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Abstract: This study investigates the potential of observations with improved frequency and latency
time of upcoming altimetry missions on the accuracy of flood forecasting and early warnings. To
achieve this, we assessed the skill of the forecasts of a distributed hydrological model by assimilating
different historical discharge time frequencies and latencies in a framework that mimics an opera-
tional forecast system, using the European Ensemble Forecasting system as the forcing. Numerical
experiments were performed in 22 sub-basins of the Tocantins-Araguaia Basin. Forecast skills were
evaluated in terms of the Relative Operational Characteristics (ROC) as a function of the drainage
area and the forecasts’ lead time. The results showed that increasing the frequency of data collection
and reducing the latency time (especially 1 d update and low latency) had a significant impact on
steep headwater sub-basins, where floods are usually more destructive. In larger basins, although the
increased frequency of data collection improved the accuracy of the forecasts, the potential benefits
were limited to the earlier lead times.

Keywords: satellite mission; update; latency; initial condition; hydrological model; floods

1. Introduction

Early warning and emergency response to destructive river floods depend on accurate
and timely forecasts. However, in spite of recent advances, hydrological forecasts are still
performing poorly in many regions worldwide. This is due to the fact that hydrological
forecasts are impacted by several sources of uncertainty such as input forcing (numerical
weather prediction outputs), hydrological model parameters and structures, and the model
initial conditions (state variables), related not only to model errors, but also to interpolated
meteorological data, particularly in areas of poor network coverage [1–3]. In this context,
the use of assimilation techniques is an important component of hydrologic forecasting
systems [4–7]; in particular, the assimilation of discharge data provides a way to improve
the forecasts by reducing errors on the initial conditions and/or state parameters. Despite
the clear advantage of data assimilation in flood forecast systems, they are often limited by
the need for real-time information with an adequate spatial distribution, especially in the
case of distributed hydrological models.

Until recently, the hydrological network in Brazil favored the monitoring of medium
to large-sized watersheds with hydroelectric potential and large dam infrastructures [8].
Although the existent network has been upgraded in recent years, most of the gauging
stations are still manually operated and do not provide real-time data. Most of the existent
long-term records hydrological and rainfall data, especially in remote areas such as the
Amazon, are collected by the Brazilian water agency (ANA), twice a day in manual logs,
for later processing.
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Since the 1970s, the migration of the rural population to urban areas in many regions
of Brazil has resulted in the occupation of riparian zones, usually with precarious housing,
and often exposed to flooding and landslides [9]. From 2011, with the creation of the
National Centre for Monitoring and Early Warning of Natural Disasters (CEMADEN),
a new network of automatic weather stations, with data transmission based on the mobile
network, was deployed mostly in headwater catchments in highly populated areas of
Brazil. However, large basins (mostly located in the north of Brazil) still have poor data
coverage, especially in terms of real-time data. The lack of real-time data coverage is an
obstacle for implementing mitigation actions, especially for isolated communities affected
by periodical floods.

Consequently, the use of other monitoring techniques, such as advanced remote
sensing observations, provides an opportunity to improve hydrologic forecasting simu-
lations [10–14] and, consequently, flood preparedness. In particular, satellite altimetry
provides accurate measurements of water level variations in rivers and floodplains [15,16],
which can be valuable for hydrologic simulations [17,18], especially when they can be
converted into discharge estimations [19,20].

Nevertheless, a major drawback in the use of observations from past and current nadir
altimetric missions for operational applications is the temporal sampling rate at a given
location [21]. The repeat cycle ranges from 10 d (for Topex-Poseidon, Jason-2/3/CS) to
35 d (for ERS-1/2, ENVISAT, SARAL-AltiKa), while recently launched missions (Sentinel
3A/B) are on a 27 d repeat cycle. Such time sampling intervals cannot compete with
observations made daily or twice daily by in situ gauges, a frequency required to study fast
local hydrological processes and to evaluate flood risk. In a recent study, Sikder et al. [22]
suggested that observations with a frequency of 1–3 d on a Jason-like orbit could be
sufficient to characterize most of the global spatial distributions of the magnitude and
duration of flood events.

Data latency (i.e., the time or delay that data take to be available) is also a crucial
parameter for operational applications in hydrology, and recent studies showed that short
data latencies, on the order of a few hours to a few days, are critical for timely forecasts.
For instance, Allen et al. [23] demonstrated that, globally, flood waves moving at their maxi-
mum speed reach a city or a dam in a median time of 4 d and 3 d, respectively. No altimetry
mission currently offers the capability to provide data with adequate short latencies.

Originally, altimetry missions were built with the prime objective to observe the
ocean surface topography, and up to now, past and current mission requirements have not
considered continental hydrology needs as an objective.

However, the upcoming generation of new satellite altimeters is designed with the
primary goals to also study continental hydrology and to observe how rivers and continen-
tal water bodies change over time. For instance, the Surface Water and Ocean Topography
(SWOT) mission [24] will be able to provide water stage and discharge measurements
on a global scale every 21 d (thanks to its wide-swath technique, this revisit time will be
reduced to ∼11 d in tropical regions) with a possible latency time of 3 d (in the best-case
scenario) [21].

Additionally, in order to resolve the coarse time sampling issue of altimetry missions,
The SMall Altimetry Satellite for Hydrology (SMASH) constellation [25] is currently under
study by the scientific community with the support of the French Space Agency (CNES).
It is designed with the objectives to provide observations of daily water levels using a
constellation of 10 satellites on a similar orbit as the Jason missions, along with a short
latency time (from few hours to one day). Therefore, even if these upcoming missions are
not entirely designed to provide real-time data for operational purposes, they might still
offer great opportunities in flood forecasting applications. Consequently, in this paper,
we explore the potential application of this new and upcoming generation of altimetry
missions, such as SWOT and SMASH, for improving the skill of flood forecast in remote
regions with poor real-time water level coverage. To achieve this, we analyzed how the
forecast skill of a distributed hydrological model is affected by the availability of discharge
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observations at different time frequencies and latencies. The experiment was performed in
the Tocantins-Araguaia Basin, located in Northern Brazil, a region with very scarce spatial
data, particularly in real-time.

Section 2 presents the study area. Section 3 exhibits the hydrological model and
dataset. Section 4 shows the methodology. Section 5 shows the results and discussions.
Finally, Section 6 presents the summary and conclusions.

2. Study Area

The Tocantins-Araguaia River Basin covers more than 760,000 km2 from its head-
waters in Central Brazil to the Hydropower Plant (HPP) Tucuruí (Figure 1) near its out-
let. The Tocantins River is the easternmost large tributary of the Amazon Basin and
hosts Bananal Island (considered as the biggest river island of the world) located on the
Araguaia River [26].
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Figure 1. (Left) Location of Tocantins-Araguaia Basin with its topography; (middle) sub-basin
catchments (see Table 1 for details) and their outlets along with the ground-tracks of the SWOT
mission; (right) drainage network along with the ground-tracks of the SMASH mission (equivalent
here to Jason ground-tracks).

The basin has well-defined dry and rainy seasons. The Tocantins-Araguaia Basin is
subject to different meteorological systems. The southern part of the basin, where most of
its headwaters are located, is dominated by the South Atlantic Convergence Zone (SACZ)
and by a zone of convergence of humidity. The climate at the outlet further north is
dominated by the Inter-Tropical Convergence Zone (ITCZ) [27].

The vegetation cover is predominantly Brazilian savanna (Cerrado) in the upper
part of the basin and Amazon Rainforest in the lower Tocantins, downstream of the
basin. Because of its great natural resources, characterized by large availability of water,
the basin has many areas of environmental preservation and also a very large hydroelec-
tric potential. Furthermore, these rivers are of major importance for transportation and
agricultural commodities.

The Tocantins-Araguaia River Basin is characterized by a smooth topography for most
of its drainage areas, presenting altitudes above 1000 m in its headwaters. The climate
regimes for Brazil were classified by Alvares et al. [28], making the Tocantins-Araguaia
Basin predominantly tropical with dry winter (Aw) and tropical monsoon (Am).
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Table 1. Tocantins-Araguaia Basin characteristics and hydrological model calibration (2000–2010) and validation (2011–2014)
periods in terms of NSE and NSElog.

Sub-Basin Station River Classf. Area (km2)
Calibration Validation

NSE NSElog NSE NSElog

SB01 Rio das Mortes Mortes Small 5230 0.711 0.740 - -
SB02 Xavantina Mortes Medium 25,300 0.821 0.842 0.859 0.889
SB03 Tesouro Garças Small 5280 0.584 0.682 0.610 0.657
SB04 Peres Caiapó Small 12,000 0.695 0.795 0.703 0.853
SB05 Travessão Vermelho Small 5310 0.665 0.816 0.588 0.786
SB06 Luiz Alves Araguaia Medium 117,000 0.842 0.900 0.878 0.897
SB07 Conceição do Araguaia Araguaia Large 332,000 0.853 0.890 0.882 0.906
SB08 Xambioá Araguaia Large 377,000 0.897 0.901 0.944 0.932
SB09 Ceres Almas Small 10,600 0.745 0.803 0.707 0.824
SB10 Ponte Quebra Linha Maranhão Small 11,200 0.631 0.792 0.581 0.746
SB11 Nova Roma (Faz.Sucuri) Paraná Small 22,600 0.743 0.767 0.769 0.809
SB12 Jacinto Sta Tereza Small 13,900 0.734 0.793 0.752 0.792
SB13 HPP Serra da Mesa Tocantins Medium 51,233 0.798 0.747 0.773 0.791
SB14 HPP Peixe Angical Tocantins Medium 125,884 0.614 0.598 0.756 0.737
SB15 HPP Lajeado Tocantins Medium 183,718 0.843 0.865 0.884 0.900
SB16 Miracema do Tocantins Tocantins Medium 185,000 0.872 0.836 0.812 0.829
SB17 Jatobá (Faz. Boa Nova) Sono Small 16,900 0.590 0.660 0.665 0.774
SB18 Porto Real Sono Medium 44,100 0.795 0.864 0.850 0.892
SB19 Carolina Tocantins Large 275,000 0.868 0.946 - -
SB20 HPP Estreito Tocantins Large 285,491 0.942 0.922 0.952 0.949
SB21 Descarreto Tocantins Large 297,000 0.957 0.953 0.992 0.992
SB22 HPP Tucuruí Tocantins Large 764,000 0.946 0.953 0.965 0.968

3. Hydrological Model and Datasets
3.1. Hydrological Model

The Distributed Hydrological Model (MHD) is a model developed by the Brazilian
National Institute for Space Research (INPE). This model has been widely used in climate
change and land use/land cover change impact studies [29–33], for hydrological monitor-
ing [34,35], probabilistic flood forecasting [36–38], and quantifying economic indicators of
droughts [30].

The hydrological model MHD-INPE is a regular grid-based model, which uses a
combination of the probabilistic approach of the Xinanjiang model and the TopModel
formulation to simulate runoff generation. The application of the MHD-INPE model
requires information related to river drainage networks, such as flow direction, flow
accumulation areas, basin delineation, and the length and slope of river reaches in every
grid cell, which are derived from a digital elevation model. In this study, the digital
elevation model was derived from the Shuttle Radar Topography Mission (SRTM) [39],
with a spatial resolution of 90 m, and was upscaled to the hydrological model resolution
used in this study (0.25◦).

The characteristics of each grid cell hydrological response units, of the MHD-INPE
model, result from the combination of the soil type and land use data, derived as follows:

• Using the HAND model [40], soil environments were classified as suggested by
Cuartas et al. [41], subdividing the basins into four different environments: valley,
footslope, upslope, and plateau. The threshold for different HAND environments was
determined by visual analysis, with comparative support of the basin soil map Santos
et al. [42] and by relating soil toposequences to the HAND environments [41];

• Annual Land Use and Land Cover change (LULC) maps used in this study were pro-
vided by the MapBiomas Project Collection 5 [43] for the period 2000–2014. Vegetation
types within the basin include forest formation, savanna formation, mangrove, forest
plantation, grassland, pasture, agricultural mosaic, and silviculture. Consequently,
the hydrological response units were updated yearly in accordance with the LULC
maps, as described by Rodriguez and Tomasella [31].

For the implementation of the hydrological model, the Tocantins-Araguaia River Basin
was subdivided in 22 sub-basins (Figure 1) according to the streamflow stations listed
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in Table 1. The MHD-INPE model was calibrated from January 2000 through December
2010, disregarding the first two years required for model spin-up, using the shuffled
complex evolution algorithm [44]. The objective function used for calibration was a
combination of the Nash–Sutcliffe streamflow efficiency parameter—NSE, and the Nash–
Sutcliffe efficiency parameter of the logarithm of streamflow—NSElog. The calibration
was conducted for each sub-basin at a time, beginning at headwater sub-basins and
following downstream to higher-order sub-basins. Model parameters were calibrated and
validated using daily precipitation satellite data of MERGE-CPTEC and daily observations
of meteorological data interpolated over the basin. The hydrological model was validated
for the period January 2011–December 2014, as exhibited in Table 1.

3.2. Hydrometeorological Data

The hydrological and meteorological data were the same as the ones described in
Falck et al. [38]. They included the hydrometeorological daily data from 41 meteorological
stations (air temperature, dew point temperature, atmospheric pressure, incident global
radiation, and wind speed) from the Brazilian National Meteorological Service (INMET)
and 22 streamflow stations from ANA.

3.3. Satellite Rainfall Estimates

MERGE is a product of satellite rainfall estimates, in which observed precipitation data
are combined with satellite-derived precipitation estimates. The technique was developed
by Rozante et al. [45] and used data from the Tropical Rainfall Measuring Mission (TRMM),
currently discontinued and replaced by Global Precipitation Measurement—Integrated
Multi-satellitE Retrievals for GPM (GPM-IMERG). This technique aims to minimize un-
certainties in precipitation data associated with interpolations over regions with low rain
gauges density. In the latest version, a single adaptation was made to the algorithm to
remove a considerable number of points near each observation station to preserve that
station radius of action.

According to Rozante et al. [46], the observation data used for the correction of
satellite data (over South America) were from the Global Telecommunications System
(GTS), INMET, the Paraná Meteorological System (SIMEPAR), Companhia Energética de
Minas Gerais (CEMIG), the Agronomic Institute of Campinas (IAC), and others. For the
construction of the daily accumulated rainfall estimates, the accumulated precipitation
between the 12 h of the Greenwich Meridian (GMT) of the previous day and the 12 GMT
of the current day [47] was used. Quality controls were also carried out to identify and
mark spurious data to determine whether to accept or reject the data. Further details can
be found in Rozante et al. [48].

The MERGE product is available with a daily temporal resolution and a spatial
resolution of 0.1◦. For the period 2000–2014 (15 y), the data were resampled at a spatial
resolution of 0.25◦ to match the hydrological model grid. Because the MERGE product
is also available in real-time, which makes it more suitable for the purpose of this study,
the hydrological model calibration, validation, and initialization were based on the MERGE
rainfall estimates rather than interpolated rainfall from the conventional manual network
of the Brazilian Water Agency.

3.4. Daily Weather Forecast

The ECMWF EPS is a global numerical weather prediction system integrating The
Observing System Research and Predictability Experiment (THORPEX) Interactive Grand
Global Ensemble (TIGGE) dataset [49,50]. As described in Falck et al. [38], the ECMWF EPS
uses an ensemble composed of 50 forecasts generated from perturbed initial conditions and
one control forecast from an unperturbed initial condition. The last upgrade of the model
for operational implementation was made on 6 June 2020, and details are available in the
Integrated Forecasting System (IFS) documentation (CY47r1) [51]. The system runs twice
a day (00 and 12 UTC) with a forecast lead time of 0–15 d and uses a variable resolution



Remote Sens. 2021, 13, 4459 6 of 19

approach during the forecast period (VAREPS) [52]: a finer resolution grid in the early
forecast range Tco639L91 (0–10 d) ∼16 km and a coarser one in the remaining forecast
period Tco319L91 (10–15 d) ∼32 km [51]. The data are retrieved using the Meteorological
Archive and Retrieval System (MARS) where they are available in the horizontal resolution
of 0.25◦ for the first 10 d of forecast and 0.5◦ after 10 d. The MARS system uses a bilinear
interpolation method to regrid the forecast fields to a new resolution of interest.

For this study, we used the spatial resolution of 0.25◦ to match the MHD-INPE hydro-
logical model resolution, with daily forecasts up to a 15 d lead time period. The forecasted
variables are precipitation, wind speed at 10 m, surface air pressure, air and dew point
temperatures at 2 m, and incident solar radiation, during the period from 2007 to 2014
over the Tocantins-Araguaia Basin. These variables, except precipitation, are used by the
MHD-INPE model to estimate evaporation. Further details of the ECMWF setup in this
experiment can be found in Falck et al. [38].

4. Methodology
4.1. Hydrological Run Experiments

Altimeter satellite information available as of today can provide at best the river
water stage at fixed locations with a time frequency of ∼10 d, with a latency time of ∼2 d.
Considering that future constellations of satellite altimeters might be able to provide data
with a higher temporal resolution and shorter latency time, we explored the impacts on
the quality of river forecasts in the Tocantins-Araguaia Basin for data collection intervals
ranging from 1 d to 11 d and latency times ranging from 0 d to 3 d. Although we cannot
assess whether future altimeter missions will be capable of achieving the most demanding
processing time intervals due to technological and logistic challenges, these sets of numer-
ical experiments are useful for providing guidance to the satellite community about the
potential gains in a flood forecasting system in a remote basin as a consequence of having
more detailed information.

To evaluate the potential use of satellite altimetric data in a flood forecasting oper-
ational system, we organized the hydrological model to run 16 experiments using the
ensemble forecasting system of ECMWF (15 d lead times and 51 members) considering
different frequencies of updates and latencies that could be potentially available with
upcoming satellite altimetry missions (such as the SWOT and SMASH missions).

Since current satellite altimeter estimations do not cover the whole historical period of
the time frequency and the spatial resolution needed for this type of numerical experiment,
we used past discharge observations as if they were derived from satellite altimeter obser-
vations (considering that each of the sub-basins has discharge rating curves). It might be
argued that this assumption does not take into account the errors involved in discharge esti-
mations due to the uncertainties in water level estimations of satellite altimeters. However,
considering that river discharge measurements are affected by measurement errors and by
the uncertainties in the fitting of the ratio curve, this simplification had minor impacts on
the final results.

Therefore, to mimic an operational forecast system, we updated the hydrological
model assuming that the real-time satellite stage data were being used to estimate rivers
discharges in each of the sub-basins depicted in Figure 1. In other words, historical
discharges were used to correct (assimilate) the simulated discharges of the hydrological
model as if they were satellite estimated discharges.

The experiments used 1, 3, 7, and 11 d of updates and 0 h (no latency), 24 h, 48 h,
and 72 h of latency (a total of 16 experiments). We performed daily simulations between
2007 and 2014 (8 y).The effect of latency on the data availability was simulated in the model
by updating observations using data corresponding to 0 h, 24 h, 48 h, and 72 h before the
start of the forecasts. For the SWOT mission, the revisit period was 21 d. However, taking
advantage of the swath data, the same scene would be revisited a few times during the 21 d
orbit. On average, every point would be revisited every 11 d globally. An update every 11
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d was chosen according to Biancamaria et al. [24] and Papa et al. [20], which considered
such a revisit time for this region.

Flood forecasts were performed using meteorological interpolated fields and satellite
rainfall estimates to bring the hydrological model to the initial conditions. Then, the model
was updated using observed discharges according to the experimental design (different
time intervals and latency times). ECMWF forecasts were used as the input of the hydro-
logical model (offline coupling). This approach is generally used in many operational flood
forecast systems (for instance, Alfieri et al. [53]).

In this study, we applied the recursive update algorithm described by Wöhling et al. [54].
This technique was applied to reproduce the operational initial conditions of a forecast
system and to assimilate the measured streamflow at the start of the streamflow forecast.
The recursive update was successfully used by Tomasella et al. [37] and Falck et al. [38].

To analyze and interpret the results, the whole Tocantins-Araguaia Basin was divided
into small, medium, and large sub-basins, based on the size of the drainage areas, arbitrarily
chosen. As indicated in Table 1, small sub-basins included the headwaters with drainage
areas smaller than 25,000 km2, medium sub-basins between 25,000 km2 and 200,000 km2,
and large sub-basins having drainage areas greater than 200,000 km2.

4.2. Performance Analysis

The hydrological model performance was assessed by comparing the Nash–Sutcliffe
objective function and the adjusted parameters, namely Nash–Sutcliffe Efficiency (NSE)
and Logarithm Nash–Sutcliffe Efficiency (NSElog).

NSE = 1 − ∑n
t=1(QSt − QOt)2

∑n
t=1(QOt − QO)2

(1)

and:

NSElog = 1 − ∑n
t=1(log(QSt)− log(QOt))2

∑n
t=1(log(QOt)− log(QO))2

(2)

where QSt and QOt are the simulated and observed daily streamflow, log(QSt) and
log(QOt) are the natural logarithm of the simulated and observed daily streamflow, n
is the time interval, and QO and log(QO) are the long-term streamflow and the natural
logarithm long-term streamflow.

4.3. Ensemble Flood Forecast Performance

The Relative Operative Characteristic (ROC) diagram is a graphic form to evaluate the
ability of the forecast [55,56]. The construction of the ROC diagram is based on the 2 × 2
contingency tables for each probability threshold and presents the Hit Rate (HR) in relation
to the False Alarm Rate (FAR) ordinate and abscissa, respectively, as follows:

HR =
a

a + c
(3)

and:
FAR =

b
b + d

(4)

where a is the number of events that were observed and forecasted, b is the number of events
that were forecasted, but were not observed, c is the number of events that were observed,
but were not forecasted, and d is the number of events that were neither observed, nor
forecasted to occur. The best value in the ROC diagram is HR = 1 and FAR = 0 for all levels
of probability. If HR = FAR, then the probability is equal to 50% for both, which provides
meaningless information. The ROC diagram also allows determining the ROC skill score
provided through the area calculated under the ROC curve.

Because the warning flood levels in small riverine towns of the basin have been poorly
defined or not established at all, the statistics of performance were calculated for each
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sub-basin based on the threshold streamflow defined by the 90th percentile of the historical
streamflow duration curves. This threshold indicates floods that cause disruptions in the
local population with a recurrence time of about 1–2 y and allows the comparison of the
skill of the forecasts across different spatial and temporal scales. Warning level refers to the
site-specific river level at which the river banks are overtopped and riverine housing begins
to be flooded. Although it would be statistically more rigorous to choose a percentile of the
annual maximum floods rather than the 90th percentile of the experimental probability of
the flow duration curve, this would require at least 25 y of data, which are not available
for all sub-basins. In addition, the required period is much longer than the calibration and
validation periods of the hydrological model (2000 to 2014) and the available ensemble
forecasts (2007 to 2014). This is why we adopted this approach, which is analogous to the
approximation used to assess ensemble weather forecasts [57].

5. Results and Discussion
5.1. Hydrological Model Performance

The calibration and validation of the MHD-INPE for 22 sub-basins of the Tocantins-Araguaia
Basin using precipitation satellite estimates as the input of the model are shown in Table 1.
The hydrological model showed good performances to simulate the streamflow and repre-
sent the seasonality of the streamflow, picks, and recession periods. In general, the NSE
and NSElog showed good results for all sub-basins mainly for large basins with NSE and
NSElog of 0.868–0.957 and 0.890–0.953, respectively. The hydrological model was found
less performance in two small sub-basins, Tesouro (SB03) and Jatobá (SB17), as well for
the medium sub-basin, HPP Peixe Angical (SB14). As already noted by Falck et al. [38],
the performance of the hydrological model is usually worse in headwater catchments due
to the lack of data and model limitation. However, these results are acceptable for the
purposes of this study according to Moriasi et al. [58].

Comparing the performances of the MHD-INPE model in the current study with
the results of Falck et al. [38], where the same hydrological model was calibrated using
interpolated rain gauge observations, this suggests that for small basins, the performance
of the model for maximum discharges was better when the MHD-INPE was calibrated with
observed data. For medium and large basins, the performances of the hydrological model
were found superior when the model was calibrated with satellite data. This result could
be due to the combination of scarce rain gauge data in headwater sub-basins (about one
rain gauge for every 2500 km2) and uncertainties in satellite rainfall estimates in regions
with a steeper topography [59].

5.2. ROC Skill Score in Terms of Update

The ROC skill score is shown in Figure 2 for 22 sub-basins for 15 lead times (one
each 24 h) as a function of the drainage area for streamflow with a probability level of 0.9.
To understand the importance of the update frequencies in flood operational prediction
systems, we considered the update of the hydrological model every 1 d, every 3 d, every
7 d, and 11 d. Figure 2a shows the significant improvement of the ROC Skill Score (ROCSS)
for a daily update when compared with a 3 d, 7 d, and 11 d update (Figure 2b–d). This
figure shows the importance of daily updates to predict streamflow for all drainage areas.
Concerning the 3 d, 7 d, and 11 d updates, the results were very similar with a slight
improvement for the 3 d update. However, the ROCSS decreased significantly for almost
all lead times and sizes of sub-basins when compared with the daily update.
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Figure 2. ROC skill score for 22 sub-basins of the Tocantins-Araguaia Basin for 15 lead times as a
function of drainage area for streamflow with a probability level of 0.9. MHD-INPE update every
(a) 1 d, (b) 3 d, (c) 7 d, and (d) 11 d to the ECMWF ensemble. The vertical dotted lines divide the
drainage area into small, medium, and large sub-basins.

In addition, Figure 3 exhibits the ROCSS as a function of forecast lead time for a 1 d,
3 d, 7 d, and 11 d update frequency for small, medium, and large sub-basins. The SB03
(Tesouro), SB05 (Travessão), and SB9 (Ceres) represent the small sub-basins (left column),
SB13 (HPP Serra da Mesa), SB06 (Luiz Alves), and SB15 (HPP Lajeado) the medium sub-
basins (center column), and SB21 (Descarreto), SB07 (Conceição do Araguaia), and SB22
(HPP Tucuruí) the large sub-basins (right column). In general, the results showed better a
ROCSS for a 1 d update mainly for the first lead times of the forecasting. For small sub-
basins, the ROCSS for a 1 d update was superior for the first lead times when compared
with 3 d, 7 d, and 11 d, although there were differences among sub-basins. For instance,
for SB03 (Tesouro), a 1 d update had better skill until a 264 h lead time forecast; while in
the case of SB05 (Travessão) and SB9 (Ceres), the ROCSS for a 1 d update was better for
the first 192 h and 168 h lead time forecasting, respectively. For a 3 d, 7 d, and 11 d update
frequency, the ROCSS decreased slightly. However, the results showed predictability for
all update frequencies, but with significantly better results for a 1 d update with a better
ROC skill score for the first lead time mainly for headwaters.

In the Araguaia River, in the western part of the basin, SB06 (Luiz Alves) and SB07
(Conceição do Araguaia) are characterized by large floodplain areas and longer hydro-
logical memory, which explain why the ROCSS was less sensitive to the lead time of the
forecasts. The update improved the skill of the forecasts for early time leads, until 216 h.
However, for later time steps, the updated simulations showed a lower ROCSS compared
to the simulations without an update. This behavior is likely related to the update, which
forces the model to simulate discharges close to the latest observations, by changing the
model soil and water stores. This procedure might introduce space–time errors in the basin
storage, affecting discharges at longer lead time forecasts. Errors in the basin store are
long lasting in sub-basins with longer memory (large floodplains) such as SB06 and SB07.
On the contrary, the basins of the east side of the Tocantins basins showed better results in
the case of the update from all lead times, with the exception of SB22 HPP Tucuruí, where
the ROCSS decreased slightly after a 72 h lead time, related to the signal of SB06 and SB07.
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Figure 3. ROC skill score probabilistic streamflow forecast for the ECMWF ensemble model for
different update frequencies and drainage areas: small sub-basins (left column), medium sub-basins
(center column), and larger sub-basins (right column), for streamflow with a probability level of 0.9.

5.3. ROC Skill Score in Terms of Latency

Based on Figure 2a, it is clear that the accuracy of forecasts in flood operational predic-
tion systems was improved for streamflow updates every 1 d, particularly in headwater
catchments where the response time is short and the floods are more destructive [60].
Therefore, we extended the analysis of a 1 d update for different latency periods, as shown
in Figure 4. This figure exhibits the ROCSS for a streamflow update of 1 d as a function of
the drainage area for 0 h, 24 h, 48 h, and 72 h latencies to the ECMWF ensemble prediction.
Figure 4a shows the optimal conditions of a flood operational prediction system with
daily updates and no latency of the streamflow dataset to bring the model to the initial
condition. It is clear that the latency time has large implications in terms of the skill of
the forecasts, and it is an additional challenge for satellite altimeter missions aimed to
attend to operational hydrological systems. In general, the ROC skill score decreased
gradually with lead time, but no clear relationship was observed with the drainage area.
There was a degradation in skill scores in the sub-basins SB14-SB16 and SB19-SB22, located
downstream of HPP Serra da Mesa. As noted by Falck et al. [38], this is related to the
operational rules of the dams that follow the daily variations of the power demand of
the Brazilian Interconnected Grid, which depends not only on the seasonal pattern (dry
and wet periods), but also on the increase in regional demand due to heat waves, regional
droughts in other regions of the country, and grid impedance requirements, among several
other factors. Figure 4b–d shows the update every 1 d and 24 h, 48 h, and 72 h latencies,
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respectively. These results were very similar, but considerably inferior, compared to the
results with no latency (Figure 4a).
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Figure 4. ROC skill score for 22 sub-basins of the Tocantins-Araguaia Basin for 15 lead times as a
function of the drainage area for streamflow with a probability level of 0.9. MHD-INPE update every
1 d and (a) no latency, (b) 24 h latency, (c) 48 h latency, and (d) 72 h latency to the ECMWF ensemble.
The vertical dotted lines divide the drainage area into small, medium, and large sub-basins.

Figure 5 shows the ROC skill score as a function of forecast lead time for a 1 d
update frequency and 0 h, 24 h, 48 h, and 72 h latencies for small, medium, and large
sub-basins. In terms of latency, we observed that, in small sub-basins, the latency was
important especially for the first lead times. For instance, the first lead time for small
sub-basins SB03, SB05, and SB09 decreased the skill from 0.95 to 0.7 for 0 h to 72 h latencies
(around 25%). The ROCSS was degraded slightly with the lead time after ∼72 h of
forecasting. The same occurred for medium basins, except for SB15 (HPP Lajeado), which
is impacted by the sequence of reservoirs upstream. These results were propagated for
the sub-basins downstream, affecting also large-scale basins such as SB21 (Descarreto) and
SB22 (HPP Tucuruí).

In addition, regarding inflow discharge to reservoirs, it is worth mentioning that those
estimations were based on the water balance of the reservoirs, thus neglecting the effects
of the evaporation and infiltration of the reservoir lake. Besides the errors introduced by
the water balance simplification, other sources of uncertainties were introduced by the
sedimentation of the lake, which alters the stage–volume relationship with time.

Figures 6 and 7 (results for a 3 d update and various latencies) still show a gain in the
analyzed ROCSS. In the case of 7 d and 11 d updates for 0 h, 24 h, 48 h, and 72 h latencies
(figures not shown), the latency time had no effect because the lead times overlapped.
These results highlight the importance of the 1 d update and the latency. Even though data
latency delays occurred, the daily update was extremely important.
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Figure 5. ROC skill score probabilistic streamflow forecast for the ECMWF ensemble model for a
1 d update and different latencies (0 h, 24 h, 48 h, and 72 h latencies) and drainage areas: small
sub-basins (left column), medium sub-basins (center column), and larger sub-basins (right column),
for streamflow with a probability level of 0.9.
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Figure 6. ROC skill score for 22 sub-basins of the Tocantins-Araguaia Basin for 15 lead times as a
function of drainage area for streamflow with a probability level of 0.9. MHD-INPE update every 3 d
and (a) no latency, (b) 24 h latency, (c) 48 h latency, and (d) 72 h latency to the ECMWF ensemble.
The vertical dotted lines divide the drainage area into small, medium, and large sub-basins.
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Figure 7. ROC skill score probabilistic streamflow forecast for the ECMWF ensemble model for a
3 d update and different latencies (0 h, 24 h, 48 h, and 72 h latencies) and drainage areas: small
sub-basins (left column), medium sub-basins (center column), and larger sub-basins (right column),
for streamflow with a probability level of 0.9.

The ROC diagrams for small, medium, and large sub-basins are shown in Figures 8–10,
respectively. The ROC diagram represents the hit rates and false alarm rates up to 15 lead
times’ forecasts and for a 1 d update frequency considering a probabilistic streamflow
forecast with 0 h (no latency), 24 h latency, 48 h latency, and 72 h latency.

For small sub-basins (Figure 8) SB03, SB05, and SB09, the results showed that the
dataset updated daily without latency presented the best performance especially for the first
lead times’ forecasts (24 h, 48 h, and 72 h forecasting). These results showed the importance
of data latency for headwaters with fast hydrological responses. As the latency increased,
the predictability performance decreased, especially for early lead times. For longer lead
times, all latencies’ experiments remained very similar to the no-latency ones. The results
showed that for longer lead times in headwaters, the latencies did not have a major
impact on the results. In the case of no latency for small sub-basins, the first lead times’
forecasts had high hit rates (around 90%) and low false alarm rates (between 0% and 30%).
For 24 h latency for short lead times, the results were slightly better than for 48 h and
72 h latencies, showing higher hit rates, but lower false alarm rates. This was something
expected considering that the forecasts in headwater basins depend mostly on an accurate
rainfall prediction, which is deteriorated not only because of increasing leading times, but
also at finer spatial scales. In the case of medium and large sub-basins (Figures 9 and 10),
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the results were very similar for all latencies, especially for 0 h and 24 h. For 48 h and
72 h, the predictability decreased for the first lead times. In general, the results showed
that for longer lead times for medium and larger sub-basins, the latencies had almost no
effect. There were several reasons for this behavior. Firstly, the flood wave dynamics is
more gradual for larger basins, which makes flood forecasts more predictable downstream.
In addition, because the discharges of larger basins depend on rainfall falling on larger
incremental contributed areas and on the propagation of flood waves from upslope sub-
basins, time and space errors in rainfall predictions in the incremental drainage area are
spatially compensated. However, in the case of the dams HPP Lajeado (SB15), Descarreto
(SB21), and HPP Tucuruí (SB22), the operating rules of which can change on a daily basis
in response to the country’s power demand, the hit rates dropped drastically by over 40%,
and the false alarm rates dropped between 10% and 20%.
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Figure 8. ROC diagrams of the probabilistic streamflow forecast for small sub-basins. MHD-INPE 1 d update for: no
latency (left column), 24 h latency (center-left column), 48 h latency (center-right column), and 72 h latency (right column),
for streamflow with a probability level of 0.9.
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Figure 9. ROC diagrams of the probabilistic streamflow forecast for medium sub-basins. MHD-INPE 1 d update for: no
latency (left column), 24 h latency (center-left column), 48 h latency (center-right column), and 72 h latency (right column),
for streamflow with a probability level of 0.9.



Remote Sens. 2021, 13, 4459 16 of 19

0.0

0.2

0.4

0.6

0.8

1.0

H
it

 R
at

e

(a) SB21

No latency

Large sub-basins - update 1-day

24-h latency

(b) SB21

48-h latency

(c) SB21

72-h latency

(d) SB21

0.0

0.2

0.4

0.6

0.8

1.0

H
it

 R
at

e

(e) SB07 (f) SB07 (g) SB07 (h) SB07

0.0 0.2 0.4 0.6 0.8 1.0
False Alarm Rate

0.0

0.2

0.4

0.6

0.8

1.0

H
it

 R
at

e

(i) SB22
0.0 0.2 0.4 0.6 0.8 1.0

False Alarm Rate

(j) SB22

24-h
48-h

72-h
96-h

120-h
144-h

168-h
192-h

216-h
240-h

264-h
288-h

312-h
336-h

360-h

0.0 0.2 0.4 0.6 0.8 1.0
False Alarm Rate

(k) SB22
0.0 0.2 0.4 0.6 0.8 1.0

False Alarm Rate

(l) SB22

Figure 10. ROC diagrams of the probabilistic streamflow forecast for large sub-basins. MHD-INPE 1 d update for: no
latency (left column), 24 h latency (center-left column), 48 h latency (center-right column), and 72 h latency (right column),
for streamflow with a probability level of 0.9.

6. Summary and Conclusions

To understand the potential applications offered by the upcoming altimeter missions
for flood forecasting operational systems, we analyzed the results of several experiments
considering the update frequencies of data for 1 d, 3 d, 7 d, and 11 d. For each update
frequency, we analyzed the latency times (0 h, 24 h, 48 h, and 72 h) as an initial condition of
the hydrological model. The results were evaluated in terms of the ROC diagram, ROC
skill score per drainage area, and per lead time of 15 d of streamflow forecasting.

Our results revealed that increasing the frequency of data collection and reducing
the latency time (especially a 1 d update and low latency) had a strong effect mostly on
steep headwater sub-basins, where the dynamics of the flood waves have the potential
to cause not only more economic damage, but also human fatalities. In larger basins,
although the increased frequency of data collection improved the accuracy of the forecasts,
potential benefits are limited to the early days of the flood and less critical when compared
to headwater sub-basins. Therefore, future satellite altimeter missions, to be more useful
in flood forecasting systems, should emphasize the frequency of data collection (and
vertical accuracy).

Therefore, our results support the initiative of the scientific community and CNES,
which aim at developing the SMall Altimetry Satellites for Hydrology (SMASH) constella-
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tion, which will allow the monitoring of rivers (as narrow as 50 m wide) and lakes (with a
minimum area of 100 m) × 100 m with a daily revisit. In addition, our results emphasize
that the products should be provided with a short latency time in order to make full use of
the high temporal frequency of the measurements in the context of flood forecasting.

Considering the current status of the hydrological network in Brazil and that the
real-time data are based on the mobile (cellular) network, which can be unreliable during
extreme rainfall events, in particular in remote areas, it is clear that the use of satellite
altimeter data can be crucial in many cases for flood mitigation actions.

Since this study used only a unique hydrological and weather forecast model, future
studies should also explore the use of different numerical schemes (including more sophisti-
cated assimilation schemes) and, more importantly, the effect of a higher spatial resolution
on the quality of the forecasts. Furthermore, the Tocantins-Araguaia region is poorly
monitored, and potential discharge estimations based on satellite altimeters with higher
spatial coverage than the currently available gauging network are likely to have a positive
effect on the forecasts. In parallel, the conversion of altimeter data into discharge and their
validation over the Tocantins-Araguaia region require further investigation, including field
surveys, to obtain additional rating curves or bathymetric data.
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