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Abstract
We have modeled the evolutionary epidemiology of spore- producing plant pathogens 
in heterogeneous environments sown with several cultivars carrying quantitative re-
sistances. The model explicitly tracks the infection- age structure and genetic compo-
sition of the pathogen population. Each strain is characterized by pathogenicity traits 
determining its infection efficiency and a time- varying sporulation curve taking into 
account lesion aging. We first derived a general expression of the basic reproduction 
number ℛ0 for fungal pathogens in heterogeneous environments. We show that the 
evolutionary attractors of the model coincide with local maxima of ℛ0 only if the infec-
tion efficiency is the same on all host types. We then studied the contribution of three 
basic resistance characteristics (the pathogenicity trait targeted, resistance effective-
ness, and adaptation cost), in interaction with the deployment strategy (proportion 
of fields sown with a resistant cultivar), to (i) pathogen diversification at equilibrium 
and (ii) the shaping of transient dynamics from evolutionary and epidemiological per-
spectives. We show that quantitative resistance affecting only the sporulation curve 
will always lead to a monomorphic population, whereas dimorphism (i.e., pathogen 
diversification) can occur if resistance alters infection efficiency, notably with high 
adaptation costs and proportions of the resistant cultivar. Accordingly, the choice of 
the quantitative resistance genes operated by plant breeders is a driver of pathogen 
diversification. From an evolutionary perspective, the time to emergence of the evo-
lutionary attractor best adapted to the resistant cultivar tends to be shorter when 
resistance affects infection efficiency than when it affects sporulation. Conversely, 
from an epidemiological perspective, epidemiological control is always greater when 
the resistance affects infection efficiency. This highlights the difficulty of defining 
deployment strategies for quantitative resistance simultaneously maximizing epide-
miological and evolutionary outcomes.
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1  |  INTRODUC TION

Resistance to parasites, that is, the capacity of a host to decrease its 
parasite development (Raberg et al., 2009), is a widespread defense 
mechanism in plants. Qualitative resistance usually confers disease 
immunity such that the parasite disease phenotype follows a dis-
crete distribution (“causes disease” vs. “does not cause disease”) on 
a resistant plant (McDonald & Linde, 2002). Quantitative resistance 
leads to a decrease in disease severity (Poland et al., 2009; St. Clair, 
2010) such that parasite pathogenicity follows a continuous distri-
bution (Lannou, 2012; McDonald & Linde, 2002; St. Clair, 2010). 
Pathogenicity, also known as aggressiveness, can be estimated in 
laboratory experiments through the measurement of a number of 
pathogenicity traits (Lannou, 2012) expressed during the basic steps 
in the host– pathogen interaction. Quantitative resistance has at-
tracted attention in plant breeding as a means of pathogen control in 
low- input cropping systems, particularly due to its supposed higher 
durability than qualitative resistance (Niks et al., 2015). However, 
plant pathogens also adapt to quantitative resistance (see Pilet- 
Nayel et al. (2017) for a review). The resulting gradual “erosion” of 
resistance effectiveness (McDonald & Linde, 2002) corresponds, 
from the pathogen side, to a gradual increase in pathogenicity.

Historically, theoretical studies investigating the effects on 
pathogen aggressiveness of deploying quantitative resistance in 
agrosystems have been based on adaptive dynamics (e.g., Gudelj, 
Fitt, et al. (2004), Gudelj, van den Bosch, et al. (2004), van den Bosch 
et al. (2006), van den Bosch et al. (2007), van den Berg et al. (2014)). 
Adaptive dynamics (Dieckmann, 2002; Geritz et al., 1997, 1998) ap-
proaches assume that epidemiological and evolutionary processes 
unfold over different timescales. They essentially focus on long- 
term predictions for endemic diseases. Fewer studies (Bourget et al., 
2008; Iacono et al., 2012; Rimbaud et al., 2018) have addressed the 
fundamental short-  and long- term objectives of the sustainable man-
agement of plant diseases (Rimbaud et al., 2018; Zhan et al., 2015): 
The short- term goal is the reduction in disease incidence, whereas 
the longer- term objective is to reduce pathogen adaptation to resis-
tant cultivars. Evolutionary epidemiology analysis is well suited to 
this purpose (Day & Proulx, 2004). Essentially inspired by quantita-
tive genetics, it accounts for the interplay between epidemiological 
and evolutionary dynamics over the same timescale. As such, it can 
be used to monitor the dynamics of epidemics and the evolution of 
any set of pathogen life- history traits of interest simultaneously. It 
can also take into account the heterogeneity of host populations 
resulting, for example, from differences in the genetic, physiologi-
cal, or ecological states of individuals (Day & Gandon, 2007). This is 
typically the case with field mixtures, in which several cultivars are 
cultivated in the same field, and with landscape mosaics, in which 
cultivars are cultivated in different fields (Rimbaud et al., 2021).

In this article, we follow this approach and study the evolutionary 
epidemiology of spore- producing pathogens in heterogeneous agri-
cultural environments. Plant fungal pathogens (sensu lato, i.e., includ-
ing oomycetes) are typical spore- producing pathogens responsible for 
nearly one third of emerging plant diseases (Anderson et al., 2004). 
Spore production is usually a function of the time since infection, due 
to lesion aging (Kolnaar & Bosch, 2001; Sache et al., 1997; Segarra 
et al., 2001; van den Bosch et al., 1988). We first formulated a gen-
eral model explicitly tracking the infection- age structure and genetic 
composition of the pathogen population. Mathematically, this model 
is an extension to heterogeneous plant populations of an integro- 
differential model introduced by Djidjou- Demasse et al. (2017). We 
then investigated how the deployment of quantitative resistances 
altering different pathogenicity traits affected pathogen population 
structure at equilibrium. This question was addressed by highlighting 
the links between the frameworks of evolutionary epidemiology and 
adaptive dynamics. We characterized the evolutionary attractors of 
the coupled epidemiological evolutionary dynamics while emphasiz-
ing the differences between the cornerstone concepts of ℛ0 in epi-
demiology (Diekmann et al., 1990; van den Driessche & Watmough, 
2008) and invasion fitness in evolution (Dieckmann, 2002; Diekmann 
et al., 2005; Geritz et al., 1998; Metz et al., 1996; Nowak & Sigmund, 
2004). Finally, we investigated the effect of deploying quantitative 
resistances on the transient behavior of the coupled epi- evolutionary 
dynamics, both at epidemiological (disease incidence) and at evolu-
tionary (resistance durability) levels.

2  |  AN EPI-  E VOLUTIONARY MODEL FOR 
SPORE- PRODUCING PATHOGENS

Let us suppose that we cultivate two host types differing in terms 
of quantitative resistance level to a pathogen (e.g., a resistant and 
a susceptible cultivar). How can we model the joint epidemiologi-
cal and evolutionary dynamics of the host– pathogen interaction? In 
this section, we first formulate a general model for the dynamics of 
spore- producing plant pathogens in structured populations, which 
we then apply to the study of specific scenarios.

2.1  |  Host and pathogen populations

Let us consider a spore- producing plant pathogen infecting a het-
erogeneous host population with Nc host classes. In our study, the 
host classes are assumed to represent different plant cultivars, but, 
more generally, host heterogeneity may correspond to differences in 
host developmental or physiological states or different habitats. At a 
given time t, hosts in class k can be either healthy (Hk (t)) or infected. 

K E Y W O R D S
adaptive dynamics, basic reproduction number, integro- differential equations, quantitative 
resistance, resistance durability, spore- producing pathogens
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Note that, in keeping with the biology of fungal pathogens, we do 
not track individual plants, but instead focus on leaf area densities 
(leaf surface area per m2). The leaf surface is viewed as a set of indi-
vidual patches corresponding to a restricted host surface area that 
can be colonized by a single pathogen individual (i.e., no co- infection 
is possible). Thus, only indirect competition between pathogen 
strains for a shared resource is considered. Spores produced by all 
the infectious tissues are assumed to mix uniformly in the air to form 
a well- mixed pool of spores that can land on any host class according 
to the law of mass action. Thus, the probability of contact between 
a spore and host k is proportional to the total healthy leaf surface 
area of this host.

The parasite population is structured by a continuous phenotype 
x and by the time since infection a, such that Ik (a, t, x) represents 
the density of infected tissue of host k at time t, which have been 
infected for a duration a with strain x. The density of the airborne 
pool of spores with phenotype x at time t is denoted by A (t, x). Both 
the phenotype and time since infection affect two pathogenicity 
traits in each host class summarizing the basic steps of the disease 
infection cycle: (i) infection efficiency �k (x), that is, the probability 
that a spore deposited on a receptive host surface produces a lesion; 
and (ii) the sporulation curve rk (a, x). In line with the biology of plant 
fungi (Van den Bosch, 1988; Kolnaar & Bosch, 2001; Sache, 1997; 
Segarra et al., 2001), we assumea gamma sporulation curve defined 
by four parameters: (i) the latent period �k (x), (ii) the total number 
of spores pk (x) produced by a lesion throughout its entire infectious 
period, and (iii– iv) the rate and shape parameters of the gamma dis-
tribution (denoted �k (x). and nk (x) respectively). These hypotheses 
lead to the following sporulation function:

where Γ is the gamma function. With this formalism, the duration of 
the infectious period can be estimated (based on a Gaussian approxi-
mation) as 4

√
nk (x)∕�k (x).

2.2  |  Epi- evolutionary dynamics

With these assumptions, we can derive the following integro- 
differential equations to describe the epidemiological and evolution-
ary dynamics of the host and pathogen populations (see Figure 1C 
for a schematic representation of the model with 2 hosts):

Healthy hosts are produced at rate Λ and �k is the proportion of 
the host k at planting in the environment. Healthy hosts can become 
infected by airborne spores. Thtotal force of infection on a host k 
is ∫

ℝN

�k (y)A (t, y) dy, where ℝN is the phenotype space of dimension N. 
Airborne spores produced by infected hosts become nonviable at 
rate �. Healthy hosts die at rate � (regardless of their class), and in-
fected hosts die at rate � + dk (a, x), where dk (a, x) is disease- induced 
mortality. Hosts infected with strain y produce airborne spores with 
phenotype x at rate m� (y − x) rk (a, y), where m� (y − x) is the proba-
bility of mutation from phenotype y to phenotype x. Thus, mutations 
randomly displace strains in the phenotype space at each infection 
cycle (i.e., generation) according to a mutation kernel m�. A centered 
multivariate Gaussian distribution with standard deviation � is typ-
ically used hereafter. However, other mutation kernels can be used 
provided that they satisfy some general criteria (Appendix S2).

In the simplest scenarios, the phenotype space can be one- 
dimensional (i.e., N = 1), but we can also consider a multidimensional 
phenotype space (i.e., N ≥ 2). We refer the reader to Table 1 for a 
list of the variables and parameters of the model, and to Appendix 
S3 for a discussion of how to recover several simpler models in the 
literature from model (2).

3  |  BA SIC REPRODUC TION NUMBER AND 
INVA SION FITNESS

Model (2) allows us to track the coupled epidemiological and evo-
lutionary dynamics of the host– pathogen interaction. We can use 
a numerical integration of this model to determine the transient 
dynamics toward potential evolutionary attractors. For further ana-
lytical progress, we can consider two limiting cases of this process. 
First, in an initially uninfected population, whether or not a single 
pathogen strain spreads in the population can be determined by cal-
culating the basic reproduction number of this strain. Second, the 
long- term evolutionary endpoints can be determined by calculating 
the invasion fitness of a rare mutant in a resident population at equi-
librium according to the standard adaptive dynamics methodology.

3.1  |  Basic reproduction number: Invasion in an 
uninfected population

The basic reproduction number, usually denoted ℛ0, is defined as 
the total number of infections arising from one newly infected in-
dividual introduced into a healthy (disease- free) host population 
(Anderson, 1991; Diekmann et al., 1990). It is typically used to study 
the spread of a pathogen strain x in an uninfected host population. 
In an environment with Nc host classes in which all the pathogen 
propagules pass through a common pool in compartment A as in 
model (2), ℛ0 is the sum of pathogen reproduction numbers for each 
host class (Rueffler & Metz, 2013). A pathogen with phenotype x will 
spread if ℛ0 (x) > 1, with

(1)rk (a, x) =

⎧⎪⎨⎪⎩

pk (x) 𝜆
nk (x)

k

�
a−𝜏k (x)

�nk (x)−1 e−𝜆k (x)(a−𝜏k (x))
Γ
�
nk (x)

� if a>𝜏k (x) ,

0 otherwise .

(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

�t
Hk (t) =�kΛ−�Hk (t) −Hk (t) ∫

ℝN

�k (y)A (t, y) dy,

�
�

�t
+

�

�a

�
Ik (t, a, x) = −

�
�+dk (a, x)

�
Ik (t, a, x) ,

Ik (t, 0, x) =�k (x)Hk (t)A (t, x) ,

�

�t
A (t, x) = −�A (t, x) +

Nc�
k=1

∫
ℝN

∫
∞

0

m� (y−x) rk (a, y) Ik (t, a, y) dady.



4  |    FABRE Et Al.

F I G U R E  1  (a) Shapes of gamma sporulation function rk (a, x) with latent period �k = 10 and total spore production over the entire 
infectious period pk = 5.94 as a function of nk and �k. The infectious period is ≅ 24 days for both functions. (b) Phenotypic landscapes of 
a pathogenicity trait � on a susceptible (S) and on a resistant (R) cultivar. Trait values are described by unnormalized Gaussian functions. 
The optimal parasite phenotypes �S and �R have maximum tras �max and �max

(
1 − Δmax

)
 on the S and R cultivars, respectively. The relative 

effectiveness of resistance Reff =
(
�S

(
�S

)
− �R

(
�S

))
∕�max corresponds to the trait difference between the cultivars of phenotype �S. The 

relative cost of adaptation Cadp =
(
�S

(
�S

)
− �S

(
�R

))
∕�max corresponds to the trait difference between the phenotypes �S and �R on the S 

cultivar. Here, Reff = 0.8, Cadp = 0.9, and Δmax = 0.2. C Schematic representation of the model with 2 hosts (a susceptible (S) and a resistant (R) 
cultivar) and a one- dimensional mutation kernel (i.e., Nc = 2 and N = 1). All state variables and parameters are listed in Table 1

(a) (b)

(c)
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where the quantity ℛk
0
(x) = Ψk (x)H

0
k
 is the basic reproduction num-

ber of a pathogen with phenotype x in host k. This expression depends 
on the disease- free equilibrium density of healthy hosts H0

k
= �kΛ∕� 

and Ψk (x), the reproductive value of a pathogen with phenotype x 
landing on host k (i.e., the fitness function, Appendix S4). It is given by

In this expression, multiplying the probability that a lesion is via-
ble at time since infection a by rk (a, x) and integrating over all times 
since infection a gives the total number of spores effectively pro-
duced by a lesion during its lifetime. This differs from (x), which is the 
number of spores potentially produced if the lesion remains viable 
during the whole infectious period. A closely related expression with 
a simpler model (single host type and no disease- induced mortality) 
was derived by Gilchrist et al. (2006).

Assuming that dk does not depend on the time since infection 
and a gamma sporulation function (1), we obtain

Furthermore, if rk is a constant (i.e., rk (a, x) = pk (x) and 
dk (a, x) = dk (x) for all a), we recover the classical expression of ℛ0 . 
for SIR models (Day, 2002) with

3.2  |  Invasion fitness and long- term 
evolutionary attractors

Once a pathogen strain x has reached an endemic equilibrium, inva-
sion by a new mutant strain can be studied with the adaptive dynam-
ics methodology. A rare mutant strain with phenotype y will invade a 
resident pathogen population with phenotype x if its invasion fitness 
fx (y) > 0. Potential evolutionary endpoints can be identified as the 
solutions of fx (y) > 0. The sign of this two- dimensional function is 
classically visualized on a pairwise invasibility plot (PIP) (Dieckmann, 
2002; Diekmann et al., 2005; Geritz et al., 1997, 1998; Metz et al., 
1996; Nowak & Sigmund, 2004). In our model, the existence of a 
common pool of pathogen propagules allows us to write (Appendix 
S6) the invasion fitness fx (y) as

Environmental feedback of the resident strain x conditions the 
ability of a mutant strain y to invade the resident population. It de-
pends on the conditions established by the resident strain, particu-
larly as concerns the resources of host k already taken by x. When 
infection efficiencies do not differ between host classes (i.e., �k = �  , 
for all host classes k), this feedback term is unique and comes out 
of the sum, and using equation (3), equation (6) can be rewritten as

It follows that model (2) admits an optimization principle based 
on ℛ0 (Gyllenberg, & Service, 2011; Lion & Metz, 2018; Mylius & 
Diekmann, 1995; Metz et al., 2008; Rueffler & Metz, 2013). Indeed, 
the sign of the invasion fitness fx (y) is given by the sign of the dif-
ference between ℛ0 (y) and ℛ0 (x); and thus, the evolutionary at-
tractors of model (2) coincide with the local maxima of ℛ0 provided 
that host plants affect only sets of pathogenicity traits underlying 
sporulation curves. Conversely, if infection efficiencies differ for 
at least two host classes, the optimization principle does not apply. 
Accordingly, if some plant hosts affect infection efficiency, the cal-
culation of invasion fitness with equation (6) is required for the char-
acterization of evolutionary attractors.

4  |  C A SE STUDY: DEPLOYMENT OF 
QUANTITATIVE RESISTANCES

As an application of our general model, we now consider two habi-
tats corresponding to a susceptible (S) and a resistant (R) cultivar 
differing by a single quantitative resistance trait. We assume that, 
after a long period of monoculture of the S cultivar, a fraction � of 
the S cultivar is replaced by the R cultivar at t = 0. We consider two 
scenarios, depending on how the resistance trait affects the life 
cycle of the pathogen. In the SP scenario, the resistance affects only 
total spore production, whereas in the IE scenario, the resistance 
affects only infection efficiency. The analysis of the scenarios makes 
use of analytical results from adaptive dynamics and simulation re-
sults from evolutionary epidemiology while highlighting the links 
between these frameworks.

4.1  |  Scenario simulations and model outputs

Phenotypic landscapes on the S and R cultivars. Model simulation first re-
quires the specification of fitness functions describing the pathogenic-
ity trait values of any strain x on each cultivar (Figure 1B). For a trait � 
(either total spore production in the SP scenario, or infection efficiency 
in the IE scenario), we used the unnormalized Gaussian function

(3)ℛ0(x) =

Nc∑
k=1

ℛ
k
0
(x)

(4)
�k (x) =

1

�
�k (x) ∫

∞

0

rk (a, x) exp( − �a − ∫
a

0

dk (�, x)d�)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
prob.that a lesion is viable at age a

da,

(5)Ψk (x) =
1

�
× �k (x) × e−(�+dk (x))�k (x) × pk (x) ×

(
�k

�k+�+dk (x)

)nk

.

Ψk (x) =
�k (x) pk (x)

�
(
� + dk (x)

) .

(6)
fx(y) =

Nc∑
k=1

Λ�k

� + �k (x)A
x

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
feed back of resident x

(
�k (y) − (�k (x)

)
.

(7)fx(y) =
�

� + �(x)Ax

(
ℛ0(y) −ℛ0(x)

)
.

�s(x) = �max ×

(
exp −

(x+�)2

2�2
S

)
and�R(x) = �max(1 − Δmax) × exp −

(
(x−�)2

2�2
R

)
.
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Without loss of generality, and to simplify the presentation, 
the optimal phenotypes are opposite for the S and R cultivars. 
Therefore, the optimal parasite phenotypes �S = − � and �R = � are 
characterized by maximal trait values �max and �max

(
1 − Δmax

)
 on 

the S and R cultivars, respectively, where Δmax is the relative dif-
ference in maximal traits between the two cultivars. The inverse of 
the variances 1∕�2

S
 and 1∕�2

R
 defines the selectivity of each habitat. 

Rather than using these parameters, the phenotypic landscapes can 
be reparameterized to fit the terminology used in plant pathology 
to describe quantitative resistances with the relative effectiveness 
of resistance Reff and the relative cost of adaptation Cadp (Figure 1B). 

More precisely, for a given 𝜎S > 0, Reff and Cadp both in 
[
0, 1

[
 and Δmax 

in 
[
0,Reff

[
, we have

Parameter values and initial conditions. For each scenario, simu-
lations were used to explore how the relative effectiveness of re-
sistance Reff (between 0.5 and 0.99), the relative cost of adaptation 
Cadp (between 0.3 and 0.99), and the deployment strategy � (between 
0.05 and 0.95) affect coupled epidemiological and evolutionary dy-
namics. Note that, within the parameter space considered, the trade- 
off function that links �S and �R in both cultivars can be concave, 
convex, or sigmoidal (Figure S1). Similarly, the basic reproduction 
ratio ℛ0 can have either one global maximum, or one global and one 
local maximum, and this global maximum can be closer to �S or to 
�R (Figure 4, line 3). These features strongly affect the dynamics. 
Simulations were initiated with a density of airborne spores A (0, x) at 
mutation– selection equilibrium in an environment in which only the 
S cultivar was grown.

All model parameters and initial conditions are summarized in 
Table 2. Parameters for pathogenicity traits do not fit a particular 
pathogen species but are instead typical of biotrophic foliar fun-
gal diseases, such as wheat rusts on susceptible cultivars. Based 
on Rimbaud et al. (2018), we set the infection efficiency to 0.2 and 
the duration of the latent and infectious periods to 10 and 24 days, 
respectively. Total spore production was set so as to obtain an ℛ0 
of 30 in an environment containing only the S cultivar (Mikaberidze 
et al., 2016).

Evolutionary and epidemiological outputs. The evolutionary ouut 
considered was the time to emergence Temg of the adapted strain 
�∗. This corresponds to the time from which its proportion in the 
airborne pool of spores relative to �S remains ≥0.05 (Table 2). If 
the equilibrium is monomorphic, the adapted strain �∗ is the only 
evutionary attractor. If the equilibrium is polymorphic, the adapted 
strain �∗ is considered as the one closest to �R. The epidemiological 
control provided by deployment of the R cultivar was assessed by 
determining the relative healthy area duration (rHAD) gain, a variable 
used as a proxy for crop yield (Iacono et al., 2012; Rimbaud et al., 
2018). It was calculated over 750 generations by assuming the de-
ployment of the R cultivar over a period of 50 years, with 15 gener-
ations of the pathogen per year (Table 2).

4.2  |  Evolutionary outcomes

In the SP scenario, the only pathogenicity trait targeted by the quan-
titative resistance is total spore production. As the ℛ0 optimiza-
tion principle holds, the population always becomes monomorphic 
around an evolutionary attractor �∗ corresponding to the global 
maximum of the ℛ0 function. This happens regardless of the shape 
of ℛ0, whether ℛ0 has a single maximum (Figure 2, line 1) or an ad-
ditional local maximum (Figure 2, line 2).

(8)

1

�2
R

=
1

�2
S

log(1 − Reff) − log(1 − Δmax)

log(1 − Cadp)
and� = �s

[
− 0.5log(1 − Cadp)

]
.

TA B L E  1  Main notations, state variables, and parameters of 
the model. The general model is structured by time since infection 
a, pathogen strain x, and host class k. Some of its parameters are 
functions of these structuring classes

Category Description Unit

Notations

k ∈ 1, 2,⋯,Nc Index on host class (Nc ≥ 2 class)

ℝ
N Phenotype space of dimension N

x ∈ ℝ
N Label of the pathogen strain

a Time since infection

States variables

Hk (t) Density of healthy tissue of host k at time t

Ik (t, a, x) Density of infected tissue of host k at time t
, which have been infected for a duration a 
with strain x

A (t, x) Density of airborne pool of pathogen spores of 
strain x at time t

Parameters

Λ Birth rate of healthy host tissue HTD ⋅  Tu−1

� Death rate of host tissue Tu−1

� Rate at which spore becomes 
nonviable

Tu−1

dk (a, x) Disease- induced mortality of 
host k after a time units of 
infection by strain x

Tu−1

�k (x) Infection efficiency of pathogen 
strain x on host k

SD−1 ⋅  Tu−1

pk (x) Total number of spores produced 
by a lesion caused by strain x 
on host k

SD ⋅  HTD−1

�k (x) Latent period of pathogen strain 
x on host k

Tu

�k (x) Rate of the gamma sporulation 
curve shape for strain x on 
host k

Unitless

nk (x) Shape of the gamma sporulation 
curve shape for strain x on 
host k

Unitless

�k Proportion of host k at planting Unitless

� Standard deviation of the 
Gaussian mutation kernel

Unitless

Note: Abbreviations: HTD, host tissue density; SD, spore density; and 
Tu, time unit.
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In the IE scenario, the only pathogenicity trait targeted by the 
quantitative resistance is infection efficiency. The optimization prin-
ciple based on ℛ0 does not hold here, and evolutionary branching 
and diversification are possible and cannot be characterized by the 
shape of ℛ0. Typically, a polymorphic pathogen population can be 
selected at equilibrium, while ℛ0 has a single maximum (Figure S2). 

In this scenario, we need to calculate the invasion fitness to charac-
terize the evolutionary attractors (equation 6).

As in the SP scenario, the population can evolve to a monomor-
phic equilibrium (Figure 2, line 3). This outcome occurs for a broad 
range of resistance genes and deployment strategies (Figure 3). 
However, a dimorphic population can also be selected (Figure 2, 

TA B L E  2  Initial conditions and parameters used for simulations with the S and R cultivars. Two scenarios were considered: The R cultivar 
can alter either the infection efficiency of the pathogen (IE) or its total spore production (SP). The reference values given for each parameter 
are those used in all simulations, unless otherwise stated. Values in brackets indicate the range of variation [minimum, maximum] used for 
the numerical exploration

Name Description Values

Pathogenicity traits

�max Maximal infection efficiency on the S cultivar 0.2

�max Latent period associated with maximal sporulation 10

pmax Maximal total spore production on the S cultivar 5.94a

n Shape of the gamma sporulation curve 2

� Rate of the gamma sporulation curve 0.24

Pathogenicity landscape for the trait � affected by the resistance gene

Reff Relative effectiveness of the R cultivar [0.5, 0.99]

Cadp Relative cost of adaptation [0.3, 0.99]

�max Maximal trait value on the S cultivar �max (IE)b; pmax (SP)b

Δmax Relative difference of maximal traits between S and R cultivars 0

1∕�2
S

Selectivity of the S cultivar 0. 06−2

�S (x) Trait value on the S cultivar �maxf�
(
− �, �S , x

)c
�R (x) Trait value on the R cultivar �max

(
1 − Δmax

)
f
�

(
�, �R , x

)c
Others parameters

Λ Birth rate of healthy host tissue 0.35

� Death rate of host tissue 0.01

� Rate at which spore becomes nonviable 1

� Standard deviation of the Gaussian mutation kernel 0.005

d Disease- induced mortality 0

� Proportion of the R cultivar at planting [0.05, 0.95]

Tdpl Duration of R cultivar deployment 750

Initial conditions

HS (0) Density of healthy tissue on the S cultivar (1 − �) Λ∕�

HR (0) Density of healthy tissue on the R cultivar �Λ∕�

iS (0, a, x) Density of infected tissue on the S cultivar 0

iR (0, a, x) Density of infected tissue on the R cultivar 0

A (0, x) Density of the airborne pool of pathogen spores Mutation– selection equilibriumd

Evolutionary and epidemiological outputs

Temg Time to emergence of the adapted strain �∗ Time from which, for any t ≥ Temg,

A (t,�∗) ∕
(
A
(
t,�S

)
+ A (t,�∗)

) ≥ 5\%

rHAD Relative healthy area duration gain ∫ Tdpl
0

(
HS + HR

)
(t) |�dt∕ ∫ Tdpl0

(
HS (t)

) |�=0dt

apmax is such that ℛ0

(
�S

)
= 30 for � = 0, leading to pmax = 30 × ��exp(��max )

(1+�∕�)n

(�maxΛ)
.

b�max = �max for the IE scenario and �max = pmax for the SP scenario.
cThe notations fN(�, �, x) = exp[ − (x−�)2∕(2�2)] indicate the unnormalized density function of the Gaussian distribution. The optimal phenotype value 
� and the selectivity of the R cultivar 1∕�2

R
 are calculated from equation (8).

dThe density of the airborne pool of pathogen spores at mutation– selection equilibrium is determined by running the model over 3000 generations in 
an environment containing only the S cultivar.
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line 4). This dimorphism is easily observed in the airborne pool 
of spores (Figure S3), but not necessarily on the individual cul-
tivar (Figure 2, line 4). Indeed, the fitness functions on cultivars 
can give sharply different relative proportions at equilibrium 

(Appendix S5). A dimorphic population is selected once the cost 
of adaptation and resistance effectiveness reach ≥0.9 for most 
nonextreme proportions of the R cultivar at planting (Figure 3, 
central panel). Dimorphic populations are also selected in a larger 

F I G U R E  2  Evolutionary epidemiological dynamics. Line 1. The resistance impacts only spore production. The fitness function is unimodal 
(left panel). At t = 0, the pathogen population is at its mutation– selection equilibrium on the S cultivar (light green distribution). The infection 
dynamics and phenotypic composition of the pathogen population on the S and R cultivars are displayed in the central and right panels, 
respectively. The black line in the right panel corresponds to the time to emergence Temg. Line 2. As in line 1, but with Reff = 0.99. The fitness 
function is bimodal, with both a global and a local maximum. Line 3. The resistance affects only infection efficiency. The pairwise invasibility 
plot (PIP) visualiz the sign of invasion fitness fx (y) (left panel). As a mutant strain y will invade the resident population x only if fx (y) > 0 , the 
PIP reveals a single evolutionary attractor �∗ (the vertical line through �∗. is completely contained within a region marked “– ”). Line 4. As in 
line 3 but with Reff = 0.99. The PIP reveals two evolutionary attractors (left panel). For all panels, all the other parameters are set to their 
reference values (Table 2). Note that the timescale axis varies between lines
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number of production situations for the R cultivar characterized 
by the highest cost of adaptation 

(
Cadp = 0.99

)
. In this case, the 

deployment of a proportion of the R cultivar above a threshold 
that increases with decreasing resistance effectiveness generally 
leads to the selection of a dimorphic population (Figure 3, right 
panel).

The evolutionary epidemiology framework can also shed light 
on the duration of the transient dynamics. Whatever the basic re-
sistance characteristics (pathogenicity trait targeted, resistance ef-
fectiveness, and cost of adaptation), the relative proportion of the 
evolutionary attractor is already ≥5% in the pool of spores in the 
air at the initial time point for a wide range of deployment strate-
gies, mostly when the R cultivar is not dominant in the environment 
(Figure 4, lines 1 and 2, level A0). This is the case mostly when the 
evolutionary attractor is closer to �S (optimal phenotype on the S 
cultivar) than to �R (optimal phenotype on the R cultivar). In such 
settings, unless it already exists from the beginning in the mutation– 
selection equilibrium, the evolutionary attractor can be rapidly at-
tained by mutation (Figure 2, lines 1 and 3), whether ℛ0 has one or 
two maxima (Figure 4, line 3, level "1S- 2S").

The time to emergence can substantially increase when ℛ0 is 
unimodal but with a maximum approaching the optimal phenotype 
on the R cultivar (Figure 4, line 3, level "1R"). Indeed, more time is 
then required to reach the evolutionary attractor by mutation. This 
increase in time, which is small with a low cost of adaptation for both 
scenarios (Figure 4, Cadp = 0.3), is larger for higher costs (Figure 4, 
Cadp = 0.9 or 0.99).

The longest times to emergence are obtained in the SP scenario 
when ℛ0 is bimodal with a global maximum closer to the optimal 
phenotype on the R cultivar. This configuration is obtained for small 
ranges of intermediate proportions of the R cultivar at planting 
combined (i) with an adaptation cost and resistance effectiveness 
≥0.9, or (ii) with the highest adaptation cost considered 

(
Cadp = 0.99

)
 

for all resistance effectiveness values tested (Figure 4, line 3, level 
"2R"). In this configuration, the pathogen population remains for a 
relatively long time around the initially dominant phenotype and 

then shifts by mutation to the evolutionary attractor after crossing a 
fitness minimum. These dynamics occur simultaneously on the S and 
R cultivars (Figure 2, line 2). The shape of the response surfaces for 
time to emergence in the IE scenario is broadly similar to that of the 
SP scenario. However, in all the production situations explored, time 
to emergence in the IE scenario was always similar to or shorter than 
that in the SP scenario, notably when the maximum of ℛ0 was closer 
to �R. Emergence times were shorter by a mean of 41 generations 
when ℛ0 was unimodal and by a mean of 801 generations when ℛ0 
was bimodal (Figure 4, line 3, levels "1R" and "2R"). Moreover, in the 
IE scenario, the evolutionary dynamics differed between cultivars 
(Figure 2, line 4).

4.3  |  Epidemiological outcomes

Long- term epidemiological control is assessed by determining the 
relative increase in healthy area duration. In the SP scenario, it 
ranges from 1.25 to 3.21, with a mean of 1.61 over the whole pa-
rameter space explored (Figure 5, line 1). Achieving a substantial 
relative yield gain ≥1.5 requires the deployment of an R cultivar 
with a cost of adaptation ≥0.9 in at least 50% of the fields, re-
gardless of resistance effectiveness. The achievement of a higher 
relative yield gain ≥2 requires, in addition, a high resistance ef-
fectiveness ≥0.9.

In the IE scenario, relative yield gains range from 1.27 to 5.02, 
with a mean of 1.9 (Figure 5, line 1). In all the production situa-
tions explored, relative yield gains were higher for the IE scenario 
than for the SP scenario. The mean difference in relative yield gains 
between production situations was 0.28 (maximal difference 1.93). 
Substantial gains ≥2 are obtained for larger ranges of resistance 
effectiveness and proportions of the R cultivar at planting, pro-
vided that the costs of adaptation are ≥0.9. Remarkably, for both 
scenarios, epidemiological control is not correlated with time to 
emergence in the production situations explored (compare Figures 
4 and 5).

F I G U R E  3  Nature of the evolutionary equilibrium (monomorphic or dimorphic) when the resistance affects only infection efficiency. The 
nature of the equilibrium is characterized as a function of the proportion of the R cultivar at planting (x- axis) and of the relative effectiveness 
of the resistant cultivar (y- axis) for three costs of adaptation (columns). For all panels, all the other parameters are set to their reference 
values (Table 2)
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5  |  DISCUSSION

This work follows a current trend toward the combined modeling 
of epidemiological and evolutionary dynamics in host– parasite 

interactions. Our theoretical framework, driven by fungal infections 
in plants, can be used to tackle the question of the durability of plant 
quantitative resistances altering specific pathogen life- history traits. 
In our case study, we show that the evolutionary and epidemiological 

F I G U R E  4  Time to emergence of the evolutionary attractor. The time to emergence Temg is the time at which the proportion of the 
evolutionary attractor (the closest to the optimal phenotype on the R cultivar) becomes ≥5% in the pool of spores in the air. Line 1. The 
resistance affects only total spore production (SP scenario). Temg is characterized as a function of the proportion of the R cultivar at planting 
(x- axis) and of the relative effectiveness of the resistant cultivar (y- axis) for three costs of adaptation (columns). Level A0 indicates situations 
in which the criteria for emergence are met right from the initial conditions. Line 2. An in line 1 when the resistancaffects only infection 
efficiency (IE scenario). Line 3. Shape of the ℛ0 function. Three shapes are classified: (i) "1S- 2S" when the evolutionary attractor �∗ is closer 
to �S than to �R (i.e., 𝜇∗ < 0), (ii) "1R" when �∗ is closer to �R and ℛ0 is unimodal, and (iii) "2R" when �∗ is closer to �R and ℛ0 is bimodal. Point 
A0 indicates situations in which the criteria for emergence are met right from the initial conditions. For all panels, all the other parameters 
are set to their reference values (Table 2)
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consequences of deploying resistant cultivars are not necessarily 
aligned, and depend on the pathogenicity trait targeted by the plant 
resistance genes. From an evolutionary perspective, the emergence 
time of the strategy best adapted to the R cultivar tends to be shorter 
when the resistance affects infection efficiency (IE scenario) than 
when it affects sporulation (SP scenario). In both cases, the emergence 
time is maximal for an intermediate proportion of R cultivars, as previ-
ously reported by Papaïx et al. (2018). In contrast, from an epidemio-
logical perspective, epidemiological control is always greater in the IE 
scenario than in the SP scenario, as already observed by Iacono et al. 
(2012); Rimbaud et al. (2018). These general rules are common to all 
theoretical studies over the last decade investigating the epidemio-
logical and evolutionary effects of deploying quantitative resistances 
in agro- ecosystems, supporting the robustness of these conclusions.

5.1  |  Bridging the gap between modeling  
approaches

All these previous studies account for the interplay between epide-
miological and evolutionary dynamics, but they are based on differ-
ent modeling frameworks, hypotheses, and parametrizations. One of 

the strong points of our general modeling framework is that it allows 
us to bridge the gap between different modeling traditions. First, 
we can investigate both the short-  and long- term epidemiological 
and evolutionary dynamics of the host– pathogen interaction (Day 
& Proulx, 2004). The short- term dynamics are investigated numeri-
cally, but the long- term analysis is analytically tractable and can pre-
dict the outcome of pathogen evolution. In contrast to most studies 
in evolutionary epidemiology, our results are neither restricted to 
rare mutations, as in the classical adaptive dynamics approach, nor 
restricted to a Gaussian mutation kernel (see also Mirrahimi (2017)). 
When the trait distribution is sufficiently narrow, we expect the 
population to concentrate around the attractors predicted by adap-
tive dynamics. However, the full model is required to quantify the 
speed of evolution, and, notably, the time to the emergence of an 
adapted pathogen strain, which is often as important for practical 
purposes than the characterization of the potential long- term out-
come. We also note that “fat- tailed” kernels allowing the inclusion of 
long- distance dispersal events in the phenotype space could also be 
considered (Appendix S2).

Second, our analysis makes it possible to consider multimodal 
fitness functions, which are reminiscent of fitness landscapes in 
population genetics, and to characterize evolutionary attractors at 

F I G U R E  5  Epidemiological outcomes. Epidemiological control is estimated by calculating the gain in relative healthy area duration (rHAD), 
a proxy for crop yield. Line 1. The resistance affects only total spore production (SP scenario). Epidemiological control is characterized as 
a function of the proportion of the R cultivar at planting (x- axis) and of the relative effectiveness of the resistant cultivar (y- axis) for three 
costs of adaptation (columns). Line 2. As in line 1 when the resistance affects only infection efficiency (IE scenario). For all panels, all the 
other parameters are set to their reference values (Table 2)
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equilibrium through a detailed description of their shapes (number 
of modes, steepness, and any higher moments with even order). Our 
results show that these features strongly affect transient dynamics, 
which, in turn, shape evolutionary and epidemiological outcomes. 
In particular, multimodal fitness functions with close local maxima 
result in the longest time to the emergence of adapted pathogen 
strains in the SP scenario. Mathematically, they are characterized by 
a slow convergence to equilibrium (Burie et al., 2020). In practice, it 
is possible to take advantage of these properties by wisely choosing 
the proportion of each cultivar in the agricultural landscape. Indeed, 
the shape of the fitness function in this scenario is basically the sum 
of the fitness in each hosts weighted by their proportions in the en-
vironment (equation 3).

Third, we propose a simple framework based on Gaussian distri-
butions to describe the pathogen phenotypic landscape associated 
with quantitative resistance. Variation of the relative effectiveness 
of resistance and cost of adaptation allows us to describe a whole 
range of quantitative resistance effects, making it possible to con-
sider the continuum between the two main models used for qualita-
tive plant– parasite interactions: (i) the gene- for- gene model in which 
a parasite strain may have universal infectivity (Reff = 1 and Cadp = 0) 
and i) the matching- allele model in ich universal infectivity is impos-
sible (Reff = 1 and Cadp = 1) (Thrall et al., 2016). By exploring the con-
tinuum between these extremes (while noting that Reff and Cadp can 
only tend to 1 in our framework), we can investigate in more detail 
the impact of deploying quantitative resistances on epidemiological 
and evolutionary outcomes.

5.2  |  Quantitative resistances as a major driver of 
pathogen evolution

The possibility that deploying R cultivars in agricultural landscapes 
will lead to the diversification of an initially monomorphic population 
and to the long- term coexistence of different pathogen strategies 
has been investigated with adaptive dynamics by Gudelj, van den 
Bosch, et al. (2004) and by Gandon (2004) in the general context 
of the evolution of virulence in multihost parasites. These studies 
highlighted the strong dependence of evolutionary outcomes on the 
shape of the trade- off curve for pathogen transmission on sympatric 
hosts. Concave trade- off curves lead to monomorphic evolutionary 
endpoints, whereas convex or sigmoidal trade- off curves can lead 
to evolutionary branching. These results can also explain the exist-
ence of sibling fungal pathogens (Gudelj, Fitt, et al. (2004)). In this 
approach, the transmission rate aggregates infection, spore produc-
tion, and dispersal into a single proxy trait affecting secondary in-
fection from infected to healthy hosts. In contrast, our framework 
allows us to disentangle the specific effect of the pathogenicity 
traits that follow one another during infection. Consistent with 
Gudelj, van den Bosch, et al. (2004), we show that dimorphism is 
possible with a convex or sigmoidal trade- off for host infection effi-
ciencies (IE scenario), whereas the population always remains mono-
morphic when the trade- off curve is concave. However, our analysis 

shows that predictions crucially depend on the step of the parasite 
life cycle affected by quantitative resistance in the R cultivar. The 
population always remains monomorphic when resistance affects 
only the sporulation curve (total spore production but also any other 
pathogenicity traits, such as the duration of the latency period) irre-
spective of the underlying trade- off curve shape (SP scenario). This 
is because the SP scenario allows an optimization principle based on 
ℛ0 and potential evolutionary attractors are located at the peaks of 
ℛ0 (Lion & Metz, 2018).

The evolution of plant pathogens toward generalism or spe-
cialism following the deployment of an R cultivar is also a major 
concern (Croll & McDonald, 2017; Papaïx et al., 2013, 2014). We 
propose a simple binary criterion for classifying the evolutionary 
attractors as generalist or specialist by comparing their ℛ0 on the R 
and S cultivars to a preset threshold (Figure S4). This highlights not 
only that high costs of adaptation are a major factor leading to the 
selection of specialists but also that emergence times and epidemi-
ological control are weakly structured by this classification (Figure 
S4). It remains unclear whether it is better to favor deployment 
strategies leading to the selection of generalist or specialist patho-
gen strains, and this issue merits further investigation. The answer 
depends partly on the preexisting level of pathogen diversification 
(Papaïx, 2011). However, addressing this question in the context of 
quantitative resistance will first require the development of new 
indices measuring the degree of generalism within a specialist/gen-
eralist continuum.

5.3  | �0 in heterogeneous host environments 
sharing a common pool of propagules

Many practical epidemiological studies are based on the concept of 
the basic reproduction ratio ℛ0. For instance, van den Bosch et al. 
(2008) calculated ℛ0 for lesion- forming foliar pathogens in a set-
ting with two cultivars but with no effect of the time since infec-
tion on sporulation and disease- induced mortality. ℛ0 is typically 
calculated with the spectral radius of the next- generation operator 
(Diekmann et al., 1990), but we follow here a methodology based on 
the generation evolution operator (Inaba, 2012) to derive an expres-
sion for the basic reproduction number ℛ0 in heterogeneous host 
populations with any number of cultivars. This expression captures 
the time scales inherent to the life cycle of plant fungal pathogens 
with, notably, sporulation varying over time. Capturing such pat-
terns is a challenge in the modeling of plant diseases, as reported by 
Cunniffe et al. (2015). Moreover, with a common pool of well- mixed 
airborne pathogen propagules, the function ℛ0 (x) is an exact fit-
ness proxy for competing strains with potentially different sporu-
lation curves (including the latent period, total spore production, 
and shape parameters). This is important because the computation 
of ℛ0 (x) usually assumes that the invading pathogen enters an un-
infected host population. However, more generally, a clear distinc-
tion between pathogen invasion fitness ℛ (x, y) and epidemiological 
ℛ0 (x) is required for correct discussions of the adaptive evolution of 
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pathogens (Lion & Metz, 2018). Even with a common pool of spores, 
the optimization principle of ℛ0 (x) does not hold when infection ef-
ficiencies differ between host classes.

5.4  |  Notes on model assumptions

The model assumes an infinitely large pathogen population. 
Demographic stochasticity is, thus, ignored despite its potential 
impact on evolutionary dynamics (e.g., lower probabilities of emer-
gence and fixation of beneficial mutations, and reduction of standing 
genetic variation (Kimura, 1962)). In particular, genetic drift is more 
likely to affect the maintenance of a neutral polymorphism than that 
of a protected polymorphism when selection favors the coexist-
ence of different genotypes protecting against invasions by mutant 
strategies (Geritz et al., 1998). The effect of genetic drift depends 
on the stability properties of the model considered. As our model 
has a unique globally stable eco- evolutionary equilibrium, genetic 
drift is likely to have a weaker impact than in models with several lo-
cally stable equilibria. Moreover, the large effective population sizes 
(from 103 to 3.104) reported at field scale for several species of wind- 
dispersed, spore- producing plant pathogens (Ali et al., 2016; Walker 
et al., 2017; Zhan et al., 2001) suggest a weak effect of genetic drift.

The model assumes that the aggressiveness components are 
mutually independent. However, correlations between traits have 
sometimes been reported. For instance, Pariaud et al. (2013) ob-
served a positive correlation between the duration of the latent 
period and the fecundity of a plant fungus. This relationship de-
scribes a phenotypic trade- off because a short latent period and 
a high sporulation probability represent fitness advantages. It can 
be introduced into the SP scenario assuming that the latent period 
and the total spore production of a pathogen strain x are linked by 
mathematical functions, such as the quadratic relationship sug-
gested by Pariaud et al. (2013). Alternatively, correlations between 
pathogen life- history traits can emerge from the covariance matrix 
of the (multidimensional) mutation kernel (Gandon, 2004). Another 
feature of the framework that we did not use is the possibility of 
tracking the evolution of the quantitative traits of the pathogen with 
Price's equation (Day & Gandon, 2007; Day & Proulx, 2004; Iacono 
et al., 2012). Indeed, differential equations for the mean phenotype 
and phenotypic variance of any trait of interest can be derived from 
model (2).

The model also assumes a unique pool of well- mixed propagules. 
Spore dispersal therefore disregards the location of healthy and in-
fected hosts. This assumption, which ensures the one- dimensional 
environmental feedback loop of the model, is more likely when the 
extent of the field or landscape considered is not overly large with 
respect to the dispersal function of airborne propagules. Airborne 
fungal spores often disperse over substantial distances. Mean dis-
persal distances range from 100 m to 1 km and, in most cases, long- 
distance dispersal events are frequent (Fabre et al., 2021). A spatially 
implicit framework embedded into integro- differential equations 
was recently used to describe the eco- evolutionary dynamics of a 

phenotypically structured population subject to mutation, selec-
tion, and migration between two habitats (Mirrahimi, 2017). With 
the same goal, Rimbaud et al. (2018) used a spatially explicit frame-
work with several habitats embedded in an HEIR stochastic model. 
It would be interesting to draw on these examples and extend our 
approach to a spatially explicit environment. Indeed, when dispersal 
decreases with distance, large homogeneous habitats promote di-
versification, whereas smaller habitats, favoring migration between 
different patches, hamper diversification (Débarre & Gandon, 2010; 
Haller et al., 2013; Papaïx et al., 2013, 2014).

5.5  |  Applied significance

This study gave rise to three key applied findings. The first is the 
ℛ0 equation in an environment with several cultivars. This equa-
tion is based on a gamma sporulation curve, as documented for 
several plant fungi (van den Bosch et al., 1988; van den Bosch et al., 
1988; Kolnaar & Bosch, 2001; Sache et al., 1997; Segarra et al., 
2001), and explicitly integrates the pathogenicity traits expressed 
during the basic steps of infection (infection efficiency, latent pe-
riod, sporulation dynamics). As these traits can be measured in the 
laboratory, this expression of ℛ0 bridges the gap between plant- 
scale and epidemiological studies, and between experimental and 
theoretical approaches. It helps address the practical difficulty of 
estimating ℛ0 for real populations, as pointed out by Gilligan and 
van den Bosch (2008). For example, it can be used to compare the 
fitness of a collection of pathogen isolates (e.g., see Montarry et al. 
(2010) for an application to potato late blight) or to predict their 
field structure (e.g., see Durand et al. (2017) for an application to 
Lyme disease).

The second applied finding is that the choice of quantitative 
resistance genes operated by plant breeders drives pathogen 
diversification. This effect is mediated by the parasite life cycle 
targeted by the resistance. Quantitative resistances specifically 
affecting different stages of pathogen cycles have been identified 
in several pathosystems (e.g., Azzimonti et al. (2013), Chung et al. 
(2010), Jorge et al. (2005)). Moreover, understanding the condi-
tions for maintaining pathogen polymorphism is a long- standing 
question in disease ecology and evolution, with implications for 
disease management (Vale, 2013). We show here that the patho-
gen population always remains monomorphic when resistance 
affects only sporulation, irrespective of the underlying trade- off 
curve shape. In contrast, pathogen diversification is possible when 
resistance affects only infection efficiency. This finding highlights 
the need for a detailed knowledge of the effect of resistance 
genes on pathogen life cycle for a full understanding of the impact 
of the deployment of quantitative resistances on the strain struc-
tures underlying the patterns of disease incidence. This finding is 
important, because quantitative resistances are increasingly being 
used by plant breeders to deal with the rapidity with which major 
resistance genes break down (Zhan et al., 2015). Interestingly, 
similar questions concerning the epidemiological and evolutionary 
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consequences of vaccination strategies have been considered. 
Quantitative resistance traits targeting pathogen infection rate, 
latent period, and sporulation rate are analogous to partially effec-
tive (imperfect) vaccines with anti- infection, antigrowth, and anti-
transmission modes of action, respectively (Gandon et al., 2001). 
Similarly, the proportion of the R cultivar deployed is analogous 
to vaccination coverage in the population; in the vaccination con-
text, the relative effectiveness of resistance is termed "vaccine 
efficacy" and the relative cost of adaptation is termed "cost of es-
cape" (Gandon & Day, 2007).

Finally, using a different theoretical approach, we confirm the 
finding of Papaïx et al. (2018) that "there is no silver bullet deploy-
ment strategy" simultaneously maximizing epidemiological and 
evolutionary outcomes (Rimbaud et al., 2021). Accordingly, as the 
different stakeholders involved in plant resistance management 
may pursue objectives that are not always compatible (e.g., growers, 
breeders), they should all be involved in defining the best manage-
ment strategies.
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