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Abstract: The gut microbiome plays a major role in chronic diseases, of which several are charac-
terized by an altered composition and diversity of bacterial communities. Large-scale sequencing
projects allowed for characterizing the perturbations of these communities. However, translating
these discoveries into clinical applications remains a challenge. To facilitate routine implementation
of microbiome profiling in clinical settings, portable, real-time, and low-cost sequencing technologies
are needed. Here, we propose a computational and experimental protocol for whole-genome semi-
quantitative metagenomic studies of human gut microbiome with Oxford Nanopore sequencing
technology (ONT) that could be applied to other microbial ecosystems. We developed a bioinformat-
ics protocol to analyze ONT sequences taxonomically and functionally and optimized preanalytic
protocols, including stool collection and DNA extraction methods to maximize read length. This
is a critical parameter for the sequence alignment and classification. Our protocol was evaluated
using simulations of metagenomic communities, which reflect naturally occurring compositional
variations. Next, we validated both protocols using stool samples from a bariatric surgery cohort,
sequenced with ONT, Illumina, and SOLiD technologies. Results revealed similar diversity and
microbial composition profiles. This protocol can be implemented in a clinical or research setting,
bringing rapid personalized whole-genome profiling of target microbiome species.

Keywords: semi-quantitative metagenomics; microbiome; obesity; gut microbiota; microbial DNA
extraction; sequencing; simulation; Oxford Nanopore Technologies; MinION

1. Introduction

In recent years, there has been a burst in knowledge related to gut microbiota screening
in chronic diseases. The increasing access to high-throughput sequencing has led to the dis-
covery of alterations in the composition of intestinal microbiota in many human disorders,
including metabolic diseases. Currently, there is a real challenge to discover reproducible
gut microbial signatures for diseases in order to develop generalizable diagnostic and
prognostic tools, which makes their clinical use difficult [1].

Genes 2021, 12, 1496. https://doi.org/10.3390/genes12101496 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-8738-6705
https://orcid.org/0000-0002-5597-7922
https://doi.org/10.3390/genes12101496
https://doi.org/10.3390/genes12101496
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12101496
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes12101496?type=check_update&version=2


Genes 2021, 12, 1496 2 of 21

In the field of metabolic diseases, microbial diversity is generally representative of
microbiome and host health, as exemplified in previous studies, such as MetaHIT [2],
HMP [3], MetaCardis [3] and others covering severe obesity, bariatric surgery [4], diabetes,
NAFLD/NASH [5], and cirrhosis [6,7]. In mild [8] and severe obesity [9], for instance, we
previously showed that reduced microbial gene richness linked to altered composition
was found in 40% to 75% of the subjects and was associated with a more deleterious
host phenotype. Even with these established signatures in metabolic diseases, the gut
microbiome varies greatly in composition and abundance from one individual to another.

Presently, most microbiome research studies are carried out using 16S ribosomal
RNA genes or whole-genome shotgun sequencing (WGS), the latter requiring extensive
computational resources and pipelines. Moreover, not all medical and research centers
are able to set up high-end shotgun sequencing platforms due to multiple constraints.
As opposed to previously existing technologies, Oxford Nanopore Technologies (ONT)
proposes real-time sequence data generation with fewer resources and a small benchtop
footprint. In the context of metagenomics, the long reads generated by ONT have led to
major improvements in the de novo assembly of microbial genomes from metagenomic
samples [10,11]. It has been applied to target pathogen and viral profiling [12,13], as well as
the characterization of microbial communities in diverse environments from 16S data [14].
However, there is a need to define standardized wet-lab and bioinformatics protocols for
the use of ONT in large-scale quantitative metagenomic studies given that most of the
quantitative metagenomic bioinformatics pipelines are adapted to short reads [14].

In addition to biological variation, gut microbiome quantification is subject to technical
variation along the preanalytical process, including sample collection and extending to
DNA extraction, library preparation, and sequencing but also along the bioinformatics
analytical protocols [15]. This is observed in the literature with frequently non repro-
ducible results [16,17], highlighting the need for technical standardization [18]. Even
though progress has been made with the work of different international consortia [19,20] to
standardize protocols, there is still a need for fast-track and affordable microbiome screen-
ing protocols in clinical settings. For example, among critical steps prior to sequencing
is DNA extraction. Costea et al. [20] reported variability in microbial composition and
diversity with different DNA extraction protocols. Extraction protocols, with or without
bead-beating, increase the representation of Gram-positive bacteria, as is also the case for
different DNA extraction kits: the richness is higher and reads are longer with the Qiagen
compared with Magnapure kits [21]. Library preparation has also an impact on the relative
abundances of taxonomic and functional microbial objects [10]. Finally, the bioinformatics
pipelines can yield consequent variability in microbial ecosystem description [22].

Here, we have explored protocols with the quest to optimize ONT for microbiome
analyses and have proposed a complete protocol, including wet-lab preparation (i.e.,
sample collection, DNA extraction, and library preparation), as well as data processing
and analysis. In particular, we have set up a customized analytical pipeline to estimate
microbial composition and diversity, as well as to classify ONT reads using the latest
bacterial gene catalogs along with functional profiling. This protocol is open access,
allowing for replication and implementation within the world’s medical or research centers
(https://git.ummisco.fr/pipelines/nanopore, accessed on 22 September 2021).

2. Materials and Methods
2.1. Study Design

To determine the optimal parameters for semi-quantitative estimation of microbiome
ecosystems, we first optimized our bioinformatics pipeline based on controlled experiments
of simulated data [23]. We simulated sequence data based on a set of known bacterial
genomes and abundance distribution profiles similar to real metagenomics varied in terms
of composition, richness, and sequencing depth. The simulator took into account the
particularity and biases of ONT sequences. Next, we built and adapted a bioinformatics
pipeline, and we searched for the best hyper parameters to minimize the difference between

https://git.ummisco.fr/pipelines/nanopore
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the estimated quantified features (abundance, richness) and the real abundance used to
parameterize the simulation (Figure 1a).
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In addition, we conducted multiple wet-lab experiments to establish an optimized
preanalytical protocol, from stool collection and DNA extraction and fragmentation to end-
repair steps (Figure 1b). Finally, we validated our protocol and pipeline using human stool
samples sequenced with different technologies (ONT, Illumina, and SOLiD) (Figure 1c).

2.2. ONT Microbiome-Like Simulated Data

We set up a data simulation framework to estimate the performance of the quantifica-
tion pipeline, while maximizing representation to real human gut microbial ecosystems.
We used 506 reference genomes included in the construction of the Integrated Gene Cat-
alog of human gut (IGC) [24]. We simulated 10 samples (M1:M10) whose abundances
followed a Pareto distribution estimated using real metagenomic profiles of metagenomic
species [9,25] computed on the same IGC [24]. We included two important variables for
the quantification of microbial ecosystems into the simulation: richness (number of present
species) and sequencing depth (i.e., number of reads generated by the sequencing). We
simulated the variation in richness from 50 to 450 species (R50:R450), as well as the se-
quencing depth ranging from 1× to 5×, the complete coverage of the genomes present.
In total, 250 samples were simulated using the CAMISIM software (option: NanoSim tool
with default error parameters for the Escherichia. coli example) [26] (Figure 1a).

2.3. Bioinformatics Workflow for Taxonomic Binning of ONT Sequencing

The proposed bioinformatics workflow for semi-quantitative metagenomic (QM) anal-
yses from ONT shotgun sequencing starts with fast5 files generated by the MiniKNOWTM

software. The first step of the workflow consists of base calling and demultiplexing the
fast5 files into fastq files. Here we used Albacore (v2.1.10) and Guppy (v2.1.3) ONT base
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callers from the community site available to ONT customers [27] together with custom R
scripts that parse the sequence_summary.txt files, generated during the base-calling step,
to generate different visualizations of the quality of the sequencing (active channels in the
flow cell, distribution of active channels through time, yield in terms of reads of the run,
and read length distribution).

The taxonomic binning of ONT reads is carried out using two different reference resources.

• Centrifuge-based taxonomic binning: Centrifuge [28] was used for the taxonomic
binning of individual ONT reads using their comprehensive reference database of
more than 8000 reference genomes from prokaryotes and viruses (including human
reference genome). This step allows for excluding human sequence reads. To remove
spurious taxonomic assignments, we additionally mapped a read bin product of the
initial Centrifuge classification against the corresponding reference genome from the
centrifuge database using minimap2 with the map-ont option optimized for ONT
reads [29]. Based on simulation experiment results, only sequences with a minimum
mapQ score of 5 were retained for subsequent analyses (see results). A species relative
abundance table was generated by summing the counts of each taxonomic bin (NCBI
taxonomy identifiers) from the filtered Centrifuge results. This relative abundance
table was combined with the experiment metadata information and a reference tax-
onomic table reconstructed from Centrifuge NCBI taxonomy identifiers using the
R package taxize v0.9.95 [30] using phyloseq v1.30.0 [31], generating a phyloseq-
class R object. This object can be used for microbial ecology analyses (rarefaction,
alpha-diversity, beta-diversity, and differential abundance analysis).

• IGC-based taxonomic binning: A complementary approach consisting of quantify-
ing the abundance of microbial genes. Here, ONT reads were aligned against the
Integrated Gene Catalog of reference genes of the human gut microbiome (IGC) cata-
log [24] using minimap2 with the map-ont option [29]. The alignment of long ONT
reads over short or fragmented IGC genes provided two different types of multi-
ple mappings (an ONT read mapped over several genes). First, a long ONT read
could cover a genomic region harboring more than one gene, so different genes can
be mapped over nonoverlapping regions of an ONT read, providing a structural
annotation of the corresponding DNA region. Second, multiple genes can also be
mapped in overlapping regions of a read. These second multiple mappings were
filtered out using the GenomicRanges and plyrRangesR packages [32,33], allowing for
retaining the genes with the highest mapQ score and sequence identity across each
alignment region. The raw gene abundance table was reconstructed by counting the
number of times each gene was mapped by ONT reads. From this gene count table,
the abundance of metagenomic species (MGS; coabundant gene groups clustered from
1267 human gut metagenomes used to construct the IGC [25]) was estimated as the
mean value of the 50 most connected genes in each MGS as proposed in the original
study [25].

2.4. Bioinformatics Workflow for Functional Profiling of ONT Sequencing

The final step of the bioinformatics workflow consisted in the quantification of KEGG
orthology groups (KO groups) [34]. KO abundances were quantified from the results of
both taxonomic binning approaches. From IGC abundance tables, KO abundances were
quantified using available reference annotation from the IGC as the sum of the individual
abundances of genes annotated with different KO groups [24]. For taxonomic results
produced from Centrifuge quantification, we retrieved the KO content of KEGG genomes
from the KEGG API [35] for which species-level pan-genomes were reconstructed for all
species-level bins based on NCBI taxonomy and matched with genomic sequences in the
Centrifuge database. Based on this matching, the abundance of KO groups from Centrifuge
results was computed as the sum of the abundances of the species containing these KO
groups. The pan-genome strategy fits with the compressed nature of Centrifuge genomes
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at the species level, followed to reduce the size of the indexes and improve the overall
performance of the classification process [28].

2.5. Study Participants for Wet-Lab Experiments

Stool samples used for wet-lab protocol optimization were collected from healthy
French volunteers (n = 15; men = 8; BMI, 18–25 kg/m2) from the European “MetaCardis”
cohort [3]. For the comparison between sequencing technologies, we used 33 baseline
samples from the Microbaria study [9], where the gut microbiome of subjects with severe
obesity was characterized before and after bariatric surgery [9].

2.6. Sample Collection and Bacterial DNA Extraction for Preanalytic Protocol Experiments: Fresh
Stools Were Collected with Two Different Methods

(1) A dry spoon tube (SARSTED) requires storage at −80 ◦C, and (2) a tube containing
DNA/RNA stabilizing solution can be kept at room temperature, −20 ◦C, or 80 ◦C de-
pending on the storage duration. For the latter collection method, we tested three available
commercial kits, including (1) “DNA/RNA Shield-Fecal Collection Tube” (Zymo marketed
by Ozyme), (2) “Stool Nucleic Acid Collection and Preservation Tubes” (Norgen Biotek),
and (3) “Omnigen Gut for Microbiome” (DNA Genotek).

To extract bacterial DNA, we tested four different commercial kits using manual
extraction protocols: (1) “PureLink™ Microbiome DNA Purification Kit” (Invitrogen, Paris,
France), (2) “Qiamp PowerFecal DNA Kit” (Qiagen, Courtaboeuf, France), (3) “Zimo-
Biomics DNA Mini Kit” (Ozyme Saint-Cyr-l’École, France), and (4) “Power Microbiome
RNA/DNA Isolation Kit” (Mo Bio, Courtaboeuf, France). We used the “Maxwell Instru-
ment,” a robotic station from Promega that extracts DNA from 16 samples simultaneously.
We also tested automated extraction with two different kits: “Maxwell RSC Buffy Coat
DNA Kit” (Promega 1, Charbonnières-les-Bains, France) and “Maxwell RSC PureFood
GMO and Authentication Kit” (Promega 2, Charbonnières-les-Bains, France). Extracted
stool DNA yield and quality were evaluated with a fluorometer (Qubit, Life Technologies
Alfortville, France) and NanoDrop (Thermo Scientific, Alfortville, France), respectively.

2.7. Optimization of DNA Extraction, DNA Fragmentation, and End Repair

DNA extraction tests were performed from stool samples collected in dry tubes from
three healthy subjects from the MetaCardis cohort (BMI <25 kg/m2) at three sampling
times for subject 01. After collection, stool samples were aliquoted and immediately
stored at −80 ◦C. Each sample was extracted according to the protocols proposed by the
manufacturer. After extraction, the samples were evaluated using the “Qubit” fluorometer
to estimate the DNA yield obtained in ng/µl and using NanoDrop to evaluate DNA quality.

2.8. Library Preparation and Sequencing

We used 1.5 µg of DNA to perform the library construction. Extracted DNA was
fragmented in g-tubes from Covaris, and DNA end repair was performed using the NEB-
Next FFPE Repair Mix from New England Biolabs (NEB). We used the NEBNext Ultra
II End Repair/dA-Tailing Module (NEB) for the “end prep” step, 1D Native Barcoding
Genomic DNA Kit (ONT), and “NEB Blunt/TA Ligase Master Mix kit” (NEB) for DNA
multiplexing and adapter ligation. We used Agencourt AMPure XP (Beckman Coulter)
beads for DNA purification.

Whole-genome metagenomic sequencing was performed with ONT’s MinION tool
using flow cells on which 12 samples were simultaneously loaded per run. A total of
33 samples from the Microbaria study were sequenced in parallel with ONT and Illumina
NovaSeq (2 × 150 bp PE reads). Illumina sequences were processed following the same
procedure as described in the original Microbaria study [9] in order to estimate microbial
gene richness and the abundances of metagenomic species based on the 9.9 million genes
in the IGC [24].
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2.9. Statistical–Ecological Analyses

All statistical analyses were performed on R v.3.6. Wilcoxon rank-sum tests (for
two-level categorical variables), and Kruskal–Wallis tests (for categorical variables with
more than two levels) were used to compare differences in microbial diversity between
experimental conditions in different experiments. p-Values < 0.05 (alpha level) were
considered significant. Spearman correlation tests were used to compare the abundance
of taxonomic and functional features between sequencing technologies (SOLiD, Illumina,
Nanopore) in Microbaria samples, followed by the correction for multiple comparisons with
the Benjamini–Hochberg method. Adjusted p-values < 0.05 were considered significant.

Raw abundance table products of ONT sequencing were rarefied to the minimum
sequencing depth in each experiment before ecological analyses. Permutational analyses
of variance (PERMANOVA) with the adonis function of vegan R package [36] were used
to evaluate the impact of different covariates on microbiome composition in different
experiments using a Bray–Curtis beta-diversity dissimilarity matrix computed from genus-
level abundance data. Alpha-diversity was estimated with phyloseq v1.30.0 [31].

3. Results
3.1. Metagenome Simulations Identified Key Pipeline Parameters for ONT
Microbiome Quantification

The metagenome simulation approach allowed for evaluating the impact of differ-
ent steps and parameters in the bioinformatics pipeline. The evaluation accuracy con-
sisted of comparing the estimated abundance of microbial features (i.e., species abun-
dance) with the original values used to generate the sequences of over 100 million long
reads for 250 simulated metagenomes (see methods; additional files in Supplementary
Tables S1 and S2). These reads were aligned against the 506 reference genome catalog us-
ing a minimap2 aligner with the map-ont configuration, designed for optimal performance
and accuracy with ONT sequencing data [29]. On average, 381,000 reads per sample (94%)
were aligned against the reference genomes. The reads that could not be aligned were on av-
erage 2.5 times shorter in size (average read length = 3168 bp, sd = 24) compared with those
that could (average read length = 8064 bp, sd = 8) (Figure 2a, Supplementary Table S3),
suggesting that read length is a key parameter.

We evaluated the accuracy of the estimated species abundance and richness to the refer-
ence values used for the simulation based on filtering using a primary alignment parameter
(PA), defined as the best alignment of a single read among all possible multiple alignments.
We compared the species abundance and richness of PA-filtered minimap2 results with
those obtained without applying the PA-filtering step (raw abundances/richness).

For species richness, we observed that raw quantifications detected all reference
species in simulated samples (100% samples with recall values equal to 1; Figure 2b).
Quantifications based on PA-filtered reads detected all reference species (recall values equal
to 1) in 95.8% of the simulated samples, with missing species observed in 21 simulations
across different community compositions with low simulated sequencing depth (2 samples
with 2× simulated depth of reference genomes; 19 with 1× sequencing depth; Figure 2b).
However, both raw and PA-filtered reads overestimated the number of species especially
in the low-richness community compositions. For all community compositions, taxonomic
profiles from PA-filtered data reached higher precision values in species richness estimates
compared with raw alignments (Figure 2c). Importantly, principal coordinates analysis
(PCoA) using a Bray–Curtis beta-diversity dissimilarity matrix showed that PA-filtered
samples were more similar to the corresponding reference distributions (R2 effect size
dissimilarities = 0.04, p-value = 0.001; PERMANOVA test) compared with raw alignment
samples (R2 effect size dissimilarities = 0.51, p-value = 0.001; PERMANOVA test) (Figure 2d).
This suggests that the noise introduced by secondary alignments significantly decreased
the precision of the pipeline.
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Figure 2. Metagenomic profiles from simulated samples between minimap2 results and minimap2 results filtered from
secondary alignments. (a) Boxplots of mean lengths of ONT reads of 250 simulated samples (y-axis) between those
aligned and unaligned over the 506 reference genomes from minimap2 results (x-axis). (b) Boxplots of recall values of
species richness estimates in 250 simulated samples (y-axis) between metagenomic profiles inferred from all minimap2
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the reference and 250 simulated samples inferred from all minimap2 alignments (mmap2raw) and from minimap2 primary
alignments only (mmap2APfilt, x-axis). Dashed lines connect points coming from the same sample (reference, simulated
ones; 3 points per sample).

3.2. Alignment Identity and Alignment Quality Affect Workflow Precision

We next evaluated the impact of filtering read alignments at different thresholds of
sequence identity on the accuracy of the estimated microbiome profiles. The recall values
were close to 1 for species richness when filtering by identity levels up to 40%. This
means that all reference species in each simulated sample were detected by the workflow.
When progressively increasing identity levels from 50% to 90%, the fraction of reference
species not detected notably decreased (Supplemental Figure S1a). This resulted, however,
in the increase in the precision of the estimated richness as the filtering lowered the
number of false positives (Supplemental Figure S1b). At the level of similarities between
relative abundance estimates, the Spearman rhos of the correlation between the estimated
species abundance and the reference values decreased as the alignment identity threshold
increased across all different community compositions in a similar way as recall values,
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showing that the loss of species with high stringent identity thresholds leads to a decrease
in the overall similarities of simulated relative abundance profiles with the reference
abundances (Supplemental Figure S1c). This has an impact on the overall microbiome
composition similarities based on ordination framework. When considering the overall
microbial composition, the higher was the stringency of the alignment identity, the more
dissimilar the metagenomic profiles were from the reference composition of simulated
samples (Supplemental Figure S1d), despite the presence of false positives. Overall, these
results showed that common approaches to filter read alignments used in the context of
second-generation sequencing technologies (NGS) (e.g., identity thresholds above 80–90%
sequence identity) were not directly applicable to high error-prone ONT sequencing data.
Additional parameters were needed to be explored in order to improve the accuracy of the
resulting metagenomic profiles.

Thus, we next explored the mapping quality score (mapQ) as a parameter for filtering
ONT sequence alignments. MapQ, as computed by minimap2, assigns high values to
long reads and for which the scores assigned to secondary alignments were weak when
compared with primary alignments [29]. A total of 11 different mapQ thresholds (from 0
to 50 at steps of 5) were evaluated based on the primary alignment of simulated datasets
(Supplemental Figure S2). In terms of recall in species richness estimates, we observed a
similar decrease with the stringency of the mapQ threshold as observed with the alignment
identity, although reaching overall higher recall values for the ensemble of simulated data
(Figure 3a; mean recall ± standard deviation = 0.826 ± 0.053 vs. 0.816 ± 0.237 for mapQ
filtering vs. alignment identity filtering, respectively). Similar results were observed for
precision, which increases with the stringency of the mapQ threshold reaching overall
high values for the ensemble of simulated data (Figure 3b; mean precision standard
deviation = 0.95 ± 0.089 vs. 0.65 ± 0.24 for mapQ filtering vs. alignment identity filtering,
respectively). When both filtering strategies were compared in terms of F1 scores, defined
as the harmonic mean of precision and recall (high F1 scores being a good trade-off between
the two metrics [37]), we observed that the filtering by mapQ produces significantly higher
F1 scores than filtering by alignment identity under all community compositions regarding
species richness (Figure 3c; p-value < 0.05; Wilcoxon rank-sum test).

Finally, in terms of similarity between estimated species abundance and the reference
values, we observed different results for different complexities of simulated communities.
In low-richness samples (R50, R150), the similarities increased with the mapQ threshold
from 5 to 30, but this was not the case for more complex samples (R250–R450), where the
similarities did not improve as the mapQ threshold was increased further than mapQ = 5
(Figure 3d). On the contrary, the similarity of simulated abundances with the reference
abundances significantly decreased with the stringency of mapQ filtering in simulated
samples with 450 species (Supplemental Figure S3). Pairwise comparison of F1 scores
in species richness estimates and Spearman rhos of pairwise similarities with reference
abundances across simulations with different mapQ filter thresholds shows that both
metrics were strongly associated (Supplemental Figure S4), which suggests that the overall
accuracy of species richness estimates determines how well the simulated abundance
profiles resemble the reference abundance data. These results show that for complex
microbiome communities, like those of the human gut, a mapQ threshold of 5 gave the best
results in terms of species richness estimations (based on F1 scores) and similarity regarding
the estimated relative abundance profiles with the reference data (Supplemental Figure S4).
This parameter, however, should be adapted depending on the estimated complexity of the
target microbial community.

3.3. Validation of the Bioinformatics Pipeline with ZymoBIOMICS Mock Community

The quantification of the ZymoBIOMICS mock community combining Centrifuge
taxonomic binning and filtering by minimap2 alignment of read bins vs. the corresponding
reference genomes with parameters derived from simulation experiments (primary align-
ments only, minimum mapQ = 5) reproduced the composition of the mock community
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with high accuracy and reduced the number of miss-assignments in comparison with the
classification based on Centrifuge only (Supplemental Figure S5). This also led to a higher
overall similarity of microbiome composition (estimated as 1-Bray–Curtis beta-diversity)
with the reference mock community with the combination of Centrifuge and minimap2
filtering (0.91) than with raw Centrifuge results (0.88).
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metagenomic profiles inferred from primary alignments of ONT reads filtered by different thresholds of mapQ score (from 0
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3.4. DNA Extraction Kits Influenced Read Length Distribution

When testing DNA extraction kits on dry spoon stool samples from healthy volunteers,
all kits except the “ZimoBiomics DNA Mini Kit” (Ozyme) provided sufficient DNA quan-
tity and quality for sequencing. Thus, we examined the library preparation and sequenced
all kits, except the Ozyme kit. We observed a bimodal distribution of read lengths across the
Invitrogen and Mo Bio DNA library preparation kits, with a high proportion of long reads
(>1.1 kb), whereas with the Promega and Qiagen kits, the distribution was skewed towards
smaller reads (Figure 4a). The Mo Bio kit led to the production of sequences with a mean of
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8.5 kb in size, while the Invitrogen kit produced sequences up to 24 kb. The Qiagen kit and
the two Promega (Promega 1 and Promega 2) kits yielded sequences up to 17 kb but with
a higher proportion of short reads. The fraction of classified sequences was significantly
higher for long reads (log2-length > 9.96; p-value = 7.5 × 10−9; Wilcoxon signed-rank test),
with on average 39% of long reads successfully classified after the two-step’s procedure
based on Centrifuge compared with 24% for shorter reads (log2-length < 9.96 (Figure 4d)),
confirming initial observations with simulated data about the importance of this param-
eter in the taxonomic classification of ONT reads. The examination of alpha diversity
also showed significant differences by DNA extraction kit, with high diversity levels in
Invitrogen samples (Figure 4e, p-value = 0.0061, Kruskal–Wallis test; p-value = 9.4 × 10−4

Invitrogen vs. Promega 1 and Promega 2 kits; post hoc pairwise Dunn’s test). Finally,
we observed that the differences between the microbiome compositions of the different
replicates were mainly explained by the collection day (R2 = 0.45, p-value = 0.001), fol-
lowed by the sample donor (R2 = 0.03, p-value = 0.001) and DNA extraction kit (R2 = 0.02;
p-value = 0.001) (Figure 4h; PERMANOVA test, marginal effects on a multivariate model
with collection day, DNA extraction kit, sample donor, DNA fragmentation, and DNA
end repair). Based on these observations, the Invitrogen kit was selected as the preferred
extraction kit for sequencing.

3.5. DNA Fragmentation and End Repair

The first step in ONT’s library preparation protocol is DNA fragmentation to generate
8 kb fragments [27]. Using three different samples from one subject, DNA fragmenta-
tion had no effect on read length distribution (Figure 4b), species richness (Figure 4f;
p-value > 0.05, Wilcoxon rank-sum test), or microbiome composition based on PCoA ordi-
nation (Figure 4i; R2 = 0.001, p-value = 0.949, PERMANOVA test). Therefore, we decided to
exclude this step from our experimentation framework.

The ONT DNA preparation protocol recommends DNA-end repair. We evaluated
the effect of DNA-end repair on read length and microbial diversity by extracting DNA
from stools of the same three subjects using the Invitrogen kit and excluding the DNA
fragmentation step. We found similar profiles of read length distributions between samples
with end-repair and no end-repair steps (Figure 4c), no significant impact on species
richness (Figure 4g; p-value > 0.05, Wilcoxon rank-sum test), and no significant impact on
microbiome composition (Figure 4j; R2 = 0.001, p-value = 0.877, PERMANOVA test). This
step was then omitted from our proposed protocol.

3.6. Optimized DNA Extraction Protocol Improved ONT Read Length and Microbial
Diversity Estimation

Based on the simulated and real data, read length was an important parameter to
maximize the efficiency of the taxonomic classification of ONT reads. Consequently, we
aimed at increasing the read length by optimizing DNA extraction and library preparation
using the Invitrogen kit. We followed recommendations from the International Human
Microbiome Standards (IHMS) consortium [20] (Figure 5A), but to increase the proportion
of long reads, we improved the sequencing library preparation protocol by modifying
two main steps. The first one was the “end-prep” step, which prepares the binding of
the adapter to the DNA after two incubation periods. We used the “NEBNext Ultra II
End Repair/dA-Tailing Module” from New England Biolabs (NEB). In the ONT protocol,
“end-prep” reaction incubating is recommended for 5 min at 20 ◦C, followed by 5 min at
65 ◦C. However, the NEB kit recommends a first incubation at 20 ◦C for 30 min, followed
by a second incubation at 65 ◦C for 30 min. Given the lack of effects of the ONT end-
prep protocol, we attempted end repair using the NEB kit and recommended protocol
(Figure 5B).

In the library preparation step, DNA was purified by using “Agencourt AMPure
XP” beads (Beckman Coulter, Roissy CDG, France), which use solid-phase reversible
immobilization (SPRI) paramagnetic bead technology, which selectively binds nucleic
acids according to type and size. Agencourt AMPure XP utilizes an optimized buffer,
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polyethylene glycol (PEG), to selectively bind DNA fragments. The size of the fragments
eluted from the beads is determined by PEG concentration. For example, if 50 µL of beads
is added to a 50 µL DNA sample, a SPRI/DNA ratio of 1 is obtained. When this ratio
was changed, the length of the fragments binding and/or remaining in the solution also
changed. The SPRI/DNA ratio was disproportionately associated with the DNA fragment
size, which is due to the fragment size affecting the total charge carried by the molecule.
Thus, long DNA fragments would have a greater proportion of negative charges, which
promotes their electrostatic interaction with the beads and allows a priority link to the
carboxyl molecules. The ONT protocol was developed based on the DNA fragmentation of
8 kb sequence length, and the SPRI/DNA ratio must be equal to 1. In order to promote the
selection of larger DNA fragments by paramagnetic beads, we reduced the SPRI/DNA ratio
to 0.4 (Figure 5B). The chosen ratio was based on the SPRI technology documentation [38]
and ONT users’ recommendations from the “Community” forum [27].
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sequencing data. Read length distributions of ONT reads across different DNA extraction kits ((a) n = 29) and between
DNA fragmentation ((b) n = 6 paired samples fragmented/nonfragmented) and DNA end repair ((c) n = 6 paired samples
end vs. no end repair) steps for Invitrogen samples. Blue dashed lines correspond to the median value of log2-transformed
read lengths used to stratify reads as long or short. (d) Differences between the fraction of classified reads by the Centrifuge
approach between long and short reads for 29 samples in panel (a). (e) Differences in microbial diversity (observed species)
between extraction kits (n = 29). (f) Differences in microbial diversity (observed species) by DNA fragmentation (n = 4 paired
samples). (g) Differences in microbial diversity (observed species) by DNA end-repair step (n = 4 paired samples). (h) PCoA
ordination of 29 samples in panel (a) colored by extraction kit. (i) PCoA ordination of 8 samples in panel (f). (j) PCoA of
8 samples of panel (g) colored by DNA end-repair step. ns (panel (f,g)) = nonsignificant differences in paired Wilcoxon
rank-sum tests. **** = p-value < 0.0001 in paired Wilcoxon rank-sum test.
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Thus, we performed two modifications (end-prep and DNA purification) with the
Invitrogen extraction protocol, referred to as “Optimized Invitrogen”. This optimization
step was performed for six samples from one healthy subject (from the MetaCardis study),
collected at six time points. Each sample was extracted using the standard “Invitrogen”
protocol and with the “optimized” protocol. DNA yields extracted from this optimized
protocol were five times greater than the ones obtained with the standard kit (55 ng vs.
300 ng, p-value < 0.0001). The ratio of the absorbance at 260/230 was higher with the
optimized protocol, 2.11 vs. 1.38, respectively (p-value = 0.0007), and the absorbance ratio
at 260/280 significantly increased, 1.89 vs. 1.73, in the nonoptimized one, respectively
(p-value = 0.0046) (Supplementary Table S5).

The read length was also improved (Figure 6a). The standard Invitrogen protocol
produced two populations of reads with average read lengths of 500 and 6000 bp, while
the optimized protocol produced a single read population with an average read length of
6000 bp. According to this, we observed a significant increase in the fraction of classified
reads in comparison with the fraction obtained with the initial protocol recommended
by Invitrogen (Figure 6b; 29.72% with optimized protocol vs. 23.92% with original pro-
tocol; p-value = 0.031, Wilcoxon signed-rank test). We observed an increased microbial
diversity (observed species) in four of the six samples with the optimized protocol even if
this variation remains insignificant (p-value = 0.31; Wilcoxon signed-rank test) (Figure 6c).
Finally, PCoA (Figure 6d) showed that differences in microbiome composition across sam-
ples are explained mainly by the collection date of the samples (R2 = 0.89, p-value = 0.001,
PERMANOVA test), with no significant effect of the extraction kit on the overall micro-
biome composition (R2 = 0.026, p-value = 0.906, PERMANOVA test). Altogether, the
optimized DNA extraction protocol exhibited a better DNA yield and purity, longer se-
quences than the usual protocol, leading to a significant yield improvement (fraction of
classified reads) of the taxonomic binning with no impact on the overall microbiome
composition of the samples.
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3.7. Impact of Stool Sampling and Storage on Sequence Length and Diversity

Subjects’ stool samples were initially collected in a dry spoon tube and rapidly frozen
at −80 ◦C to ensure the stability of the bacterial DNA. However, an increasing number
of sampling systems contain a solution that can stabilize bacterial DNA at room temper-
ature for periods ranging from 60 days (DNA Genotek) up to 2 years (NORGEN Biotek
and Ozyme). We evaluated the effects of room temperature (RT) stabilized samples on
bacterial DNA extraction, library preparation, and sequencing. We prepared six DNA
libraries from stools of 12 healthy subjects collected by different protocols in three dif-
ferent stabilizing kits: “Omnigen Gut for Microbiome” (DNA Genotek), “Stool Nucleic
Acid Collection and Preservation Tubes” (Norgen Biotek), and “DNA/RNA Shield-Fecal
Collection Tube” (Ozyme). Regarding read lengths, we observed similar unimodal dis-
tribution towards long reads across all experiments (Supplemental Figure S6a). We did
not observe significant differences between the three collection kits in the fraction of
classified reads (Supplemental Figure S6b; p-value = 0.38 in −80◦ group; p-value = 0.28
in RT group). Additionally, we observed no significant differences in species richness
(Supplemental Figure S6c; p-value = 0.71 in −80◦ group, p-value = 0.41 in RT group;
Kruskal–Wallis test), although we could notice a tendency with Norgen and Omnigen kits
to decrease microbial diversity at room temperature in comparison with −80 ◦C storage
(Supplemental Figure S6c). In contrast, we observed significant variations in microbial di-
versity by donor (Supplemental Figure S6d; p-value = 0.0017, Kruskal–Wallis test), being the
variable with the highest impact on microbiome composition by PERMANOVA analyses
(R2 = 0.82; p-value = 0.001) in comparison with the collection kit (R2 = 0.11, p-value = 0.009)
and storage conditions (R2 = 0.07; p-value = 0.029) (Supplemental Figure S6e,f). Thus,
sampling methods at room temperature with DNA stabilization performed similarly to
snap-frozen samples, and the choice of the sampling kit might depend on practical feasibil-
ity sampling for the subject and kit price. We chose the Ozyme kit for its practicality for
users to collect stool samples and its relative costs.
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3.8. Optimized ONT Protocol Compared with Illumina SOLiD Sequencing

We compared ONT-obtained QM profiles with those generated with other sequencing
technologies from the Microbaria study [8]. We selected 33 presurgery samples covering
the extremes of microbiome diversity defined as microbial gene richness (13 samples
from individuals with high gene count (HGC) and 20 samples from individuals with low
gene count (LGC)). ONT abundance profiles were generated using the two bioinformatics
workflows described in the methods section, based on Centrifuge and mapping over the
IGC. DNA from 21 of the 33 samples were also extracted with the optimized Invitrogen
protocol and sequenced using Illumina technology. Semi-quantitative metagenomic profiles
from Illumina samples were generated by mapping reads against the IGC as described
in [9].

First, we compared the estimates of microbial diversity from ONT (gene richness
from IGC mapping and observed species from Centrifuge classification) and Illumina
sequencing (gene richness from IGC mapping) with the gene richness inferred from the
original SOLiD sequencing of these samples. SOLiD sequencing generated 4.38 × 107

single reads of 35 bases (sd = 1.86 × 107) per sample on average, representing 1.53 × 109

base pairs overall (sd = 6.52 × 108). With the ONT, we generated an average of 1.53 × 105

reads per sample between 200 bp and 24 kb (sd = 6.07 × 104), representing 4.19 × 108 bp
overall (sd = 1.607 × 108).

We observed significant positive associations between Centrifuge-based diversity
estimates from ONT sequencing and the reference gene richness from SOLiD sequencing
based on the IGC (Spearman rho = 0.59, p-value = 3 × 10−4 for observed species based
on Centrifuge results; Figure 7a). These similarities increased with the use of the IGC
as reference database for diversity estimations (Spearman rho = 0.74, p-value = 2 × 10−6

for gene richness based on ONT read mapping over the IGC; Figure 7b). However, the
similarity was higher with gene richness estimates based on Illumina sequencing despite
differences in library preparation (Spearman rho = 0.86, p-value < 2.2 × 10−6; Figure 7c).
When we integrated the scaled diversity profiles (dividing each diversity estimate by the
maximum value in each sequencing source for these 33 samples (ranges from 0 to 1))
and ordered them based on the reference gene richness in the original publication [8],
we observed that DNA extraction had an impact on diversity. Both ONT and Illumina
sequencing using the same DNA extraction method showed similar variations in microbial
diversity estimates compared with the reference SOLiD data (Figure 7d). This included a
switch in the sample showing the highest diversity (i.e., MB12 sample with Illumina and
ONT sequencing, MB21 sample with SOLiD sequencing; Figure 7d).

The high similarity between ONT and Illumina datasets was confirmed in an ordi-
nation framework, where we integrated the genus-level abundance profiles from IGC
quantification with the three sequencing technologies (ONT, Illumina, SOLiD), where we
observed that sample products of the same DNA extraction method (Illumina and ONT)
are closer in a PCoA ordination (Supplemental Figure S7a) and in hierarchical clustering
analyses (Supplemental Figure S7b).

3.9. ONT Pipeline Detects Target Species and Functional Profiles

Regarding taxonomic feature quantification, we found a good agreement between
ONT sequencing and both Illumina and SOLiD sequencing data. Based on Centrifuge,
we observed a positive correlation of relative abundances in 91 of the 95 common taxo-
nomic features with SOLiD quantifications (96%; mean Spearman rho ± standard devi-
ation = 0.68 ± 0.15 (species), 0.58 ± 0.32 (genus), 0.53 ± 0.3 (family), 0.5 ± 0.26 (order),
0.51 ± 0.24 (class), 0.62 ± 0.18 (phylum)). A total of 72 of these features (76%) were signifi-
cantly associated (FDR < 0.05, Spearman correlations). Similarly, we observed a positive
correlation in 94 of the 101 common taxonomic features with Illumina quantification (93%;
mean Spearman rho ± standard deviation = 0.74 ± 0.22 (species), 0.62 ± 0.26 (genus),
0.63 ± 0.27 (family), 0.63 ± 0.24 (order), 0.66 ± 0.2 (class), 0.68 ± 0.22 (phylum)). A total of
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78 of these features (77%) were significantly associated (FDR < 0.05, Spearman correlations)
(Figure 7e).
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Figure 7. Comparison of semi-quantitative metagenomic profiles of Microbaria samples between sequencing technologies.
Correlation between gene richness from SOLiD sequencing (x-axis) and observed species inferred from Nanopore (ONT)
sequencing data using Centrifuge approach ((a) n = 33), gene richness inferred from ONT sequencing data ((b) n = 33),
and gene richness inferred from Illumina sequencing data ((c) n = 21). The strength of the similarities was evaluated
with Spearman correlation test (Spearman rho and p-value included in the scatterplots). (d) Line plots representing the
scaled diversity (from 0 to 1) of Microbaria samples from different diversity metrics based on SOLiD, ONT, and Illumina
sequencing data. Samples in x-axis are ordered based on the scaled diversity of the gene richness from the original
Microbaria study (GeneRichness3.9SOLiD). (e) Heatmap of Spearman rho representing similarities in abundance vectors of
taxonomic features in x-axis between ONT quantifications based on Centrifuge data and Illumina and SOLiD quantifications
based on metagenomic species of the IGC (y-axis; #= p-value adj < 0.05, BH method; * = p-value < 0.05). On the bottom of
the heatmap is represented the prevalence of taxonomic features in x-axis based on ONT sequencing data.

Using the quantification of metagenomic species (MGS) based on ONT mapping
over the IGC, the relative abundances of 137 common taxonomic features with SOLiD
quantifications were positively associated (mean Spearman rho ± standard deviation =
0.68 ± 0.12 (species), 0.6 ± 0.16 (genus), 0.63 ± 0.17 (family), 0.58 ± 0.2 (order), 0.59 ± 0.2
(class), 0.58 ± 0.16 (phylum)), 128 of which (93%) were significantly associated (FDR < 0.05,
Spearman correlations). A similar comparison with MGS relative abundance products of
Illumina sequencing gave 133 of the 137 common taxonomic features positively associated
(98%, mean Spearman rho ± standard deviation = 0.77 ± 0.14 (species), 0.75 ± 0.19
(genus), 0.72 ± 0.21 (family), 0.65 ± 0.22 (order), 0.67 ± 0.2 (class), 0.64 ± 0.26 (phylum)),
122 of which (90%) were significantly associated (FDR < 0.05, Spearman correlations)
(Supplementary Table S4).

Importantly, these results also showed that the similarities in the relative abundances
of taxonomic features between ONT and Illumina quantifications were significantly higher
than between ONT and SOLiD sequencing (Supplementary Figure S8; p-value < 0.05 for
comparisons at the species and genus levels with ONT Centrifuge results; p-value < 0.005
for comparisons at the species, genus, and family levels with ONT IGC results).
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We made similar observations with functional profiles based on KEGG modules. Us-
ing Centrifuge, 76% and 72% of the functional modules were positively associated with
the equivalent modules quantified with Illumina and SOLiD sequencing, respectively,
whereas this fraction substantially increased to 98% and 98% with ONT abundance data
based on IGC quantifications (Supplemental Figure S9a). This difference may be related
to the different contents of both genomic reference spaces (Centrifuge genomes and IGC),
which can have a major impact on the quantification of functional modules if differences in
database composition also result in differences in gene content. Importantly, we observed
that DNA extraction also had an impact on the similarity between functional profiles,
with ONT functional profiles being more similar to Illumina functional profiles based on
both Centrifuge (p-value = 0.0046 Wilcoxon rank-sum tests of Spearman rho distributions
between ONT–SOLiD comparisons and ONT–Illumina comparisons; mean Spearman
rho ± standard deviation = 0.24 ± 0.32 (ONT Centrifuge vs. Illumina IGC functional
module abundances), 0.20 ± 0.28 (ONT Centrifuge vs. SOLiD IGC functional module
abundances)) and IGC quantifications (p-value = 0.0046 Wilcoxon rank-sum tests of Spear-
man rho distributions between ONT–SOLiD comparisons and ONT–Illumina comparisons;
mean Spearman rho ± standard deviation = 0.53 ± 0.22 (ONT IGC vs. Illumina IGC
functional module abundances), 0.44 ± 0.18 (ONT IGC vs. SOLiD IGC functional module
abundances)) (Supplemental Figure S9b).

Finally, we reproduced with ONT data previously reported associations between
functional modules and microbiome diversity at similar strength as with Illumina and
SOLiD data. We found significant positive associations between the sporulation module
md:M00485 (KinABCDE-Spo0FA (sporulation control) two-component regulatory system)
and microbial diversity (Supplemental Figure S10), which was in agreement with estima-
tions of 50–60% of bacteria from the gut microbiome of healthy individuals producing
resilient spores, being a basic feature of the human microbiome with a key impact in
bacterial persistence and the spread of microbes between individuals [39]. This was also
the case for the negative association between modules involved in the biosynthesis of
bacterial lipopolysaccharide (LPS) and microbial diversity (Supplemental Figure S11), in
line with the association of obesity and other metabolic disorders with an increase in blood
LPS concentration [40].

4. Discussion

Here, we presented a novel protocol and analytical pipeline enabling the quantification
of the gut microbiome features using Oxford Nanopore Technologies. This technology
supports easy access and use of high-throughput sequencing at competitive costs as
well as fast data production and analyses of the results. We believe that this protocol
enables the study of gut microbiome samples in the context of clinical applications or
group studies. We improved the protocols for both the wet-lab (from DNA extraction
to sequencing) and the data analysis. We also compared results with second-generation
sequencing methods (Illumina and SOLiD) in a previously described patient cohort. This
was driven by (1) an initial assessment of the best parameters in terms of alignment of ONT
sequencing reads from simulated metagenomic datasets with different levels of complexity
and (2) the development of a bioinformatics pipeline, which combines rapid k-mer-based
classification of ONT reads with read alignments vs. reference genomes to improve the
quantification of microbiome species diversity and composition. This also included the
taxonomic and functional profiling of ONT metagenomic data from reference genomes
(Centrifuge approach) and gut microbiome nonredundant gene catalogs. Previous studies
have proposed similar approaches based on Centrifuge for the real-time metagenomic
profiling from ONT data [13] and more specifically for the metagenomic profiling of
fecal and oral swabs [41], but not allowing functional profiling or metagenomic profiling
using nonredundant gut microbiome gene catalogs that maximize the genomic knowledge
of the gut microbiome ecosystem. The simulation experiments revealed that filtering
strategies commonly used with second-generation sequencing technologies, such as high
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sequence identity thresholds, could not be extrapolated to highly error-prone reads, such
as those produced by ONT. In contrast, the mapping quality based on Nanopore-adapted
sequence aligners such as minimap2 showed significantly better performance in terms of
precision and recall of species richness composition estimates at different complexities of
simulated communities. MapQ scores of 5 gave the best results regarding estimates of
species richness and relative abundances of microbial species, being particularly suitable
for complex ecosystems such as the human gut.

Regarding sample processing, we elaborated a DNA extraction protocol from human
stools that provide high DNA quality. Studies over the past years have used bacterial DNA
or RNA to explore microbial communities in diverse ecosystems, including stool samples
from large cohorts [3,42,43]. Authors have used different DNA extraction protocols and
different sequencing techniques (Illumina, SOLiD, Ion Proton). Multiple studies have also
noted “batch” [44] effects and differences in data analyses [45,46], which introduce biases in
analytical comparisons. Thus, the need for procedure standardization has been highlighted
by several reports, as illustrated by the IHMS consortium [47]. They compared 21 DNA
extraction methods using whole-genome metagenomic shotgun sequencing with Illumina
HiSeq 2000 technology and assessed the taxonomic profile and functional variability while
standardizing the stages of stool collection, bacterial DNA stabilization, library preparation,
and sequencing. This resulted in the generation of recommendations that would improve
DNA extraction in terms of yield and quality.

Taking into account IHMS recommendations, we further optimized the microbial
DNA extraction protocol, which showed DNA yield improvement. We worked on two
critical steps, bacterial wall lysis and protein/RNA elimination.

Sampling conditions, storage, and harmonization have also been shown to be critical
in affecting microbiome results. Although storing fecal samples at 4 ◦C appeared to protect
bacterial DNA from degradation, a reduction in microbial diversity was observed [48].
A previous study showed that prior storage of stool samples at 4 ◦C (1 h) before placing
them at −20 ◦C had a large impact on the taxonomic composition at the genus and
species levels [49]. However, these studies were conducted before the development and
widespread use of commercially available fecal collection kits with stabilizing solution.
Here, our results suggest that sample storage temperature is not a significant factor as
long as guidelines from manufacturers are followed. The effect of sample storage kit
type or temperature on sequencing and microbiome results is largely outweighed by
interdonor variation.

Since we identified read length as a critical criterion for subsequent bioinformatics
analyses, we also improved the library preparation protocol to increase the proportion of
long reads by optimizing the end-prep and DNA purification steps in the library. Finally,
the PCoA of different wet-lab experiments showed that individual microbiome compo-
sition drove most of the variation observed in microbial diversity and semi-quantitative
metagenomic profiles obtained from ONT sequencing data, with no apparent batch effects
associated to different wet-lab steps (DNA fragmentation, DNA end-repair, collection kits,
DNA library preparation, or sequencing run).

To examine the relevance of our pipeline in human cohorts, we performed a com-
parison of the results obtained with ONT sequencing with those obtained with SOLiD
and Illumina sequencing on human stool samples collected in the “Microbaria” study [9].
For gene richness, microbiome composition, and functional modules, the similarity was
higher between ONT and Illumina sequencing compared with SOLID. ONT and Illu-
mina sequences were generated from the same DNA extracted with the optimized proto-
col, which emphasizes the importance of DNA extraction protocols in semi-quantitative
metagenomic profiles.

The low throughput of ONT sequencing is, however, one of its major drawbacks for
quantitative metagenomic studies of complex microbial ecosystems, such as the human gut
microbiome. Nevertheless, the results showed a high similarity in bacterial diversity esti-
mation between the two sequencing methods in our test samples. Despite improvements
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in experimental protocol, the demultiplexing step needs to be improved. For instance, the
ratio of unclassified reads was about 25%, knowing that the sequencing depth of ONT was
low, and the error rate elevated. However, the low classification rates (25%) did not seem
to have an impact on the bacterial diversity and the bacterial composition estimates. In this
context, we could consider ONT in the context of semi-quantitative metagenomic studies as
a “shallow-sequencing” method in the line of proposed low-sequencing depth approaches
to characterize microbial ecosystems more accurately than 16S barcoding approaches and
with lower costs than deep shotgun sequencing [50].

5. Conclusions

Nanopore-based technology is proposed as easily accessible due to relatively low
costs and a small benchtop footprint, providing an avenue to perform NGS in clinical
settings. Admittedly, this technology has some drawbacks, such as relatively modest
sequencing depth and error rates that remain high (2–5%) [51] compared with Illumina
(0.1%) [52]. Through accurate assessment of experimental and bioinformatics steps, our
current work demonstrates that this technology is suitable to carry out semi-quantitative
metagenomic studies in the human gut microbiome. The maximization of ONT read lengths
by our experimental protocol, in addition to being key in maximizing the efficiency of the
taxonomic binning (fraction of classified reads), could be of major importance in additional
aspects of metagenomic analyses, such as de novo assembly of microbial genomes and
the improvement of the genomic completion of metagenomic species (MGS) derived from
human gut microbiome gene catalogs. Our bioinformatics pipeline also extends for the first
time the scope of metagenomic profiling of ONT reads to these gene catalogs, which has
been of pivotal importance as reference genomic spaces used in multiple semi-quantitative
metagenomic studies, opening the way for the validation of disease biomarkers derived
from these studies in clinical practice. In this context, we show that ONT consistently
replicated results obtained with other sequencing technologies for intestinal microbiome
diversity and the composition of main phyla in patients with severe obesity. This proposed
workflow paves the way to taxonomic and functional profiling of microbial communities
with this sequencing technology at competitive costs and fast data, which corresponds to a
great need in the microbiome community.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12101496/s1: Figure S1: Impact of filtering minimap2 primary alignments of ONT
reads at different thresholds of sequence identity, Figure S2: Density distributions of mapQ scores in
primary alignments of 250 simulated samples stratified by the number of species in reference samples
(50 samples per reference species richness), Figure S3: Statistical comparison of differences between
reference and simulated samples at different thresholds of mapQ scores, Figure S4: Similarity in
species richness and species abundance estimations across different mapQ thresholds, Figure S5: Tax-
onomic profile of ZymoBIOMICS mock community inferred from Nanopore sequencing, Figure S6:
Impact of collection kits and storage conditions on metagenomic human stool composition from
Nanopore sequencing data, Figure S7: Comparison of microbial composition of Microbaria samples
between Nanopore, Illumina, and SOLiD sequencing data, Figure S8: Comparison of similarities
in the abundance of taxonomic features between Nanopore and SOLiD-Illumina sequencing data,
Figure S9: Comparison of similarities in KEGG functional module abundance between Nanopore
(ONT) and SOLiD-Illumina sequencing data, Figure S10: Scatterplots of KEGG sporulation module
M00485 abundance and microbial diversity across different quantifications of diversity and module
abundance based on Nanopore (ONT), SOLiD, and Illumina sequencing data. Results of Spearman
correlation tests are shown for each comparison, Figure S11: Scatterplots of abundances of KEGG
LPS biosynthesis modules (M00060, M00063) and microbial diversity across different quantifications
of diversity and module abundance based on Nanopore (ONT), SOLiD, and Illumina sequencing
data. Results of Spearman correlation tests are shown for each comparison, Table S1: Number
of reads generated for the 250 simulated samples with CAMISIM, Table S2: Compositional pro-
file of the 250 simulated samples based on 506 reference genomes used for CAMISIM simulations.
Columns 1 to 5 correspond to reference genomic information of the 506 genomes used in the simula-
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tions. Columns 6 to 255 correspond to the relative abundances of the 506 reference genomes in the
250 simulated samples based on 10 reference Pareto distributions (M1–M10) and 5 different species
richness compositions (R50–R450), Table S3: Summary of the results of Nanopore read alignments
against 506 reference genomes in 250 simulated samples. For each sample are provided the mean,
median standard deviation, and standard error of read lengths of aligned and unaligned reads
(class column), Table S4: Comparison of taxonomic features based on MGS quantification from the
IGC between Nanopore quantifications and Illumina and Solid quantifications. For each taxonomic
feature are reported the Spearman correlation between pairwise abundance estimates (comparison
column), the p-value and the adjusted q-value for multiple comparisons in each level of comparison
column, and the prevalence of the feature in the 33 samples based on Nanopore sequencing data,
Table S5: Improvement of DNA yield and quality with the Optimized Invitrogen protocol. NanoDrop
data estimation of the amount of DNA and protein contamination given by the 260:280 ratio and by
impurities and solvent contamination estimated by the 260:230 ratio (n = 6, Wilcoxon test).
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