015), the dissolution of hydrous oxides under 
reducing conditions may increase the activity of Ra isotopes in 
groundwater (Beneš et al., 1984; Gonneea et al., 2008). Conversely, 
mineral precipitation processes can remove Ra from groundwater. Due 
to the very low molar activities of Ra in groundwaters, the removal of Ra 
from groundwater usually occurs by co-precipitation with other phases. 
Ra2+ may co-precipitate with Mn and Fe hydrous oxides under oxidizing 
and high pH (>7) conditions (Gonneea et al., 2008; Porcelli et al., 2014), 
as well as with sulfates [e.g., (Ba, Ra, Sr)SO4] or carbonate [(Ca, Ra) 
CO3] (Kiro et al., 2013; Kiro et al., 2012; Porcelli et al., 2014). However, 
due to the relatively long time scales of weathering and precipitation 
processes, these vectors are often considered to exert negligible controls 
on the activities of 224Ra, 223Ra and 228Ra in coastal groundwaters, 
although they might be relevant for 226Ra (Porcelli and Swarzenski, 
2003). 

4.4. Groundwater transit time 

The last fundamental factor that regulates the activities of Ra iso
topes in aquifers is the time of groundwater to travel along a certain flow 
path, commonly known as groundwater transit time, which also repre
sents the time that the groundwater is in contact with the solids in the 
aquifer (Diego-Feliu et al., 2021; Rajaomahefasoa et al., 2019; Vengosh 

et al., 2009). In SGD studies the groundwater transit time is instrumental 
to understand the degree of Ra isotope enrichment in groundwater since 
it entered the aquifer through one of its boundaries (e.g., aquifer 
recharge of freshwater or seawater infiltration through permeable sed
iments). Groundwater transit time largely depends on the hydraulic 
conductivity of the system and the physical mechanisms that are forcing 
the groundwater advective flow. The hydraulic conductivity describes 
the transmissive properties of a porous medium (for a given fluid) and 
thus clearly influences the groundwater flow velocity (Freeze and 
Cherry, 1979). For instance, hydraulic conductivity in unconsolidated 
silty-clay aquifers is typically on the order of 1 - 100 cm⋅d− 1, while in 
unconsolidated sandy aquifers it is significantly higher (102 - 104 cm⋅d-1; 
Zhang and Schaap, 2019). An extreme example is represented by karstic 
or volcanic coastal aquifers, where localized hydraulic conductivity can 
reach values of ~107 cm⋅d− 1 (Li et al., 2020). On the other hand, 
physical mechanisms driving groundwater flow also control the 
groundwater velocity (as well as the spatial scale of the process), and 
therefore the groundwater transit times. In coastal aquifers, these 
driving forces include the terrestrial hydraulic gradient and their sea
sonal oscillations, shoreface circulation and tidal pumping, wave setup 
and wave pumping, bioirrigation, flow- and topography-induced 
advection, among others (Santos et al., 2012). These forces can be 
linked to the five SGD pathways outlined in Section 3. Obviously, 
groundwater transit times are not only determined by the driving 
mechanism itself, but also by the intensity and frequency of the physical 
forces (e.g., wave and tidal frequency and amplitude, magnitude and 
seasonality of the hydraulic gradient, recurrence and intensity of strong 
episodic wave events, etc.) (Rodellas et al., 2020; Sawyer et al., 2013). 

The common way to evaluate the effect of transit time on the degree 
of enrichment of Ra isotopes in groundwater is usually performed using 
1-D advective-dispersive solute transport models. These models 
commonly assume: i) steady state aquifer conditions (i.e., activities do 
not vary with time; dA/dt = 0); ii) that the effects of dispersive and 
diffusive transport in relation to advective transport are negligible, and 
iii) that the exchange between the solid surfaces and the solution prin
cipally occurs via ion exchange, neglecting the processes of weathering 
or precipitation (Kiro et al., 2012; Michael et al., 2011; Tamborski et al., 
2017a; Diego-Feliu et al., 2021). The underlying assumptions of these 
simple models may not be valid for all groundwater systems, although 
they allow understanding of Ra distribution within aquifers. Based on 
these models, the activities of Ra isotopes in groundwater increase along 
a flow path towards an equilibrium with Th activities in the aquifer 
solids (i.e., Th activities in the alpha recoil zone). This equilibrium, 
defined as bulk radioactive equilibrium by Diego-Feliu et al. (2021), is 
reached when the activities of Ra do not vary along the groundwater 
flowpath (dA/dτ = 0). The characteristic groundwater transit time 
needed to reach equilibrium between the isotopes of Ra and Th depends 
on the distribution coefficient of Ra (KD) as well as on the decay constant 
of each Ra isotope (production and decay) (Beck et al., 2013; Michael 
et al., 2011). The Ra loss due to advective transport when Ra is pre
dominantly desorbed (low KD; e.g., ~10− 2 m3⋅kg− 1) is higher than when 
Ra is mostly adsorbed onto grain surfaces (high KD; e.g., ~102 m3⋅kg− 1). 
Consequently, the characteristic groundwater time to reach the equi
librium with Th isotopes decreases as the distribution coefficient of Ra 
increases (Fig. 5). If Ra was completely desorbed (e.g., KD ~ 0 m3⋅kg− 1), 
the time required to produce 50% of the equilibrium activity of a given 
Ra isotope would be equal to its half-life. However, in natural envi
ronments (KD ~ 10− 3 to 103 m3⋅kg− 1; Beck and Cochran, 2013), this 
activity would be reached within a significantly shorter time, ranging 
from minutes to hours for the short-lived Ra isotopes, from hours to days 
for 228Ra and from days to years for 226Ra (Fig. 5). Therefore, the 
enrichment rate of Ra isotopes strongly depends on the characteristics of 
the coastal aquifer (e.g., the higher the salinity, the longer the time to 
reach equilibrium concentrations). The relative difference between the 
characteristic transit time of each isotope is equivalent to the ratio of 
their decay constants. For example, the transit time needed for 228Ra to 

Fig. 5. Transit time of groundwater with aquifer solids required to produce 
50%, 90% and 99% of equilibrium activity for each Ra isotope as a function of 
the distribution coefficient (KD) and the retardation factor (RRa) of Ra (see 
definition in 8.1). Results are derived from a one-dimensional model formulated 
in Diego-Feliu et al. (2021) and Michael et al. (2011). Distance is also shown 
considering a groundwater velocity of 1 cm⋅d− 1. Notice that the scale of the Ra 
distribution coefficient and the retardation coefficient are logarithmic. Notice 
that the 50% line of 223Ra overlays the 90% line of 224Ra. 
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reach equilibrium with 232Th is ~570 times higher (λRa− 228/λRa− 224) 
than that for 224Ra to reach the equilibrium with 228Th. Characteristic 
transit times can be converted to equilibrium distances by assuming a 
constant velocity of groundwater through the aquifer. Considering a 
velocity on the order of 1 cm⋅d− 1, all of the Ra isotopes would reach 
equilibrium within a few centimeters along the flow path in fresh 
groundwaters, while lengths would be on the order of tens of cm for 
223Ra and 224Ra, ~1 m for 228Ra and ~ 500 m for 226Ra in saline 
groundwater. Notice that these lengths are specific for the assumed 
velocity and the distribution coefficients used. For instance, Tamborski 
et al. (2019) showed that short-lived Ra isotopes reached secular equi
librium after a flowpath of several meters in a sandy barrier beach from a 
hypersaline coastal lagoon, when groundwater velocities were on the 
order 10–100 cm⋅d− 1. 

Given that physical mechanisms control the groundwater transit 
times in the subterranean estuary, the five pathways of SGD described in 
Section 3 are likely to be differently enriched in Ra isotopes, as they have 
different driving forces and spatio-temporal scales. The enrichment rate 
of Ra isotopes in each SGD pathway can be evaluated by comparing the 
ingrowth rates of different Ra isotopes with the most common spatio- 
temporal scales and groundwater salinities of the different pathways 
(Fig. 6). Assuming a relatively homogeneous geological matrix, 
groundwater salinities are likely to control the KD of the different SGD 
pathways. As an orientative threshold, here we consider that a given Ra 
isotope becomes significantly enriched along a specific SGD pathway 
when 50% of its equilibrium activity has been reached (Fig. 6). This 50% 
enrichment is an arbitrary (though reasonable) threshold because the 
ability of tracing Ra inputs from a given pathway depends on several 
site-specific factors, such as equilibrium activities, U/Th concentration 
in the coastal geological matrix, magnitude of SGD flow and in
terferences from other Ra sources (e.g., sediments, rivers). However, this 
qualitative comparison allows the identification of those SGD pathways 
that might be significantly enriched in the different Ra isotopes (Fig. 6). 
As illustrated in this assessment, short-lived Ra isotopes may become 
enriched in all of the SGD pathways. On the other hand, the transit time 
within the coastal aquifer of short-scale processes (e.g., cm-scale 

porewater exchange and shoreface seawater circulation) is not sufficient 
to produce measurable long-lived Ra isotopes activities (King, 2012; 
Michael et al., 2011; Moore, 2010; Rodellas et al., 2017). 

5. Sources and sinks of Ra isotopes in the water column 

The application of Ra isotopes as tracers of SGD in the marine 
environment (at local, regional and global scales) requires a compre
hensive understanding of their sources and sinks in the water column. As 
summarized in several studies (e.g., Charette et al., 2008; Moore, 2010, 
Moore, 1999; Rama and Moore, 1996; Swarzenski, 2007), the most 
common sources of Ra isotopes to the ocean can be classified into six 
groups: 1) Atmospheric input from wet or dry deposition (Fatm); 2) 
Discharge of surface water, such as rivers or streams (Friver); 3) Diffusive 
fluxes from underlying permeable sediments (Fsed); 4) Input from 
offshore waters (Fin-ocean); 5) Production of Ra in the water column from 
the decay of Th parents (Fprod) and 6) inputs from SGD (FSGD). Major 
sinks of Ra in coastal systems are 1) Internal coastal cycling, which in
cludes the biological or chemical removal of Ra isotopes through co- 
precipitation with minerals such as Ba sulfates or Fe (hydr)oxides and 
Ra uptake (Fcycling); 2) Radioactive decay of Ra (Fdecay) and 3) Export of 
Ra offshore (Fout-ocean). A conceptual generalized box model summari
zing all the pathways of removal or enrichment of Ra isotopes in the 
coastal environment is presented in Fig. 7. 

5.1. Radium sources 

The relative magnitude of the different Ra sources vary according to 
the characteristics of the study site (e.g., presence of rivers or streams, 
characteristics of sediments, water column depth), as well as the half-life 
of the specific Ra isotope used in the mass balance (Fig. 8). The different 
source terms for Ra isotopes into the coastal ocean and their relative 
importance are described below (excluding the Ra inputs from offshore 
waters (Fin− ocean), which will be considered in the net Ra exchange with 
offshore waters (see section 5.2)). 

The input of Ra through atmospheric deposition onto oceans (Fatm) 

Fig. 6. The spatio-temporal scales of different SGD pathways considering a groundwater advection rate of 1 cm d− 1. Qualitative boundaries for the different 
pathways are based on common spatial scales and KD of the different pathways (note that R = 1 + KD ρb/Ф). The transit time required to produce more than 50% of 
the different Ra isotopes is also indicated (solid lines represent 50% of equilibrium; see Fig. 5). 
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includes dissolved Ra in precipitation and, mainly, desorption from at
mospheric dust or ash entering the water column. The highest relative 
contribution of Ra from atmospheric sources will be expected to occur in 
large basins (i.e., the higher the ratio of ocean surface area to coastline 
length, the higher the potential importance of atmospheric inputs is) 
and/or in areas affected by large atmospheric inputs (e.g., areas affected 
by the deposition of large amounts of dust or ash). However, even in 
large areas affected by Saharan dust inputs (e.g., the Atlantic Ocean or 
the Mediterranean Sea), the percentage of the atmospheric contribution 
is less than 1% of the total Ra inputs (Moore et al., 2008; Rodellas et al., 
2015a) (Fig. 8). Atmospheric input is expected to be smaller in areas 
such as bays or coves, and therefore it is commonly neglected in Ra mass 
balances (Charette et al., 2008). 

Surface water inputs (Friver) includes both the fraction of Ra dis
solved in surface waters and the desorption of Ra from river-borne 
particles as these particles encounter salty water. Surface water input 
includes both rivers and streams discharge and inputs from freshwater 
and salt marshes, stormwater runoff and anthropogenic sources, such as 
discharge from wastewater treatment facilities. There are several studies 
that have quantified the contribution of Ra from rivers and streams to 
coastal and open ocean areas (Krest et al., 1999; Moore, 1997; Moore 
and Shaw, 2008; Ollivier et al., 2008; Rapaglia et al., 2010). Most of the 
studies conclude that the fraction of dissolved Ra in river waters is a 
minor contribution compared with the Ra desorbed from surface water- 
borne particles (Krest et al., 1999; Moore et al., 1995; Moore and Shaw, 
2008). The importance of surface water as a Ra source obviously de
pends on the presence (and significance) of rivers and streams in the 
investigated area. The relative contribution of surface water might be 
significant in estuaries or other areas influenced by river discharge (e.g., 
Beck et al., 2008; Key et al., 1985; Luek and Beck, 2014; Moore et al., 
1995; Moore and Shaw, 2008) (Fig. 8). Marshes are also commonly 
considered as a major source of Ra due to both erosion of the marsh and 
subsequent desorption of Ra from particles and porewater exchange 
(Beck et al., 2008; Bollinger and Moore, 1993; Bollinger and Moore, 
1984; Charette, 2007; Tamborski et al., 2017c). Runoff or ephemeral 

streams following a major rain event (Moore et al., 1998) is an addi
tional input. Anthropogenic activities like channels, oil and gas in
stallations, outfalls and waste water treatment plants may also supply 
Ra to coastal waters, although in most cases they prove to be a minor Ra 
source (e.g., Beck et al., 2007; Eriksen et al., 2009; Rodellas et al., 2017; 
Tamborski et al., 2020a, 2020b). 

Sediments are a ubiquitous source of Ra isotopes (Fsed), but their 
relative importance as a Ra source is highly dependent on the charac
teristics of the sediment (e.g., sediment grain size, sediment mineral 
composition, porosity), the specific Ra isotope considered, the mecha
nism that releases Ra from the sediments and the spatial scale of the 
study area (Fig. 8). Mechanisms that may release Ra from sediments, 
excluding groundwater flow, are molecular diffusion, erosion, bio
turbation, or sediment resuspension. High Ra in the porewater results in 
a molecular diffusion of Ra from the sediments to the water column (e. 
g., Beck et al., 2008; Garcia-Orellana et al., 2014; Garcia-Solsona et al., 
2008). Other processes such as sediment resuspension, diagenesis and 
bioturbation may also enhance the exchange of Ra between sediment 
and the water column (e.g., Burt et al., 2014; Garcia-Orellana et al., 
2014; Moore, 2007; Rodellas et al., 2015b; Tamborski et al., 2017c). For 
instance, bioturbation has been suggested to increase the 228Ra flux by a 
factor of two over the flux due to molecular diffusion only (Hancock 
et al., 2000). In sediments of the Yangtze estuary, bioirrigation was 
found to be more important for the 224Ra flux from the sediments than 
molecular diffusion and sediment bioturbation (Cai et al., 2014). The 
significance of Ra input from sediments largely depends on the pro
duction time of each Ra isotope relative to the Ra-releasing mechanism. 
Inputs from sediments can typically be ignored for long-lived Ra iso
topes in small-scale studies due to their long production times (e.g., 
Alorda-Kleinglass et al., 2019; Beck et al., 2008; Beck et al., 2007; 
Garcia-Solsona et al., 2008). However, in basin-wide or global-scale 
studies, the large seafloor area results in long-lived Ra sediment input 
that might be comparable to SGD input (Moore et al., 2008; Rodellas 
et al., 2015a) (Fig. 8). The fast production of short-lived Ra isotopes in 
sediments, which is set by their decay constants, results in a near- 

Fig. 7. Conceptual model illustrating the sources (blue) and sinks (red) of Ra isotopes in the coastal ocean. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

J. Garcia-Orellana et al.                                                                                                                                                                                                                       



Earth-Science Reviews 220 (2021) 103681

10

continuous availability of 223Ra and 224Ra in sediments, which can result 
in comparatively larger fluxes of short-lived Ra isotopes to the water 
column relative to the long-lived ones. Particularly in areas with coarse- 
grained sediments with low Ra availability for sediment-water ex
change, fluxes of longer-lived Ra isotopes from seafloor sediments usu
ally account for a minor fraction of the total Ra inputs (Beck et al., 2008, 
Beck et al., 2007; Garcia-Solsona et al., 2008). However, sediments can 
turn into a major source of Ra isotopes to the water column in shallow 
water bodies, in systems covered by fine-grained sediments (substrate 
with a high specific surface area), sediments with a high content of U 
and Th-series radionuclides, and/or in areas affected by processes that 
favor the Ra exchange between sediments and overlying waters, such as 
bioturbation (Cai et al., 2014), sediment resuspension (Burt et al., 2014; 
Rodellas et al., 2015b) or seasonal hypoxia (Garcia-Orellana et al., 
2014). 

The production of Ra isotopes from their dissolved Th parents 
(Fprod) is commonly avoided in SGD studies by reporting Ra activities as 
“excess” activities in relation to their respective progenitors. This is 
usually a minor Ra source because Th is a particle reactive element and 
is rapidly scavenged by particles sinking through the water column. The 
amount of 232Th, which is introduced into the water column by disso
lution from particles supplied by rivers, runoff, atmospheric deposition 
or resuspension, is very low and therefore water column dissolved 232Th 
activities are usually orders of magnitude lower than its daughter 228Ra. 
Dissolved activities of 227Th (and 227Ac), 228Th and 230Th in the water 
column are also low and thus the production of 223Ra, 224Ra and 226Ra 
from their decay generally represents a minor source term. 

Submarine Groundwater Discharge (FSGD) is often a primary source 
of Ra isotopes to the ocean (Fig. 8) and it is the target flux in SGD in
vestigations. This term includes Ra inputs from any water flow across 
the sediment-water interface, which can be supplied through the five 
different SGD pathways outlined in Section 3 (Fig. 3). Different SGD 
pathways occur at different locations (e.g., nearshore, beachface, 
offshore) and have different groundwater compositions (e.g., fresh, 
brackish or saline groundwater) and characteristic groundwater transit 
times within the subterranean estuary (e.g., hours-days for cm-scale 
porewater exchange and months-decades for terrestrial groundwater 
discharge). All of them are, however, potential sources of Ra isotopes to 
the ocean and thus need to be taken into account when Ra isotopes are 
used as SGD tracer. 

5.2. Radium sinks 

The two main Ra sinks for most of the coastal systems are the decay 
of Ra isotopes in the water column (Fdecay) and net Ra exchanged with 
offshore waters (Fout− ocean- Fin− ocean). As with the Ra sources, the rele
vance of the Ra sink terms is largely dependent on the characteristics of 
the water body (mainly water residence time) and on the Ra isotope used 
(Fig. 9). Other sinks are grouped together as internal cycling (Fcycling). 
These processes include Ra co-precipitation with salts (e.g. barium sul
phate) or Fe-Mn (hydr)oxides that occur in estuaries, coastal lagoons or 
polluted areas (e.g., Alorda-Kleinglass et al., 2019; Kronfeld et al., 1991; 
Neff and Sauer, 1995; Snavely, 1989), the scavenging of Ra with sinking 
particles (Moore et al., 2008; Moore and Dymond, 1991; van Beek et al., 
2007), uptake by biota, including the incorporation into calcium car
bonate, barium sulphate or calcium phosphate lattice of shells and fish 
bones (Iyengar and Rao, 1990; Szabo, 1967), and the adsorption of Ra to 
the outer surface of algae’s or to their internal non-living tissue com
ponents (Neff, 2002). These various internal cycling processes are 
generally a negligible Ra sink compared to radioactive decay and ex
change with offshore waters. However, when using long-lived Ra iso
topes and conducting basin-scale and global ocean budgets (i.e., low 
decay and low exchange), Fcycling should be taken into account (Moore 
et al., 2008; Rodellas et al., 2015a) (Fig. 9). 

The decay of Ra isotopes (Fdecay) is characteristic output term of 
mass balances using radioactive isotopes as tracers. The loss of Ra due to 
decay is usually a term that is relatively easy to constrain because it only 
depends on the Ra inventory of the study site and the decay constant of 
the isotope used. Thus, when decay is a primary sink of Ra in the system 
studied, Ra removal can be accurately contrained provided that the Ra 
water-column inventory has been adequately determined (Rapaglia 
et al., 2012). The importance of the decay term will depend on the half- 
life of the isotope used and the water residence time of the system 
studied, as illustrated in Figs. 9 and 10. The loss of Ra due to radioactive 
decay is negligible for long-lived Ra isotopes in coastal areas with 
relatively short residence times (< 100 days) (Fig. 9). In regional and 
global-scale studies, the decay of 228Ra needs to be considered and 
usually represents the main sink of this isotope (e.g., Charette et al., 
2015; Kwon et al., 2014; Liu et al., 2018; Moore et al., 2008; Rodellas 
et al., 2015a) (Fig. 9). On the contrary, 226Ra can be considered as a 
stable element in SGD studies because decay is negligible on the time- 
scale of processes occurring in coastal or regional systems. For the 
short-lived Ra isotopes, the removal of Ra due to decay must be 

Fig. 8. Relative contribution of different sources (river, atmosphere, sediments and SGD) to the total 224Ra (upper row) and long-lived Ra isotopes (lower row) for six 
study sites with distinct characteristics: Huntington Beach, USA (sandy intertidal beach face; Boehm et al., 2004 and Boehm et al., 2006); Bangdu Bay, Korea (semi- 
enclosed bay on a volcanic island; Hwang et al., 2005); Port of Maó, Spain (semi-enclosed harbor with large resuspension of sediments; Rodellas et al., 2015a, 2015b); 
La Palme Lagoon, France (micro-tidal coastal lagoon with karst springs; Tamborski et al., 2018); York River estuary, USA (micro-tidal estuary; Luek and Beck, 2014); 
Atlantic Ocean (upper 1000 m of water column; Moore et al., 2008). The sites are organized according to increasing water residence times of the study area (left to 
right). The Ra isotope used is indicated in the middle of the pie chart. 
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accounted for in mass balances for most coastal regions (Fig. 9). How
ever, in rapidly flushed systems it may be almost negligible for 223Ra and 
to a lesser extent for 224Ra (i.e., residence times on the order of few 
hours) (e.g., Alorda-Kleinglass et al., 2019; Boehm et al., 2004; Trezzi 
et al., 2016) (Figs. 9 and 10). 

The relative contribution of the exchange of Ra isotopes due to the 
mixing between coastal and open waters (offshore exchange - the 
difference between Fout-ocean and Fin-ocean) depends on the study site. 
Nearshore waters usually have higher Ra concentrations than offshore 
waters, and thus there is usually a net export of Ra offshore. The loss of 
Ra due to the mixing between coastal and open waters is directly linked 
to the flushing time of Ra in the coastal system. In open coastal systems 
or sites with relatively short flushing times (e.g., systems with short 
water residence times and/or high dispersive mixing with offshore wa
ters), the export of Ra isotopes offshore is frequently the primary 
removal term and thus, it is commonly one of the most critical param
eters to be determined in Ra mass balances, particularly for the long- 
lived Ra isotopes (Fig. 10) (Tamborski et al., 2020a, 2020b). In semi- 
enclosed or enclosed coastal environments (e.g., bays, coastal lagoons, 
coves), flushing times are usually long, and Ra losses due to mixing with 
offshore waters is less important for the short-lived Ra isotopes. How
ever, for the long-lived Ra isotopes this process is the main sink even in 
these semi-enclosed water bodies (Fig. 9), requiring an appropriate 
characterization of the mixing term to obtain an accurate quantification 
of SGD. Different Ra isotopes are commonly combined to constrain 
offshore exchange (e.g., Moore, 2000a, 2000b; Moore et al., 2006) (see 
section 8.3), although this output term can also be estimated using other 
approaches such as hydrodynamic and numerical models (e.g., Chen 
et al., 2003; Lin and Liu, 2019; Warner et al., 2010), tidal prism (e.g., 
Dyer, 1973; Petermann et al., 2018; Sheldon and Alber, 2008) or direct 
current/flow measurements (e.g., Rodellas et al., 2012; Shellenbarger 
et al., 2006). 

6. Quantification of SGD using Ra isotopes 

6.1. Ra-based approaches to quantify SGD 

Ra isotopes are suitable SGD tracers mainly because i) activities in 
groundwater are typically 1–2 orders of magnitude higher than in 
coastal seawater; ii) Ra isotopes in coastal areas are usually primarily 
sourced from SGD; iii) they behave conservatively in seawater and iv) 
they have different half-lives (ranging from 3.7 days to 1600 years), 
therefore allowing the tracing of coastal processes on a variety of time- 
scales. The common approach to quantify SGD is to quantify first the Ra 
flux supplied by SGD (FSGD; Bq d− 1), regardless of the SGD pathway 

considered, and subsequently convert it into a volumetric water flow 
(SGD; m3 d− 1) by characterizing the Ra activity in the discharging 
groundwater (i.e., the SGD endmember, CRa-SGD; Bq m− 3) (Eq. 1). 

SGD =
FSGD

CRa− SGD
(1) 

There are three basic strategies to quantify total SGD fluxes (FSGD) 
using Ra isotopes: i) mass balances; ii) endmember mixing models and 
iii) offshore flux determination from horizontal eddy diffusive mixing. 
The most comprehensive and widely applied approach is the Ra mass 
balance, where the flux of Ra supplied by SGD is usually quantified by a 
“flux by difference approach”, which considers all the potential Ra 
sources and sinks identified in Fig. 7: 

∂AV
∂t

=
(
Fatm +Friver +Fsed +Fprod +Fin− ocean +FRa− SGD

)

−
(
Fcycling +Fdecay +Fout− ocean

) (2)  

where A is the average Ra activity in the study area, V is the volume 
affected by SGD and t is time (i.e., ∂AV

∂t is the change of Ra activity in the 
study area over time). This approach is often simplified in coastal areas 
by neglecting the commonly minor Ra sources and sinks (atmospheric 
inputs, production and internal cycling) and assuming that the system is 
in steady state (i.e., ∂AV

∂t = 0), and thus all quantifiable Ra input fluxes are 
subtracted from the total output with the residual being attributed to 
SGD: 

FRa− SGD =
(A − Aocn)V

tf
+ AVλ − Friver − Fsed (3)  

where Aocn is the Ra activity of the open ocean water that exchanges 
with the study area, tf is the flushing time of Ra in the system due to 
mixing and λ is the radioactive decay constant of the specific Ra isotope 
used. Notice that the first and second terms on the right side of the 
equation describe offshore exchange (i.e., Fout-ocean - Fin-ocean) and 
radioactive decay, respectively. Flushing time is an integrative time 
parameter used to describe the solute (Ra isotopes) transport processes 
in a surface water body (due to both advection and dispersion) and it 
relates the mass of a tracer and its renewal rate due to mixing (Monsen 
et al., 2002). Notice also that we refer to flushing time of Ra due to 
mixing only, as if it were a conservative and stable solute. Some authors 
use the concept of water residence time (i.e., the time a water parcel 
remains in a waterbody before exiting through one of the boundaries; tr) 
to refer to tf, but this term is not appropriate for systems influenced by 
dispersive mixing (such as many of coastal sites) or evaporation where 
tracers and water are transported due to different mechanisms. This 

Fig. 9. Relative contribution of different sinks (decay, exchange and scavenging) to the total 224Ra (upper row) and long-lived Ra isotopes (lower row) outputs for six 
study sites with distinct characteristics (see Fig. 8 for site references and details). 
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approach is commonly applied in environments where the distribution 
of Ra isotopes in the study site is influenced by multiple Ra sources and 
sinks (Fig. 7). The accuracy of the estimated Ra flux supplied by SGD will 
thus largely depend on the accuracy with which the most relevant 
sources and sinks of Ra are determined (Rodellas et al., 2021). Indeed, 
given that SGD is quantified by a difference of fluxes, large uncertainties 
are often associated with the SGD estimates in systems where SGD fluxes 
only represent a minor fraction of total inputs. Most studies quantify 
total SGD with a mass balance by using a single Ra isotope and use other 
short-lived isotopes to estimate the flushing time (tf) (see section 8.3) 
that is required in SGD estimations (Eq. 3) (e.g., Gu et al., 2012; Kim 
et al., 2008; Krall et al., 2017). Ra isotopes can also be combined through 
concurrent mass balances to simultaneously quantify SGD derived from 
different aquifers or pathways (Rodellas et al., 2017). 

The second approach estimates SGD fluxes using mixing models 
between different endmembers (e.g., Charette and Buesseler, 2004; 
Charette, 2007; Moore, 2003; Young et al., 2008). This approach is 
essentially a simplification of the mass balance approach where all Ra 
inputs are attributed to water flows (e.g., groundwater, rivers) and 
where the mixing offshore is assumed to represent the main Ra sink 
(Moore, 2003). This approach is thus recommended for environments 
where mixing between SGD and the ocean controls the distribution of Ra 
in the study site and where other Ra sources (e.g., sediment inputs) and 
sinks (e.g., decay) can be neglected. If various Ra isotopes are used, this 
method can also be used to distinguish the relative contribution of SGD 
and other water sources (e.g., rivers; Dulaiova et al., 2006a, 2006b) or to 
separate different SGD components (e.g., SGD fluxes from confined and 
unconfined aquifers (Charette and Buesseler, 2004; Moore, 2003), 
terrestrial SGD and marsh porewater (Charette, 2007). For example, one 
can consider a system with two Ra sources (e.g. SGD1 and SGD2), aside 
from offshore exchange. SGD inputs can be estimated by defining the 
major contributors to the Ra isotope budgets of two isotopes (for 
example, 226Ra and 228Ra) and solve a series of simultaneous equations 
(Moore, 2003). 

focn + fSGD1 + fSGD2 = 1 (4)  

228Raocn⋅focn +
228RaSGD1⋅fSGD1 +

228RaSGD2⋅fSGD2 = 228Ra (5)  

226Raocn⋅focn +
226RaSGD1⋅fSGD1 +

226RaSGD2⋅fSGD2 = 226Ra (6)  

where 228Ra and 226Ra represent the measured Ra activity for a given 
time period, f is the water mass fraction contributed by coastal ocean 

mixing (focn), the SGD source 1 (fSGD1) and the SGD source 2 (fSGD2), and 
the Ra isotope endmembers are identified by the same series of sub
scripts. With this approach, the fSGD can be determined for each location 
where there is a Ra isotope measurement (22XRa). Short-lived Ra iso
topes can also be used in the equations by incorporating their decay 
term. This approach is particularly useful to resolve changes in mixing 
between different Ra sources over tidal time-scales, e.g., within marsh 
creeks (Charette, 2007). The fractional SGD contributions derived from 
this mixing model can be converted into volumetric fluxes by consid
ering the time scales of water mass transport (tr) in the system under 
study, as follows: 

SGD =
V⋅fSGD

tr
(7) 

If the water outflow of the system can be directly measured (e.g., 
using an Acoustic Doppler Current Profiler – ADCP), then the end
member fraction can be directly multiplied by the measured flow (e.g., 
Rodellas et al., 2012; Tamborski et al., 2021). 

The third approach is based on using offshore transects of short-lived 
Ra isotopes to estimate coastal mixing rates via the offshore coefficient 
of solute dispersivity, Kh [m2⋅s− 1], which can be used in conjunction 
with the offshore gradient of long-lived Ra isotopes to estimate the 
offshore export of 228Ra or 226Ra (Moore, 2015; Moore, 2000b). Several 
assumptions are required to apply this model: i) there is no additional 
input of Ra beyond the nearshore source, ii) the system is in steady state 
on the timescale of the isotope used (see section 7.3), iii) advection is 
negligible in any direction; iv) the open ocean Ra isotope activities are 
negligible and v) a flat seabed or the presence of a stratified water col
umn of a constant thickness (Knee et al., 2011; Moore, 2015; Moore, 
2000b). Considering these assumptions, the measured log-linear 
decrease in the activity of 223Ra or 224Ra offshore can be used to 
determine Kh from the following simplified advection-diffusion equation 
(Eq. 8). 

Ax = A0e− x
̅̅̅̅̅̅̅
λ/Kh

√
(8)  

where A0 and Ax are the Ra activities at the coast and at a distance x from 
the coast, respectively. A detailed discussion on the model and its as
sumptions is included in Moore (2015, 2000b). The mixing coefficient 
Kh derived from the logarithmic-linear scale plot of the short-lived Ra 
isotopes activities is then combined with the offshore gradient of long- 
lived Ra isotopes (linear-linear decrease) to estimate the export 
offshore of 228Ra or 226Ra. This long-lived Ra flux offshore needs to be 
balanced by Ra inputs from all the potential sources, and thus estimating 
SGD from this approach requires subtracting the contribution of all the 
sources aside SGD from the estimated flux offshore (similar to the mass 
balance approach) (Moore, 2015, Moore, 2000b). This approach is 
recommended for open coastal systems where the export of long-lived 
Ra isotopes offshore due to diffusive mixing is frequently the primary 
removal term for 226Ra and 228Ra (e.g., Bejannin et al., 2020; Boehm 
et al., 2006; Dulaiova et al., 2006a, 2006b; Rodellas et al., 2014). One of 
the advantages of using this approach is that it allows combining short- 
lived Ra estimates of Kh with solute gradients offshore to obtain the rate 
of solute transport offshore (e.g., Charette et al., 2007). For these rea
sons, this approach has been widely applied in oceanographic studies 
focused on the transport of solutes supplied by a combination of 
boundary exchange processes and is generally not applied to discrimi
nate different Ra sources (e.g., SGD, rivers, sediments) (e.g., Charette 
et al., 2016; Jeandel, 2016; Vieira et al., 2019, 2020). 

6.2. Determination of the Ra concentration in the SGD endmember 

The above-mentioned approaches of SGD quantification rely on an 
appropriate characterization of the Ra activity in the discharging 
groundwater (i.e., the SGD endmember) (Eq. 1). This characterization 
and selection of the Ra activity in the discharging groundwater often 

Fig. 10. Relative contribution of the decay term in Ra mass balances as a 
function of flushing time (d) in a study area. Notice that the scale of the flushing 
time is logarithmic. 
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represents the main source of uncertainty for the final SGD estimates, 
since Ra activities in the coastal aquifer can vary significantly (1–3 or
ders of magnitude) over space and time depending on the geochemical 
and hydrogeological characteristics at each study site (e.g., Cerdà- 
Domènech et al., 2017; Cho and Kim, 2016; Cook et al., 2018; Duque 
et al., 2019; Gonneea et al., 2008, 2013; Michael et al., 2011). Several 
studies highlighted the inherent difficulties and uncertainties related to 
the selection of representative SGD endmembers (Cerdà-Domènech 
et al., 2017; Cho and Kim, 2016; Cook et al., 2018; Gonneea et al., 2013; 
Michael et al., 2011). There is no general framework to characterize SGD 
endmembers valid for all study sites. The SGD endmember is commonly 
determined from near-shore piezometers or inland wells (e.g., Charette 
et al., 2013; Garcia-Solsona et al., 2010a; Tovar-Sánchez et al., 2014), 
porewaters collected at the seafloor, usually within the first meter below 
the sediment-water interface (Rodellas et al., 2017; Tamborski et al., 
2018), direct measurements of SGD actually discharging to the system 
through seepage meters or springs (Garcia-Orellana et al., 2010; Montiel 
et al., 2018; Weinstein et al., 2007) or laboratory experiments to esti
mate the Ra activity in equilibrium with sediments (Beck et al., 2008; 
Garcia-Solsona et al., 2008). Once groundwater samples are collected at 
different locations and/or times, in most published studies Ra values are 
averaged to obtain a ‘representative average’ SGD endmember (e.g., 
Beck et al., 2007; Kwon et al., 2014; Lee et al., 2012; Rapaglia et al., 
2010). 

An important consideration when determining the SGD endmember 
is that the selected Ra concentration needs to be representative of the 
discharging groundwater. In coastal systems with a dominant pathway, 
the Ra endmember concentration should thus be representative of this 
pathway. Whilst this recommendation is self-evident, many studies have 
overlooked or they assumed that the sampled endmember is represen
tative for the SGD pathways. Given the general and inherent difficulties 
of sampling SGD, a common strategy to obtain SGD endmembers is 
measuring Ra concentrations in existing wells or piezometers, which are 
generally installed in the freshwater (or brackish) zone of the coastal 
aquifer. However, these wells may not span the range of Ra activities 
along the salinity gradients in a subterranean estuary and thus they are 
not necessarily representative of the SGD endmember in sites dominated 
by saline SGD (Pathways 2 to 5) (Michael et al., 2011). Cho and Kim 
(2016) highlighted and discussed this issue at a global scale and showed 
that the endmembers frequently used to estimate total SGD are often low 
salinity groundwater samples (i.e., with relatively low Ra concentra
tions), even if SGD fluxes are composed mainly of circulatated seawater 
(Pathways 2 to 5). These authors re-evaluated previous SGD estimates 
for the Atlantic Ocean and for the global ocean by using only end
members with salinities ~ > 10 and showed these fluxes were likely 
overestimated two- to three-fold only because non-representative low- 
salinity groundwaters were included in the determination of the SGD 
endmember (Cho and Kim, 2016). On the other hand, if SGD mainly 
consists of seawater circulation with short transit times within the 
subterranean estuary (e.g., shoreface seawater circulation or cm-scale 
porewater exchange), the long-lived isotope activities (e.g., 228Ra) of 
circulated seawater (Pathways 2 to 5) may be much lower than terres
trial water activities (even in fresh water of Pathway 1). This bias to
wards on-shore borehole/well data (long transit times) may actually 
result in an underestimation of SGD, in particular in basin-scale studies. 

In more complex settings where several SGD pathways coexist, the 
SGD endmember should account for the different Ra enrichments in 
the SGD pathways that occur in the study area and should reflect the 
relative contributions of these different pathways. Obtaining the 
representative Ra endmember concentration thus requires, in addition 
to determining the Ra activity in each pathway, constraining the 
relative contribution of each SGD pathway. This is difficult and re
quires previous knowledge of the fluxes from different pathways, 
which is usually not available (Cook et al., 2018; Michael et al., 2011). 
In addition, when seawater and groundwater mix, there are salinity 
gradients and redox interfaces, which promote geochemical reactions 

(Gonneea et al., 2008; Moore, 1999; Rocha et al., 2021), that can 
further complicate differentiation between the different groundwater 
discharge processes. To simplify this approach, previous studies have 
argued that some of these pathways are negligible either because the 
driving forces are not significant (e.g., no tidal-driven recirculation in 
microtidal environments; Alorda-Kleinglass et al., 2019; Krall et al., 
2017; Rodellas et al., 2017; Trezzi et al., 2016) or because low per
meabilities of ocean sediments restrict inputs from some SGD path
ways (e.g., Beck et al., 2007; Michael et al., 2011; Michael et al., 2005). 
Some authors also identified groundwater pathways, which were 
weakly enriched in the specific Ra isotope used, and then argued that 
the system was not significantly influenced by Ra inputs from this 
pathway (e.g., Beck et al., 2007; Garcia-Solsona et al., 2008; Moore 
et al., 2019). It should be additionally noted that different SGD path
ways often mix before discharge and do not occur as isolated processes. 
When two pathways mix before discharge, this mixed SGD can be 
treated as a single pathway, provided that the Ra concentration in this 
mixed flow is appropriately characterized (Cook et al., 2018). 

7. Improving the current use of Ra isotopes as SGD tracers 

Ra isotopes have been widely applied to quantify SGD in all kind of 
locations worldwide and in a large range of physical environments (e.g., 
lagoons, wetlands, estuaries, bays or ocean basins). The estimates of 
SGD derived from Ra isotopes are based on conceptual assumptions that 
are often not properly justified or validated, and may involve large 
uncertainties that are usually not quantificable and could lead to inac
curacies or unrealistic of the SGD estimates. In this section, we discuss 
some key considerations with the aim of improving future applications 
of Ra isotopes as SGD tracers. 

7.1. Validation of model assumptions and consideration of conceptual 
uncertainties 

The magnitude of SGD can be quantified using a variety approaches, 
including field methods (e.g., seepage meters, natural tracers and 
piezometric level measurements) or computational approaches (e.g., 
water budget models and numerical solutions of the groundwater flow 
equation) (Taniguchi et al., 2019). Each of these approaches is prone to 
certain biases and is limited in both the spatial coverage and the SGD 
pathways it is capturing (Burnett et al., 2006; Zhou et al., 2018). Using 
different approaches can yield order-of-magnitude differences in SGD at 
individual locations and, thus, the selection of the method itself con
stitutes the first source of uncertainty in any SGD study (Rodellas et al., 
2021; Zhou et al., 2018). 

Tracer approaches are based on conceptual models that represent an 
abstraction of a complex and dynamic natural system. Thus, a second 
additional source of uncertainty is linked to the conceptualization of the 
natural system, the so-called conceptual or structural uncertainty 
(Regan et al., 2002). In the case of Ra isotopes, there are three models (or 
concepts) commonly applied to quantify SGD (see section 6.1): “Mass 
balance model” and “mixing model”, which are both based on Ra bud
gets using lumped parameter models, and a “offshore export model”, 
which is based on a simplified analytical solution to describe Ra trans
port. Each one of these models is extremely sensitive to its specific 
simplifications, assumptions and boundary conditions used to approxi
mate the real system. For instance, Ra “mass balances” are strongly 
influenced by the sources and sinks of Ra included in the model (e.g., 
some studies assume that all Ra inputs can be directly attributed to SGD) 
and, mainly, by the parameterization of the different input and output 
terms and their intrinsic assumptions. Indeed, the use of different 
methods or parameterizations to quantify the same term in the mass 
balance (e.g., different approaches to estimate offshore exchange rates, 
sediment diffusion or to produce an averaged Ra concentration in the 
study area) may lead to order-of-magnitude discrepancies in Ra-derived 
SGD estimates (Rodellas et al., 2021). The mass balance approach also 
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assumes that the integrative parameters can appropriately represent the 
system (e.g., the model assumes that offshore exchange occurs with an 
average Ra concentration). Similarly, the “offshore export” model is 
essentially a simplification of the 1-D advection-dispersion equation, 
which is very sensitive to the boundary conditions and basic assump
tions. These assumptions may not be correct in environments with 
along-shore and across-shore currents (advection cannot be neglected), 
with Ra inputs occurring beyond the nearshore source, with not uniform 
vertical profiles of Ra isotopes or non-negligible Ra concentrations 
offshore, or in systems with a sloped seabed (e.g., Hancock et al., 2006; 
Lamontagne and Webster, 2019a, 2019b). Additionally, all the Ra 
models are often based on the assumption that mixing processes affect 
all the isotopes alike, either through the estimation of flushing times or 
water ages (tf or tw) using pairs of isotopes (see section 8.3) or by using 
an offshore diffusivity coefficient (Kh) derived from one isotope to 
evaluate the transport of another one (Lamontagne and Webster, 
2019b). Since Ra transport offshore is often controlled by dispersion, 
which integrates processes operating at different temporal and spatial 
scales, mixing parameters (e.g., tf or Kh) are scale dependent and should 
be independently evaluated for each tracer (Lamontagne and Webster, 
2019b; Moore, 2015; Okubo, 1976). Finally, and most importantly, 
almost all studies assume that the system is in steady state and that all 
model parameters are constant on the timescale the tracer resides in the 
system, assumptions that are very often not met – in particular for long- 
lived isotopes – and that should be carefully evaluated (see section 7.2). 

The reliability of Ra approaches to quantify SGD may thus be limited 
and scientists should be aware of these limitations and try to validate 
their assumptions and constrain the uncertainties of the estimated flows. 
Overcoming these limitations is not straightforward and there is not a 
general framework for accounting for these conceptual uncertainties or 
validating assumptions. Some authors have suggested evaluating the 
most sensitive parameters using multiple approaches and obtaining final 
SGD fluxes as an ensemble of results (e.g., Rodellas et al., 2021), 
combining multiple independent methods to constrain the magnitude of 
SGD (e.g., Zhou et al., 2018) or developing more complex transport 
models (e.g., Lamontagne and Webster, 2019b). For example, 
combining ‘terrestrial’ hydrogeological, oceanographic or geophysical 
approaches with tracers tools may help to improve SGD estimates. 
Producing more robust estimates of SGD is clearly a major open research 
topic in SGD and Ra investigations (see section 9.2). 

7.2. The assumption of steady-state needs to be validated 

A key general assumption in all the Ra-based approaches to quantify 
SGD is that all Ra fluxes (e.g., SGD-driven Ra flux, Ra diffusion from 
sediments, radioactive decay, Ra export offshore) are constant with 
respect to the timescale of the Ra isotope used and that the system is in 
steady state (i.e., Ra inputs equal Ra outputs). Therefore, any appro
priate SGD study should validate these assumptions considering the time 
the tracer resides in the system, i.e. the tracer residence time (Rodellas 
et al., 2021). The average residence time of Ra isotopes in the surface 
water system depends on the rate of removal of the isotope and thus on 
their different sinks. Given that the residence time of Ra isotopes (tRa) in 
most of the systems is mainly controlled by radioactive decay and export 
offshore (see Fig. 9), it can be estimated following Eq. 9 (Rodellas et al., 
2021): 

tRa ≈
1

λ + 1
tf

(9)  

where λ is the radioactive decay constant of the specific Ra isotope used 
and tf is the flushing time in the system due to mixing. This flushing time 
is equivalent to mean water residence time in systems where the influ
ence of evaporation and dispersion are negligible. Characteristic Ra 
residence time for study sites with different mixing timescales (i.e., 
different flushing times) are shown in Fig. 11. In systems where the 

timescales of transport processes exceeds that of radioactive decay (1/tf 
>> λ), the Ra residence time in the system is comparable to the temporal 
scale of coastal mixing. Thus, the assumptions of constant fluxes and 
steady state need to be validated on timescales of transport processes 
(Moore, 2015; Rodellas et al., 2021). For systems with negligible mixing 
processes relative to the isotope half-life (1/tf << λ), the Ra temporal 
scale is controlled by the radioactive decay of each isotope. In this latter 
case, the assumption of steady state and constant fluxes need to be 
validated on a timescale comparable to the mean life of the specific 
isotope used. Validating this assumption might thus be particularly 
challenging for long-lived Ra isotopes in systems with long flushing 
times. In those dynamic systems that present a relevant temporal vari
ability on the timescale of the tracer used (e.g., systems with variable 
surface water inputs, temporal changes of SGD or variable mixing 
offshore), the evolution of Ra concentration in sources, sinks and in
ventories in the water column need to be understood. Neglecting the 
transience of these parameters could lead to significant errors on the 
final SGD estimates. In such non-steady state systems, a dynamic 
modelling approach might provide a better representation of the studied 
system (Gilfedder et al., 2015). 

7.3. Ra isotopes cannot be used indistinctly to trace SGD 

Ra isotopes have been commonly used to estimate total SGD, often 
without consideration as to whether the Ra isotope used is actually 
capturing the entire discharge pathway(s) underlying these flows. This 
raises the question of whether or not the four Ra isotopes provide the 
same SGD estimates and if they therefore can be used indistinctly. 

In an idealized case where there is a unique SGD pathway or source 
(e.g., a karstic or volcanic area with a main coastal spring that dominates 
over any diffuse, non-point source discharge), all Ra isotopes should 
yield the same SGD flux, provided that i) all the Ra sources (aside from 
SGD) and sinks are appropriately constrained, ii) groundwater is suffi
ciently enriched with the Ra isotope used as a tracer, and iii) the SGD 
endmember is properly characterized. However, most natural systems 
do not satisfy these idealized conditions because of the ubiquitous 
presence of multiple driving forces (e.g., hydraulic gradient, wave and 
tidal pumping, bioirrigation) that result in concurrent inputs of Ra from 
different SGD pathways (Fig. 3). As illustrated in Fig. 6, the different 
SGD pathways are likely to have different groundwater composition and 
characteristic groundwater transit times, resulting in isotope-specific Ra 
enrichments, which may differ by orders of magnitude among different 
SGD pathways (Diego-Feliu et al., 2021; Michael et al., 2011). Different 

Fig. 11. Average residence times for different Ra isotopes as function of 
flushing time due to mixing (based on Rodellas et al., 2021). 
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Ra isotopes are thus incorporating different pathways in a characteristic 
proportion, and thus they are likely to produce different SGD estimates. 
For instance, whilst SGD estimates based on 223Ra and 224Ra are likely to 
incorporate inputs from all the pathways, long-lived Ra isotopes may not 
incorporate SGD induced by short-scale processes (cm-scale circulation 
or shoreface saline circulation) (King, 2012; Michael et al., 2011; Moore, 
2010; Rodellas et al., 2017) (Fig. 6). Therefore, when SGD is discharging 
via multiple pathways, all four Ra isotopes cannot be used indistinctly to 
obtain total SGD. 

Most Ra-based SGD studies aim at obtaining a single estimate of the 
total magnitude of SGD. In these cases, SGD is often treated as a single 
source, regardless of the difference in Ra activities of the multiple 
pathways, and only a single endmember is determined to represent the 
‘average’ Ra activity in groundwater discharging into the study site (i.e., 
CRa-SGD in Eq. 1). However, this Ra endmember should not be obtained 
from simple averages of all the SGD samples collected, because of 
possible biases towards the most sampled pathway. Michael et al. (2011) 
illustrated this issue by comparing SGD estimates obtained by sampling 
different pathways and showed that this could produce differences in 
final SGD estimates by more than an order of magnitude. Therefore, 
unless there is a comprehensive understanding of the system that allows 
constraining the relative contribution of different pathways, SGD esti
mates derived from a single Ra isotope might not be appropriate at sites 
with multiple pathways. 

The combination of multiple Ra isotopes can be instrumental in those 
systems where several pathways are hypothesized to significantly 
contribute to Ra budgets (see also section 7.5). Both total SGD and the 
relative contribution of different SGD pathways can be accurately ob
tained from the concurrent application of multiple Ra isotopes. The 
number of Ra isotopes to be used in the models will depend on the 
number of SGD pathways to be determined, as well as the amount of 
other potential unknowns (e.g., residence time, river contribution). This 
approach can be applied through concurrent mass balances (see section 
6.1; e.g., Rodellas et al., 2017; Tamborski et al., 2017a) or mixing 
models (e.g., Charette, 2007), provided that the Ra isotopes used have 
distinct relative enrichments (i.e., distinct Ra isotopic ratios) in the 
different pathways. Ra isotopes can also be combined with other tracers 
(e.g., silica, radon, salinity, stable isotopes, etc.) (e.g., Burnett et al., 
2006; Garcia-Orellana et al., 2010; Oehler et al., 2019; Schubert et al., 
2015) or approaches (e.g., seepage meters, Darcy estimates, heat 
tracing, tidal prism, hydrogeological models) (e.g., Garcia-Solsona et al., 
2010a,b; Povinec et al., 2012; Prieto and Destouni, 2005; Rosenberry 
et al., 2020), which can decisively contribute towards the quantification 
of the different pathways and the appropriate characterization of SGD. 

7.4. The Ra isotope(s) used need to be carefully selected 

The selection of the tracer used should ideally be based on the pro
cess to be studied and the characteristics of the study site, rather than on 
the methods available (e.g., salinity or radon are much better SGD 
tracers than radium in certain systems). Likewise, the best suited Ra 
isotope for any specific study also needs to be chosen based on the target 
SGD pathway of interest, the area studied and according to the sensi
tivity of the final estimates of Ra inputs and outputs, which is specific for 
each coastal water system (Tamborski et al., 2020a, 2020b). In principle, 
the time scale of the half life of the chosen Ra isotope should scale with 
the size and time escales of the system, such that the short-lived Ra 
isotopes are most effective at nearshore and embayment scales (e.g., 
Boehm et al., 2004; Knee et al., 2010; Rapaglia et al., 2012), while long- 
lived Ra isotopes are most effective at regional and global-scales (water 
residence times >100 days; e.g., Charette et al., 2015; Kwon et al., 2014; 
Liu et al., 2018; Moore et al., 2008; Rodellas et al., 2015a). In either 
scenario, radioactive decay can be easily estimated from the Ra in
ventory in the water column and this facilitates characterizing total 
output fluxes in systems where radioactive decay is the primary Ra sink. 
On the contrary, mixing losses of Ra isotopes can be highly uncertain, 

including both water exchange at the boundaries of the system and the 
Ra endmember concentration (Tamborski et al., 2020a, 2020b). Given 
that long-lived Ra isotopes are highly sensitive to mixing in coastal areas 
(i.e., estuaries, coastal lagoons), they may not be adequate tracers of 
SGD in coastal environments when mixing is uncertain (Ku and Luo, 
2008; Rutgers van der Loeff et al., 2018). Short-lived Ra isotopes are 
ideal for coastal areas where timescales are on the order of days; how
ever, sediment fluxes must be adequately characterized because they 
often represent a major source of short-lived Ra isotopes (Burt et al., 
2014; Rodellas et al., 2015b). Water column inventories of short-lived 
Ra isotopes integrate over time-scales similar to the Ra isotope half- 
life, and therefore multiple samplings are necessary if seasonal or 
annual variations in SGD want to be captured. 

7.5. Ra isotopes can contribute identifying the pathways of SGD 

A proper evaluation of SGD requires the understanding of the 
dominant SGD pathways. There are several hydrogeological, geophys
ical and geochemical characterization techniques (e.g., Folch et al., 
2020; Gonneea et al., 2008; Swarzenski et al., 2007b; Swarzenski et al., 
2006; Zarroca et al., 2014), as well as numerical modelling approaches 
(e.g., Amir et al., 2013; Anwar et al., 2014; Danielescu et al., 2009), that 
provide fundamental information about the origin and spatio-temporal 
scales of the different SGD pathways through the subterranean estuary 
(Fig. 6). The characterization of Ra isotopes and especially their activity 
ratios (e.g., 228Ra/226Ra and 224Ra/228Ra) in the subterranean estuary 
can also provide very useful information to constrain the presence of 
different SGD pathways in the study site. For instance, since 228Ra and 
226Ra belong to different decay chains (U and Th), the activity ratio of 
228Ra/226Ra may provide information about the Th/U ratio in the host 
material and thus be used to identify and distinguish groundwater 
inflowing from different geological systems (e.g., Charette and Buess
eler, 2004; Moore, 2006a, 2006b; Swarzenski et al., 2007a, 2007b). 
Additionally, the 224Ra - 228Ra parent-daughter relationship enables the 
use of the 224Ra/228Ra activity ratio for characterizing different SGD 
pathways. Whilst short-time-scale SGD pathways are likely to be more 
enriched in short-lived Ra isotopes relative to long-lived ones (Fig. 6) 
presenting thus high 224Ra/228Ra activity ratios (> 1), long-scale path
ways are likely to present similar 224Ra and 228Ra activities (i.e., 
224Ra/228Ra ~ 1) (Diego-Feliu et al., 2021). 

Moreover, the activity ratios of Ra isotopes in coastal seawater can 
also be used to evaluate the predominant discharge pathways of SGD, 
provided that Ra is mainly supplied to the coastal ocean by SGD (i.e., 
absence of any significant source such as diffusion from sediments, 
seawater or rivers). In this case and if radioactive decay is accounted for, 
the activity ratios of coastal seawater must reflect the combined 
contribution of the different SGD pathways, being biased towards the 
more relevant ones (Boehm et al., 2006; Moore, 2006b; Rodellas et al., 
2014). For instance, at a site dominated by short-scale pathways (e.g., 
porewater exchange), the 224Ra/228Ra activity ratio of coastal sea water 
is expected to be comparable to that of porewater (i.e., 224Ra/228Ra > 1). 

7.6. Estimates of SGD-driven solute fluxes need to account for the 
variable composition of different pathways 

The most commonly applied method to estimate fluxes of dissolved 
chemicals (e.g., nutrients, metals, contaminants) driven by SGD is by 
multiplying either the (Ra-derived) SGD water flow by the average 
concentration of the chemical solutes in the SGD endmember or the 
SGD-driven Ra flux by the average solute/Ra ratio in the SGD end
member (Charette et al., 2016; Hwang et al., 2016; Santos et al., 2011; 
Tovar-Sánchez et al., 2014). This straight-forward approach might be 
appropriate for systems with one dominant SGD pathway (provided that 
the endmember concentration is appropriately determined), but it 
should not be directly applied in systems with multiple SGD pathways or 
sources. This is mainly because the biogeochemical composition of 
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discharging fluids from different SGD pathways may be considerably 
different depending on the origin of solutes, their transformations 
within the subterranean estuary and the temporal and spatial scales of 
the different pathways (e.g., Rodellas et al., 2018; Santos et al., 2012; 
Tamborski et al., 2017a; Weinstein et al., 2011). Therefore, as discussed 
for Ra isotopes, the solute concentration obtained from averaging 
groundwater samples (and thus the flux estimates) is likely to be biased 
towards the most sampled pathway, and is not representative of the 
relative SGD flux from that pathway. For instance, terrestrial ground
water discharge (Pathway 1) often contains high concentrations of nu
trients and other compounds released from anthropogenic activities, 
whereas other SGD pathways may not be influenced by anthropogenic 
sources. Using only solute concentrations from wells and boreholes 
located within the low-salinity part of the subterranean estuary may 
result in average solute concentrations having a strong anthropogenic 
signal (e.g., high nutrient concentrations) that might not be represen
tative of SGD in sites influenced by pathways other than terrestrial 
groundwater discharge (see section 6.2). An appropriate understanding 
of the magnitude of solute fluxes driven by SGD, requires thus a previous 
identification of the dominant SGD pathways, which needs to be based 
on a detailed knowledge of the studied system. Sampling efforts should 
then be taken to target all the relevant SGD pathways for the particular 
system, particularly over the full-salinity gradient of the subterranean 
estuary. By doing so, the conservative and/or non-conservative behavior 
of the solute of interest can be determined, since some solutes can be 
chemically modified in the subterranean estuary by varying the ratio of 
solute to Ra along the SGD flow path. This is an essential step towards a 
correct quantification of SGD-driven solute fluxes in sites with multiple 
pathways and thus, towards a comprehensive understanding of the role 
of SGD for coastal biogeochemical cycles. 

8. Additional applications of Ra isotopes in groundwater and 
marine studies 

Aside from the application of Ra isotopes to quantify SGD, Ra iso
topes can also provide instrumental information that can help to 
constrain the different terms needed for SGD evaluations, as well as key 
information for characterizing hydrological and oceanic systems. In this 
section, we briefly summarize parallel applications of Ra isotopes in 
groundwater and marine studies, which include: i) assessing transit 
times in coastal aquifers; ii) estimating solute fluxes across the sed
iment–water interface; iii) estimating ages of coastal surface waters; and 
iv) quantifying shelf-scale solute fluxes. 

8.1. Assessment of groundwater transit times in coastal aquifers 

Constraining groundwater transit times in a coastal aquifer or in the 
subterranean estuary is a key question in characterizing coastal hydro
geology. Applications include deriving characteristic distances to the 
upgradient recharge points, evaluating the connectivity of the coastal 
aquifer with the sea, determining ages and velocities of groundwater, 
differentiating variable spatio-temporal scale processes and evaluating 
the potential transformation of solutes in the subterranean estuary 
(Diego-Feliu et al., 2021; Gonneea and Charette, 2014; Lerner and 
Harris, 2009; Werner et al., 2013). Since observational techniques are 
limited in the subsurface, hydrogeological tracers (e.g., H and O stable 
isotopes, 3He, 36Cl, CFCs) are commonly used to obtain key information 
on groundwater flow (Leibundgut and Seibert, 2011). In recent years, 
the activities of Ra isotopes have been used to evaluate groundwater 
dynamics in the subterranean estuary (Bokuniewicz et al., 2015; Kiro 
et al., 2013; Tamborski et al., 2019; Tamborski et al., 2017b), which can 
be a complementary method to other approaches based on atmospheric- 
introduced tracers, which mainly decay while traveling through an 
aquifer (Cook and Herczeg, 2012). To evaluate the distribution of Ra in 
aquifers, each of the inputs and outputs of Ra to groundwater needs to be 
constrained. These input and output terms, which are summarized in 

Section 5, include production, decay, desorption, adsorption, weath
ering and precipitation, as well as dispersion. The most common analysis 
of Ra distribution in groundwater often utilizes a one-dimensional 
transport model (Eq. 10), 

∂ARa

∂t
= L(ARa) − λRRaARa + λP − λВ+ λΓ (10)  

where ARa [Bq m− 3] is the activity of Ra in groundwater, t [s] is time, λ 
[s− 1] is the decay constant, and RRa [− ] is the linear retardation factor of 
Ra. Retardation is defined as the retention of a solute due to interaction 
with solid phases relative to bulk solution in a dynamic system 
(McKinley and Russell Alexander, 1993). The first term on the right 
hand-side of the eq. (10) is the linear operator for transport (L(ARa) = −

∇ qARa + ∇ D ∇ ARa, with q [m s− 1] and D [m2 s− 1] as the Darcy flux 
vector and the dispersion tensor, respectively) that includes the advec
tive and dispersive terms. The second and third terms are the radioactive 
decay of the exchangeable activity of Ra (i.e., adsorbed and dissolved) 
and production from Th in solution, solid surfaces, and in the effective 
alpha recoil zone (P [Bq m− 3]). The last two terms refer to the rate of co- 
precipitation (B [Bq m− 3]) and weathering (i.e., dissolution) (Γ [Bq 
m− 3]) of Ra, respectively. 

This equation is often simplified by assuming steady-state conditions 
(∂ARa/∂t = 0), negligible Ra co-precipitation (В = 0) and dissolution (Γ 
= 0), negligible dispersion relative to advection (L(ARa) = − ∇qARa), 
and defining a travel time along a streamline (here after transit time, τ 
[s]) (Eq. 11; Kiro et al., 2013; Michael et al., 2011; Krest and Harvey, 
2003; Schmidt et al., 2011; Tamborski et al., 2017b). 

ARa(τ) =
P

RRa
+

(

ARa,0 −
P

RRa

)

e− λRRaτ (11)  

where ARa, 0 is the activity of groundwater entering a streamline. 
This simple solution implicitly assumes that production rates are 

constant and thus it neglects the effect of spatial and/or temporal vari
ations in the parent isotope activities (e.g., geological heterogeneity). 
Moreover, the determination of groundwater ages, velocities or transit 
times using this equation strongly relies on an accurate determination of 
the retardation factor of Ra (RRa), which may also be spatially and 
temporally variable. The retardation factor of Ra is commonly deter
mined by using the distribution coefficient of Ra (Eq. 12; Michael et al., 
2011). 

RRa = 1+KD
ρs

ϕ
(12)  

where KD[m3 kg− 1] is the distribution coefficient, ρs [kg m− 3] is the dry 
bulk mass density, and ϕ is the porosity. 

If the production rate (P), the retardation factor of Ra (RRa) and the 
inflow boundary activities of Ra (ARa, 0) are known, groundwater 
transit times can be easily derived from eq. 11 using a single Ra 
isotope. However, determinations of P, RRa and ARa,0 are usually 
difficult and induce large uncertainties that must be propagated in the 
calculation of groundwater transit times. In practice, this may be 
difficult due to spatial and temporal variability that affects the four Ra 
isotopes differently. Although the processes are integrated along a 
single flowpath, short-lived isotopes have a much shorter ‘memory’ 
than long-lived isotopes, so short-lived Ra activities are more sensitive 
to production rates and retardation factors more proximal to the 
sampling point. Alternatively, when the model parameters are un
known, groundwater transit times may be determined by using mul
tiple Ra isotopes or activity ratios (e.g., 224Ra/228Ra) (Diego-Feliu 
et al., 2021; Tamborski et al., 2019). When the Ra production rate 
changes with depth, a depth-dependent 1D reactive transport model 
can be applied (Liu et al., 2019). Non-steady state conditions like 
variable hydrological forcing, wave set-up as well as tidal fluctuations 
may cause non-steady state conditions which may obscure ground
water transit times. Since this model assumes that there is no mixing 
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between two different types of groundwater (with different ages and 
Ra content), it can cause problems in the interpretation of the transit 
times when mixing does occur, largely because mixing is a linear 
process whereas radioactive decay and ingrowth are exponential 
(Bethke and Johnson, 2002). Since the determination of groundwater 
transit times requires some assumptions in solving the transport 
equation (eq. 11) and involved terms, independent verifications of Ra- 
derived transit times are strongly recommended. 

8.2. Solute flux across the sediment–water interface derived from Ra 
isotopes 

The transfer of solutes across the sediment-water interface, through 
both diffusion and advection, can have a major effect on the chemical 
composition of the overlying waters and shallow sediments. Traditional 
approaches to quantify water exchange and solute fluxes using Ra iso
topes rely upon one-dimensional reactive-transport models to reproduce 
porewater activities as a function of sediment production, bioturbation, 
molecular diffusion, dispersion and advection (Cochran and Krishnas
wami, 1980; Krest and Harvey, 2003; Sun and Torgersen, 2001). Recent 
analytical developments have allowed the measurement of surface- 
exchangeable 224Ra and particle-bound 228Th from sediment cores 
(Cai et al., 2012). Radioactive disequilibrium between the soluble 224Ra 
daughter and its particle-bound parent 228Th (T1/2 = 1.9 y) may be 
produced in sediments and their interstitial pore fluids from the trans
port of 224Ra as a result of molecular diffusion, bioturbation and irri
gation and/or SGD. Assuming that the in-situ decay of 228Th is the sole 
source of sediment 224Ra, a steady-state mass balance can be written 
(Cai et al., 2014; Cai et al., 2012) as Eq. 13. 

FRa =

∫ ∞

0
λRa
(
ATh,B − ARa,B

)
dz (13)  

where FRa is the flux of 224Ra across the sediment-water interface 
(Bq⋅m− 2 d− 1), z is the depth in the sediment where disequilibrium occurs 
(m), λRa is the 224Ra decay constant (0.189 d− 1) and ATh,B and ARa,B are 
respectively the activities of bulk 228Th and 224Ra (Bq⋅cm− 3) of wet 
sediment, which is obtained from a mass unit considering sediment dry 
bulk density (ρs = 2.65 g⋅cm− 3) and porosity (ø). A key advantage of the 
224Ra/228Th disequilibrium method over traditional reactive-transport 
models (Boudreau, 1997a; Meysman et al., 2005) is that 224Ra produc
tion is directly measured (via 228Th) for each sediment section, and thus 
this approach accounts for depth-varying production rates. 

Derivation of a benthic 224Ra flux from fine-grained (muddy) sedi
ments can in turn be used to quantify the transfer rate (Fi) of a dissolved 
species across the sediment-water interface (Cai et al., 2014) using Eq. 
14. 

Fi = FRa

(
Di

S

DRa
S

)

⎛

⎜
⎜
⎝

∂Ai/
∂z

∂ARa/
∂z

⎞

⎟
⎟
⎠ (14)  

where DS
i and DS

Ra are the in-situ molecular diffusion coefficients for 
dissolved species i and 224Ra, respectively, corrected for tortuosity and 
in-situ temperature (Boudreau, 1997b). The concentration gradients of 
dissolved species i (∂Ai/∂z) and 224Ra (∂ARa/∂z) are taken as the con
centration difference between overlying surface waters and shallow 
porewaters, typically measured at 1 cm depth, and are thus net solute 
fluxes (Cai et al., 2012, 2014). Note that the flux obtained in the Eq. 14 is 
translated from an adjusted Fick’s First Law (Eq. 15). 

F = − ξ⋅Φ⋅Ds
∂c
∂z

(15)  

where ξ is an area enhancement factor representing the extended 
subsurface interface and advective influences on the diffusive flux, and 
Ф is porosity. Although Eq. 14 only includes molecular diffusive 

coefficients of dissolved species i and 224Ra, it represents the sum of all 
processes that affect solute transfer across the sediment-water inter
face. The inherent assumption is that molecular diffusion is the rate- 
limiting step for solute transport. This approach is suitable to quan
tify fluxes across the sediment-water interface from shallow (< 20 cm) 
sediment cores in benthic and coastal (i.e., salt marsh) mud environ
ments for oxygen (Cai et al., 2014; Dias et al., 2016), dissolved inor
ganic carbon and nutrients (Cai et al., 2015), rare earth and trace 
elements (Hong et al., 2018; Shi et al., 2018, 2019b). Note that solute 
fluxes derived from Eq. 14 integrate over a time-scale of ~10 days and 
may greatly exceed fluxes determined from porewater gradients (Cai 
et al., 2014, 2015) and traditional sediment incubations, which alter 
the physical conditions of the sediments, and therefore may not cap
ture small-scale (mm to cm) advective processes (Hong et al., 2018; Shi 
et al., 2019b). More complicated diagenetic models of 224Ra have been 
developed for systems subject to significant bioturbation and particle 
reworking, and may thus require parallel sediment measurements of 
excess 234Th to accurately constrain 224Ra fluxes (Cai et al., 2014, 
2015). 

Concurrent sediment and water column 224Ra mass balances may be 
used to separate short-scale advective-diffusive processes (i.e., PEX) 
from other SGD pathways (Hong et al., 2017). In deeper sediment sys
tems, where seepage occurs laterally at depth (i.e., as SGD in coarse- 
grained sediments), Eq. 13 can be used for the horizontal (1-D) export 
flux of 224Ra, and thus horizontal water exchange rates (Q; L⋅m− 2⋅d− 1) 
can be estimated (Shi et al., 2019a) using Eq. 16, 

Q =
FRa

APW − Asea
(16)  

where APW and Asea represents the dissolved 224Ra activity in porewater 
from the seepage layer and seawater, respectively. In turn, solute fluxes 
may be estimated by considering the concentration difference between 
porewater and seawater of a given solute (Shi et al., 2019a). Similarly, a 
two-dimensional advective cycling model can be used to estimate water 
exchange and solute fluxes in sandy seabeds subject to wave and tidal 
pumping (Cai et al., 2020). In conclusion, application of the 224Ra/228Th 
disequilibrium method has been significantly expanded upon since its 
first introduction (Cai et al., 2012), and likely will continue to be 
expanded upon as more researchers apply this technique to different 
coastal environments. 

Whereas the approaches outlined above describe fluxes across the 
sediment-water interface, diapycnal mixing i.e., the mixing away from 
deep-sea sediments into the interior of the water column is one further 
process which can be quantified using Ra isotopes. As bottom sedi
ments are the source of Ra, the concentration gradient above the 
bottom sediments can be used to calculate vertical eddy diffusivity (see 
Eq. 8). So far very few studies applied this method (Huh and Ku, 1998; 
Koch-Larrouy et al., 2015). Nevertheless it may be an important 
approach to investigate the fate of benthic sourced solutes in the water 
column. 

8.3. Estimation of timescales in coastal surface waters 

The functioning and vulnerability of a coastal ecosystem (e.g., 
accumulation of contaminants, risk of eutrophication or harmful algal 
blooms) are often closely related to the retention of solutes (e.g., nu
trients, contaminants, suspended biomass) and thus the transport 
mechanisms of solutes in the system studied. Therefore, understanding 
the temporal scales of water and solute fluxes is crucial for coastal 
oceanography. Obtaining a flushing time of Ra in a coastal study is also a 
key parameter needed to estimate SGD through the Ra mass balance or 
the mixing model approach (see Section 6.1). Ra isotopes can provide 
instrumental information in this regard because the different decay 
constants of each isotope can help infer mixing timescales in coastal 
systems. There are two basic approaches to estimate water ages using Ra 
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isotopes (Moore, 2015): the “mummy” model, appropriate for systems 
with Ra inputs occurring near the shoreline (Moore, 2000a) and the 
“continuous input” model, recommended for systems where Ra is added 
over the entire study area, such as a shallow estuary (Moore et al., 2006). 
Both approaches are based on using activity ratios of a pair of Ra iso
topes to determine water apparent ages, which is the time elapsed since 
the water sample became enriched in Ra and isolated from the source 
(Moore, 2000a). Notice that these approaches are used to estimate 
“apparent ages”, defined as the time spent since a water parcel became 
isolated from the Ra source. “Apparent ages” are thus not equivalent 
with “flushing times”, although they are often used indistinctly in SGD 
literature (Monsen et al., 2002; Moore et al., 2006). However, evalua
tions of water apparent ages and flushing times might yield similar time 
estimates if the system is under steady-state and the comparison of 
flushing times and apparent ages is made across an entire study area 
(Tomasky-Holmes et al., 2013). 

Average water apparent ages for a system (tw) can be estimated as 
follows, depending on whether the Ra inputs occur at the shoreline 
(Mummy model; Eq. 17) or continuously (Continuous input model; Eq. 
18): 

tw =
ln(ARIn) − ln

(
ARSys

)

λs − λl
(17)  

tw =
ARIn − ARSys

ARSysλs − ARInλl
(18)  

where ARIn and ARSys are the activity ratios of the shorter-lived Ra 
isotope to the longer-lived one in the source (considering all the po
tential sources) and in the system, respectively, and λs and λl are the 
decay constants of the shorter-lived and longer-lived Ra isotope, 
respectively. The term λl can be neglected when a long-lived Ra isotope 
is used (226Ra and/or 228Ra). Both models assume that i) Ra activities 
and ARs are highest in the source (ARin > ARSys), ii) the ARin is constant, 
iii) the only Ra losses are due to mixing and radioactive decay, and iv) 
the open ocean contains negligible activities of the Ra isotopes used 
(Charette et al., 2001; Knee et al., 2011; Moore, 2006b; Moore, 2000a). 
The activity ratio of any pair of Ra isotopes can be used to estimate water 
apparent ages, provided that the half-life of the shorter-lived Ra isotope 
is appropriate for the water mixing time-scales expected in the study 
area (Moore, 2015). Typical water apparent ages estimated using 223Ra 
and 224Ra as the shorter-lived isotope range from ~1 to ~50 days (e.g., 
Dulaiova et al., 2009; Hancock et al., 2006; Krall et al., 2017; Moore 
et al., 2006; Rengarajan and Sarma, 2015; Sanial et al., 2015). The ac
curacy of these AR-based apparent water ages will depend on the 
analytical uncertainties associated with the isotopes used (e.g., un
certainties of 50–100% when water apparent ages are shorter than 3–5 
days (Knee et al., 2011). It should be noted that if water masses with 
different Ra content mix, the relative fractions of each water should be 
known for reliable apparent age estimates, otherwise the apparent age 
will tentatively be biased towards the younger water mass (Delhez et al., 
2003; Hougham and Moran, 2007). 

8.4. Ra-228 as tracer of offshore solute fluxes 

Solute fluxes from the coastal ocean derived from SGD, shelves and 
other continental sources have the potential to contribute to biogeo
chemical cycles of the open ocean via shelf-ocean exchange processes. 
However, while solute inputs to the coastal zone are relatively 
straightforward to obtain (e.g., Homoky et al., 2016), calculating their 
net input to the ocean has been a greater challenge owing to solute 
removal or addition processes that take place in estuaries or over the 
shelf. To address this shortcoming, Charette et al. (2016) proposed the 
use of 228Ra as a shelf solute flux gauge, which takes advantage of the 
global shelf 228Ra flux model developed by Kwon et al. (2014). The 
method is most easily applied where shelf-ocean exchange is primarily 

driven by eddy diffusion, whereby the net cross-shelf solute (S) flux can 
be linearly scaled with the net cross-shelf 228Ra flux as follows (see also 
6.1.): 

Sflux =
228Raflux ×

(
Sshelf − Socean

228Rashelf −
228Raocean

)

(19)  

where Sshelf and 228Rashelf are the average concentrations of the solute (e. 
g., trace metals, nutrients, dissolved organic carbon) of interest and 
228Ra over the shelf water column (<200 m). Because the shelf water is 
exchanging with the open ocean via mixing, the shelf solute and 228Ra 
concentrations must be corrected for their concentrations in the open 
ocean (Socean and 228Raocean). 

This technique only requires paired measurements of 228Ra and the 
solute of interest along a shelf-ocean transect. Given that lateral inputs 
of solutes to the ocean have been shown to be important on a global 
basis, for example as is the case with dissolved iron (Tagliabue et al., 
2014), this method is particularly valuable for oceanographic field 
studies where solute mass balance budgets are required. However, the 
application of this method requires validating the assumptions of 
negligible advection and steady-state conditions on the scale of the 
tracer used, which are not valid for all the systems. 

9. Conclusions and the future stage (>2020) 

9.1. Guidelines to conduct a SGD study 

This article reviews the application of Ra isotopes as tracers of SGD- 
derived inputs of water and solutes to the coastal ocean. In this final 
chapter, we provide a step-by-step protocol that should serve as 
simplified guidelines to perform a SGD study using Ra isotopes. This 
protocol is based on the 7 steps illustrated in Fig. 12. 

Step 1 – Definition of the objective of the study: SGD studies often 
focus on determining the significance of SGD in the water cycle or on its 
implications for coastal biogeochemical cycles. This objective de
termines the spatial scale of the study (e.g., nearshore vs shelf scale; 
evaluate spatial variability vs produce integrated estimates; spatial 
resolution), as well as the temporal scale (e.g., snap-shot observations vs 
continuous observations; base conditions vs episodic events; temporal 
resolution). The method(s) used to quantify SGD (e.g., water budgets, 
groundwater flow models, seepage meter or natural tracers such as 
radium, radon, salinity or heat) should be selected according to the 
specific objective of the study and the characteristics of the system. In 
case of using Ra isotopes, a clear definition of the objective will facilitate 
progressing towards the following steps. 

Step 2 – Characterization of the study site: Identifying the hy
drological (e.g., magnitude of surface water inputs, groundwater table 
elevation, system geology) and oceanographic characteristics (e.g., cir
culation drivers, system timescales, water depths and stratification) 
characteristics, the potential Ra sources and sinks, as well as the po
tential SGD pathways discharging to the study site (see Fig. 3). This 
characterization usually involves a combination of literature review, 
potentially preliminary samplings and the use of complementary tech
niques (e.g., salinity profiles, electrical resistivity tomography (ERT), 
thermal infrared (TIR) images, Rn surveys, water level measurements) 
from different disciplines (e.g., hydrogeology, geophysics, 
oceanography). 

Step 3 – Construction of a conceptual model: A conceptual model 
should consider the main SGD pathways, the predominant sources and 
sinks of Ra isotopes and the characteristics of the study site (e.g., water 
residence time). The conceptual model is fundamental to selecting the 
appropriate Ra isotope(s) to be used, and to determining the quantifi
cation approach, assumptions made and overall sampling approach. It is 
important that researchers clearly identify the assumptions of the 
approach they are applying and validate them. This step is crucial to 
characterize the limitations of the method used, to constrain the 
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uncertainties of the final estimates and, thus, to produce reliable and 
justifiable SGD estimates (see section 7.1). 

Step 4 – Selection of the Ra isotope(s): Ra isotopes applied in the 
study should be chosen according to the target process or pathway, the 
enrichment in Ra of discharging groundwaters, the potential sources and 
sinks in the study site and the residence time of the isotope in the study 
area (see Sections 7.3 and 7.4). 

Step 5 – Sampling Ra in all the compartments: Samples for Ra 
isotopes should be collected both in seawater and in all the potential 
endmembers (SGD from different pathways, open ocean, surface water, 
surface discharges, etc.). The collection of sediment samples or cores 
might also be required to evaluate inputs of Ra from sediments. Aside 
from Ra isotopes, concurrent samples for other parameters (e.g., 
salinity, water composition, stable isotopes (δ2H, δ18O) of water, con
centrations of nutrients, metals, contaminants) might also be collected 
depending on the objectives of the study. 

Step 6 – Quantification of SGD using Ra: The quantification 
approach (mass balance, endmember mixing model or export offshore) 
must be chosen according to the characteristics of the study site and 
considering the validity of model assumptions (see section 6.1). The 
quantification of SGD requires constraining the sources and sinks of Ra 
isotopes in the study area (step 6.1) and characterizing the appropriate 
Ra concentration in the SGD endmembers (step 6.2). In complex set
tings, the contribution from the different SGD pathways needs to be 
accurately accounted for to provide reliable SGD estimates. We note that 
this may not be possible in some study sites, and so the use of other 
tracers should be considered. Ideally, the estimates derived from Ra 
isotopes should be compared with other methods (e.g., seepage meters, 
other tracers, hydrogeological models) to validate and better constrain 
the results obtained. 

Step 6.1 – Constraining Ra sources and sinks: The accuracy of 
SGD estimates strongly rely on the appropriate quantification of the 
relevant sources and sinks of Ra at the study site. The significance of 
sources and sinks (and thus the accuracy with which these parameters 
need to be determined) depend on the characteristics of the study site 
(Fig. 8 and 9) and the Ra isotope used (see 7.3). 

Step 6.2 – Determination of the SGD endmember(s): The deter
mination of the Ra concentration in the SGD endmember(s) is often the 
major source of uncertainty of SGD estimates. In coastal system with a 
dominant SGD pathway, the Ra endmember concentration should be 
representative of this pathway. However, in more complex settings, the 
respective Ra endmembers for each of the pathways as well as its pro
portion of SGD contribution should be determined when possible (see 
Sections 6.2 and 7.5). Ra-based SGD assessments should focus their 
effort on accurately determining these endmembers. 

Step 7 – Quantification of SGD-driven solute fluxes: A represen
tative concentration of solutes or solute/Ra ratios in the SGD end
member/s needs to be determined to estimate SGD-driven solute fluxes. 
Importantly, the solute composition of different SGD pathways may be 
considerably different and specific endmembers should be determined 
for the different components. This is especially important for studies that 
aim to quantify SGD-driven solute fluxes (nutrients, metals, contami
nants, etc) or to evaluate the significance of SGD in coastal 

biogeochemical cycles (see Section 7.6). 

9.2. Knowledge gaps and research needs 

Despite the advances in the use of Ra isotopes as SGD tracer over the 
last decades reviewed in this article, several major research gaps remain 
open. We believe that the following issues should be addressed in future 
studies to improve the use of Ra isotopes as a tracer in SGD studies. 

Discriminating SGD pathways 
As highlighted in this review, identifying the SGD pathways or 

mechanisms that are most significant in contributing Ra isotopes at a 
specific study site is crucial to obtaining realistic SGD estimates. There is 
thus a need to obtain a conceptual understanding of the systems prior to 
the application of Ra isotopes to trace SGD. The combination of different 
Ra isotopes can be instrumental to quantify not only the total magnitude 
of SGD, but also the respective water flows supplied by different path
ways. Their discrimination will allow obtaining accurate estimations of 
the solute fluxes supplied by SGD, which will decisively contribute to
wards a better understanding of the role SGD plays in coastal biogeo
chemical cycles. 

Multi-method studies 
Comparisons of Ra-based SGD estimates with independent methods 

(e.g., other tracers, seepage meters, hydrological modelling) are a key 
step towards the validation and refinement of Ra-derived estimates. 
However, estimates derived from different methods are not always 
directly comparable because different approaches often capture 
different components of SGD or integrate over unique spatio-temporal 
scales. Using Ra isotopes to discriminate SGD pathways will thus facil
itate multi-method comparisons and, at the same time, multi-method 
studies can contribute to distinguishing different SGD components. 

Spatial and temporal Ra variability within the subterranean 
estuary 

There are still few studies constraining the spatial and temporal 
variability of Ra isotopes in the subsurface and Ra behaviour in the 
subterranean estuary is not properly understood. Field measurements 
should also be combined with reactive transport models to understand 
the spatio-temporal variability of Ra isotopes within the subterranean 
estuary and the role of physical mechanisms driving groundwater. 

Development of new analytical techniques for the measurement 
of Ra isotopes 

Most of the methods applied to measure Ra isotopes require pre- 
concentration of Ra from large sample volumes (usually 10–200 L) 
and measurements via radiometric techniques such as the RaDeCC sys
tem, gamma spectrometry, ICP-MS and TIMS systems. However, there is 
still the need for an accurate and easy methodology to measure the four 
Ra isotopes in small volumes of water (<1 L), allowing for the routine 
analysis of a large number of samples, and for determining Ra concen
trations in compartments where only small volumes can be sampled (e. 
g., porewaters, deep ocean). These developments would facilitate the 
improvement of the spatial and temporal resolution of Ra samples 
collected both in the subterranean estuary and the ocean and would 
allow, for instance, to assess Ra concentration changes over time, 
obtaining detailed Ra profiles in the water column or high-resolution Ra 

Fig. 12. Recommended step-by-step protocol to conduct SGD studies by using Ra isotopes based on the current state of the art.  
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distributions in the subterranean estuary. These methodological im
provements are thus crucial to move towards a better understanding of 
the different SGD pathways and their spatio-temporal scales. 

Uncertainties of Ra-derived SGD estimates 
SGD fluxes obtained from Ra isotopes have large uncertainties that 

are frequently overlooked. Propagated uncertainties associated with 
estimates should always and clearly be reported in SGD studies to 
facilitate understanding of the precision of tracer approaches. Impor
tantly, an accurate assessment of uncertainties should not only consider 
the uncertainties linked to individual parameters (e.g., analytical errors 
of Ra measurements, the standard deviation of Ra averages), but also 
those errors linked to the conceptualization of the system (e.g., 
assumption of steady state, selection of the endmember, assumptions 
linked to mixing loss assessments). 

Towards more robust Ra-derived SGD estimates 
All studies using Ra isotopes to quantify SGD processes are based on 

numerous assumptions that should be validated in order to produce 
accurate SGD estimates. In other words, most of the investigations using 
Ra isotopes produce SGD estimates, but the estimated fluxes are only 
meaningful and reliable if the assumptions and uncertainties of the 
model are properly understood, acknowledged, quantified, and 
accounted for. Authors working on SGD-related investigations should 
always be aware of the limitations of the tracers and approaches used. In 
some cases, traditional approaches (or the tracer itself) might not be 
appropriate for the system studied or the objective of the investigation, 
requiring the development of more complex models or the use of 
alternative/complementary methods. 
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2014. Delineating coastal groundwater discharge processes in a wetland area by 
means of electrical resistivity imaging, 224Ra and 222Rn. https://doi.org/10.1002/ 
hyp.9793. 

Zhang, Y., Schaap, M.G., 2019. Estimation of saturated hydraulic conductivity with 
pedotransfer functions: A review. J. Hydrol. 575, 1011–1030. https://doi.org/ 
10.1016/j.jhydrol.2019.05.058. 

Zhang, Y., Li, H., Xiao, K., Wang, Xuejing, Lu, X., Zhang, M., An, A., Qu, W., Wan, L., 
Zheng, C., Wang, Xusheng, Jiang, X., 2017. Improving Estimation of Submarine 
Groundwater Discharge Using Radium and Radon Tracers: Application in Jiaozhou 
Bay, China. J. Geophys. Res. Ocean. 122, 8263–8277. https://doi.org/10.1002/ 
2017JC013237. 

Zhou, Y.Q., Befus, K.M., Sawyer, A.H., David, C.H., 2018. Opportunities and Challenges 
in Computing Fresh Groundwater Discharge to Continental Coastlines: A Multimodel 
Comparison for the United States Gulf and Atlantic Coasts. Water Resour. Res. 54, 
8363–8380. https://doi.org/10.1029/2018WR023126. 

J. Garcia-Orellana et al.                                                                                                                                                                                                                       

https://doi.org/10.1016/j.marchem.2015.12.004
https://doi.org/10.1016/S0016-7037(02)01341-8
http://refhub.elsevier.com/S0012-8252(21)00182-3/rf1425
http://refhub.elsevier.com/S0012-8252(21)00182-3/rf1425
http://refhub.elsevier.com/S0012-8252(21)00182-3/rf1425
https://doi.org/10.1016/j.gca.2006.07.041
https://doi.org/10.1016/j.gca.2006.07.041
https://doi.org/10.1016/0278-4343(95)00031-U
https://doi.org/10.1016/0278-4343(95)00031-U
https://doi.org/10.1021/es802969r
https://doi.org/10.1016/j.marchem.2018.11.001
https://doi.org/10.1016/j.marchem.2018.11.001
https://doi.org/10.1038/s41467-019-14255-2
https://doi.org/10.1038/s41467-019-14255-2
https://doi.org/10.1002/lom3.10428
https://doi.org/10.1002/2016GC006502
https://doi.org/10.1016/j.marchem.2014.07.002
https://doi.org/10.1016/j.marchem.2014.07.002
https://doi.org/10.1016/j.cageo.2009.11.008
https://doi.org/10.1016/j.jenvrad.2008.08.008
https://doi.org/10.1016/j.jenvrad.2008.08.008
https://doi.org/10.1016/0016-7037(95)00141-7
https://doi.org/10.1029/2007jc004112
https://doi.org/10.1021/es104394r
https://doi.org/10.1021/es104394r
https://doi.org/10.1016/j.advwatres.2012.03.004
https://doi.org/10.2134/jeq1995.00472425002400050006x
https://doi.org/10.2134/jeq1995.00472425002400050006x
https://doi.org/10.1016/j.marchem.2007.07.010
https://doi.org/10.1016/j.marchem.2007.07.010
https://doi.org/10.1038/382121a0
https://doi.org/10.1038/382121a0
https://doi.org/10.1002/hyp.9793
https://doi.org/10.1002/hyp.9793
https://doi.org/10.1016/j.jhydrol.2019.05.058
https://doi.org/10.1016/j.jhydrol.2019.05.058
https://doi.org/10.1002/2017JC013237
https://doi.org/10.1002/2017JC013237
https://doi.org/10.1029/2018WR023126

	Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations
	1 Introduction
	2 Radium isotopes used as SGD tracers: historical perspective
	2.1 Early days: radium isotopes as tracers of marine processes (1900–1990)
	2.2 Development period: radium isotopes as SGD tracers (1990–2000)
	2.3 Expansion period: the widespread application of Ra isotopes as SGD tracers

	3 Submarine groundwater discharge: terminology
	4 Mechanisms controlling Ra in aquifers and SGD
	4.1 Radioactive production and decay
	4.2 Adsorption and desorption
	4.3 Weathering and precipitation
	4.4 Groundwater transit time

	5 Sources and sinks of Ra isotopes in the water column
	5.1 Radium sources
	5.2 Radium sinks

	6 Quantification of SGD using Ra isotopes
	6.1 Ra-based approaches to quantify SGD
	6.2 Determination of the Ra concentration in the SGD endmember

	7 Improving the current use of Ra isotopes as SGD tracers
	7.1 Validation of model assumptions and consideration of conceptual uncertainties
	7.2 The assumption of steady-state needs to be validated
	7.3 Ra isotopes cannot be used indistinctly to trace SGD
	7.4 The Ra isotope(s) used need to be carefully selected
	7.5 Ra isotopes can contribute identifying the pathways of SGD
	7.6 Estimates of SGD-driven solute fluxes need to account for the variable composition of different pathways

	8 Additional applications of Ra isotopes in groundwater and marine studies
	8.1 Assessment of groundwater transit times in coastal aquifers
	8.2 Solute flux across the sediment–water interface derived from Ra isotopes
	8.3 Estimation of timescales in coastal surface waters
	8.4 Ra-228 as tracer of offshore solute fluxes

	9 Conclusions and the future stage (﹥2020)
	9.1 Guidelines to conduct a SGD study
	9.2 Knowledge gaps and research needs

	Declaration of Competing Interest
	Acknowledgements
	References


