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Abstract: The composition of phytoplankton and the concentration of pigments in their cells make
their absorption and specific absorption coefficients key parameters for bio-optical modeling. This
study investigated whether the multispectral vertical diffuse attenuation coefficient of downward
irradiance (Kd) gradients could be a good framework for accessing phytoplankton genera. In situ
measurements of remote sensing reflectance (Rrs), obtained in an Amazon Floodplain Lake (Lago
Grande do Curuai), were used to invert Kd, focusing on Sentinel-3/Ocean and Land Color Instrument
(OLCI) sensor bands. After that, an analysis based on the organization of three-way tables (STATICO)
was applied to evaluate the relationships between phytoplankton genera and Kd at different OLCI
bands. Our results indicate that phytoplankton genera are organized according to their ability
to use light intensity and different spectral ranges of visible light (400 to 700 nm). As the light
availability changes seasonally, the structure of phytoplankton changes as well. Some genera, such
as Microcystis, are adapted to low light intensity at 550–650 nm, therefore high values of Kd in this
range would indicate the dominance of Microcysts. Other genera, such as Aulacoseira, are highly
adapted to harvesting blue-green light with higher intensity and probably grow in lakes with lower
concentrations of colored dissolved organic matter that highly absorbs blue light (405–498). These
findings are an important step to describing phytoplankton communities using orbital data in tropical
freshwater floodplains. Furthermore, this approach can be used with biodiversity indexes to access
phytoplankton diversity in these environments.

Keywords: remote sensing reflectance; phytoplankton absorbance; tropical floodplain lake; diffuse
attenuation coefficient

1. Introduction

It is now well established that phytoplankton growth is controlled by temperature
and both nutrient and light availability; phytoplankton are able to adjust their intracellular
composition, especially pigment composition (chlorophyll-a, ancillary pigments) to accli-
matize to their environmental conditions [1–6]. Moreover, nutrient and light conditions
also control phytoplankton assemblages, favoring the emergence and eventual dominance
of one species or group of species over another [7].

While the color of the water (and thus the available light beneath the surface) of the
oceans is essentially controlled by chlorophyll and possibly other phytoplankton pigments,
the color of inland waters is also influenced by many other components (the Optically
Active Constituents (OACs)), such as detritus, suspended particulate matter (SPM), and
chromophoric dissolved organic matter (CDOM). The OACs vary widely and indepen-
dently from each other, making freshwater optically complex environments [8,9]. The OAC
concentration modifies the underwater light field, regulating the water transparency and
impacting aquatic organisms such as fishes [10] and phytoplankton [11–13].
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There is currently an effort to understand how phytoplankton composition and en-
vironmental conditions can affect light absorption and determine specific absorption
coefficients [14–17]. Experimental studies emphasize that changes in both phytoplank-
ton cell size and pigment composition can affect the magnitude and spectral shape of
those coefficients [18–20]. The variability of the phytoplankton specific absorption can
be attributed mainly to phytoplankton physiological processes such as pigment composi-
tion [15,21], which varies among species, and affects the absorption by the photosynthetic
pigments [22–24].

The phytoplankton absorption spectra are determined by the composition and con-
centration of pigments in their cells, which makes their absorption and specific absorption
coefficients key parameters for bio-optical modeling [16,17,25–27]. The range of absorption
of these pigments is restricted to the edges of the visible spectrum (~400–700 nm), and
the most conspicuous pigment is the chlorophyll-a (Chl-a) that absorbs in the range of
~420, 630–720 nm (Figure 1). However, the Chl-a is almost always accompanied by other
pigments to broaden the absorption of the photosynthetically active radiation, such as the
chlorophylls b and c (Chl-b, Chl-c). The Chl-b absorbs in the range of ~460, 630–680 nm, and
the Chl-c at ~400, 500–620 nm, both reducing the absorption gaps left by Chl-a in the spec-
tral region between 500 and 600 nm [28], and in the blue spectral region between 400 and
440 nm [29]. Although they occur in smaller concentrations than the chlorophylls, there are
many other pigments in the phytoplankton called accessory pigments (Figure 1), which can
further reduce the absorption gap at specific wavelengths of the visible spectrum [28,30,31].
The phytoplankton pigment composition responds to its taxonomic composition, which is
an important physiological response parameter because the relative pigment concentrations
are affected by environmental factors such as light availability [32–35].
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In community ecology, the thresholds of a specific environmental factor of the habitat
which impacts species or taxonomic groups as a functional group can be interpreted as a
niche. A niche is an abstract n-dimensional space occupied by species or the functional
role of a pool of species, also called fundamental niche [36,37]. However, the complexity
of environmental and spatial factors interacting for the composition of phytoplankton
organisms, makes it difficult to obtain information about realized niches occupied by
phytoplankton species using field experiments due to the multidimensionality and over-
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lap of the influencing factors [38,39]. However, unraveling phytoplankton niches is of
great importance, as they describe preferential conditions and can be used as predictive
tools to estimate phytoplankton biodiversity, since different niches must have different
species. Currently, ecologists have sought to organize the taxonomic groups into func-
tional groups by assembling species with similar functions in the aquatic ecosystem. The
functional groups are a framework that potentially simplifies the complexity of the real
ecosystems [40,41]. Furthermore, each functional association reflects the simultaneous
responses of the individual species to environmental variations in an ecosystem [42]. Thus,
the phytoplankton plays a fundamental role in aquatic ecosystems once the community
composition reproduces its ecological function [3,43,44].

Similarly, satellite-based sensors can record the visible reflectance spectra that inform
on the absorption, scattering, and fluorescence signatures of functional phytoplankton
groups [45,46]. These measurements can be used to estimate the biodiversity, including the
distribution, abundance, and traits of groups of species populations, and are used to evalu-
ate habitat fragmentation [47,48]. Moreover, the multispectral vertical diffuse attenuation
coefficient of downward irradiance (Kd) relates to light penetration and light availability in
aquatic systems [49,50]. Hence, as an estimator of light availability across the water column,
Kd is also an indicator of OAC type and concentration, connecting hydrological optics and
biology [51,52]. Thus, the Kd can be an important tool for understanding biological and
physical processes within the water column, including the phytoplankton photosynthesis
in the euphotic zone [53,54].

Therefore, this study evaluated how the light availability impacts the structure of
the phytoplankton community in a tropical floodplain lake system. We investigated
whether multispectral Kd gradients are a good framework to access phytoplankton genera
in the Curuai lake. To achieve this, in situ remote sensing reflectance (Rrs) was used to
semi-analytically invert Kd, focusing on Sentinel-3/Ocean and Land Color Instrument
(OLCI) sensor bands. These data were used to assess how the available light in the visible
spectra impacts the composition of the phytoplankton community and whether different
wavelengths are a determinant factor to structure in situ phytoplankton genera.

2. Materials and Methods
2.1. Study Area

The study was carried out in the Curuai floodplain lake system (Figure 2), located
downstream of the right margin of the Amazon River, opposite Óbidos city, and extending
eastward 60 km from Santarém, in the Pará state, Brazil. The Curuai is a large floodplain
system composed of several temporally interconnected lakes and drains several small
basins which extend over 1500 km2 as a whole. The lake’s system is linked by several
channels with the mainstem, but only the easternmost channel remains permanently
connected [55]. The Curuai system is seasonally flooded by water from the Amazon
mainstream and the local drainage basin, seepage and local precipitation. The large
seasonal water level amplitude combined with very flat relief causes there to be great
variation in flood extent between low- and high-water periods. The river water, rich in
inorganic suspended material and nutrients [56–58], contrasts with the water quality from
the other sources, poor in nutrients and rich in organic matter [55,59].

2.2. Biological Data

We collected samples during two hydrological periods in 2013; rising waters (RW) and
flushing waters (FW), which occurred in March and September, respectively. Whenever
possible, we collected at the same points in both periods, but due to water level variation,
it was not possible to repeat all points in the two sampled periods. Thus, 23 stations
were collected in the RW and 36 stations in the FW period. At each station, its respective
geographic coordinates were recorded using an GPS receiver (Figure 2). The water samples
were collected at sub-surface level (approximately 20 cm); one sample at each station.
The quantitative samples for phytoplankton taxonomy determination were collected and
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stored in amber vials and fixed with acetic Lugol solution. Phytoplankton were counted
following the Utermöhl method [60], at 400× magnification. The counting was carried out
randomly until 100 individuals were obtained (cells, colonies, or filaments) of the most
frequent species, maintaining the error rate at less than 20%, with a confidence coefficient of
95% [61]. The adopted system for classifying phytoplankton followed Guiry and Guiry [62].
The algal biovolume was calculated by multiplying the abundance of each species by
the mean cell volume [63], based on the measurement of at least 30 individuals and was
expressed in mm3.L−1. We used the genera level classification and excluded all taxa that
did not occur in at least 3 sample units.
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2.3. Remote Sensing Reflectance Measurements

At each of the sample stations, radiometric measurements were collected to com-
pute the remote sensing reflectance (Rrs) in the range of 400–1000 nm. In the March field
campaign, the HandHeld ASD FieldSpec 2 was used, whereas in September, three intercali-
brated TriOS RAMSES sensors were used. At each station, the following measurements
were taken: (i) the downwelling irradiance above the water surface (Es); (ii) the total water-
leaving radiance (Lt), and (iii) the sky radiance (Lsky). As the HandHeld2 only measures
radiance, the downwelling irradiance above water surface was estimated by measuring the
radiance of a Spectralon Lambertian plaque and integrating it in all directions by multiply-
ing by π. The spectralon pane was positioned approximately 20 cm from the radiometer,
and the measurements were taken in 45◦. For the measurements of Lt, the radiometer was
positioned at approximately 45◦ in relation to the water surface and 135◦ in relation to the
sun. For measuring Lsky, the radiometer was positioned at approximately 45◦ in relation to
the nadir, and 135◦ in relation to the sun. The measurements were taken approximately
2 meters above the water surface to avoid shadow and vessel reflection. Readers should
note that the HandHeld2 radiometer was manually operated by an experienced researcher,
and the inclination of each measurements is approximated. For TriOS-RAMSES, a fixed
support with the specific inclinations was used. Despite the difference in the sensors, both
sensors were used for the same dataset in recent works in Brazilian waters and provided
good results [64,65]. From this framework, Rrs was calculated using Equation (1):

Rrs(λ) =
(Lt − p ∗ Lsky)

Es
(1)
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where p is the air–water interface reflectance with values taken from Mobley [50], based on
sensor geometry settings and wind speed. Considering the measurements using Hand-
Held2, 10 measurements of each radiometric quantity were taken. For the TriOS RAMSES
data, measurements were continuously taken every 10 s, for approximately 20 min. Visual
inspection is performed to remove anomalous and outlier spectra (e.g., those with varia-
tions higher than 10% of median values). After outlier and anomalous spectra removal,
median Rrs spectra were calculated for each field station. More information about these
methods can be obtained in Maciel et al. [66].

2.4. Kd Calculation Based Rrs Measurements

The Kd calculation was performed using the semi-analytical approach (SAA) proposed
by Maciel et al. [67]. This method was based on the original algorithm from Lee et al. [68].
First, the absorption (a(λ)) and backscattering (bb(λ)) coefficients were obtained using
an inversion method based on Rrs data. For this inversion process, a Quasi-Analytical
Algorithm (QAA) was employed. The QAA was reparametrized considering in situ data for
Amazon Floodplain Lakes. Although the algorithm from Maciel et al. [67] was developed
considering the Sentinel-2/MSI sensor, in this study we used bands similar to those of
Sentinel-3/OLCI (Table 1). A detailed explanation of this inversion method is given in
Maciel et al. [67]. After retrieving the absorption and backscattering coefficients, Kd(λ) is
calculated using Equation (2).

Kd(λ) = (1 + m0 θ0) ∗ at(λ) +

(
1 − γ ∗ bbw(λ)

bb(λ)

)
∗ m1 ∗

(
1 − m2 ∗ e−m3∗at(λ)

)
∗ bb(λ) (2)

Table 1. Summary of Sentinel3 OLCI bands used. Central wavelength (CW), band width (BW).

Bands CW (nm) BW (nm)

B-01 412 405–419
B-02 442 435–449
B-03 490 483–498
B-04 510 503–518
B-05 560 552–567
B-06 620 613–626
B-07 665 658–672
B-08 673 668–680
B-09 681 675–687
B-10 708 701–716

The parameters γ and m0–3 are spectrally constant and do not vary with water
properties, obtained in Lee et al. [68], θ0 is the solar zenith angle (in degrees), and
bbw(λ) is the pure water backscattering coefficient [69]. Finally, Kd was simulated for
Sentinel-3/OLCI bands. To achieve this, the spectral response function of this sensor
was used (https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/olci-
instrument/spectral-response-function-data, accessed on 1 October 2021). We selected
10 OLCI bands with wavelengths in which different phytoplankton pigments can absorb
radiation. The Kd calculation using the semi-analytical approach Kd was simulated for
Sentinel-3/OLCI bands (Table 1).

2.5. Statistical Analysis

Before the phytoplankton data were used for statistical analyses, data were log-chord-
transformed [70]. This technique combines the log transformation that makes the species
distribution more symmetric, reducing effects of bias caused by very abundant species,
whereas the chord transformation produces a double-zero asymmetrical coefficient [70].
In coefficients that have the double-zero asymmetry, the dissimilarity does not change
with the addition of double-zeros at two sites. Still, it decreases when double-X are added,
where X is any value other than zero. For more details, see [70].

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/olci-instrument/spectral-response-function-data
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/olci-instrument/spectral-response-function-data
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We performed an analysis based on the organization of three-way tables using
STATICO to evaluate the relationships between two series of tables: one table of a se-
ries of phytoplankton genera, and one table of a series of Kd at different OLCI bands.
STATICO combines two methods: Co-inertia Analysis [71] and Partial Triadic Analysis [72].
First, the Co-inertia Analysis computes the cross-covariances between the two data tables.
Then, these cross-covariances are analyzed to give the Co-inertia axes. Finally, the Partial
Triadic Analysis (PTA) can be used to analyze the series of cross tables [71].

PTA consists of three steps, namely Interstructure, Compromise and Intrastructure.
First, the Interstructure computes weights that are used to build a linear combination of the
series of tables, called the “Compromise”. Here, we had Kd variables and phytoplankton
Compromise. Then, the Compromise was analyzed using Principal Component Analysis
(PCA) and finally, the results were projected in the Intrastructure graph. For more details,
consult [72,73]. This method provides information about the stability or the diversity of
the structures of all the tables of the series. These analyses were implemented using the R
packages “ade4” [72].

3. Results
3.1. Phytoplankton and Multispectral Vertical Diffuse Attenuation Coefficient of
Downward Irradiance

After the taxonomy analysis for both RW and FW was carried out, the results indi-
cate that the phytoplankton community in the Curuai lake was composed of 97 genera
(Supplementary Material Table S1), corroborating the high biodiversity reported for Ama-
zon floodplain lakes [74,75]. Cyanophyceae was the class with the highest biovolume, fol-
lowed by Bacillariophyceae, Cryptophyceae, and Chlorophyceae. Together, they represent more
than 61% of the total biovolume of the phytoplankton community (Supplementary Materials
Table S1). The most representative genus of the Cyanophycea community was Dolichosper-
mum, with 16% of the total biovolume. Genus Aulacoseira represented the Bacillariophyceae
with 10% of total biovolume. The genus Cryptomonas, with 6% of total biovolume, was
the most representative of the Cryptophyceae and the genus Volvox, with 5% of the total
biovolume, representative of Chlorophyceae. The genus Perdidinium (Dinophyceae) with the
8% of total biovolume, was the fourth most abundant genus. However, the Dinophycea was
the least abundant group.

3.2. Biovolume of Phytoplankton Genera and Kd Relationships

In the STATICO graphs (Figures 3–5), the greater the length of the arrows (or in case
of points, the distance from the center), the higher the stability of the relationship. The first
two axes represented, respectively, 29.3% and 0.05% of the total variability. The first axis
(x-axis) describes a visible light availability, while the second axis (y-axis), describes a light
spectra. Indeed, although all phytoplanktonic organisms use mainly chlorophylls to take
advantage of the available light, the results show that certain genera may be better adapted
to different spectra of this same resource. The interstructure graph of STATICO analysis,
based on Kd and biovolume of the 97 phytoplankton genera, appeared to be strong in
both RW and FW, as shown by the long arrows (Figure 3). In addition, the phytoplankton
community in RW seems to be more influenced by green-red bands of light spectra (bands
6 to 10 in Figure 4), whereas in the FW, the phytoplankton community seems to be more
influenced by green-blue bands of light spectra (bands 1 to 5 in Figure 4).

In the Intrastructure graphs (Figures 4 and 5), the first axis was dominant. It accounted
for 98% of the explained variance in contrast with the second axis which accounted for
1.8% of the explained variance. For the Kd (Figure 4), the first axis (x-axis) describes light
availability, with low light (high Kd) correlated on the left side and high values of light
availability (low Kd) correlated on the right side of the graph. The second axis (y-axis)
describes a light spectra gradient, with the blue band (~400 nm) on the bottom to red bands
(~700 nm) on the top of the graph (Figure 4). Thus, the phytoplankton were distributed
according to their ability to use light intensity (bright to dark) and different visible light
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spectra (400 to 700 nm). Moreover, the wavelengths related to bands 6–10 were stronger
(longer arrows) than bands 1–5 (shorter arrows). This means that species that use green-
red wavelengths in the range of 600 to 700 nm have a competitive advantage to being
established in these environments.
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As shown in Figure 5, the genera Microcystis (Mcy) and Vol are more related to the 
Kd increase (less light availability) in the B-08 (673 nm) and B-9 (681 nm) bands. In contrast, 
the genus Peridinium (Per), is related to the intermediate light condition and at the B-01 
(412 nm) (Figure 5). On the other hand, the genus Aulacoseira (Aul) is on the opposite side 

Figure 4. Kd variables Intrastructure graph. The light availability axis is related to Kd, with low light
(high Kd) on the left and high values (low Kd) on the right. The light spectrum axis is related to the
different wavelengths (400 nm to 700 nm).The greater length of the arrows related to wavelength
bands 6–10 compared to those related to bands 1–5 indicates that species using green-red wavelengths
in the 600–700 nm range have a competitive advantage to being establish in these environments.
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spectrum axis is related to the different wavelengths (400 to 700 nm).

The Intrastructure graph (Figure 5) plots the principal phytoplankton genera that
demonstrated a more stable relationship between the availability of light (x axis) and
specific wavelengths of light (y axis). So that the figure would not be unreadable with all
the genera, only those furthest from the central point were plotted on the graph (Table 2
and Figure 5).

As shown in Figure 5, the genera Microcystis (Mcy) and Vol are more related to the Kd
increase (less light availability) in the B-08 (673 nm) and B-9 (681 nm) bands. In contrast,
the genus Peridinium (Per), is related to the intermediate light condition and at the B-01
(412 nm) (Figure 5). On the other hand, the genus Aulacoseira (Aul) is on the opposite side of
the Mcy bands (Figure 5), indicating that this genus is better adapted to lower values of Kd
(higher light availability) in these spectral bands. A similar process happens with the genus
Cryptomonas (Cry), which lies on the opposing side to the blue-green bands (Figure 5),
indicating that they are best adapted to environments characterized by intermediate Kd
values in those spectral bands.

Table 2. List of the codes and class of phytoplankton species genera that stood out in the compromise
factor map (see Figure 5).

Code Genera Class

Act Actinastrum Trebouxiophyceae
Aul Aulacoseira Bacilariophyceae
Bot Botryococcus Trebouxiophyceae
Clos Closterium Conjugatophyceae
Coe Coelastrum Chlorophyceae

Cryp Cryptomonas Cryptophyceae
Cyl Cylindrospermopsis Cyanophyceae
Lec Lepocinclis Euglenophyceae
Mel Melosira Coscinodiscophyceae
Mcy Microcystis Cyanophyceae
Pan Pandorina Chlorophyceae
Per Peridinium Dinophyceae
Pkx Planktothrix Cyanophyceae
Vol Volvox Chlorophyceae
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4. Discussion

Amazon lakes, such as the Curuai Lake can have a basin with different water sources [70,71],
which promotes an optically complex environment with different optical water types [65]. In
this study, we explored the relationship between the underwater light field and phytoplankton
taxonomy. As is well-known, the Amazon lakes present a pattern of cyanobacterial dominance
in the phytoplankton community [74,75], and also it is not uncommon for lakes on the Amazon
floodplain to have high turbidity [76], and a high eutrophic (nutrient-rich) state [77], especially
during the rising and flushing periods.

Freshwater cyanobacteria, such as the Mcy, have pigments belonging to the phyco-
biliproteins family, occurring only in cyanobacteria, red algae, cryptophytes, and glauco-
phytes [78]. The principal phycobiliprotein in freshwater cyanobacteria is the phycocyanin,
which allows absorption and transfer of light energy to chlorophyll using the available
wavelengths of light (in the 550–650 nm range), absorbing energy where Chl is not a
very efficient absorber [78,79]. The Mcy is the most strongly related to increases in Kd,
demonstrating that these organisms tend to adopt a low light-adapted strategy and may be
associated with their preference for high nutrient conditions [15,80,81]. The high biomass
forms colonies and blooms on the water surface and also may create self-shading [82].
Therefore, the Mcy have a buoyancy ability that allows this species to maintain colonies
in favorable light and nutrients conditions [83]. Indeed, the preference for low light avail-
ability may explain, at least partly, the vertical migration of Mcy during the day and their
presence at the sub-surface early in the morning, as reported in previous studies [84,85].

On the other hand, the genus Cryptomonas (Cry) is related to intermediate values
of Kd, indicating a moderate light-adapted strategy, and in the opposite side of the Mcy
bands (B07–B09). The Cry have the phycobiliprotein pigments properties homologous to
phycobiliproteins found in red algae and cyanobacteria. The presence of red algae phyco-
biliproteins in Cry called phycoerythrin allow them to efficiently absorb solar radiation in
the range of 450–570 nm.

The Aulacoseira genus (Aul) is related to decreases in Kd in the blue-green bands, on the
opposite side of B01–B03, demonstrating that these organisms have a high–light–adapted
strategy at these spectra. The Aul is generally composed of species adapted to shallow
lakes with clear water and tolerate eutrophic environments [86]. Aul belong to the group of
diatoms, which have both Chl-c and carotenoids as pigments. The carotenoids are usually
red, orange, or yellow pigments, including the brown pigment fucoxanthin that absorbs
light in the wavelength range of 410 to 550 nm. Both pigments improve Aul efficiency
light-harvesting in blue-green bands and, along with to other physiological and physical
characteristics, this makes them best adapted to these environments.

In a recent study, Matthews et al. [20] demonstrated how a hyperspectral inversion
algorithm can be used to differentiate between cyanobacteria and algal blooms in inland
waters. However, apart from that carried out by Matthews et. al., the majority of studies
in inland waters ignored aspects such as the natural variability of Optically Active Con-
stituents (OACs), and others factors which are considered important diagnostic drivers of
the resulting remote sensing reflectance. The variability in OAC concentration modifies
the light attenuation, an factor in Amazon floodplain waters that is essential to better
understanding the biogeochemical processes which are not fully explained due to the
complexity of land–water interactions [11,67]. We have demonstrated that the Diffuse
Attenuation Coefficient (Kd) can be used as a proxy to identify not only cyanobacteria, but
other genera related to light resources for the phytoplankton community in the Curuai
Lake, Pará, Brazil. Our results have shown a way to overcome the challenge of using orbital
data as a tool to identify the genera of phytoplankton in optically complex freshwater
environments. Despite the limited number of samples and uncertainties in the analytically
inverting in situ Rrs into Kd, the STATICO analysis allowed us to probe the relationships
between phytoplankton genera and the multispectral Kd simulated to visible OLCI bands.
The next steps of this study are to apply this approach to a new dataset and to compare
the results with Kd retrieved from OLCI images collected simultaneously with the in situ
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biological data. It would also be interesting and very enlightening to add the biological
diversity indices to the analysis and use data from an entire hydrological cycle, with data
collection carried out at different times in the cycle. However, organizing data collection
campaigns of this size in the Amazon region is a challenge in itself, due to several factors,
mainly financial, since the cost of each of these campaigns tends to be high.

5. Conclusions

To the extent of our knowledge, this is the first attempt to use the STATICO method
to unravel the relationship between the phytoplankton community and spectral light
availability in the visible domain expressed by multispectral Kd. Our methodology is an
important step in accessing the genera of phytoplankton communities in tropical freshwater
floodplains using orbital data. For instance, spectral Kd could be used together with
one of the several biodiversity indexes, such as the beta diversity index. These findings
reinforce previous results obtained in Amazon Lakes and elsewhere, demonstrating that
light could be a structural factor for the phytoplankton community [75,76], and showing
that the multispectral measurements of Kd have the potential to become an efficient optical
proxy of the phytoplankton diversity of floodplain lakes. Still, there is a long way to go
before satellite Kd measurements can be used unequivocally as a proxy for phytoplankton
biodiversity but these preliminary results are promising.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13204114/s1, Table S1: Phytoplankton taxonomy.
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