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P E R S P E C T I V E

On the need for integrating cancer into the One Health 
perspective

Summary
Recent pandemics have highlighted the urgency to con-
nect disciplines studying animal, human, and environment 
health, that is, the “One Health” concept. The One Health 
approach takes a holistic view of health, but it has largely 
focused on zoonotic diseases while not addressing on-
cogenic processes. We argue that cancers should be an 
additional key focus in the One Health approach based 
on three factors that add to the well- documented impact 
of humans on the natural environment and its implica-
tions on cancer emergence. First, human activities are 
oncogenic to other animals, exacerbating the dynamics 
of oncogenesis, causing immunosuppressive disorders in 
wildlife with effects on host– pathogen interactions, and 
eventually facilitating pathogen spillovers. Second, the 
emergence of transmissible cancers in animal species (in-
cluding humans) has the potential to accelerate biodiver-
sity loss across ecosystems and to become pandemic. It is 
crucial to understand why, how, and when transmissible 
cancers emerge and spread. Third, translating knowledge 
of tumor suppressor mechanisms found across the Animal 
Kingdom to human health offers novel insights into can-
cer prevention and treatment strategies.

1  |  INTRODUC TION

The “One World– One Health” concept, initiated in 2004, recognizes 
the close connections between health of humans and that of other 
animals and our shared environment. The importance of this con-
cept is evidenced by the accelerated emergence or re- emergence 
of zoonoses (e.g., Ebola, current COVID- 19 pandemic) over the last 
decades (Peyre et al., 2021). Although the One Health approach 
proposes a holistic view of health, it has, and still remains, largely 
focused on zoonotic and vector- borne diseases. Reasons behind 

this bias are multiple, ranging from the fact that historically it has 
originated from a collaboration between human and veterinary med-
icines, and also because zoonotic diseases undoubtedly represent 
major health and economic threats to human societies. The scope 
has broadened with the inclusion of other fields, such as antimicro-
bial resistance (WHO, 2015), (eco)toxicology, and health in urban en-
vironments (Destoumieux- Garzón et al., 2018), but not cancer.

The impact of human activities on the natural environment and 
their implications on cancer emergence in humans have been largely 
documented (e.g., anthropogenic pollution, occupation, food, and 
lifestyle; Aktipis & Nesse, 2013) (Briffa et al., 2020; Erren et al., 
2015; Turner et al., 2020). These effects and their consequences 
could increase in the context of climate change (Hiatt & Beyeler, 
2020). Beyond this acknowledged link between the environment 
and cancer, we discuss here three reasons for a broader inclusion of 
cancer into the One Health concept.

First, the interplay/interactions between cancer and infectious 
diseases make arduous to separate these communicable and non- 
communicable diseases, and their combination could pose higher 
risk for human and animal health. For instance, cancers can cause 
immunosuppression 2020); cancers can also be induced by patho-
gens (Ewald & Swain Ewald, 2015; Jacqueline et al., 2017). However, 
little attention has been paid to the role of human- induced cancers 
in infectious diseases’ emergence and spread. Human activities el-
evate cancer incidences for wildlife species (via chemical pollution, 
changes in diet, and reductions in genetic diversity; Baines et al., 
2021; Giraudeau et al., 2018; Sepp et al., 2019; Ujvari et al., 2018). As 
in humans, cancer burdens generate a range of immunosuppressive 
disorders in livestock, and likely in wildlife (Pollock & Roth, 1989; 
Vittecoq et al., 2013). Animals with cancer, human or otherwise, 
may be more susceptible, contagious, and debilitated by infectious 
diseases. Therefore, the evolutionary mismatch between enhanced 
human- induced cancer risks and maladapted cancer defense levels in 
animals will indirectly amplify pathogen dynamics in wildlife, in both 
natural and human- dominated ecosystems. In undisturbed natural 
environments, a fraction of pathogens is generally maintained by the 
presence of immunocompromised individuals, a stable equilibrium, 
that has been reached over evolutionary time (Hassell et al., 2021). 
By accelerating cancer incidence and the dynamics of oncogenesis, 
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anthropogenic activities can disrupt these equilibria. These altered 
dynamics are complex and not merely correlated with pollution lev-
els, but also driven by, for example, the different susceptibilities of 
exposed species to carcinogenesis. For instance, a benthic lifestyle 
within fish communities contributes to elevated cancer incidence 
through chronic exposure to contaminated sediment and/or con-
sumption of contaminated invertebrates (Black & Baumann, 1991; 
Martineau et al., 2002). The consequences of these disturbances are 
difficult to predict given the cascade of indirect effects that may 
subsequently occur. For example, the impact of higher cancer inci-
dences and carcinogens will depend on the species most affected 
by cancer (e.g., predators or prey species) and the resulting immu-
nosuppressive disorders (see, for instance, Perret et al., 2020). The 
relationship between an animal's immunosuppression and cancer 
burden (e.g., linear, exponential, negative binomial, and with or with-
out critical thresholds) may also vary with species and/or with the 
organ in which malignancies develop. Clearly, the roles of pollution- 
induced oncogenesis and immunosuppression in boosting pathogen 
communities in wildlife and their spread to humans are poorly un-
derstood at the moment. Given that parasitism and disease spread 
may also be limited in ecological communities via mechanisms such 
as the dilution effect (Civitello et al., 2015), pollution- induced onco-
genesis could amplify these transfers if it concomitantly promotes a 
decline in biodiversity.

A second reason for elevating the importance of cancers in the 
One Health approach concerns cancers that can themselves become 
transmissible. There are currently nine known transmissible cancer 
lineages (one in dogs, two in Tasmanian devil populations, and six 
in marine bivalves; Dujon, Bramwell, et al., 2020; Dujon, Gatenby, 
et al., 2020), some of which threaten the survival of animal popula-
tions (and species) and are detrimental to ecosystem stability (see, 
for instance, Hamede et al., 2020). Indubitably, this number is a gross 
underestimate due to poor monitoring of cancer in wildlife (Dujon, 
Bramwell, et al., 2020; Dujon, Gatenby, et al., 2020; Dujon, Ujvari, 
et al., 2020; Ujvari et al., 2016). The conditions for the emergence 
of transmissible cancers, while poorly understood, require a perfect 
storm of sequential steps that is reminiscent of a parasitic lifestyle. 
First, the tumor must shed a large number of cells that are able to 
survive outside of or on the surface of the original host. Those cells, 
when in contact with a new host, must then evade immune recog-
nition (particularly challenging in vertebrates) and successfully pro-
liferate in the correct tissue of the new host (Ujvari et al., 2017). 
Environmental stress, lack of genetic diversity within the host popu-
lation, and other infectious diseases may weaken the host's immune 
system enabling transmission and establishment of cancer cells from 
one individual to another (Dujon, Bramwell, et al., 2020; Dujon, 
Gatenby, et al., 2020; Dujon, Ujvari, et al., 2020). Human activities 
may also disperse certain transmissible cancers across the globe, 
giving previously isolated outbreaks pandemic potentials. Already, 
a single transmissible cancer lineage has been observed in multiple 
marine mussel species across multiple oceans, suggesting dispersal 
by aquaculture and/or shipping (Bramwell et al., 2021; Skazina et al., 
2021; Yonemitsu et al., 2019). A full understanding of the ecological 

impacts of transmissible cancers on ecosystems and biodiversity 
will require integrating tools from landscape ecology, conserva-
tion biology, and epidemiology to identify wildlife species at risk of 
contagious malignant cell lines, detect their emergence, anticipate 
their spread, and evaluate consequences to natural and human- 
dominated ecosystems (Bramwell et al., 2021; Dujon et al., 2020; 
Dujon, Gatenby, et al., 2020; Dujon, Ujvari, et al., 2020). A worst- 
case scenario might involve the emergence of a communicable can-
cer in humans or in livestock, yielding environmental and human/
animal health crises similar to classical epidemics and epizootics.

Finally, a third reason to consider cancer in the One Health ap-
proach lies in the scientific insights provided by comparative on-
cology focusing on the diverse tumor suppression mechanisms 
that have evolved across the animal kingdom (Nunney et al., 2015; 
Schiffman & Breen, 2015). Cancers appeared during the transition 
from unicellular to metazoan life, approximately one billion years ago 
(Domazet- Lošo & Tautz, 2010). Cancers occur in all branches of mul-
ticellular life, and they have evolved diverse adaptations to prevent 
cancer initiation, suppress malignant progression, and alleviate nega-
tive fitness consequences of tumor burdens (Aktipis et al., 2015). For 
instance, one might expect large/long- lived animals to have more 
cancers than smaller/shorter- lived ones, given that the former have 
many more cell divisions that potential give rise to cancer- initiating 
mutations, but such a relationship across species is not observed, due 
to the various mechanisms of cancer resistance that have evolved in 
large and long- lived species (i.e., Peto's Paradox, Tollis et al., 2017). 
Even in smaller species, under particular ecological conditions, se-
lection can favor high levels of cancer resistance, as observed in 
naked- mole rats and bats (Lambert & Portfors, 2017; Seluanov et al., 
2018; Tian et al., 2013). Scientists are increasingly focusing on the 
ways natural selection has protected animal species from cancer 
(Boutry et al., 2020). This work is deciphering the underlying tissue, 
cellular, and genomic mechanisms in cancer- resistant/tolerant spe-
cies (Abegglen et al., 2015; Keane et al., 2015; Sulak et al., 2016). 
Another particularly interesting direction of comparative oncology 
investigates the local evolution of adaptations in species or popu-
lations that have been living in environments with excesses of nat-
urally occurring carcinogens (Hourdez et al., 2021; Vittecoq et al., 
2018). To what extent do these populations show adaptations to 
prevent the emergence of cancer versus adaptations to mitigate the 
negative effects of cancer burdens? To what extent do these popula-
tions’ anti- cancer adaptations increase or decrease susceptibility to 
infectious diseases? Of particular interest would be adaptations that 
simultaneously reduce cancer and infections. Studying species and 
ecological communities chronically exposed to carcinogens, with 
a particular focus on host– pathogen dynamics, could shed light on 
the possible impacts and repercussions of human- induced cancers 
within wildlife species (Vittecoq et al., 2018). From a medical per-
spective, the adaptations of long- lived mammals and other species 
for preventing and suppressing cancer should inspire nature- based 
solutions to cancer, such as novel cancer treatment strategies, by 
mimicking the processes allowing these organisms to prevent or limit 
malignant progression despite high levels of mutagenic substances. 
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Thus, comparative oncology offers key insights into cancer epidemi-
ology, prevention, and novel therapies for humans.

In conclusion, humans, domestic animals, and wildlife species are 
on the front lines of environmental changes and exposure to toxic 
hazards from anthropogenic activities. While it is well recognized 
that these processes directly affect immunity and hence pathogen 
dynamics (e.g., Dittmar et al., 2014; Tracy et al., 2020), much less is 
known concerning the indirect links resulting from interactions in-
volving non- communicable diseases, such as cancer. The direct and 
indirect effects do not necessarily yield the same outcomes. Cancer- 
causing or cancer- associated processes are undoubtedly an under-
appreciated health consequence of modern anthropogenic changes, 
and they cannot be considered in isolation from other biological 
players in ecosystems, especially pathogens. Ecological impacts, 
sooner or later, are usually followed by evolutionary responses, 
leading to novel equilibria in ecosystems. However, we currently 
ignore how the novel equilibria will be achieved and shaped in an 
increasingly stressful world. A particular question remaining to be 
answered is how pollution and consequent oncogenic processes will 
impact infectious diseases and thus human health particularly be-
fore reaching a novel equilibrium. Exploring the interplay between 
human activities, novel cancer risks experienced by wildlife species, 
cancer defense evolution, biotic interactions, and infectious disease 
dynamics, notably those transmissible to humans, should become a 
stronger topic within the One Health perspective (Figure 1). Because 
one single method or model cannot thoroughly describe these com-
plex dynamics, more than ever researchers must engage in greater 
exchanges and collaborations involving different disciplines, such as 
field and experimental ecology, epidemiology, eco- toxicology, im-
munology, evolutionary biology, oncology, and pharmacy.
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