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a b s t r a c t 

Background COVID-19 was first detected in Wuhan, China, in 2019 and spread worldwide within a few 

weeks. The COVID-19 epidemic started to gain traction in France in March 2020. Subnational hospital 

admissions and deaths were then recorded daily and served as the main policy indicators. Concurrently, 

mobile phone positioning data have been curated to determine the frequency of users being colocalized 

within a given distance. Contrarily to individual tracking data, these can be a proxy for human contact 

networks between subnational administrative units. 

Methods Motivated by numerous studies correlating human mobility data and disease incidence, we 

developed predictive time series models of hospital incidence between July 2020 and April 2021. We 

added human contact network analytics, such as clustering coefficients, contact network strength, null 

links or curvature, as regressors. 

Findings We found that predictions can be improved substantially (by more than 50% ) at both the na- 

tional level and the subnational level for up to 2 weeks. Our subnational analysis also revealed the im- 

portance of spatial structure, as incidence in colocalized administrative units improved predictions. This 

original application of network analytics from colocalization data to epidemic spread opens new perspec- 

tives for epidemic forecasting and public health. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The COVID-19 pandemic revealed the importance of identifying 

arly predictors of epidemic dynamics. Indeed, for this infectious 

isease, hospital admission data are usually the most reliable indi- 

ator but suffer from a 2-week delay with the current state of the 

pidemic ( Salje et al., 2020; Sofonea et al., 2021 ). Screening test 

esults can provide closer monitoring but they often suffer from 

trong sampling biases. 

Mobility data gathered daily by telephone providers and Inter- 

et services can help to understand epidemic spread, as shown 

arly in the pandemic using individual mobility ( Kraemer et al., 
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020 ). More recently, it was observed that epidemic growth ratios 

nd effective reproduction numbers correlated with human mo- 

ility ( Badr et al., 2020; Cazelles et al., 2021; Fan et al., 2021 ),

hereas other studies have used mobility data as early predic- 

ors of disease incidence ( Funk et al., 2020; Paireau et al., 2021; 

ebrowski et al., 2021 ). For instance, mobile phone location data 

rovided by Google Mobility Trends were used to calibrate indi- 

idual movements ( Pullano et al., 2020 ). However, a limitation of 

uch data is that they involve only individual movement but dis- 

ase transmission requires at least two people. Here we use data 

rom Facebook Inc. that inform us on colocation (or colocalization); 

hat is, not just the position of a single individual but also possi- 

le interactions of individuals with respect to their administrative 

nit of residence (see ‘Materials and methods’ for details). Similar 

ata were used to simulate metapopulation models and investigate 

he effect of interventions on the resulting network ( Chang et al., 

021a; 2021b ). However, to our knowledge, these data have not yet 
iety for Infectious Diseases. This is an open access article under the CC BY-NC-ND 
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een used to predict key features of the epidemic, such as hospital 

dmissions or deaths. 

The body of literature for COVID-19 time series analyses linking 

pidemiological data to public health measures or environmental 

actors is already widespread, ranging from cross-correlation anal- 

sis to complex predictive machine learning tasks ( Ayinde et al., 

020; Ballı, 2021; Gecili et al., 2021; Kumar and Susan, 2020; Satrio 

t al., 2021; Shahid et al., 2020; de Souza et al., 2020 ). Some meth-

ds, such as neural networks, provide powerful predictions, but 

he interpretation of the results is offset by the method’s convolu- 

ive nature. Here we choose a middle ground and a more straight- 

orward approach by combining standard autoregressive integrated 

oving average (ARIMA) models with original regressors of human 

ontact derived from colocation data. 

. Materials and methods 

Facebook Inc. recorded the position of mobile app users 

ho agreed to turn location tracking on. Every week, users 

ere assigned resident administrative regions based on consis- 

ent overnight stays. Given two administrative regions (the ‘depart- 

ents’) A and B , we denote by N A (w ) and N B (w ) the number of

sers assigned to each department in week w . The colocation prob- 

bility between A and B for week w is calculated as follows. The 

eek w is partitioned into 5-minute time bins t w 

1 , . . . , t 
w 

2016 . We de-

ote by f AB (t w 

i 
) the number of users assigned to A and B located

n the same 600 m 

2 grid cell within time bin t w 

i 
during week w .

f the total number of colocation events for a given week w is de- 

oted by f w 

AB 
= 

∑ 

i f AB (t w 

i 
) , the (symmetric) colocation probability 

etween A and B for week w is then defined by 

p AB (w ) = 

{ 

f w 
AB 

2016 N A (w ) N B (w )2 
if A � = B, 

f w 
AA 

2016 N A (w )(N A (w ) −1)2 
otherwise. 

n other words, the colocation probability is the quotient of the 

umber of colocated user pairs divided by the number of all pos- 

ible user pairs during a week (with 2016 slots of 5 minutes per 

eek). Importantly, the colocation probability cannot distinguish 

etween events where the same pair of users are colocalized for 

ll 2016 time bins during a week or where a user was colocalized 

t each time bin with a different user. 

For continental France, department-level colocation probabili- 

ies were directly provided by Facebook Inc. via the Web portal 

ttps://dataforgood.fb.com , with a total of d = 94 departments cov- 

red. Therefore, we constructed 94 × 94 matrices that capture the 

eekly colocation probabilities between users depending on their 

epartment of residence. These can readily be used to construct 

eighted contact networks. We also investigated the coverage of 

acebook users with an assigned department of residence among 

he French population from the 2019 census data provided by the 

rench National Institute of Statistics and Economic Studies (Insee; 

ttps://www.insee.fr ). 

To summarize temporal changes in the resulting weighted con- 

act networks between French departments, we calculated for 

ach week three node-based graph descriptors (clustering, strength 

nd null links) and one edge-based graph descriptor (curvature). 

he node-based descriptors were calculated by constructing undi- 

ected, weighted graphs from colocation data. For clustering, we 

sed the local clustering coefficient (‘transitivity’ function in the 

 package igraph ), which calculates for a given node all edge 

eights between the node neighbours relative to the maximum 

eighbourhood clique size. This clustering coefficient is 1 if the 

ode is contained in a clique (i.e. the node and all its neigh- 

ours are connected to each other). The strength of a node is 

alculated by summing the edge weights incident on the node 

‘strength’ function in igraph ). The number of null links rep- 
101 
esents the number of incident edges with zero weight and 

s bounded from above by d − 1 . Curvature was calculated in 

he sense of discrete Ollivier–Ricci curvature Ollivier (2007) with 

 Python code freely available at https://github.com/saibalmars/ 

raphRicciCurvature . The Ollivier–Ricci curvature of an edge xy 

ompares the distance between two nodes x and y with the op- 

imal transport cost W between uniform measures on unit balls 

entred at x and y : 

urvature (x, y ) = 1 − W(B 1 (x ) , B 1 (y )) 

d(x, y ) 
. 

umerical studies showed that edges with positive curvature tend 

o be part of a cluster, whereas edges with negative curvature tend 

o act as bridges between clusters ( Jost and Liu, 2013; Ni et al., 

015; 2019 ). Therefore, a decrease in curvature can be seen as an 

ndicator for connectivity breakdown. 

For comparison, we also incorporated Google Community 

obility Report data ( www.google.com/covid19/mobility/ ), from 

hich we obtained the daily change as a percentage with respect 

o a pre-pandemic baseline in visits to grocery stores, parks, work- 

laces, residential areas, transit stations and retail stores. We calcu- 

ated cumulative weekly changes matching the dates of the weekly 

ecorded colocation data. Since Google Community Mobility Re- 

orts were not available at the department level, we used these 

ata only for national-level analyses. 

We downloaded the positive testing rate (i.e. the ratio of posi- 

ive tests to all tests) from https://ourworldindata.org . To remove 

eporting bias, we calculated the rolling average with a right- 

ligned 7-day window and calculated the weekly positive test rate 

atching the dates of the weekly recorded colocation data. 

We downloaded daily minimum, maximum and average tem- 

erature data at department level provided by Open Data Réseaux 

nergies via the Web portal https://www.data.gouv.fr ; see also 

able 1 . The data were aggregated into weekly minimum, maxi- 

um and average temperature. For the same data, we also calcu- 

ated quantiles for national analysis. 

COVID-19 hospital data for France were downloaded from https: 

/www.data.gouv.fr . The data comprised daily hospital admissions, 

CU admissions and deaths in hospitals by department. To match 

he Facebook Inc. colocation data, we considered only departments 

n continental France spanning the period from 24 March 2020 to 

0 March 2021. For the country-wide analysis, we summed the 

aily incidence in all departments and calculated right-aligned 7- 

ay rolling averages to remove reporting bias. Finally, we calcu- 

ated the cumulative weekly incidence matching the dates of the 

eekly recorded colocation data. The weekly incidence data were 

og-transformed before the time series analysis. 

The time series analysis was performed with the R package 

orecast . For each week, we trained and tuned ARIMA models on 

istorical data starting from 24 March 2020 and performed fore- 

asting for 1-week and 2-week horizons. Model parsimony during 

uning was determined by the Akaike information criterion. The 

rst 4 weeks were used for training only, and we started prediction 

t the fifth week of our records. For any particular week, starting 

rom June 2020, the prediction accuracy was evaluated in terms 

f the mean average error between incidence data and predictions 

or the following 2 weeks. More precisely, given log-transformed 

ncidence data y from week t , with exogenous regressors x i , the re- 

ression model with ARIMA error ( Hyndman and Khandakar, 2008 ) 

s defined by 

y t = 

∑ 

i 

βi x 
i 
t + n t , 

 t = 

p ∑ 

i =1 

αi n t−i + εk −
q ∑ 

i 

θi εt−i , 

https://dataforgood.fb.com
https://www.insee.fr
https://github.com/saibalmars/GraphRicciCurvature
http://www.google.com/covid19/mobility/
https://ourworldindata.org
https://www.data.gouv.fr
https://www.data.gouv.fr
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Table 1 

Regressor name, description and source 

Name Description Source 

Null links Colocation graph Facebook Inc. 

Strength Colocation graph Facebook Inc. 

Clustering Colocation graph Facebook Inc. 

Curvature Colocation graph Facebook Inc. 

Between-department colocation Colocation data Facebook Inc. 

Incidence in colocation graph neighbourhood Colocation and incidence data Facebook Inc. 

Within-department colocation Colocation data Facebook Inc. 

Facebook coverage Colocation and census data Facebook Inc. , Insee 

Retail and recreation percentage change from the baseline Average weekly change Google Community Mobility Report 

Grocery and pharmacy percentage change from the baseline Average weekly change Google Community Mobility Report 

Parks percentage change from the baseline Average weekly change Google Community Mobility Report 

Transit stations percentage change from the baseline Average weekly change Google Community Mobility Report 

Workplaces percentage change from the baseline Average weekly change Google Community Mobility Report 

Residential percentage change from the baseline Average weekly change Google Community Mobility Report 

Temperature Weekly temperature by department Open Data Réseaux Énergies 

Positive test rate Average weekly positive test rate Our World in Data 
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Fig. 1. Disease incidence data and network metric quantiles in France, aggregated 

by week. 
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here the regression error n t is an ARIMA error, p is the order 

f the autoregressive part, q is the order of the moving average 

art and εk are Gaussian errors. Note that y and x can undergo 

ifferencing up to order d to ensure stationarity. 

We used exogenous regressors based on quantiles of network 

escriptors, Facebook Inc. colocation data, Google Community Mo- 

ility Reports and positive testing rates to tune parameters p, d

nd q and to train each model. We then compared the prediction 

esults from models using regressor data with those using histori- 

al incidence data alone. 

The predictive power of combinations of regressors was as- 

essed following a stepwise method. For each week, we started us- 

ng a single regressor and incremented the set of regressors as long 

s the mean average error of the prediction decreased, thereby 

ielding a linear combination of regressors with minimum predic- 

ion error per week. 

For the department-level models, we also applied regres- 

ion models with ARIMA error. Node-based regressors (e.g. node 

trength and null links) were based on the actual values, whereas 

he edge-based curvature regressors consisted of quantiles relative 

o the department of interest. In addition, for each department, we 

lso used incidence data for hospital admissions and deaths in de- 

artments with the 10 strongest colocation links to the department 

f interest (denoted by incid _ 1, incid _ 2, etc.). 

. Results 

.1. Network descriptors 

The analysis of network descriptors showed a highly dynamic 

ange for the clustering coefficients in relation to the hospital 

ncidence data and underlying non-pharmaceutical interventions 

 Fig. 1 ). For instance, in the midst of the first national lockdown 

n April 2020, the minimum clustering coefficient was 0.6, but by 

uly 2020 it had returned almost to the maximum level (close to 

). The number of null links, which offers a more discrete mea- 

ure of decreasing connections between departments, reached 72 

ut of 93 possible null links (77%) for several departments in April 

020. In contrast, several departments exhibited small changes in 

ull links, suggesting that the mobility restrictions impacted the 

olocation probabilities unevenly across the country. The network 

trength more than tripled during the same period in the depart- 

ents, reaching the strongest colocation probability; a high level 

hich was maintained throughout October 2020, while hospital- 

zation increased again in September. The curvature trends fol- 

owed those of the network strength but were more sensitive to 

erturbations, for instance around 1 January 2021. 
102 
We also investigated spatial snapshots of the network descrip- 

ors before and during the second lockdown period at the begin- 

ing of November 2020. Figure 2 shows, for these 2 weeks, the 50 

trongest colocation weights per week between two departments 

red edges) and the number of null links in the departments in- 

olved at the end of these links. These results point to spatial clus- 

ers of departments which maintained high colocation weights be- 

ween each other (e.g. in the Paris region or in Eastern France) 

hile shutting down connections to many other departments. 

Correlation plots (Fig. S1) across all recorded weeks indicated 

 strong positive correlation between network strength, curva- 

https://dataforgood.fb.com
https://dataforgood.fb.com
https://dataforgood.fb.com
https://dataforgood.fb.com
https://dataforgood.fb.com
https://dataforgood.fb.com
https://dataforgood.fb.com
https://dataforgood.fb.com
https://www.insee.fr/fr/statistiques/fichier/4265429/ensemble.zip
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://www.data.gouv.fr/fr/datasets/r/dd0df06a-85f2-4621-8b8b-5a3fe195bcd7/temperature-quotidienne-departementale.csv
https://covid.ourworldindata.org
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Fig. 2. Fifty strongest between-department colocation links and null links from those departments in France at weeks beginning 3 November 2020 (left panel) and 10 

November 2020 (right panel). The thickness of the red edges corresponds to the colocation weights in terms of pre-pandemic quantiles, and the size of the black dots shows 

the number of missing links to other departments in the particular week. 

Fig. 3. Top-five predictive models for new hospital deaths (top) and admissions (bottom). The models with the lowest mean average error using network analytics as 

regressors for 1-week (left) and 2-week (right) horizons are shown. The error made in the model without an exogenous variable is shown in all panels. The colour code 

refers to the group of regressors used. 
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ure and Google Community Mobility Report data (retail stores, 

rocery stores, parks and transit stations), but negative correla- 

ions between these quantities and null links. Interestingly, within- 

epartment colocation was only weakly correlated with Google 

ommunity Mobility Report data, supporting the hypothesis that 

olocation data could yield signals qualitatively different from 

ore classical individual movement data. 

.2. Predicting national-level hospital incidence 

The time series analysis showed that predictions made using 

nly incidence data from past time points led to an average mean 

rror of 1632 hospitalizations per week and 238 deaths per week 

regressor group ‘none’ in Fig. 3 ). Including a single exogenous re- 

ressor across all time points clearly reduced the prediction er- 

or by about 13% for hospital admissions and by 50% for hospital 

eaths ( Fig. 3 ). Quantiles from Facebook Inc. colocation data, such 

s network strength, clustering or null links, were among regres- 

ors that reduced prediction errors most. Google Community Mo- 

ility Report data related to recreation and residential movement 

lso greatly improved predictions regarding deaths but not hospital 

dmissions. Positive testing rate appeared to improve predictions 

nly with 2-week horizons. Finally, temperature did not belong to 

he best predictors for hospital admissions or deaths. 
103 
To further our understanding of temporal dynamics of hospi- 

al admissions, in particular at epidemic turning points, we deter- 

ined for each week combinations of regressors that reduced the 

rror the most. For the 1-week prediction horizon, we obtained al- 

ost perfect fits using regressor combinations mostly related to 

olocation networks (e.g. clustering and curvature quantiles) and, 

o a lesser extent, temperature ( Fig. 4 ). Although combining regres- 

ors improved the model fit at the 2-week horizon compared with 

he model without exogenous regressors (the red curve), the model 

as not capable of reproducing the precision seen at the 1-week 

rediction horizon. Similarly, combining regressors to predict hos- 

ital deaths resulted in almost perfect fits for the 1-week horizon, 

nd greatly improved fits for the 2-week horizon, albeit slightly 

verestimating peak deaths ( Fig. 5 ). 

.3. Predicting department-level hospital incidence 

Performing the same analysis at the department level revealed 

he importance of spatial structure. In particular, for Paris re- 

ion departments (Paris, Yvelines, Seine-Saint-Denis and Seine-et- 

arne) and Nantes, the predictors that decreased the mean predic- 

ion error the most when compared with models without regres- 

ors were those related to the incidence in highly colocalized de- 

artments ( Fig. 6 ). Conversely, for the metropolitan areas of Lyon, 
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Fig. 4. Model fits to hospital admission incidence data (circles) with the lowest mean average error among all models using combinations of regressors (red line) compared 

with autoregressive models without exogenous regressors (green line). The bottom panels show the number of regressors used to obtain the best fits, colour-coded by the 

regressor group. 

Fig. 5. Model fits to hospital death incidence data (circles) with the lowest mean average error among all models using combinations of regressors (red line) compared 

with autoregressive models without exogenous regressors (green line). The bottom panels show the number of regressors used to obtain the best fits, colour-coded by the 

regressor group. 
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ordeaux and Marseilles, network descriptors (in red) such as cur- 

ature and null links but also overall between-department coloca- 

ion weights were among the best predictors of hospital admis- 

ions and deaths. This was also the case for 2-week predictions of 

ocal hospital deaths, and to a lesser extent for 2-week predictions 

f hospital admissions ( Fig. 7 ). 

. Discussion 

Numerous studies have reported potential insights that can be 

ained from mobile phone usage data so as to understand the 

pread of infectious diseases. However, these data are usually anal- 

sed from an individual perspective, by following where the users 

re and how they move. The Facebook Inc. data differ in that they 

ontain colocation data. We hypothesized that such data could be 

articularly suited to understanding the transmission of respira- 

ory infections, which involves close contact between individuals. 

o address this question, we developed an explicit network-based 

nalysis of relevant summary statistics regarding colocation data. 

Our analysis indicates that human mobility and contact data 

mprove time series prediction of French COVID-19 hospital ad- 

issions and deaths by up to 50%. Determining a posteriori the 

ptimal combination of regressors shows that human contact net- 
104 
ork analytics augmented with temperature and positive testing 

ate data yields perfect fits at the 1-week horizon. Although these 

ombinations are not of a predictive nature, they highlight the im- 

act of global network properties, which are a proxy for the ex- 

ent of human contact in contrast to human mobility alone. Spatial 

isparities in disease incidence have motivated subnational policy 

ecisions to manage the pandemic ( Karatayev et al., 2020 ), and 

ur subnational time series analysis confirms the predictive power 

f spatial structure since incidence from colocalized administrative 

nits improved most incidence predictions. Notably, we find that 

uman contact network analytics, such as curvature, null links and 

etwork strength, are prominent predictors for the metropolitan 

reas of Lyon, Bordeaux and Marseilles. Further investigations us- 

ng a metapopulation point of view could yield additional insights. 

Another asset of our study is that even though our 2-week pre- 

iction horizon is relatively long compared with the prediction 

orizons of other studies, it remains quite robust for predictions 

f hospital deaths when compared with 1-week predictions, even 

or a posteriori fits. This is also slightly the case for hospital ad- 

issions. The fact that peak incidence was systematically overes- 

imated points to the weakness of using only linear models, espe- 

ially in situations where the susceptible populations are rapidly 

epleted. 
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Fig. 6. Top-five 1-week predictive models for new department-level hospital admissions and deaths with the lowest mean average error using network analytics or incidence 

(’dc’ for death and ’hosp’ for hospital admission) of the top-10 colocated departments as regressors (numbers in subscripts). The colour code refers to the group of regressors 

used and the panels refer to the nine most populated departments used in the analysis. 
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Our results reveal the contrasting importance of temperature 

uctuations, since temperature was not included in the top uni- 

ariate regressors, but improved a posteriori fits when combined 

ith other regressors. One possible explanation could be that na- 

ional and subnational policy changes over the period considered 

ed to human contact mobility regressors being favoured over tem- 

erature in terms of explanatory power. 

Our study has several limitations. First, by focusing on the elab- 

ration of contact network analytics, we have used rather elemen- 

ary statistical models. These have the advantage of being easy to 

nterpret, but, given the number of features, more sophisticated 

achine learning techniques, such as long short-term memory 

eural networks or random forests, could allow more information 

o be extracted from the data. Second, the interpretation of coloca- 

ion data as a proxy for infectious contacts remains to be validated 

n the field (e.g. in community transmission studies ( Riley et al., 

021 )). The validation would also require the importance of hos- 

ital catchment areas to be concurrently taken into account when 

isease incidence is recorded ( Massonnaud et al., 2020 ). Further- 

ore, assortativity between users and user coverage might intro- 

uce biases that do not reflect the extent of human contacts per- 

aining to disease transmission. Although user coverage for colo- 

ation data showed important variations over time and between 

epartments (Fig. S2), it remained constant during the period of 

esurging hospital incidence (i.e. between October 2020 and Jan- 

ary 2021). It has been shown that combining census and survey 

ata may help remove user bias related to sex, ethnicity and age 

 Ribeiro et al., 2020 ), but this would require access to individual- 

evel information for colocation data. 

i

v

105 
Collectively, our time series analysis shows the potential of hu- 

an contact network analytics to improve both predictions and a 

osteriori model fits of disease incidence as recorded during the 

OVID-19 pandemic in France. Combining network analytics with 

echanistic models of disease transmission opens promising novel 

venues for real-time disease control. 
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