
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20027  | https://doi.org/10.1038/s41598-021-99457-9

www.nature.com/scientificreports

Spatio‑temporal analysis 
and prediction of malaria 
cases using remote sensing 
meteorological data in Diébougou 
health district, Burkina Faso, 
2016–2017
Cédric S. Bationo1,2,6, Jean Gaudart3,4*, Sokhna Dieng1, Mady Cissoko1,4, Paul Taconet2,6, 
Boukary Ouedraogo5, Anthony Somé6, Issaka Zongo6, Dieudonné D. Soma2,6,7, 
Gauthier Tougri8, Roch K. Dabiré6, Alphonsine Koffi9, Cédric Pennetier2,6,9 & 
Nicolas Moiroux2,6

Malaria control and prevention programs are more efficient and cost‑effective when they target 
hotspots or select the best periods of year to implement interventions. This study aimed to identify 
the spatial distribution of malaria hotspots at the village level in Diébougou health district, Burkina 
Faso, and to model the temporal dynamics of malaria cases as a function of meteorological conditions 
and of the distance between villages and health centres (HCs). Case data for 27 villages were collected 
in 13 HCs. Meteorological data were obtained through remote sensing. Two synthetic meteorological 
indicators (SMIs) were created to summarize meteorological variables. Spatial hotspots were 
detected using the Kulldorf scanning method. A General Additive Model was used to determine 
the time lag between cases and SMIs and to evaluate the effect of SMIs and distance to HC on the 
temporal evolution of malaria cases. The multivariate model was fitted with data from the epidemic 
year to predict the number of cases in the following outbreak. Overall, the incidence rate in the area 
was 429.13 cases per 1000 person‑year with important spatial and temporal heterogeneities. Four 
spatial hotspots, involving 7 of the 27 villages, were detected, for an incidence rate of 854.02 cases 
per 1000 person‑year. The hotspot with the highest risk (relative risk = 4.06) consisted of a single 
village, with an incidence rate of 1750.75 cases per 1000 person‑years. The multivariate analysis 
found greater variability in incidence between HCs than between villages linked to the same HC. The 
time lag that generated the better predictions of cases was 9 weeks for SMI1 (positively correlated 
with precipitation variables) and 16 weeks for SMI2 (positively correlated with temperature variables. 
The prediction followed the overall pattern of the time series of reported cases and predicted the 
onset of the following outbreak with a precision of less than 3 weeks. This analysis of malaria cases 
in Diébougou health district, Burkina Faso, provides a powerful prospective method for identifying 
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and predicting high‑risk areas and high‑transmission periods that could be targeted in future malaria 
control and prevention campaigns.

Abbreviations
WHO  World Health Organization
CI  Confidence interval
IPT  Intermittent preventive treatment
RDT  Rapid diagnostic test
SMC  Seasonal malaria chemoprevention
LLIN  Long-lasting insecticidal net
IRS  Indoor residual spraying
HC  Health Centre
SMI  Synthetic meteorological indicator
PCA  Principal component analysis
GAM  Generalized additive model
GLM  Generalized linear model
UBRE  Unbiased risk estimator
GAMM  Generalized additive mixed model
SIR  Standardized incidence ratio
RR  Relative risk
SD  Standard deviation

Malaria is one of the most life-threatening diseases and poses a great socio-economic burden  worldwide1. Accord-
ing to World Health Organization (WHO) estimates, the global number of malaria cases was 229 million in 2019 
compared to 251 million in 2010 and 214 million in  20151. Although the estimated number of cases decreased 
by 23 million from 2010 to 2018, data for the period 2015–2018 highlight the lack of significant progress during 
this period. In 2018, the WHO African Region accounted for most cases (200 million or 93% of all cases), far 
ahead of the WHO South-East Asian region (3.4%) and the WHO Eastern Mediterranean Region (2.1%)1. At the 
time, nearly 80% of global malaria deaths were concentrated in 17 countries of the WHO African Region and in 
India. The WHO estimates that Burkina Faso carries about 6% of the global malaria  burden1. Statistical data from 
the Ministry of Health of Burkina Faso for the year 2018 show that malaria is the second reason for consulta-
tion (31.7%), and that pregnant women and children under 5 years are the most at risk of contracting  malaria2. 
According to those data, the average parasite prevalence in children under 5 years was 17% in 2017–20182,3. In 
2018, the number of confirmed cases reported in health facilities was 11,624,595 of which 4.14% were severe 
forms and 2.8% resulted in death.

The National Malaria Control Program in Burkina Faso recommends the following control  strategies4: early 
case management in health facilities and at the community level, with a particular focus on children aged 3 to 
59  months5; intermittent preventive treatment (IPT) for pregnant women; universal access to rapid diagnostic 
tests (RDTs) and artemisinin-based combination therapies; seasonal malaria chemoprevention (SMC) for chil-
dren under 5 years; and vector control using long-lasting insecticidal nets (LLINs), indoor residual spraying 
(IRS), larval control, and environmental sanitation.

For strategic reasons or lack of resources, not all of these strategies are optimally implemented everywhere and 
all the time. Thus, in 2018, 25% of households reported not owning an LLIN (with coverage varying between 58 
and 87% depending on the region) and 42% of pregnant women did not receive the recommended three doses 
of IPT, as reported by the Burkina Faso Malaria Indicator  Survey6.

At the same time, new tools and strategies are being developed, including administration of ivermectin, bi-
impregnated nets, transmission-blocking vaccines, and conventional  vaccines4,7,8. In Burkina Faso, the REACT 
project (“Insecticide resistance management in Burkina Faso and Côte d’Ivoire: A study on vector control strate-
gies”) conducted in 2016–2018 aimed to evaluate the efficacy of strategies designed to complement LLINs, namely 
pirimiphos methyl-based IRS, enhanced communication, and administration of ivermectin to domestic animals.

Malaria control and prevention programs are more efficient and cost-effective when they target high-risk 
spatial clusters (hotspots)9 or when they select the best times of  year10 to initiate interventions (e.g. SMC or LLIN 
distribution). Indeed, as numerous studies have shown, malaria incidence at the local level is heterogeneous and 
associated with spatio-temporal  clusters11–13 that are likely to maintain transmission during low-risk periods and, 
consequently, to increase transmission during high-risk  periods14–16. Identifying these clusters can therefore help 
to improve the fight against malaria and to anticipate future outbreaks.

This study aimed to identify the spatial distribution of malaria hotspots at the village level in Diébougou 
health district, Burkina Faso, and to model the temporal dynamics of malaria cases as a function of meteoro-
logical conditions and of the Euclidean distance between villages and their corresponding health centres (HCs). 
Data on malaria cases were obtained through HC-based passive case detection for the 27 villages included in 
the REACT project.

Materials and methods
Study area. The study was conducted in 27 villages of Diébougou health district that were included in the 
REACT project. All included villages met two criteria: a population between 200 and 500 inhabitants and a 
Euclidean distance of at least 2 km from the nearest village. A population census carried out in July 2016 by our 
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research team found that the 27 villages were home to 7408 inhabitants. The villages were linked to 13 HCs. Vil-
lages and HCs were geo-referenced using Global Positioning System (GPS) (Fig. 1).

Diébougou health district is located in South-Western Burkina Faso, a region characterized by a tropical 
climate with a dry season from October to April and a rainy season from May to September. The dry season is 
divided into a cold dry season lasting from December to February and a hot dry season lasting from March to 
April. Average daily minimum and maximum temperatures in the cold dry, hot dry, and rainy seasons are 18 and 
36 °C, 25 and 39 °C, and 23 and 33 °C, respectively. Average annual rainfall is 1200 mm. The natural vegetation is 
dominated by wooded savannah dotted with clear forest  gallery17,18. Let’s remind that Burkina Faso is spread over 
3 climatic zones: in the north, (Sahelian zone), rainfall is less than 600 mm/year. While the centre (or northern 
Sudanese) zone receives 600–900 mm/year, rainfall in the southern (or southern Sudanese, where Diebougou 
is located) zone exceeds 900 mm/year.

Passive case detection. Case data for the 27 villages included in the REACT project were collected using 
continuous HC-based passive case detection during 2016 and the first 36 weeks of 2017, which corresponded 
to the period preceding the implementation of the interventions studied (i.e. pirimiphos methyl-based IRS, 
enhanced communication, and administration of ivermectin to domestic animals). Specifically, consultation 
data for village residents were retrieved from each HC registries and recorded using tablets equipped with Open 
Data Kit collect forms. A malaria case was defined as a person who presented with fever and had a positive RDT 
result.

Study period. Of the 88 weeks of data collection, 52 weeks corresponding to an epidemic year (a complete 
malaria epidemic) were considered for spatio-temporal analysis. The epidemic year ran from week 20 (in May) 
of 2016 to week 19 (in May) of 2017 (Fig. 2).

Meteorological data. The meteorological data used in this study were drawn from the Era-5 dataset from 
2016 to  201719 published by the European Centre for Medium-Range Weather Forecasts, which provides hourly 
estimates of several atmospheric and land parameters at a spatial resolution of 0.25°20. These data were aggre-
gated into weekly counts. The meteorological variables included in the analysis were: Weekly rainfall (mm), 
number of rainy days per week, weekly mean of daily average temperature (°C), weekly mean of daily minimum 
temperature (°C), weekly mean of daily maximum temperature (°C), weekly mean of daily average wind speed 
(km/h), weekly mean of daily average relative humidity (%), weekly mean of daily average atmospheric pressure 
(hPa), weekly mean of daily average cloud cover (%), and weekly mean of daily thermal amplitude (°C) (Table 1).

Figure 1.  Map of the study area showing the location of villages (triangles) and health centres (red crosses). 
Background: OpenStreetMaps. MOU moule, NIA niaba, NIP nipodja, BOH bohero, NBR niombripo, SAR 
sarambour, NBO niombouna, GBI gongombiro, KPA kpalbalo, DON dontelo, SID sidmoukar; DMB dombouro, 
OUI ouidiaro, TIA tiakiro, NAV nouvielgane, DIA diagnon, PAL palembera, KPE kpedia, SOU soussoubro, 
TDI tordiero, YLE yellela, YBE yelbelela, SKI sinkiro, DAN dangbara, KOU kouloh, LOB lobignonao, PER 
perglembiro.
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Data analysis and statistical methods. Meteorological data. To reduce the number of variables and 
avoid collinearity, we constructed synthetic meteorological indicators (SMIs) using a principal component 
analysis (PCA) of weekly meteorological variables. Different cofactors, affected by collinearity (such as rainfall, 
vegetation and temperature), are known to impact the parasitological cycle at different steps. Using PCA allowed 
keeping the main environmental characteristics without losing part of the environmental cofactors associated 
with malaria. Principal components that met Kaiser’s  criterion21 were selected as SMIs and included in the tem-
poral analysis.

Spatial analyses. Hotspots, i.e. high-risk clusters, were detected using the Kulldorf scanning  method22 with 
a Monte Carlo algorithm in a purely spatial analysis. The Kulldorf scanning method helps to identify spatial 
clusters based on geographical coordinates and to avoid the problem of multiple non-independent  tests22. We 
defined clusters as aggregates of cases with observed values higher than expected (i.e. unlikely to have been 
obtained by chance). The p-value (i.e. the probability, under the null hypothesis, that the expected number of 
cases is the same or higher than the observed number of cases) was calculated for each cluster.

Scan parameters were: elliptical window, non-overlapping clusters, maximum cluster size set at 50% of the 
population at risk, Monte Carlo replication number set at 999.

Temporal analyses. Lagged SMI selection. Several studies have observed a lag between malaria time series 
and meteorological data time  series14–16. In view of this, we decided to investigate the time lag (in weeks) between 
the time series of weekly malaria cases and the time series of SMIs. Using a generalized additive model (GAM) 
with a negative binomial distribution and a smoothing spline function, we modelled the time series of total 
malaria cases (for all villages) as a function of each SMI for time lags ranging from 1 to 30 weeks (thus generating 
30 models per SMI). The GAM is an extension of the generalized linear model (GLM): while it includes ran-
dom effects in the predictor like the GLM does, it can be used with nonparametric smoothing terms instead of 

Figure 2.  Time series of the number of malaria cases collected through passive case detection. The shaded 
(dark) area represents the epidemic year considered for analysis.

Table 1.  List of meteorological variables with their abbreviations and descriptive statistics. Var variables, St. 
Dev standard deviation, Min minimum, Pctl(25) first quartile, Pctl(75) third quartile, Max maximum.

Var. Mean St. dev Min Pctl (25) Median Pctl (75) Max

Tmean: weekly mean of daily average temperature (° C) 28.7 2.2 25.7 26.6 28.8 30.2 33.9

Re: number of rainy days per week 4.8 2.9 0 2 7 7 7

P: weekly mean of daily average atmospheric pressure (hPa) 975.3 1.6 972.3 974.0 975.5 976.7 978

Cl: weekly mean of daily average cloud cover (%) 0.6 0.2 0.1 0.4 0.6 0.7 0.9

W: weekly mean of daily average wind speed (km/h) 7.6 3.6 2.8 4.7 7.2 9.5 17.4

H: weekly mean of daily average relative humidity (%) 0.5 0.2 0.1 0.3 0.6 0.8 0.8

Tmax: weekly mean of daily maximum temperature (°C) 34.4 3.5 28.6 31.2 35.4 36.6 40.7

Tmin: weekly mean of daily minimum temperature (°C) 23.3 1.8 19.1 22.4 23.0 24.2 27.0

Rc: weekly rainfall (mm) 14.4 18.3 0.0 0.005 5.0 24.5 69.8

tvar: weekly mean of daily thermal amplitude (°C) 11.1 3.4 5.9 7.7 10.6 14.4 17.1
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constant  parameters23–25. The usefulness of the GAM lies in the fact that it provides a flexible method to identify 
the effects of non-linear covariates in exponential family distributions and in likelihood-based  methods26–28. 
However, instead of estimating a single parameter, the GAM provides an unspecified (non-parametric) general 
function that compares predicted response values to predictor values.

We compared the 30 models generated for each SMI using the unbiased risk estimator (UBRE), i.e. an unbi-
ased estimate of the mean square error of a non-linear biased estimator. For each SMI, the time lag associated 
with the best model (i.e. with the lowest UBRE) was selected for the multivariate analysis.

Multivariate time analysis. To account for the non-linearity of the relationship between the response and pre-
dictor variables, we analysed the time series of weekly cases reported in all villages during the epidemic year 
using a generalized additive mixed model (GAMM). To account for the non-independence of data from the 
same village or HC, we fitted this model with nested random intercepts for villages and HCs. The GAMM 
accounted for space and time processes, by using a Gaussian field and an auto-regressive model. The Gaussian 
field with a negative exponential variogram accounted for the spatial auto-correlation. The first-order auto-
regressive temporal auto-correlation structure was introduced, within the random part of the mixed model, 
to account for the temporal auto-correlation of malaria incidence. We analysed the time series of cases using 
selected lagged SMIs (with a smoothing spline function) and of the Euclidean distance between villages and their 
corresponding HCs as predictors. For each predictor, the standardized incidence ratio (SIR) was estimated by 
modelling the log-transformed population as the offset.

To account for the non-linearity of the relationship between the response and predictor variables, we calcu-
lated SIRs according to the deciles of the distribution of values for each predictor. Indeed, SIRs cannot be calcu-
lated with GAMs as they are with GLMs, because when the relationship between the response and the predictor 
is non-linear, SIRs are not constant across the range of values of the  predictor24,28.

Lastly, we tested the multivariate model fitted with data from the epidemic year to predict the number of 
cases in both 2016 and 2017.

Software and packages. Statistical analyses were performed using R software (version 3.6.1)29. The PCA 
was performed using the PCA function in the FactoMineR  package30. The GAMs and the GAMM were generated 
using the “gam” and “gamm” functions in the mgcv package,  respectively26–28. Data overdispersion was tested 
using the “dispersiontest” function in the AER  package31. The spatial analysis was performed using SatScan™ 
software (version 9.6). Maps were produced using QGIS software (version 3.10)32.

Ethics approval and consent to participate. The protocol of this study was reviewed and approved by 
the Institutional Ethics Committee of the Institut de Recherche en Sciences de la Santé (IEC-IRSS) and registered 
as No A06/2016/CEIRES and all the methods were performed in accordance with the guidelines and regulations 
stated in the protocol. Informed consent was obtained from all subjects and/or their legal guardian(s).

Results
Descriptive analysis. A total of 3179 malaria cases were reported in HCs during the epidemic year, corre-
sponding to an incidence of 429.13 cases per 1000 person-years. On average, 61.13 cases per week were reported, 
with a peak of 132 cases in week 31 of 2016 (week 1 of August; Fig. 2). The curve of cases over the epidemic year 
shows two peaks (Fig. 2): a very pronounced peak between weeks 27 and 45 of 2016 (August to November), 
which accounted for 60% of cases, and a less pronounced peak between weeks 7 and 11 of 2017 (mid-February 
to the end of March), which accounted for 12% of cases.

Synthetic meteorological indicators. The PCA conducted using Kaiser’s criterion led us to construct 
and retain two SMIs that explained 85.4% of the total inertia (Fig. 3A).

The first SMI (i.e. the first principal component) explained 52.9% of the total inertia. The variables that most 
contributed to this SMI, henceforth called SMI1, were mainly correlated with precipitation variables: weekly 
mean of daily thermal amplitude (18.24%, correlation coefficient r =  − 0.98), weekly mean of daily average relative 
humidity (17.74%, r = 0.96), weekly rainfall (14. 5%, r = 0.8), weekly mean of daily average cloud cover (13.32%, 
r = 0.83), number of rainy days per week (12.47%, r = 0.81), and weekly mean of daily maximum temperature 
(12.03%; r =  − 0.79) (Fig. 3B). The second SMI (i.e. the second principal component) explained 32.5% of the 
total inertia. The variables that most contributed to this SMI, henceforth called SMI2, were mainly correlated 
with temperature variables: weekly mean of daily minimum temperature (25.83%; r = 0.91), weekly mean of 
daily average temperature (24.72%; r = 0.89), weekly mean of daily maximum temperature (10.51%; r = 0.58), 
and weekly mean of daily average atmospheric pressure (19.6%, r =  − 0.79) (Fig. 3C).

The values of SMI1 were positive between late June and early October, which corresponds to the rainy 
season (Fig. 4). The values of SMI2 were positive between mid-February and mid-June, which corresponds to 
the hot dry season (March–June), and between October and November, which corresponds to the transition 
period between the rainy season and the dry season. Both SMIs were negative throughout the cold dry season 
(December–mid-February) (Fig. 4).

Spatial analysis. The spatial analysis allowed us to identify and map malaria hotspots for the epidemic year 
from week 20 (in May) of 2016 to week 19 (in May) of 2017. Four hotspots were detected that accounted for 
1685 cases in 1973 inhabitants, i.e. an average incidence rate of 854.02 cases per 1000 person-years (Fig. 5). These 
hotspots were mainly located in the southern and central parts of the study area. The hotspot with the highest 
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Figure 3.  Principal Component Analysis of meteorological variables. Percentage of inertia explained by each 
principal component (A). Contribution of meteorological variables to the first principal component (SMI1; 
(B)) and the second principal component (SMI2; (C)). SMI synthetic meteorological indicator, r correlation 
coefficient between the meteorological variable and the SMI. Abbreviations of variable names are detailed 
in Table 1. The dashed line represents the contribution that would have been expected if all variables had 
contributed equally to the SMI.

Figure 4.  Time series of synthetic meteorological indicator 1 (mainly correlated with precipitation variables) 
and synthetic meteorological indicator 2 (mainly correlated with temperature variables) from 2016 to 2017.
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risk (hotspot 1; relative risk (RR) = 4.06, p < 0.0001) consisted of a single village (Niombouna) and accounted for 
400 cases for 228 inhabitants, i.e. an incidence rate of 1,750.75 cases per 1000 person-years. The second hotspot 
(hotspot 2; RR = 1.84, p < 0.0001) was made up of three villages (Sinkiro, Yelbelela, and Dangbara) and accounted 
for 604 cases for 753 inhabitants, i.e. an incidence rate of 802.12 cases per 1000 person-years. The third hotspot 
(hotspot 3; RR = 1.92, p < 0.0001) was made up of a single village (Niombripo) and accounted for 326 cases for 
376 inhabitants, i.e. an incidence rate of 867.02 cases per 1000 person-years. The fourth hotspot (hotspot 4; 
RR = 1.24, p = 0.04) consisted of two villages (Bohero and Kpalbalo) and accounted for 355 cases for 616 inhabit-
ants, i.e. an incidence rate of 576.2 cases per 1000 person-years.

Temporal analysis. The time lag that generated the model with the lowest UBRE was 9 weeks for SMI1 and 
16 weeks for SMI2.

The multivariate analysis found greater variability in incidence between HCs (standard deviation (SD) = 5.74) 
than between villages linked to the same HC (SD = 0.69). The coefficient of the temporal autocorrelation structure 
indicated the presence of temporal autocorrelation between cases (Phi = 0.32, 95% CI [0.20, 0.38]).

In the multivariate model, lagged SMI1 and lagged SMI2 were significantly associated with the number of 
malaria cases at the village level (p < 0.001 and p < 0.001, respectively). The relationship between the number of 
cases and SMI1 (consisting mainly of precipitation variables) was positive and almost linear (Fig. 6A) across the 
range of values. A positive non-linear relationship was observed for SMI2 (consisting mainly of temperature 
variables), with the number of cases increasing for SMI2 values above zero (Fig. 6C). Below zero, changes in 
SMI2 values did not influence the number of cases (Fig. 6C). The Euclidean distance between villages and their 
corresponding HCs was not correlated to the recorded malaria incidence (p = 0.78).

The evolution of SIRs as a function of SMI values is presented in Fig. 6. For SMI1, risk was constant over 
deciles 1 to 3 (SIR = 1.07, 95% CI [1.03, 1.10], [1.05, 1.08], and [1.06, 1.08], respectively), increased from decile 4 
to 7, and then reached a plateau from decile 8 to 10 (SIR = 1.14 [1.14, 1.14]) (Fig. 6B). For SMI2, risk was constant 
over deciles 1 to 2 (SIR = 0.99, 95% CI [0.93, 1.05], and [0.98, 1.00], respectively), increased from decile 4 to 8 
(SIR = 1.37 [1.36, 1.37]), and then decreased from decile 9 to 10 (Fig. 6D). For the distance, no evolution in the 
risk was displayed (Fig. 6F).

Prediction. The multivariate model generated for the epidemiological year was used to predict the number 
of cases in the 27 villages for all of 2016 and for the first 36 weeks of 2017. The resulting prediction was super-
imposed on the time series of reported cases for graphical analysis (Fig. 7). The prediction followed the overall 
pattern of the time series of reported cases but with a tendency for underestimation, especially during the second 
peak in early 2017. In addition, the model predicted the onset of the malaria outbreak for the 2017–2018 epi-
demic year with a delay of three weeks.

Figure 5.  Map of malaria cases detected in 27 villages of Diébougou health district, Burkina Faso, for 
the epidemic year 2016–2017; hotspots identified with the Kulldorf scanning method. Background: 
OpenStreetMaps.
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Discussion
In this study, we analysed the spatio-temporal distribution of malaria cases in 27 villages of South-Western 
Burkina Faso.

The spatial analysis conducted using the Kulldorf scanning method helped to identify four malaria hotspots. 
The first three hotspots were located in the southern part of the study area and the last one was located in the 
central part, reflecting spatial heterogeneity in the distribution of cases. A comparison of the spatial distribu-
tion of these hotspots with that of mosquito vector  density33 showed no correlation between the two, leading 
us to conclude that the spatial heterogeneity of vector density does not explain the distribution of hotspots in 
our study area.

A number of studies have found an association between spatial inequalities in access to care and spatial 
heterogeneity of malaria  incidence34,35. Yet, contrary to what has been reported  elsewhere36, we failed to found 
a correlation between the number of malaria cases and the Euclidean distance between villages and their cor-
responding HC. We used Euclidean distance because it is considered the simplest proxy for travel time, which is 

Figure 6.  Relationship (red curve) between malaria cases and SMI1 (A), SMI2 (C), and Euclidean distance 
to health centre (E) with 95% confidence intervals (shaded area). Evolution of the standard incidence ratio 
(SIR) as a function of SMI1 (mainly correlated with precipitation variables) (B), SMI2 (mainly correlated with 
temperature variables) (D), and Euclidean distance to health centre (F).

Figure 7.  Cumulative number of reported cases (black line) and predicted cases (orange line) in 27 villages of 
South-Western Burkina Faso using a meteorological model.
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considered a good measure of access to care. However, Euclidean distance may not have been the best option, as 
roads in our study area are in highly variable condition and some become impassable during the rainy season, 
with some villages left completely isolated. Future studies in the region should use better proxies for travel time 
in trying to explain the detected  hotspots36.

Since entomological factors and spatial inequalities in access to care failed to explain the distribution of hot-
spots in our study area, other potential explanatory factors should be investigated in the future, including socio-
economic factors (level of education, income, professional activity, individual and societal behaviour, etc.)37–40 
and factors linked to LLIN  usage41–44. Such investigations could help to explain in particular why the two hotspots 
composed of a single village (Niombripo and Niombouna) had a much higher incidence than neighbouring 
villages. Nevertheless, hotspot analyses like ours make it possible to identify, in a simple and cost-efficient man-
ner, villages that can constitute priority areas for intervention. Indeed, studies conducted elsewhere have shown 
that targeting hotspots helps to reduce malaria  transmission45,46. This strategy is appropriate in resource-limited 
countries like Burkina Faso as it allows for efficient allocation of prevention  resources14–16.

Our analysis of the temporal dynamics of malaria cases found a strong correlation between malaria incidence 
and two SMIs with specific time lags. These SMIs were constructed through a PCA of meteorological data derived 
from readily and rapidly available satellite imagery. The first SMI (SMI1: positively correlated with cumulative 
rainfall, humidity, cloud cover, and number of rainy days, and negatively correlated with thermal amplitude) 
corresponded to the rainy season, while the second (SMI2: positively correlated with temperature and negatively 
correlated with atmospheric pressure) corresponded to the warm periods preceding and following the rainy sea-
son. We found that SMI1 and SMI2 predicted the number of cases with a time lag of 9 and 16 weeks, respectively, 
which is consistent with studies carried out in Burkina Faso, Mali, and  Ethiopia14,47,48.

In our study, the relationship between rainfall (SMI1) and the number of cases was quasi-linear, as was the 
case in a study performed in the Ouagadougou area of Burkina  Faso14. By contrast, two studies conducted in 
the Sahel region—one in Mali (Niger River Valley, Timbuktu region) and the other in Senegal (Bambey and 
Fatick Health Districts)—found a monotonic non-linear relationship between rainfall and malaria  incidence15,16. 
The drop in the number of cases above a certain level of cumulative rainfall observed in Mali and Senegal may 
be explained by the flushing out of larval breeding sites, which can lead to high mortality in Anopheles larval 
 populations49,50 and can reduce the human biting  rate50. Vector populations are almost monospecific in these 
two countries: They are largely dominated by An. arabiensis in  Senegal51,52 and by An. coluzzii in  Mali53. These 
two species are also present in our study area and in the Ouagadougou area of Burkina  Faso54. However, in both 
these areas, they live in sympatry with both An. gambiae s.s. and An. funestus33,55–57. The quasi-linear relationship 
observed in our study between rainfall and the number of malaria cases may be explained by the fact that these 
species are not very susceptible to flushing out, due to rapid larval development in the case of An. gambiae s.s.58,59 
and to a preference for deeper environments in the case of An. funestus60. These species may therefore relay An. 
coluzzii when abundances of this later fall due to excessive rainfall.

In our study, the relationship between the number of malaria cases and temperature (SMI2) was non-linear. 
This is consistent with findings from two other studies conducted in the Sahel region (in Mali and in the Oua-
gadougou area of Burkina Faso)14,15. However, unlike these studies, we found no negative relationship between 
the number of malaria cases and temperature at higher temperature values. This discrepancy may be explained 
by the fact that temperatures can reach higher values in Mali and in the Ouagadougou area (> 34 °C) than in the 
Diébougou region, which is sufficient to inhibit the development of Anopheles  larvae61 and to reduce the survival 
of adult  Anopheles62,63. In addition, we found that below a certain temperature, an increase in temperature had 
no effect on the number of cases (a finding also observed by Cissoko et al.15). Our hypothesis is that the increase 
in temperature, which should favour the development of Anopheles, is compensated by another phenomenon 
at low SMI2 values. While this phenomenon has yet to be clearly identified, high levels of LLIN usage during 
cooler periods may be a contributing  factor41.

Our spatio-temporal model fitted with two lagged SMIs and case data for a single epidemiological year 
helped to predict the start of the next outbreak nine weeks in advance, but with an error of three weeks (i.e. the 
actual outbreak began three weeks before the prediction). The prediction was good enough to make it possible 
to issue early warnings and to organize local prevention campaigns ahead of time. Our model could probably 
be improved with routine inclusion of new data and regular updated predictions. This study can be general-
ized to determine optimal periods and zones for prevention campaigns or interventions campaigns related to 
weather-related diseases such as dengue fever, malaria, etc.… Indeed, prioritizing a few numbers of areas and 
periods is helpful in strengthening malaria control programme in the context of lack of resources. This is even 
more important when countries will reach the pre-elimination phase: resources should then be concentrated 
on the most effective areas and periods. This is the principle of the “bottle neck”  approach11. On the other hand, 
recent papers have shown that there is no conclusive evidence that targeted hotspot interventions accelerate 
malaria elimination. Therefore, a targeted approach to high-risk individuals that allows for a precise delineation 
of parasite transmission networks within and between households may be  investigated45,64. For this purpose, 
data from HC consultations should be made available quickly, ideally at the same pace as ERA5 meteorological 
data (i.e. within 5 days). This can easily be achieved by using connected tablets for data entry.

Conclusion
In this study, a spatial analysis was conducted that highlighted the spatial heterogeneity of malaria cases and 
helped to identify four malaria hotspots in South-Western Burkina Faso. In the temporal analysis, an effective 
predictive model was built with data obtained through passive case detection and with simple and accessible 
meteorological data. Future studies should further investigate the detected hotspots to identify the local determi-
nants of transmission. Our spatio-temporal analysis provides a powerful prospective method to identify high-risk 
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areas that may constitute priority areas during malaria prevention campaigns. Since our approach allowed us 
to determine the hotspots and to predict the start of the next annual epidemic, this approach should be cost-
effective. Because of the scarcity of the resources in developing countries such as Burkina Faso, implementing 
the same policy at the same time through the whole health districts should be less cost-effective. Indeed, malaria 
epidemiology, at least onset, peak and length of malaria annual epidemic, is variable, as well as the environmen-
tal characteristics, through the country. Being able to determine areas and predict malaria onset dates can help 
policies makers to target actions at the right time and at the right places.

Data availability
The datasets analysed in this study may be available from the last author on reasonable request.
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