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Abstract: The Great Reef of Toliara, on the southwestern coast of Madagascar, has been documented
as harbouring flourishing reef communities in the 1960s, but has since been affected by various
threats, causing a coral decline last reported in 2008. In 2017, we examined the spatial heterogeneity
in coral community structure in the region of Toliara. Coral assemblages were characterized by a
marked spatial variability, with significant variation for most of the descriptors among the three
major habitats and also among stations within habitats. We recorded high coral cover, with values
>40% at six of the 10 stations, which was associated with high abundance of coral colonies. We also
documented the return to an Acropora-dominated coral assemblage. While these positive results
suggest a recent return to healthier coral assemblages, they must be tempered, as the diversity that we
recorded was lower than in the 1960s. Moreover, we found a high cover of algae at several stations,
suggesting that the ecosystem is likely close to the tipping point toward a phase shift. Finally, the
population size-structure of major coral taxa was positively skewed, with few large colonies to ensure
the replenishment of local populations. The marked spatial variation suggests that marine protected
areas should integrate a sufficiently large area to capture the scale of this spatial heterogeneity.
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1. Introduction

Surrounded by ~2400 km2 of coral reefs distributed along 1400 km of coastline, Mada-
gascar is a hotspot of biodiversity in the Western Indian Ocean [1–3]. With 380 coral and
788 reef-associated fish species, the overall diversity of Madagascar coral reefs is compara-
ble to that of the coral triangle [2,4–6]. This high diversity of reef organisms is probably
due to the size and diversity of reef habitats that are particularly well-developed on the
northeast, northwest, and southwest coasts [7–9]. With ~33 km2 of shallow reef area, the
Great Reef of Toliara (GRT), in the southwest coast, is the largest reef complex of Madagas-
car and the Western Indian Ocean, and has been a refuge for diverse reef taxa, including
714 species of reef fishes [10,11] and 135 species of scleractinian corals [12,13]. This coral
reef provides both costal protection and an artisanal fishery for the city of Toliara [14–16].
The GRT was intensively surveyed in the 1960s–1970s, following the establishment of a
marine research center in 1961 (currently Institut Halieutique et des Sciences Marines).
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The diversity and zonation of scleractinian coral assemblages, the primary reef-building
species, was first studied by Pichon [12].

However, like most coral reefs worldwide, those of Madagascar have been increasingly
exposed to various types of large-scale natural and anthropogenic perturbations and local
stressors that have worsened their socio-ecological vulnerability and resilience [5,9,17–19].
Overfishing, sedimentation, and thermally induced coral bleaching events have particu-
larly affected the island’s coral reefs located around populated cities [20–22]. Some coral
habitats of the GRT have been affected by high sedimentation caused by discharge of the
Fiherenana river in the north and Onilahy river in the south [23], favoring the prevalence
of coral diseases [24]. Since the 1980s, overfishing, destructive fishing, water pollution, and
gleaning activities, all linked to the rapid growth of the human population (53% between
1993 and 2008), have also been a major concern for the health of the GRT [25–27]. In
addition, bleaching episodes associated to El Niño events have affected coral and other
reef associated species, particularly in 1998 and 2015–2016 [9,21,28]. All these episodic
disturbances and chronic stressors have caused a decline in coral cover and abundance
in the last 50 years, particularly for architecturally complex coral taxa such as Acropora
and Pocillopora, with coral cover decreasing from ~50% to 5% during this period at several
shallow habitats [25–27,29]. This decline has been associated with the increase of fleshy
macroalgae or other non-reef building species, such as zoanthids and soft corals in habitats
previously dominated by Acropora [8,25,30], an undesirable state which provides fewer
ecosystem goods and services. Coral diversity has also been affected, with a decline from
38 to 30 genera in shallow habitats, and a loss of 18 genera in seagrass beds over the past
40 years [26,29].

Despite these increasing threats and the general trend of coral decline, no quantitative
studies have recently examined the spatial patterns and community structure of coral
assemblages, thus precluding a precise indication of the current status and the resilience
capacities of the GRT. Moreover, information on the spatial variability among and within
major coral reef habitats, that are often characterized by contrasting environmental con-
ditions [31–33], is lacking for this reef. This type of information is however crucial to
implement adequate conservation measures that are critically needed considering ongoing
human development and importance of reef resources in this area [25]. Though some
Locally Managed Marine Areas (LMMA) have been implemented in the region of the GRT
with some success, they focused on fisheries and did not address coral assemblages [34,35].

In this context, the major aim of the present study was to investigate spatial patterns
and community structure of coral assemblages among major reef habitats in the region
of Toliara, including the GRT. Composition, generic richness, cover (including other ben-
thic taxa), and size-structure of coral assemblages have been quantified and compared
among 10 stations. Implications of our results in terms of conservation and management
actions are also discussed. The original data set examined here constitutes a reference base-
line for evaluating future changes in coral communities, and may help identify effective
conservation actions.

2. Materials and Methods
2.1. Study Area

The present study was conducted in Madagascar’s southwestern region of Toliara,
including the Great Reef of Toliara (GRT), located 2 km seaward of Toliara city (Figure 1).
Approximately 19 km long and 1–3 km wide, the GRT is a major barrier reef system of the
SW Indian Ocean. High sedimentation comes from mining activities in the highland by the
region’s two main rivers, Fiherenana in the north and Onilahy in the south. Madagascar
is characterized by two main seasons: winter from April to September, when sea surface
temperature (SST) falls down to 18 ◦C, and summer from October to March, when rainfall
and SST (up to ~30 ◦C) are higher. Dominant winds are from the SW direction. Tropical
storms and cyclones generally hit Madagascar from November to May, and are common
in the northern and eastern part of the island (94 tropical cyclones recorded from 1948 to
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2010) [36]. The southwest region is less affected as the passage or formation of cyclones
in the Mozambique channel is relatively rare [37,38]. Malagasy coral reefs have suffered
from bleaching events caused by abnormal increases in SST, with major events in 1998
and 2015–2016. These bleaching events have caused an important decrease in coral cover
(~20 and 25%, respectively) associated to an increase in algal cover [17,21]. In contrast to
some other regions of the Western Indian Ocean [39], no evidence of significant degrada-
tions by outbreaks of the coral predator sea star Acanthaster spp. have been reported in
Madagascar [40].
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Figure 1. Map of the southwest coast of Madagascar showing the location of the 10 sampling stations
in the Toliara region, including the Great Reef of Toliara (GRT). Stations were located on the three
major habitat types: patch reefs (PR), inner slope (IS), and outer slope (OS).

2.2. Sampling Strategy

Sampling was undertaken from February to July 2017. A total of 10 stations were
located between the village of Ifaty in the north and the village of Sarodrano in the south,
on the three major habitat types: four stations on patch reefs (PR1 to PR4), two stations
on the inner reef slope (IS1 and IS2), and four stations on the outer slope (OS1 to OS4;
Figure 1). Initially, the 10 stations were to be placed at 10 m depth, but at some locations,
coral communities were not sufficiently developed at this depth to establish a station. In
the end, our stations were located between 6 and 12 m in order to be representative of
the local coral communities (Supplementary Table S1). The percent cover of major living
and abiotic substrate was estimated using the photoquadrat method [41]. At each station,
30 photoquadrats of 0.25 m2 (50 × 50 cm) were taken along three transects of 10 m length
with an underwater camera (W300, Nikon, Tokyo, Japan). Percent cover was estimated
using the Coral Point Count with Excel extension (CPCE 4.1) [41] software. On each photo,
100 random points were used to quantify percent cover of major benthic categories: hard
corals (scleractinian corals and the calcareous hydrocoral Millepora), dead corals (defined
as recently dead coral with skeletons covered by thin layer of turf algae), soft corals
(Alcyonacea, mainly represented by Xenia sp. and Sarcophyton sp.), algae (coralline algae,
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macroalgae, turf), other living taxa (including sponges, hydroids, zoanthids, corallimorphs,
tunicates and sea anemones), and abiotic substrates (rubble, and sand).

In addition, generic richness and abundance of adult coral colonies (>5 cm in diameter)
were estimated at each station using three randomly replicated belt-transects of 10 m2

(10 × 1 m), laid parallel to depth contours and separated by ~1 m, following the method
described in Adjeroud et al. [42]. The size-structure of the major coral genera was recorded
using the same belt-transects. Coral colonies with >50% of their living tissue area contained
within each belt-transect were assigned to the following size classes for maximum diameter:
6–10, 11–20, 21–40, 41–80, 81–160, and 161–320 cm.

2.3. Data Analysis

Spatial variations of percent cover of benthic categories, generic richness (GR), and
abundance of coral colonies among habitats and stations were explored using nested
ANOVA, with habitat and station as fixed factors. Data were appropriately transformed
(log(x + 1)) for GR and abundance, and arcsin(x) for percent cover, to meet the assumptions
of normality and homogeneity of variance. ANOVA were complemented by pairwise
t-test comparisons to determine which samples showed significant differences. To explore
relationships between spatial distribution of percent cover of corals and other benthic
categories, Pearson (R) correlation analyses were conducted. The overall spatial varia-
tion in the composition and abundance of coral assemblages among the 10 stations was
analyzed using nonmetric multidimensional scaling (nMDS), based on the Bray-Curtis
dissimilarity index, and followed by ANOSIM to identify significant differences among
habitats. ANOVA per permutation was used to compare the size frequency distribution
among each habitat based on the colony abundances.

3. Results

Overall, benthic substrate was dominated by hard corals (46.8 ± 3.4%, mean ± SE),
turf algae (17.3 ± 3.8%), macroalgae (12.7 ± 4.0%), and rubble (12.1 ± 4.9%). Percent
cover of corals was significantly variable among habitats (ANOVA, F = 3.4, p = 0.036)
and among stations within habitats (ANOVA, F = 4.8, p = 0.002; Supplementary Table S2;
Figure 2). Coral cover was lower at the inner slope (34.2 ± 3.5%, mean ± SE) compared
to the outer slope (52.0 ± 4.6%) and patch reefs (48.0 ± 6.5%; pairwise t-test, all p < 0.05;
Supplementary Table S3). At the station level, coral cover values were highly variable,
ranging from 22.7 ± 13.2% at PR4 to 69.9 ± 3.7% at OS3 (Supplementary Table S4). High
values were also recorded at PR1 (66.3 ± 3.3%) and PR2 (62.3 ± 10.7%).

Coral cover was dominated by Acropora colonies (>50% of overall coral cover), with
highest values recorded at the inner slope (37.9 ± 15.4%) and, to a lesser degree, at patch
reefs (28.8 ± 6.9%), whereas cover was lower at the outer slope (12.8 ± 2.7%; Figure 3).
Pavona cover was also high at the inner slope (27.2 ± 13.1%), whereas values were greatly
reduced at patch reefs (1.5 ± 0.5%) and the outer slope (1.1 ± 0.5%). Percent cover of
other coral genera was lower than Acropora and Pavona (<7%). For Echinopora (4.9 ± 2.2%),
Seriatopora (4.9 ± 1.5%), and Porites (3.8 ± 0.9%), highest values were recorded on the
outer slope. Cover of Seriatopora (4.2 ± 2.0%) was also relatively important at patch reefs,
together with Galaxea (6.4 ± 6.2%) and Montipora (4.0 ± 3.5%).

Coral cover was dominated by Acropora colonies (>50% of overall coral cover), with
highest values recorded at the inner slope (37.9 ± 15.4%) and, to a lesser degree, at patch
reefs (28.8 ± 6.9%), whereas cover was lower at the outer slope (12.8 ± 2.7%; Figure 3).
Pavona cover was also high at the inner slope (27.2 ± 13.1%), whereas values were greatly
reduced at patch reefs (1.5 ± 0.5%) and the outer slope (1.1 ± 0.5%). Percent cover of
other coral genera was lower than Acropora and Pavona (<7%). For Echinopora (4.9 ± 2.2%),
Seriatopora (4.9 ± 1.5%), and Porites (3.8 ± 0.9%), highest values were recorded on the
outer slope. Cover of Seriatopora (4.2 ± 2.0%) was also relatively important at patch reefs,
together with Galaxea (6.4 ± 6.2%) and Montipora (4.0 ± 3.5%).
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In contrast, Porites (4.5 ± 2.4%) and Pocillopora (3.7 ± 2.0%) cover were the highest
on the inner slope. It is interesting to note that despite similar overall coral cover, some
stations of the same habitat may have contrasting cover at the generic level, such as inner
slope stations (Figure 3).

Macroalgal cover varied significantly among habitats (ANOVA, F = 60.5, p = 0.001)
and stations (ANOVA, F = 7.7, p = 0.001), with values ranging from 0.1 ± 0.3% at PR1 to
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39.8 ± 1.6% at OS1 (Figure 2). Cover of turf algae showed a strong variation among stations
(ANOVA, F = 7.3, p = 0.0003), with values between 6.8 ± 2.5% at PR2 to 44.1 ± 4.1% at PR4,
though no difference was found among habitats (ANOVA, F = 2.2, p = 0.1). Similarly, cover
of crustose coralline algae was variable among stations (ANOVA, F = 1259.7, p = 0.01),
with a maximal value of 25.8 ± 8.4% recorded at PR4, but was not significantly different
among habitats (ANOVA, F = 53.1, p = 0.5). Soft corals were not recorded at stations PR1,
PR3, and IS1 and cover values were relatively low (<2%) at most other stations, except
at PR2 where cover reached 9.0 ± 2.8%. Comparisons among habitats and stations did
not reveal significant differences (ANOVA, all p > 0.05). Cover of other invertebrates
(sponges, zoanthids and tunicates) was also low at most stations (<2%), with highest value
recorded at PR1 (5.6 ± 2.8%), whereas no significant variation was recorded among habitats
(ANOVA, F = 0.3 p = 0.7) and stations (ANOVA, F = 2.3 p = 0.06). Percent cover of rubbles
was significantly different among habitats (ANOVA, F = 3.7, p = 0.04) and stations (ANOVA,
F = 2.3, p = 0.001), with highest values recorded at PR3 (40.0 ± 6.5%), while almost no
rubbles were recorded at outer reef stations. Sand cover was highly variable among stations
(ANOVA, F = 7.4, p = 0.0003), with values up to 15.9 ± 0.3% at IS2, but not among habitats
(ANOVA, F = 2.6, p = 0.09). The spatial distribution of coral cover was positively correlated
with variation in turf algae (R = −0.655, p < 0.001) and crustose coralline algae (R = −0.462,
p < 0.010; Supplementary Figure S1). Although significant, a positive correlation was found
with dead corals (R = 0.487, p = 0.006), but this relationship is difficult to interpret as only
2 stations have dead coral cover greater than 0. No significant correlations were recorded
with other benthic categories (macroalgae, soft corals, other invertebrates, rubbles, and
sand; Supplementary Figure S1).

A total of 43 coral genera were recorded from the 10 stations, with an overall mean of
20.1 ± 1.2 genera.10 m−2. Generic richness (GR) was significantly variable among habitats
(ANOVA, F = 6.2, p = 0.008) and among stations within habitats (ANOVA, F = 5.2, p = 0.001;
Supplementary Table S5; Figure 4). GR values ranged from 11.3 ± 1.2 genera.10 m−2 at PR1
to 28.6 ± 2.0 genera.10 m−2 at OS2, with high values (>20 genera.10 m−2) also recorded at
PR2, PR3, and OS4 (Supplementary Tables S6 and S7). In terms of colony abundance, coral
assemblages were mainly composed of eight genera (Acropora, Seriatopora, Galaxea, Porites,
Pocillopora, Montipora, Dipsastraea, and Favites), while other genera such as Blastomussa,
Plesiastrea, Turbinaria, Astrea, and Diploastrea were rarely recorded (all together <4%) at
the 10 stations (Supplementary Figure S2). The relative contribution of these eight major
genera was highly similar among the three habitats, and Acropora was clearly the dominant
genera at all habitats and stations.
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A total of 4644 coral colonies were recorded at the 10 stations, representing an over-
all mean abundance of 150.4 ± 11.1 colonies.10 m−2. Coral colony abundance was
significantly variable among habitats (ANOVA, F = 4.0, p = 0.03), and among stations
within habitats (ANOVA, F = 3.8, p = 0.005; Supplementary Table S8; Figure 5). Values
ranged from 91.0 ± 13.0 at PR1 to 224.6 ± 18.3 colonies.10 m−2 at OS3, with low values
(<100 colonies.10 m−2) also recorded at IS3 and OS1 (Supplementary Tables S9 and S10).
All eight major coral genera showed a significant spatial variation in abundance across
habitats (ANOVA, all p < 0.001) and across stations within habitats (ANOVA, all p < 0.001;
Figure 6). For Acropora, Seriatopora, Galaxea, Pocillopora, Dipsastraea, Favites, and Montipora,
highest values of abundance were recorded at outer slope stations, though two to ten times
lower values were also found in this habitat. Relatively high abundance of coral colonies
was also recorded in other habitats, including Pocillopora, Dipsastraea, Favites, Montipora,
and Porites in patch reefs, and Seriatopora, Galaxea, and Porites on the inner slope.
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The composition and abundance of coral assemblages showed a significant difference
among the three habitats. The nMDS, based on the Bray-Curtis dissimilarity index, first
discriminated stations of the outer slope from those of the two other habitats (20% similarity;
Figure 7A; ANOSIM, R > 0.50, Supplementary Table S11), whereas stations of the inner
slope and patch reefs were highly similar (ANOSIM, R < 0.25). Stations of the outer slope
were characterized by higher abundance of Acropora and Galaxea, and a particularly high
value of Seriatopora at OS3 (Supplementary Table S12), distinguishing this station from the
three others at a higher similarity level (40%).
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Figure 7. Non-metric multidimensional scaling (nMDS), based on the Bray-Curtis dissimilarity index, showing the spatial
variation in the composition and abundance of coral assemblages among the 10 stations located on the three major habitats
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axes of the nMDS. The color code is as follows: red for patch reefs stations and coral genera exclusively recorded on this
habitat, green for inner slope stations and coral genera exclusively recorded on this habitat, blue for outer slope stations and
coral genera exclusively recorded on this habitat, coral genera recorded at all three habitats are indicated in purple, and
coral genera recorded on more than two habitats are in black.

At this similarity level, two other groups of stations were discriminated; PR1, PR2, and
IS2 were characterized by a high abundance of Fungia, Herpolitha, Stylophora, and Seriatopora,
whereas IS1, PR3, and PR4 were distinguished from the other patch reefs and inner slope sta-
tions by their high abundance of Cycloseris and Pavona (Figure 7B; Supplementary Table S12).

Coral assemblages at the 10 surveyed stations were dominated by colonies of <20 cm
in maximum diameter, representing 73% of the colonies recorded (Figure 8). Size fre-
quency distribution of the eight dominant genera followed a right skewed pattern with
higher abundance of small size colonies (6–10 cm and 11–20 cm in diameter) and a de-
crease in abundance of higher size classes (Supplementary Tables S13–S15). For most
coral genera and at all three habitats, size-structure was dominated by the 11–20 cm size
class, except for Seriatopora, Galaxea, and Favites, which had more colonies of 6–10 cm in
diameter at patch reefs. The largest colonies were rare, mainly represented by branch-
ing colonies of Acropora, and Seriatopora, and massive Galaxea. A significant difference
in the size structure was recorded among habitats (Permutational ANOVA, p < 0.001;
Supplementary Table S13), except between patch reefs and inner slope (pairwise t-test,
p > 0.05; Supplementary Table S14).
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4. Discussion

This study on the spatial structure of coral assemblages has allowed the assessment
of the current health of coral reefs in the region of Toliara, and represents a valuable
quantitative baseline for future comparisons. At most survey stations, the substrate cover
is dominated by living corals (overall mean of 46.8 ± 3.4%), with values >40% at six of
the 10 stations located on patch reefs and the outer slope, and even reaching 60–70% at
three stations. This high coral cover is associated with a high abundance of coral colonies
(overall mean abundance of ~150 colonies.10 m−2), notably at most outer reef and patch
reef stations (up to ~220 colonies.10 m−2). Such recent high coral cover and abundance is
unexpected given the multiple large-scale disturbances and local stressors that have affected
the GRT for several decades, including severe bleaching events in 1998 and 2015–2016,
and important fishing and gleaning activities [5,9,21,27]. In fact, the overall coral cover
that we recorded in 2017 is much higher than values reported in 2008 (~13%) [25], but
similar to the ones found in the 1960s (~40%) [12]. Similarly, the abundances of coral
colonies that we recorded in 2017 were much higher than the ones reported in 2008 at
various GRT stations (~50 colonies.10 m−2) [25]. Despite the different depth ranges and
sampling techniques used by these studies that may partly explain some of the observed
differences in coral cover, abundance, and diversity, our results suggest a recent trend to
a return to healthier coral assemblages. Such high coral cover recorded at several sites
of the GRT are in fact comparable to those in less disturbed reefs around Madagascar,
such as the reef of Belo-sur-Mer (~55%) [17], Nosy Be (~50%) [43], northwest (~70%) [44],
Ambodivaibe (48%) [5], or Andavadoaka (~42% on some patch reefs) [30]. The relatively
good health of coral reefs in the Toliara region could be partly linked to the presence of the
Southwest MAdagascar Coastal Current (SMACC), a shallow current flowing along the
southwest coast toward the south, and which may facilitate larval transport from northern,
less disturbed reefs and enhance the replenishment of reefs under the influence of this
current [45].

However, these positive and encouraging results should be taken with caution. Firstly,
even if the overall diversity of corals recorded during this study (43 genera) is higher than
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the one reported in 2008 (30 genera) [25], it is still lower than the one found in the 1960s
(61 genera) [12]. This decreasing trend in coral diversity was also documented by Brugge-
mann et al. [26] with 18 of the 61 genera reported by Pichon [12] not being recorded in 2011.
Some rare genera recorded in the northwest [44], northeast [5], and southeast Madagas-
car [19] were not seen (Anomastraea, Horastrea, Craterastrea, Plesiastrea, Caulastrea) or rarely
recorded (Coscinaraea, Diploastrea, Blastomussa) at the GRT (Supplementary Table S16). In
fact, as reported by Todinanahary et al. [29], coral assemblages of the GRT have not only
declined in their overall diversity, but have also changed in their composition. Secondly,
turf and macroalgae are abundant at most stations, with cover higher than 20%, notably
on the outer slope. This high biomass of fleshy algae is likely resulting from the decline in
the abundance of herbivorous fishes recorded in the bay of Toliara and Ranobe following
decades of overfishing [25,26]. This level of algal cover greatly reduces the availability
of adequate substrate for coral settlement and growth, and induces a strong competition
for space. A high cover of fleshy algae also suggests that the ecosystem is likely close
to the tipping point toward a coral to macroalgal phase shift. Thirdly, the population
size-structure of all major coral taxa in the Toliara region is positively skewed, with a large
dominance of small colonies and relatively few large ones, as also documented in several
other coral reefs [46–48]. Since fecundity is positively correlated to colony size [49–51],
this lack of large colonies may compromise the reproduction of local coral populations
and consequently their persistence, as they will mainly rely on northern sites for their
replenishment [45].

As documented for several other coral reefs worldwide [42,52–54], GRT coral assem-
blages were characterized by a marked spatial variability, creating a heterogeneous mosaic
of habitat patches. Generic richness, abundance, size-structure, and composition of adult
coral assemblages were highly variable among the three major reef habitats (patch reefs,
inner slope, and outer slope), but also among stations within habitats. The most diversified
and abundant coral assemblages were located at several stations of patch reefs and outer
slope habitats. Although our sampling was not designed to precisely identify factors con-
trolling the observed spatial patterns, such pronounced heterogeneity of coral community
structure likely results from small-scale variation in environmental conditions (sedimenta-
tion, hydrodynamic, light) and biological processes. Our correlation analyses suggest that
local cover of turf algae probably influence the abundance of coral assemblages, through
spatial competition and inhibition of coral larval settlement [55]. The marked spatial varia-
tion in coral recruitment recorded at the scale of the GRT is another potential major factor
controlling the distribution and abundance of adult assemblages [56]. Understanding
the spatial patterns of contemporary coral communities will help to construct a rigorous
baseline to understand future changes, which is crucial in order to identify appropriate
management actions.

In terms of colony abundance, our results highlight the marked dominance of Acropora.
This outcome is another sign of the recent recovery to healthier coral assemblages at
our study sites. In fact, Acropora, which was dominant in the GRT in the ‘60s [12], was
greatly reduced in cover and abundance in 2008, to the benefit of more resistant taxa
such as Porites and Echinopora [25]. There is also an abundance of other branching taxa at
our study sites such as Seriatopora, Pocillopora, and Stylophora, all characterized by their
susceptibility to variation in environmental conditions, notably to thermally-induced
bleaching events [40,57,58]. This return to a coral assemblage dominated by Acropora,
together with these other branching taxa, is clearly a positive indication of an ongoing
recovery trend to healthier coral communities.

Despite several episodes of bleaching events, and recurrent impacts linked to over-
fishing, sedimentation, and gleaning activities, our results suggest that coral assemblages
of the GRT still have the capacities to maintain in a healthy state, provided that large-scale
disturbances or local stressors do not increase in frequency and severity in the near future.
Our survey is a snapshot in a highly dynamic system and represents a valuable baseline
for long-term monitoring of the GRT. Such interannual surveys of coral assemblages of the
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GRT are timely for determining their status and temporal trajectories and hence, evaluat-
ing resilience capacities of this reef ecosystem. Ideally, this monitoring should not focus
exclusively on corals and algae, but rather incorporate other key mechanisms of ecosystem
maintenance and resilience, such as grazing pressure by herbivorous fishes and inverte-
brates, predation by coral-killing species of echinoids, sponges and nudibranchs [59–61],
coral recruitment, and major impacts such as fishing, sedimentation, SST, and nutrient
loading. Such monitoring should also include nearby mangroves and seagrass beds, as
these adjacent habitats may have an important role in the functioning of the coral reef
ecosystem [62,63]. In fact, identifying major drivers of the spatio-temporal variability of
reef communities, which was not within the scope of the present study, is crucial, not
only to improve our knowledge on their structure and dynamics, but also to identify key
biophysical processes that may be prioritized in conservation actions.

Our study also has important implications for urgently needed management and
conservation of the GRT. For example, the marked spatial variation that we recorded
suggests that conservation measures, such as the implementation of marine protected areas
(MPAs), should integrate sufficient area to capture the scale of this spatial heterogeneity.
This aspect is critical, as MPA effectiveness can be obscured by important variations at small
spatial scales, despite similar adjacent habitats showing opposite trends [64]. The health of
the GRT and nearby coral reefs requires a drastic reduction in the fishing pressure in this
area. This may be achieved by increasing the number of community-based aquaculture
projects that have shown to be a successful alternative, or even principal, source of income
for some coastal populations [65], and which may reduce the negative effects of overfishing
on coral communities [19,22,66]. Ideally, these alternative activities must be located to
minimize the impacts on nearby coral reefs and adjacent ecosystems such as mangroves
and seagrass beds, and should involve end users—at least fishermen and sea farmers—in
setting up the project and decision making. Furthermore, our results suggest that reef
restoration activities should consider at least the genera Acropora, Pocillopora, Seriatopora,
and Stylophora. These genera, which are among the most abundant in the Toliara region,
have colonies with mainly branching growth forms, and are thus particularly suitable
for transplantation and restoration projects [67,68]. Moreover, these genera are highly
sensitive to variations in abiotic conditions, and thus may act as coral sentinels to detect
environmental changes [40,57,58]. Such community-based coral farming, whose technical
and social feasibility has already been demonstrated, could also improve education and
awareness on the importance of corals for healthy coastal ecosystems and, consequently,
on their income-generating activities [60].

The outcomes of this survey bring hope to the future of coral assemblages of the GRT
by suggesting that these assemblages still have acceptable maintenance capacities, and may
also be beneficial to other reef communities and the goods and services the GRT should
continue to provide to local populations. But once again, this optimistic scenario can only
be achieved if adequate and rigorous conservation actions are taken rapidly to limit and
mitigate the local impact of disturbances that are unfortunately inevitable. In this context,
the ability of local populations to become involved in community-based conservation
actions is a positive aspect of their success [15,35,66]. The quantitative baseline examined
here may support collaborative processes to evaluate future changes in coral communities
and identify effective conservation actions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/d13100486/s1, Figure S1: Pearson correlations (R) between spatial distribution of coral
cover and all other benthic categories recorded in this study; Figure S2: Contribution to the over-
all coral abundance (expressed in %) of the eight major coral genera at the three major habitats;
Table S1: Main characteristics of the 10 stations surveyed in the Toliara region of southwest Mada-
gascar; Table S2: Summary of the nested ANOVA to test for spatial variability in percent cover of
benthic categories among habitats and stations; Table S3: Summary of the pairwise t-tests to identify
differences between significant groups for percent cover of benthic categories; Table S4: Summary of
the pairwise t-tests to identify differences between stations for percent cover of benthic categories;
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Table S5: Summary of the nested ANOVA to test for spatial variability in generic richness among
habitats and stations; Table S6: Summary of the pairwise t-tests to identify differences between habi-
tats for generic richness; Table S7: Summary of the pairwise t-tests to identify differences between
stations for generic richness; Table S8: Summary of the nested ANOVA to test for spatial variability in
overall abundance of coral colonies among habitats and stations; Table S9: Summary of the pairwise
t-tests to identify differences between habitats for abundance of coral colonies; Table S10: Sum-
mary of the pairwise t-tests to identify differences between stations for abundance of coral colonies;
Table S11: Summary of the ANOSIM for pairwise comparison in the composition and abundance of
coral genera between habitats; Table S12: Composition and abundance (mean number of colonies
per station) of coral assemblages at the 10 stations used for nonmetric multidimensional scaling
(nMDS); Table S13: Summary of the ANOVA per permutation for comparison of the size frequency
distribution among each habitat based on the colony abundances; Table S14: Summary of the pair-
wise t-test of the size frequency distribution between habitats based on the colony abundances;
Table S15: Summary of the pairwise test of the size frequency distribution based on the colony abun-
dances; Table S16: Coral genera (scleractinians and the calcareous hydrocoral Millepora) recorded
in the Toliara region of southwest Madagascar in 2017 (present study) and in 1961–1970 [12], in the
Andavadoaka region [19], in the northwest region by Veron and Turak [4], and in the northeast region
by Obura et al. [5].
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