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When ordinating plots of tropical rain forests using stand-level structural attributes such

as biomass, basal area and the number of trees in different size classes, two patterns

often emerge: a gradient from poorly to highly stocked plots and high positive correlations

between biomass, basal area and the number of large trees. These patterns are inherited

from the demographics (growth, mortality and recruitment) and size allometry of trees

and tend to obscure other patterns, such as site differences among plots, that would be

more informative for inferring ecological processes. Using data from 133 rain forest plots

at nine sites for which site differences are known, we aimed to filter out these patterns

in forest structural attributes to unveil a hidden pattern. Using a null model framework,

we generated the anticipated pattern inherited from individual allometric patterns. We

then evaluated deviations between the data (observations) and predictions of the null

model. Ordination of the deviations revealed site differences that were not evident in the

ordination of observations. These sites differences could be related to different histories

of large-scale forest disturbance. By filtering out patterns inherited from individuals, our

model analysis provides more information on ecological processes.

Keywords: forest structure, forest typology, null model, pattern and process, rain forest, correlation, ordination

1. INTRODUCTION

Among trees in a forest stand, tall trees are expected to have large diameters (because of mechanical
and physiological processes operating at intra-tree level). Moreover, tree sizes in a stand are
expected to be distributed following a general distribution that reflects population demographical
processes (i.e., growth, mortality and recruitment). Therefore, a forest stand with a tall canopy
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is also expected to have a large basal area and, when considering a
collection of forest stands at different developmental stages, stand
canopy height and stand basal area are positively correlated.
Such a correlation is an example of a pattern, i.e., any structure
in observations that is significantly different from a random
process realization (Wiegand et al., 2003; Grimm and Railsback,
2012). Patterns are key in ecology to understand and infer
underlying ecological processes. We define an obvious pattern
as a pattern that is inherited from patterns in the constituent
elements that compose the object under study. In the above
example, the correlation between canopy height and basal area
of a forest stand (= the object under study) is an obvious pattern
because it is automatically inherited from the size allometry and
demographics of trees (= the constituent elements).

The canopy height of a forest stand is, however, also
determined by other factors, such as soil. When plotting canopy
height vs. basal area for stands at different developmental
stages and soil conditions, the observed correlation will mix
the soil effects with the obvious positive correlation between
canopy height and basal area inherited from trees. The positive
correlation between height and basal area may be dominant to
the point that the soil effect is not visible at the first order.
Hence, obvious patterns can hide relevant patterns useful in
inferring underlying ecological processes: an informative pattern
may be hidden by a dominant uninformative pattern. The
challenge, then, is to filter out the dominant pattern to reveal the
hidden pattern.

Although this paper is method-oriented, we shall for clarity
and illustration sake focus on tropical rain forests, where the
structure is defined as the set of all stand attributes that depend
on tree sizes (such as tree density, basal area, aboveground
biomass, mean diameter, but excluding any attribute depending
on species composition) (Rollet, 1974). Using a multivariate
ordination of forest plots based on their structural attributes
(Legendre and Legendre, 1998, chapter 9), we will investigate
correlations between these structural attributes and the gradient
among forest plots detected by the ordination. Considering
biomass, basal area, and the number of small, medium, and large
trees, a general pattern in tropical rain forests is sketched in
Figure 1. The high positive correlation between biomass, basal
area and the number of large trees has been widely reported
in the literature across the tropics (Lewis et al., 2013; Bastin
et al., 2018). Correlations between other structural attributes can
be seen, for instance, in French Guiana (Baraloto et al., 2011),
or in central Africa (Palla et al., 2011), even though Baraloto
et al. jointly analyzed structural variables and environmental
variables. The persistence of the correlations sketched in Figure 1
despite the presence of other, non-structural variables indicates
that this pattern is dominant. Along with this pattern, a
second pattern emerging from the ordination of forest plots
is a gradient from poorly (low biomass, basal area and stem
density) to highly (high biomass, basal area and stem density)
stocked plots.

Our hypothesis is that these two patterns (gradient from
poorly to highly stocked forest plots and correlations sketched
in Figure 1) are dominant and obvious patterns that hide more
informative patterns. To investigate this hypothesis, we used data

FIGURE 1 | Schematic view of the expected correlation circle between

biomass, basal area, and the number of small, medium size, and large trees

when ordinating tropical rain forest plots.

from 133 forest plots located at nine tropical sites for which site
differences are known.

To filter out the dominant pattern and unveil hidden ones,
we use an approach similar to null model analysis (Gotelli
and Graves, 1996; Dormann et al., 2017). Gotelli and Graves
(1996) defined a null model as “a pattern generating model
that is based on randomization of ecological data or random
sampling from a known or imagined distribution.” Referring
to Gotelli and Ulrich’s (2012) terminology (see their Figure 1),
this pattern-oriented model (sensu Wiegand et al., 2003) lies
somewhere between a statistical test of a null hypothesis using
a predefined theoretical distribution and a “mechanistic model”
that is process-oriented and does not involve any randomization
of data. Hence, “null model analysis specifies a statistical
distribution or randomization of the observed data, designed
to mimic the outcome of the random process model without
specifying or estimating all of its parameters” (Gotelli and
Ulrich’s, 2012). We develop a null model by combining a
parametric component (= a “mechanistic” component in Gotelli
and Ulrich’s terminology) with a randomization component
that consisted of randomizing the deviations of observations to
the predictions of the parametric component. The parametric
component, which is fitted to the data, assumes an exponential
distribution of individual tree diameters to predict stand-level
structural attributes. For this model analysis to remove the
dominant pattern and reveal hidden patterns, the parametric
component of the null model must generate the dominant
pattern. We show that after removing the obvious pattern, the
correlation between the deviations of structural variables and the
ordination of plots based on these deviations provides ecological
insights that did not emerge with the classical ordination
approach based on observations.

2. MATERIALS AND METHODS

2.1. Model Analysis
The model in our analysis consists of a parametric component
and a randomization component. The parametric component is
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based on processes operating at the tree level (growth, mortality,
recruitment, allometry. . . ), but does not include any processes
that may generate site differences. The plot-level pattern that it
generates is thus obvious in the sense that it is automatically
inherited from tree attributes. The randomization component
cumulates the parametric tree-level predictions while ensuring
that the resulting plot-level predictions are consistent with
observations. The randomization process removes any pattern in
the deviations between observations and the predictions of the
parametric component.

2.1.1. Parametric Component of the Model

Given n forest plots and a set of p variables that characterize the
forest structure (tree density, basal area, aboveground biomass,
mean diameter, or the number of trees in different diameter
classes, etc.), the parametric component of the model generates
the structural variables of each plot based on mechanisms
operating at the tree level. Like Gotelli and Graves (1996), we
prefer simple and parsimonious models that can account for the
dominant pattern at the plot level.We assume that all trees within
each plot had constant growth, mortality, and recruitment rates.
Moreover, we assume that all trees in all plots have a constant
wood density ρ of 0.6 g cm−3 and that their biomass-diameter
allometry is the same as given by Chave et al.’s (2005) equation for
moist forests: f (x, ρ) = ρ exp[−1.499+2.148 ln x+0.207(ln x)2−
0.0281(ln x)3], with x the tree diameter in cm and f (x, ρ) its
biomass in kg. These simple assumptions do not include any
mechanism related to site differences (e.g., growth dependence
on environmental conditions) and ensure that any plot-level
pattern generated by the parametric component is inherited
from the tree-level patterns contained in these assumptions.
Constant demographic rates (growth, mortality, recruitment) at
the tree level imply that the stationary diameter distribution at
the plot level is an exponential distribution with density function
Nµ exp[−µ(x−x0)], where x is tree diameter, x0 is the minimum
diameter for inventory (a constant imposed by the sampling
design of the forest inventory), µ equals the ratio of the mortality
rate to the diameter growth rate, and N equals the ratio of the
recruitment rate over the mortality rate (Supplementary Text 1).
The diameter distribution sums to N, the density of trees in
each plot. This exponential diameter distribution adheres to the
reverse-J shaped diameter distribution of undisturbed tropical
forests (Rollet, 1974) and ensures that the pattern generated by
the parametric component is the observed dominant pattern.

An alternative to the assumption of constant demographic
rates is metabolic scaling theory that also generates a reverse-
J shaped diameter distribution at the plot level (Muller-
Landau et al., 2006). Metabolic scaling theory results in a size
distributions following a power law. We also explore this option
(as Supplementary Material) to assess the sensitivity of the
results to the choice of the parametric component of the model.

Given the diameter distribution, the wood density ρ, and
the allometric equation f , all plot-level structural variables
considered in this study can be computed as specified in Table 1.
The two parameters N and µ of the diameter distribution have to
be estimated for each plot. We may equivalently reparameterize
the distribution using any two structural variables such that N

TABLE 1 | Expression of the plot attributes when the diameter distribution at plot

level is modeled by an exponential distribution with parameter µ, given by:

Nµ exp[−µ(x − x0)], where x is tree diameter and x0 is the minimum diameter for

inventory (a constant imposed by the sampling design of the forest inventory).

Plot attribute Notation Expression

Density of trees N N

Basal area G N π
2 [(

1
µ
+

x0
2 )2 + ( x02 )2]

Mean diameter D x0 + µ−1

Equivalent diameter E ( 4
π
G/N)0.5

Density of tree in class [a,b] Nab N{exp[−µ(a− x0)]−
exp[−µ(b− x0)]}

Aboveground biomass B Nµ
∫ ∞

x0
f (x, ρ)

exp[−µ(x − x0)]dx

Proportion of biomass of trees

with dbh ≥ c
P Nµ

B

∫ ∞

c f (x, ρ)
exp[−µ(x − x0)]dx

f is the biomass allometric equation that predicts the aboveground biomass of a tree from
its diameter x and wood density ρ.

and µ are identifiable from these two variables. In practice, we
used tree density N and basal area G, and fitted the diameter
distribution to each plot i byminimizing the distance between the
centered and scaled vector of observed structural variables and
the centered and scaled vector of predicted structural variables:

(N̂i, Ĝi) = argmin
N,G

p
∑

j=1

[Aobs,ij − Amod,j(N,G)]2

s2j
(1)

where Amod,j(N,G) is the predicted jth structural variable (i.e.,
one of the structural variables given inTable 1) for a plot with tree
density N and basal area G (j = 1, . . . , p), Aobs,ij is the observed
jth structural variable (j = 1, . . . , p) of the ith plot (i = 1, . . . , n),
and s2j is the variance of Aobs,ij across the n plots.

2.1.2. Randomization Component of the Model

Let Aobs be the matrix with n rows, p columns and element
Aobs,ij that assembles the observed structural variables of all plots.
The parametric component of the model defines a matrix Amod
with n rows and p columns whose element at the ith row and
jth column equals the fitted value Amod,j(N̂i, Ĝi). The difference
between the observed matrix Aobs and the model matrix Amod
defines a matrixD of deviations:

Aobs = Amod +D (2)

Under the null hypothesis, all the pattern in the data of the
observed matrix Aobs results from the model, so that there is
no pattern in the matrix D of deviations. Following Gotelli
and Graves (1996), the pattern in the data is measured by a
metric M operating on n × p matrices, while the distribution of
M(D) under the null hypothesis is defined by a randomization
process that reflects the absence of pattern in D according
to the metric M (Gotelli et al., 2011). For instance, when
interested in the correlation between the jth and kth variables that
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TABLE 2 | Main characteristics of the study sites in terms of sampling effort (number of plots and total inventoried area), structural attributes (maximum dbh, tree density

and basal area), and environment (altitude, annual rainfall and average temperature).

Country* Site Location Nb. Area Max dbh Tree density Basal area Altitude Rainfall Temp.

plots (ha) (cm) (ha−1) (m2 ha−1) (m) (mm) (◦C)

CAR M’Baïki 3◦54’N, 17◦56’E 10 40 218 621 32.9 560 1,739 24.9

Cameroon Dja 3◦11’N, 12◦47’E 10 8.7 151 448 31.5 625 1,610 24.3

Congo Ngouha2 3◦5’S, 12◦25’E 13 13 114 531 27.2 250 1,645 25.1

Congo Sangha 2◦11’N, 16◦18’E 30 30 231 361 28.5 407 1,624 24.9

DRC Yoko 0◦18’N, 25◦19’E 1 9 139 472 32.5 469 1,752 24.6

India Uppangala 12◦32’N, 75◦40’E 16 17.92 224 553 35.7 500 5070 24.4

Fr. Guiana Paracou 5◦16’N, 52◦55’W 16 118.75 283 610 38.2 36 3,041 25.7

Gabon Makokou 0◦29’N, 12◦48’E 3 3 132 387 25.9 539 1,701 23.9

Gabon Oyan 0◦20’S, 9◦20’E 34 22.19 223 451 30.2 32 1,745 26.0

The minimum dbh for inventory was x0 = 10 cm, while the upper limit to truncate the power distributions was x1 = 200 cm at all sites. *CAR, Central African Republic; DRC, Democratic
Republic of Congo; Fr. Guiana, French Guiana.

characterize the forest structure, a relevant metric is Pearson’s
correlation coefficient:

M(A) =
aT
j ak − (1Taj)(1Tak)

√

[aT
j aj − (1Taj)2][aT

k ak − (1Tak)2]
(3)

where aj is the jth column vector of A, 1 is the vector of
length n full of ones, and aT for any vector a denotes the
transpose of a. When interested in the structure of A as a
whole, a relevant metric is the sum of the eigenvalues of the
first c components of the principal component analysis (PCA)
of A, with c the number of components selected to represent
the data set sufficiently (Abdi and Williams, 2010; Linting
et al., 2011). A randomization process in those cases consists
in randomly permuting the elements of each column-vector
of D, concurrently and independently from each other (Buja
and Eyuboglu, 1992; Linting et al., 2011). Let π1, . . . , πp be p
independent random permutations of n elements, and let Dnull
be the random matrix obtained from D as enull,j = πj(ej), where
ej is the jth column of D. This randomization process removes
the entire correlational structure of the data, so that matrix Dnull
does not present any pattern according to the metric M. Let
Anull = Amod +Dnull be a random outcome of the null model.

To test if the pattern in Aobs entirely follows from the
parametric model or if extra pattern in Aobs is not accounted for,
Gotelli and Graves (1996) comparedM(Aobs) to the distribution
of M(Anull). In agreement with the idea of filtering out the
dominant pattern, and following an approach similar to the
ordination of residuals made by Couteron et al. (2003) that was
equivalent with a PCA with instrumental variables, we rather
comparedM(D) to the distribution ofM(Dnull). The two options
are identical when M is linear with respect to A, which is
generally not the case. The former option is fine to check if
the null model can reproduce the observed pattern. The latter
option is better to check if there is a remaining hidden pattern
once the obvious dominant pattern has been filtered out. The
randomization test indicates whether the pattern in deviations is
likely, or not, to have arisen by chance, and does not solve issues

of dependence of deviations (such as those resulting from inter-
plot spatial autocorrelation) that would lead to type I errors if the
test was used to test the absence of correlation between deviations
(Legendre and Legendre, 1998, p. 17–26).

2.2. Study Sites and Plots
Forest data came from 133 plots distributed across nine sites,
totaling 262.56 ha (Table 2). All forests were tropical broadleaf
rain forests (Figure 2), all under tropical climate according
to the Köppen-Geiger climate classification, with the seasonal
precipitation type being equatorial, monsoonal, wet or dry. The
altitude of the sites varied from very low elevation close to
the littoral (at Paracou and Oyan) to low elevation (maximum
625 m asl). Soils in all sites were ferralitic soils, mostly ferralsols
according to the soil classification of the World Reference Base
for Soil Resources, but also including acrisols (with clay-enriched
subsoil) and plinthosols (with accumulation of Fe). Most of the
sites were located on plateaus interrupted by rivers, with a flat to
moderate relief, often consisting of a succession of small round-
topped hills. A noticeable exception is the Uppangala site that was
located on steep mountain slopes.

Sites mainly differed with respect to their species
composition and disturbance history. The different floristic
assemblages among sites reflected the known large scale
patterns in phytogeography (Fayolle et al., 2014b), but also
regional bioclimatic patterns (i.e., degree of evergreenness vs.
deciduousness of the forest). Two sites, Ngouha2 in Congo and
Oyan in Gabon, were exclusively composed of monodominant
okoume (Aucoumea klaineana Pierre) forest, with okoume alone
representing 56% and 85% of the forest basal area, respectively
(Peh et al., 2011). The Dja site in Cameroon also had 40% of
its plots located in monodominant limbali [Gilbertiodendron
dewevrei (De Wild.) J. Léonard] forest. Monodominance vs.
mixed forest could thus be a first factor that differentiates sites.

Most of the plots were initially established in old-growth
forest, with no historical evidence of perturbation. However, two-
thirds of the plots in the Sangha site in Congo were established
in forests that were selectively logged at low intensity (< 2
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FIGURE 2 | Location of the nine study sites and distribution of the diameter at breast height (dbh) at each site (inset plots). The green area represents the biome of

tropical and subtropical moist broadleaf forests as delimited by Dinerstein et al. (2017). In the insets, the eleven bars correspond to the eleven diameter classes

10–20 cm, 20–30 cm, …, 100–110 cm, and ≥ 110 cm, while the y-axis gives the density of trees per hectare.

trees ha−1) in the early eighties. This low intensity logging is
still discernible after 35 years in some forest attributes (Poulsen
et al., 2013). Three plots at Uppangala were perturbed by a
wildfire 30 years ago. Because okoume has a pioneer behavior,
monodominant okoume stands at Ngouha2 and Oyan also
indicate that large scale disturbances once occurred at those
sites (Brunck et al., 1990). Dendrochronology studies conducted
at Oyan showed that monodominant patches corresponded to
even-aged cohorts of okoume trees with a minimum age of 7–12
years and a maximum age of 50–60 years (Rivière, 1992).

Permanent sample plots were established either as part
of an experimental design to study silvicultural techniques

for sustainable forest management (M’Baïki, Ngouha2, Oyan,
Paracou and Yoko sites), or for ecological research purposes (all
other sites). Most of the plots in this latter case were established
in protected areas, although some plots were also established in
forest logging concessions (Sangha site). In the former case, we
used the data measured at the initial time when each plot was
established, before any silvicultural treatment. The measurement
protocol was similar in all sites, with all trees with a girth at
breast height (gbh, measured at 1.3 m above ground) ≥ 30 cm
being identified at species or morphospecies level, individually
marked, and their gbh measured. Diameter at breast height (dbh)
was obtained from gbh assuming a circular cross-section of the
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trunk. More information on the study sites and plots is given in
Supplementary Text 2.

The aboveground biomass of each tree was computed using
the allometric Equation (7) by Chave et al. (2014) that depends
on tree dbh, wood density and a site-specific bioclimatic stress
index. Wood density was determined for each tree species using
the global wood density database (Zanne et al., 2009), employing
a genus average when no match was found at species level, and
a default value of 0.6 g cm−3 when no match was found at genus
level. Individual tree data were aggregated at the plot level to get
the following structural attributes of each plot: density of trees (in
total or by diameter class), basal area, mean diameter, equivalent
diameter (i.e., the square root of the mean quadratic diameter)
and aboveground biomass (in total or by diameter class).

2.3. Analyses
For each of the 133 forest plots, the data were fitted to the
model using the optimization defined by Equation (1). Based on
the estimated parameters, the predicted structural variables were
then computed using the equations in Table 1, and the deviations
between observations and predictions were finally computed
using Equation (2). Three different sets of structural variables
were analyzed using the model analysis.

First, we studied the correlation between biomass and basal
area across the 133 permanent sample plots using Peason’s
correlation coefficient (Equation 3) as the metric and using our
randomization process to derive its null distribution. Second, we
extended our study of correlation between structural variables
under the null model to p = 9 structural variables (density of
trees, basal area, mean diameter, equivalent diameter, density of
trees with dbh < 30 cm, density of trees with dbh in the range
30–60 cm, density of trees with dbh ≥ 60, aboveground biomass,
and proportion of biomass represented by trees with dbh ≥ 60
cm) using the PCA of the centered and scaled variables, and the
sum of the eigenvalues of the first two components of the PCA as
the metric.

Third, to focus on the diameter distribution only (i.e.,
disregarding all other tree attributes), we assembled a table of
structural variables from the density of trees in 11 dbh classes
ranging from 10 to 110 cm with an interval of 10 cm (except
the last class that contained all trees with dbh ≥ 110 cm).
This 133 × 11 table of densities was first transformed using
the chord transform (Legendre and Borcard, 2018), which was
again ordinated using PCA. All analyses were conduced with R
software (see Supplementary Text 6).

We repeated the analyses with alternative choices for the
parametric component of the null model or data selection
to assess the sensitivity of the results to specific model
or data features. First, the power model was used as an
alternative to the exponential model in the model analysis
(see Supplementary Text 3 for the definition of its parametric
component). Second, to assess the possible influence of young
forest plots on the results, analyses were repeated after removing
all plots with basal area < 20 m2 ha−1. Third, to assess the
influence of variation in wood density, we rebuilt the matrix of
observations Aobs using pseudo-observations where tree wood
densities were replaced by a constant value of 0.6 g cm−3

while keeping all other tree data to their observed values,
which is equivalent with deleting site differences in average
wood density.

3. RESULTS

3.1. Correlation Between Biomass and
Basal Area
Pearson’s correlation coefficient between the observed biomass
and the observed basal area of the plots was 0.80 (Figure 3A).
Beyond this dominant pattern of high positive correlation
between biomass and basal area, data presented another pattern
related to site differences. Sites could be classified into several
groups with Oyan and Ngouha2 having relatively low biomass
even for high basal areas (red and orange dots in Figure 3A),
the other sites having high biomass for high basal area,
and Uppangala lying in between. The exponential null model
rendered the dominant pattern of high positive correlation
between biomass and basal area (correlation coefficient of
0.98; Figure 3B), showing that this high positive correlation
was not linked to site differences and is an obvious pattern.
Filtering this pattern out, i.e., correlating the deviations of
plot biomass and basal area to model predictions, allowed us
to more clearly evidence site differences than when directly
correlating observations. The correlation between the deviations
of biomass and basal area to the predictions equaled −0.49 and
was significantly different from zero (p < 0.001).

We can check that the correlation in deviations resulted
from differences between Oyan and Ngouha2 and the other
sites by excluding the data from these two sites. The correlation
between observed biomass and basal area then was 0.87, while
the correlation between modeled biomass and basal area was
0.96. The correlation between the deviations of biomass and basal
area to the predictions was < 0.01 and was not significantly
different from zero (p = 0.96). Even if the pattern of correlation
in the data was well rendered by the exponential null model, it
is worth noting that the null model predicted a smaller slope
for the response of biomass to basal area than actually observed
(compare Figure 3A where biomass reaches 1,000 Mg ha−1 for
the highest basal areas, and Figure 3B where biomass remains
below 700 Mg ha−1). These differences are not measurable with a
metric like the correlation coefficient.

Replacing the exponential model with the power model
(Supplementary Text 3) or removing plots with basal area
< 20 m2 ha−1 (Supplementary Text 4) had little influence on
the results. Imposing the same wood density for all trees
changed the correlation pattern between biomass and basal
area, with the Oyan and Ngouha2 plots becoming more aligned
with the Uppangala plots (Supplementary Text 5). A remaining
pattern due to site differences (beyond those associated with
wood density) was still significant. The model analysis was
more sensitive to the deletion of site differences in wood
density (correlation coefficient of deviations tomodel predictions
changing its sign from −0.49 to 0.31) than the direct correlation
analysis based on observations (correlation coefficient changing
from 0.80 to 0.93).
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FIGURE 3 | Aboveground biomass vs. basal area for 133 forest stands at nine sites as (A) observed and (B) predicted by the exponential null model. The different

colors correspond to the different sites as shown in the legend.

3.2. Ordination of Plots Based on
Structural Variables
The PCA of structural characteristics showed the general pattern
of Figure 1, with a strong positive correlation between basal area,
biomass and the density of trees with dbh ≥ 60 cm on the first
axis of the PCA, and a strong positive correlation between the
overall tree density and the density of trees with dbh < 30 cm
on the second axis of the PCA (Figure 4A). The sum of the
first two eigenvalues was 7.4. The projection of plots on the
first two axes of the PCA opposed plots with large basal area
or biomass to those with small basal area or biomass (1st axis),
and plots with large tree density to those with small density (2nd
axis; Figure 4B). This ordination of plots corresponded to the
expected general pattern and did not separate forest sites well.
The exponential null model rendered well the dominant pattern
of observed data (compare Figures 4A,C and Figures 4B,D),
with a more structured pattern than observed as shown by
the proximity of variable loadings to the border of the circle
in Figure 4C. The sum of the first two eigenvalues for the
exponential model equaled 8.7.

The PCA of the deviations of the structural variables fitted
with the exponential model offered a very different view of
the forest structure (Figures 4E,F). The matrix of deviations D
showed a significant pattern (sum of first two eigenvalues = 7.1,
p < 0.001). Two groups of sites were separated along the first
axis of the PCA: Oyan and Ngouha2 on the one hand, and the
other sites on the other hand (Figure 4F). This first axis was
mainly built on a negative correlation between the deviation of

the density of trees with dbh in the range 30-60 cm and the
deviation of the density of trees with dbh < 30 cm (Figure 4E).
Therefore, plots in the Oyan and Ngouha2 sites had more trees in
the 30-60 cm dbh class and fewer trees in the dbh class < 30 cm
than expected under the null model as compared to the other
sites. Themodel analysis revealed a pattern of site differences that
was not perceptible with the PCA of observations.

The power null model performed slightly less well than
the exponential model in rendering the dominant pattern
of observed data, but results were similar for both models
(Supplementary Text 3). Removing plots with basal area <

20 m2 ha−1 had little influence on the results, but accentuated
the contrast between the PCA of observations and the PCA of
deviations to the null model (Supplementary Text 4). Oyan and
Ngouha2 sites were more superimposed with other sites in the
analysis of observations and more clearly separated from other
sites in the analysis of deviations to the null model when plots
with basal area< 20 m2 ha−1 were excluded than when included.
Imposing a constant wood density on all trees had little influence
on the results of the PCA (Supplementary Text 5), except for
the change of sign of the correlation between the deviation of
biomass and the deviation of basal area reported above.

3.3. Ordination of Plots Based on Densities
in dbh Classes
The main gradient of the PCA of chord-transformed trees
densities in dbh classes was again a gradient of poorly to highly
stocked plot (Figure 5A). The sum of the first two eigenvalues
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FIGURE 4 | Principal component analysis (PCA) of structural characteristics of 133 forest plots at nine sites. The PCA is performed either on the matrix of observed

data (A,B), on the modeled data using the exponential model (C,D), or on the deviations of observations to the predictions of the exponential model (E,F).

(Continued)
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FIGURE 4 | (A,C,E) Correlation circle between the first two axes of the PCA and structural characteristics (N = density of trees, G = basal area, D = mean diameter,

E = equivalent diameter, N1 = density of trees with dbh < 30 cm, N2 = density of trees with dbh in the range 30–60 cm, N3 = density of trees with dbh ≥ 60, B =

aboveground biomass, and P = proportion of biomass represented by trees with dbh ≥ 60 cm). The insets show the eigenvalues of the PCA. (B,D,F) Projection of the

forest plots on the first two axes of the PCA. Each dot corresponds to a plot with the color indicating the site. Lines and ellipses highlight the dispersion of the plots of

each site.

was 7.9. Plots with a high score on the first axis of the PCA
had a greater density of trees in the smallest dbh class and a
smaller density of trees in the intermediate classes, implying a
steep dbh distribution. Conversely, plots with a small score on
the first axis had a smaller density of trees in the smallest dbh
class, implying a flatter dbh distribution. Again site differences
were not clearly visible along this dominant gradient with the
plots of the Oyan site covering the whole gradient along the first
axis (Figure 5B). The second axis of the PCA separated sites to
some extent. The exponential null model rendered the dominant
gradient along the first axis of the PCA, with an amplification of
the opposition between poorly stocked plots with more trees in
the smallest dbh classes and highly stocked plots with more trees
in the intermediate dbh classes (Figures 5C,D). The sum of the
first two eigenvalues for the exponential model equaled 10.9.

The PCA of the deviations from the null model again offered a
very different view of the forest structure. There was a significant
pattern left in the deviations of observations from the exponential
model (sum of the first two eigenvalues = 4.4, p < 0.001).
The Oyan and Ngouha2 sites were separated from the other
sites along the first axis (Figure 5F). This axis contrasted plots
with tree densities in the smallest or greatest dbh classes that
strongly deviated from the null model, and those for which the
deviation was strongest in intermediate dbh classes (Figure 5E).
The analysis again revealed a pattern of site differences that was
not perceptible along the main dominant gradient of the PCA
of observations.

4. DISCUSSION

4.1. The Gradient of Plots Is a Dominant
and Obvious Pattern That Hides Site
Differences
The dominant pattern captured by the ordination of forest plots
was a gradient from a steep reverse-J distribution to a flatter
reverse-J distribution. This signal was strong enough for similar
results to be obtained with the PCA of structural variables and
the PCA of densities in dbh classes. This dominant pattern is
widely reported in tropical forests, whether based on the PCA
of structural attributes (Baraloto et al., 2011; Palla et al., 2011)
or on the correspondence analysis of the densities of trees in dbh
classes (Couteron et al., 2003; Fayolle et al., 2014a). This pattern is
so general that the reverse-J dbh distribution has been suggested
as a way to assess disturbance (Sellan et al., 2017).

This dominant gradient of plots is rendered by a null model
that accounts for tree allometry and constant demographic rates
in growth, mortality and recruitment. Therefore, it is inherited
from tree patterns and is an obvious gradient. Site differences
only had a second-order influence on the gradient of plots. They

were more clearly visible in the analysis of the deviations to the
null model than in the original observations where they were
hidden by the dominant obvious pattern.

The dataset used in this study originated from well-
documented sites, allowing us to confirm the ecological insights
on site differences revealed by the null model analysis. The
Ngouha2 and Oyan sites that were separated from the other
sites when ordinating the deviations to the null model consist
of monodominant stands of the pioneer okoume species.
Interestingly, the other plots that consisted of monodominant
forest (at the Dja site) were ordinated opposite the Ngouha2
and Oyan plots. Therefore, the second-order site effect captured
by the ordination was not related to monodominance per se.
Logged-over plots at the Sangha site were also separated by
the ordination from Ngouha2 and Oyan plots, suggesting that
logging at Sangha was too low intensity or occurred too long
ago to deviate from the standard reverse-J shape. The second-
order site effect thus seems to be mostly related to large-scale and
recent (< 50 years) disturbance that triggered the recruitment
of pioneer species (Sellan et al., 2017). While Ngouha2 and
Oyan, like other sites, had a reverse-J shaped dbh distribution,
the model analysis (particularly that based on densities in dbh
classes) showed they had a high density of trees in intermediate
dbh classes, which may denote a transient state related to the
recruitment of pioneer cohorts. In contrast, other sites had
dbh distributions closer to the null model, indicative of a
demographic state closer to equilibrium.

Removing plots with basal area < 20 m2 ha−1 had little
influence on the results, which can be interpreted as the
ordination gradient not being driven by a stand age gradient,
if we consider small basal area as a crude proxy for young
age. Imposing a constant wood density to all trees (i.e.,
removing any site difference in wood density) also had limited
influence on the results with the noticeable exception of the
correlation pattern between biomass and basal area. This lack
of sensitivity of the PCA to the variability in tree wood density
confirms that the dominant pattern was first and foremost
driven by the diameter distribution. Moreover, when focusing
on the correlation between biomass and basal area, the model
analysis was more sensitive to the deletion of site differences
in wood density than the direct correlation analysis based on
observations, which is consistent with its capacity to reveal
hidden patterns.

4.2. The Influence of Processes on
Patterns May Not Always Be Captured
The question of an obvious pattern that is inherited from the
constituent elements of the object under study is fundamentally
a question of pattern and scale in ecology (Levin, 1992). When
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FIGURE 5 | Principal component analysis (PCA) of the chord-transformed abundances of stems per dbh class in 133 forest plots at nine sites. The PCA is performed

either on the matrix of observed abundances (A,B), on the modeled abundances using the exponential model (C,D), or on the deviations of observations to the

(Continued)
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FIGURE 5 | predictions of the exponential model (E,F). (A,C,E) Correlation circle between the first two axes of the PCA and the chord-transformed abundances in the

dbh classes (from 10 to 20 cm for the first dbh class to ≥ 110 cm for the 11th dbh class). The insets show the eigenvalues of the PCA. (B,D,F) Projection of the forest

plots on the first two axes of the PCA. Each dot corresponds to a plot with the color indicating the site. Lines and ellipses highlight the dispersion of the plots of each

site.

FIGURE 6 | Conceptual view of the different patterns at different scales (from the individual to the macroecological level), the process that possibly drive these

patterns, the observations from which the patterns arise, and the models to predict observations. Model analysis is used to generate an obvious pattern at

macroecological level that is inherited from patterns at lower levels and assess if this obvious pattern differs from the observed one.

ordinating forest plots, the goal is to find plot differences
that provide ecological insights on processes operating at the
macroecological level (Lawton, 1999), i.e., how environment,
space, disturbance, or history drive plot attributes (Figure 6).
Yet, the dominant gradient observed from ordination may be the
result of processes operating at lower levels (tree demographics
and physiological processes that drive tree size allometry). The
model analysis aims at generating and filtering out the dominant,
obvious pattern inherited from lower levels, but leaves open
the question of identifying the macroecological processes that
drive the unveiled pattern. In particular, the current model
analysis provides no information regarding the partitioning
of environment and space (Peres-Neto and Legendre, 2010;
Bauman et al., 2018).

Spatial correlation plays a particular role in generating
macroecologial patterns. An extension of the current work
consists of exploring how variance in structural attributes
is partitioned differently between space and environment
(both considered macroecological processes) when considering
original data or the deviations to the null model (Dray et al., 2006;
Bauman et al., 2018).

Another possible extension of the current work is to develop
null models for other patterns than the gradient of plots and
correlations of structural variables, such as patterns in species
relative abundances, the relationship between species diversity
and forest structural attributes (Chisholm et al., 2013; Day et al.,
2013), or the relationship between diversity and productivity
(Liang et al., 2016). In this latter case, the “more individual”

hypothesis can be seen as a null model. This hypothesis
predicts that the positive relationship between productivity and
species richness is inherited from the cumulation of individuals,
without requiring any kind of interaction between species
(Šímová et al., 2013; McClain et al., 2016). Deviation from the
pattern predicted by the “more individual” hypothesis may then
signal species interactions. On the other hand, macroecological
processes may still operate while resulting in a pattern that is
undistinguishable from that generated by the null model, as if
these processes were neutral. Hubbell’s (2001) neutral theory of
species assemblage predicts patterns of species abundances that
may not be distinguishable from those relying on Hutchinson’s
species niches. Another example is Brown et al.’s equal fitness
paradigm (Brown et al., 2018) that predicts an equal energetic
fitness for all species despite the diversity of life history strategies
among species.

4.3. The Null Model Must Be Kept Simple
and Several Options Be Tested
The choice of the model used to filter out the dominant
pattern may have an influence on the results. If the parametric
component is made more realistic by adding detail, at some
point all the observed pattern will be predicted by the parametric
component, but processes explaining site differences included
in the parametric component (Gotelli and Ulrich’s, 2012). Like
Gotelli and Graves (1996), we reckon that the parametric
component should rely only on processes operating at lower
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levels and be kept as simple and parsimonious as possible while
still being able to generate the dominant pattern.

A sensitivity analysis using different options for the
parametric component of the null model may be useful to
assess the influence of model choice. In the present case, we
obtained similar results when using either the exponential or the
power distribution for tree dbh. The key point is the capacity
of the parametric component of the null model to generate the
dominant pattern (with the exponential distribution performing
better than the power distribution in our study). Nevertheless,
the absence of residual pattern in the deviations between
observations and predictions would not necessarily mean that
the null model is the pattern generating process. Competing
models would be needed to assess this type II error.

4.4. Conclusions
We used inventory plots from nine tropical forest sites to
perform classical analysis in ecological studies (correlation,
ordination) aiming at identifying patterns in the data and
inferring underlying processes. We found the expected patterns
of correlation between structural variables and ordination of
plots from poorly to highly stocked forests. These patterns
were dominant because they prevailed over site differences,
and obvious because they were inherited from the constituent
elements of the forest. But they also hid site differences, i.e.,
the pattern of interest for ecological inference. The null model
analysis revealed these site differences by filtering out the
dominant patterns. We expect our conclusions to be much
more general in application. It could be a clue in particular
to explain why only small shares of the variation in structural
attributes of tropical forests (like biomass) can be explained by
environmental drivers.
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