
1. Introduction
Human-driven eutrophication has resulted in profound impacts to coastal ecosystems around the world. These 
impacts are arguably the best studied in estuaries and enclosed bays (e.g., Chesapeake Bay; Boesch et al., 2001; 
Cerco & Cole, 1993) and semienclosed seas such as the Baltic Sea (Cederwall & Elmgren, 1990; Savchuk & 
Wulff,  2007), the Mediterranean Sea (Arhonditsis et  al.,  2000), and the Gulf of Mexico (Justić et  al.,  2005; 
Laurent et al., 2018). To date, few investigations of coastal eutrophication have occurred in eastern boundary up-
welling systems (EBUS). While strong upwelling and vigorous surface currents would generally limit the extent 

Abstract The Southern California Bight (SCB), an eastern boundary upwelling system, is impacted by 
global warming, acidification, and oxygen loss and receives anthropogenic nutrients from a coastal population 
of 20 million people. We describe the configuration, forcing, and validation of a realistic, submesoscale-
resolving ocean model as a tool to investigate coastal eutrophication. This modeling system represents an 
important achievement because it strikes a balance of capturing the forcing by U.S. Pacific Coast-wide 
phenomena, while representing the bathymetric features and submesoscale circulation that affect the transport 
of nutrients from natural and human sources. Moreover, the model allows simulations at time scales that 
approach the interannual frequencies of ocean variability. The model simulation is evaluated against a broad 
suite of observational data throughout the SCB, showing realistic depiction of the mean state and its variability 
with satellite and in situ measurements of state variables and biogeochemical rates. The simulation reproduces 
the main structure of the seasonal upwelling front, the mean current patterns, the dispersion of wastewater 
plumes, as well as their seasonal variability. Furthermore, it reproduces the mean distributions of key 
biogeochemical and ecosystem properties and their variability. Biogeochemical rates reproduced by the model, 
such as primary production and nitrification, are also consistent with measured rates. This validation exercise 
demonstrates the utility of using fine-scale resolution modeling and local observations to identify, investigate, 
and communicate uncertainty to stakeholders to support management decisions on local anthropogenic nutrient 
discharges to coastal zones.

Plain Language Summary We applied and validated an ocean numerical model to investigate 
the effects of land-based and atmospheric nutrient loading on coastal eutrophication and its effects on carbon, 
nitrogen, and oxygen cycles of the Southern California Bight, an upwelling-dominated marine embayment on 
the U.S. West Coast. The model is capable of high-resolution, multiyear hindcast simulations, which enable 
investigations to disentangle natural variability, climate change, and local human pressures that accelerate 
land-based and atmospheric nutrient loads. The model performance assessment illustrates that it faithfully 
reproduces monitored ocean properties related to algal blooms, oxygen, and water acidity, among others, that 
can be traced to land-based and atmospheric inputs of nutrients and carbon from human activities. The model 
performance assessment helps to constrain uncertainties in predictions to support ongoing conversations on 
approaches to reduce the effects of climate change, including considerations of management of local nutrient 
and carbon inputs.
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to which coastal eutrophication could occur (Fennel & Testa, 2019), such investigations have also been limited by 
coupled physical–biogeochemical numerical modeling approaches that can adequately resolve fine-resolution ba-
thymetry and the complexities of submesoscale circulation (Dauhajre et al., 2019; McWilliams, 2016), while sim-
ulating a sufficient duration (several years) to distinguish oceanic versus terrestrial forcing. These submesoscale 
circulation features, including fine-scale eddies and filaments <5 km in horizontal resolution, strongly control the 
magnitude and variability of nearshore upwelling and associated nutrient transport. Thus, high-resolution, sub-
mesoscale-resolving numerical models are a necessary prerequisite for mechanistic modeling studies and source 
attribution of oceanic versus terrestrial drivers of coastal eutrophication in EBUS. Inadequate modeling system 
and lack of numerical model validation have been identified as significant barriers to effective, evidence-based 
solutions to coastal eutrophication (Boesch, 2019).

All the necessary ingredients are present to motivate a numerical modeling investigation of the role of coastal 
eutrophication in driving ocean acidification and oxygen loss in the Southern California Bight (SCB), a large 
marine open embayment found in the California Current System (CCS) on the U.S. Pacific Coast. First, the SCB 
is a biologically productive region, and thus of high economic and ecological importance. Seasonal upwelling 
of nutrient-rich deep water maintains high rates of biological productivity over broad scales. At the same time, 
upwelling draws water masses that are naturally low in dissolved oxygen, pH, and carbonate saturation state (ΩAr) 
onto the shelf and into the photic zone (Sutton et al., 2017). Second, the SCB has one of the most spatially com-
prehensive and longest-running coastal observational systems in the world. Several physical and biogeochemical 
variables are sampled regularly and extensively, creating an ideal setting for model-data comparisons. Third, the 
SCB is home to one of the most densely populated coastal regions in North America, where the discharges of pri-
mary or secondary treated wastewater from a population of 20 million people are released to the coastal zone via 
ocean outfalls, along with the urban and agricultural runoff from 75 rivers. These nutrient sources rival natural 
upwelling in magnitude (Howard et al., 2014), roughly doubling available nitrogen to nearshore coastal waters. 
Intensifying ocean acidification, oxygen loss, and harmful algal blooms have motivated California policy makers 
to consider reducing anthropogenic nutrients as a climate change mitigation strategy (Ocean Protection Coun-
cil, 2018), but wastewater treatment plant upgrades and methods to increase control or reduce nonpoint sources 
would cost billions. A numerical modeling approach is needed to disentangle the effects of natural upwelling and 
climate change from anthropogenic nutrient loading from land-based and atmospheric sources.

To support such investigations, the Regional Oceanic Model System (ROMS, Shchepetkin & McWilliams, 2005) 
coupled to the Biogeochemical Elemental Cycling (BEC) model (Moore et al., 2004) has been recently adapted 
for the CCS (Deutsch et al., 2021; Renault et al., 2021). A downscaled model domain was established, scaling 
from a 4 km horizontal resolution configuration spanning the entire CCS, to a 1-km resolution grid covering 
the much of the California coast (latitude <40.25°N), to a 0.3-km grid in the SCB, where investigations of lo-
cal anthropogenic inputs were focused. Modeling experiments investigating submesoscale transport (captured 
at model resolutions ≤1 km) have demonstrated an up to tenfold increase in the magnitude of instantaneous 
vertical N fluxes (Kessouri, Bianchi, et al., 2020) relative to mesoscale transport represented by a 4 km model 
(Section 2.2). Furthermore, a finer horizontal resolution of bathymetry improves the representation of coastal 
currents, submesoscale circulation, and coast–offshore connectivity (Dauhajre et al., 2019). For this reason, in-
vestigations of coastal eutrophication are simulated here at 0.3 km horizontal resolution. Simulations conducted 
with the 4 km ROMS-BEC model domain have been validated for regional-scale atmospheric forcing, physics, 
and biogeochemistry, including O2, carbonate saturation state, primary productivity, and hydrographic parame-
ters, demonstrating that the model captures broad patterns of critical properties in the CCS (Deutsch et al., 2021; 
Renault et al., 2021). However, additional focused validation of nearshore, anthropogenically enhanced gradients 
in nutrients, primary production, oxygen, and pH in model simulations conducted at 0.3-km resolution are needed 
to gauge model utility to investigate the impacts of coastal eutrophication on ocean acidification and oxygen loss.

We employed this downscaled, submesoscale-resolving physical–biogeochemical model to investigate the effects 
of land-based and atmospheric nutrient inputs in driving coastal eutrophication and ocean acidification and oxy-
gen loss (Kessouri et al., 2021). The aim of this manuscript is to (a) document the SCB ROMS-BEC model con-
figuration, including the effects of land-based and atmospheric inputs of nutrients and organic carbon, intended 
to support investigations of coastal eutrophication and (b) present a validation of SCB ROMS-BEC simulations 
against available observations, focusing on anthropogenically enhanced gradients in nutrients, primary produc-
tion, oxygen, and pH.
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2. SCB Coupled Physical and Biogeochemical Model Description, Configuration, and 
Forcing
2.1. Model Description

2.1.1. Ocean Hydrodynamics

Ocean hydrodynamics is modeled with ROMS, a free-surface, terrain-following coordinate model with 3-D 
curvilinear coordinates that solves the primitive equations with split-explicit time steps. It contains state-of-art 
numerical algorithms that provide an accurate and stable representation of physical processes down to scales 
of tens of meters and allows for offline downscaling of high-resolution subdomains within larger domains. The 
offline downscaling is based on the Orlanski scheme for the baroclinic mode (Marchesiello et al., 2001) and a 
modified Flather scheme for the barotropic mode (Mason et al., 2010). Vertical mixing in the boundary layers 
is represented by a K-profile parameterization (W. G. Large et al., 1994). The U.S. West Coast hindcast model 
has been successfully run over two decades (between 1997 and 2017) at 1 and 4 km horizontal resolution using 
high-resolution spatial and temporal atmospheric forcing that represent the effects of wind dropoff, the current 
feedback on the surface stress, and high-frequency (HF) wind fluctuations (Renault, Hall, et al., 2016; Renault, 
Molemaker, McWilliams, et  al.,  2016). For this study, we further downscale to 0.3-km resolution to capture 
submesoscale processes.

2.1.2. Biogeochemistry

Ocean biogeochemical modeling approaches can have a broad range of complexities, ranging from few functional 
groups (e.g., NPZD models, Fasham, 1993), to multiple biogeochemical cycles (e.g., C, N, and O) and plankton 
functional groups. To provide a representation of biogeochemical cycles, ROMS is dynamically coupled to the 
BEC model (Deutsch et al., 2021; Gruber, 2004; Gruber et al., 2011; Moore et al., 2004). A schematic of BEC 
is shown in Figure 1b. BEC is a multielement (C, N, P, O, Fe, and Si) and multiplankton model that includes 
three explicit phytoplankton functional groups (picoplankton, silicifying diatoms, and N-fixing diazotrophs), 
one zooplankton group, and dissolved and sinking organic detritus. The impacts of calcifying phytoplankton 
(coccolithophores) on the carbon system are represented implicitly. Remineralization of sinking organic material 
follows the multiphase mineral ballast parameterization of Armstrong et al. (2001), and sedimentary processes 
have also been expanded. Particulate organic matter reaching the sediment is accumulated and slowly remineral-
ized with a time scale of 330 days, to provide a buffer between particle deposition and nutrient release. Nitrogen 
loss to the sediment is parameterized according to the empirical diagenetic model for sediment denitrification 

Figure 1. (a) Regional Oceanic Modeling System-Biogeochemical Elemental Cycling (ROMS-BEC) model configurations. dx = 4 km is the black box, dx = 1 km is 
the blue box, and dx = 0.3 km is the red box. Background color shading show the topography from dx = 4 km. (b) Schematic of the Biogeochemical Elemental Cycling 
model. The schematic shows state variables (boxes) and biogeochemical rates and feedback (arrows).
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of Middelburg et al. (1996). Water column denitrification is only active when oxygen concentrations fall below 
5 mmol m−3. Sedimentary release of Fe is based on the benthic chamber measurements of Severmann et al. (2010) 
for the California–Oregon coast and increases as bottom water oxygen concentrations decrease. Atmospheric dust 
deposition follows the parameterization by Mahowald et al. (2006) and provides an additional source of iron at the 
surface, although of minor importance compared to sedimentary iron release in the region (Deutsch et al., 2021). 
The ecosystem is linked to a carbon system module that tracks dissolved inorganic carbon and alkalinity, and an 
air–sea gas exchange module that allows realistic representation of dissolved gases (e.g., O2, CO2, and nitrous 
oxide), based on the formulation of Wanninkhof (1992).

2.1.3. SCB Model Configuration

The SCB model domain extends along a 450-km stretch of the coast, from Tijuana to Pismo Beach, and about 
200 km offshore. This grid, shown in Figure 1a, is composed of 1,400 × 600 grid points, with a nominal res-
olution of dx = 0.3 km. The grid has 60 σ-coordinate vertical levels using the stretching function described in 
Shchepetkin and McWilliams (2009), with the following stretching parameters: θs = 6, θb = 3, and hc = 250 m. 
The model is run with a time step of 30 s, and outputs are saved as 1-day averages.

The oceanic forcing of the 0.3-km domain originates from multilevel offline downscaling. A 4-km simulation is 
initialized and forced at the open boundaries by a preexisting North-east Pacific-wide ROMS solution at 12-km 
resolution (Renault et al., 2021), initialized and forced on the boundaries by the global model Mercator Glo-
rys2V3 (http://www.myocean.eu) for the physics, and with reconstruction of biogeochemical fields using world 
ocean database. We used climatological fields for organic material and relationships with density for nutrients. 
Full description of the boundary conditions and initialization of the parent configuration at 12-km can be found 
in Deutsch et al. (2021). The 4-km configuration is run for the period 1995–2017, after a spin-up of 2 years. A 
1-km simulation is initialized and forced from the 4-km model, including initial conditions and open boundary 
conditions, starting in October 1996 and ending in December 2007. The 0.3-km simulation is initialized and 
forced at its boundaries by the 1-km simulation starting from January 1997 and ending in December 2000. The 
bathymetry used in this configuration comes from the Southern California Coastal Oceanic Observation System 
(SCCOOS) 3 Arc-Second Coastal Relief Model Development (90-m horizontal resolution).

The oceanic model is forced by hourly outputs from the atmospheric uncoupled Weather Research and Forecast 
model (WRF06; Skamarock & Klemp, 2008). Using bulk formulae (W. B. Large, 2006), WRF06 provides heat, 
surface evaporation, momentum, and atmospheric data and is run at 6-km resolution over a domain similar to 
the 4-km (Figure 1 and used for Renault, Hall, et al. [2016]) and includes a wind–current coupling parameteri-
zation necessary to attain more realistic simulations of the oceanic eddy kinetic energy and circulation (Renault 
et al., 2020; Renault, Molemaker, McWilliams, et al., 2016).

Model simulations were conducted from 1997 to 2000, a period chosen to capture the effects of all three phases 
of the El Niño–Southern Oscillation (ENSO); it also captures the beginning of the “modern” state of point source 
management in the SCB, where several large Publicly Owned Treatment Plants (POTW) were in transition from 
primary to secondary treatment. (We will refer to submarine point sources outfalls from the treatment plants as 
“POTW” hereafter.)

2.2. Importance of Submesoscale Circulation

Downscaling to dx = 0.3 km allows the model to represent ocean circulation that includes baroclinic and baro-
tropic eddies and turbulence generated at the submesoscale (Capet, Campos, et al., 2008). Submesoscale dynam-
ics energizes frontogenesis by mesoscale straining and mixed layer instabilities (Capet, Campos, et al., 2008; 
Capet, Klein, et al., 2008; Capet, McWilliams, et al., 2008). Oceanic fronts are a driver of significant nutrient 
supply to the upper ocean. They have also been recognized as areas of enhanced biomass in many regions of the 
global ocean (Woodson & Litvin, 2015), as well as important locations for fisheries (e.g., Galarza et al., 2009). 
Resolving submesoscale eddies dramatically increases the variability of vertical fluxes of biogeochemical tracers 
and other material properties, eventually allowing a more accurate representation of chemical and biological con-
stituents. Figure 2 (upper panel) shows the temporal variability and horizontal distribution of vertical eddy fluxes 
of nitrate at 40-m from three different resolutions with the ROMS-BEC model (see Section 2.1.3). Submesoscale 
dynamics increase instantaneous fluxes by more than 1 order of magnitude, with more frequent and vigorous 
fine-scale structures (Figure 2, bottom panels) when increasing the resolution from 4 to 1 km, and similarly 

http://www.myocean.eu
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another order of magnitude when increasing resolution from 1 to 0.3 km. Intensification of vertical flux of nitrate 
at the euphotic depth has previously been shown in idealized models (Lévy et al., 2012; Mahadevan, 2016) and 
in realistic simulations in the central California upwelling system (Kessouri, Bianchi, et al., 2020) but has never 
been modeled in the SCB at this resolution. The impact of the submesoscale on nutrients fluxes is more apparent 
during winter, when the mixed layer is deeper, wind forcing more intense, and submesoscale circulation more en-
ergetic. During this period, nutrients are transported from the nutricline by transient fronts that can last only few 
days and are only properly resolved in the 0.3-km configuration. Submesoscale eddies have been associated with 
increased productivity in the oligotrophic ocean (Mahadevan, 2016) and decreased productivity in the upwelling 
region (Kessouri, Bianchi, et al., 2020). Our submesoscale-resolving simulation at dx = 0.3 km is an opportunity 
to quantify the balances of nitrogen, dissolved oxygen, carbon, and productivity using a more realistic representa-
tion of the physical circulation, as well as a representation of urban anthropogenic inputs to the ocean.

Our simulations show that the increased number of fronts and submesoscale instabilities promote intense varia-
bility of nitrate transport, as shown in Figure 2, as well as increased heterogeneity at the subsurface chlorophyll a 
maximum. However, surface phytoplankton biomass is only intensified if the time scale of the enrichment is suf-
ficiently long and maintained in these small-scale features. We argue that modeling at this scale allows for a more 
accurate simulation of biogeochemical tracers and rates, as described in subsequent sections. However, we also 
note that comparing the model and observations to highlight the realism of submesoscale processes is challeng-
ing, mostly because of the lack of observations of biogeochemical variables at high enough spatial and temporal 
resolution. Furthermore, changes in the distribution of biogeochemical tracers as the model resolution increases 
are relatively subtle (Kessouri, Bianchi, et al., 2020) and in general within the range of variability of observations 
and simulations. By construction, the submesoscale-resolving model better represents scales relevant to coastal 
circulation and anthropogenic nutrient emission and dispersal, and the underlying dynamics (Capet, Campos, 
et al., 2008). Showing that this configuration indeed compares realistically with observations, in an average and 

Figure 2. (Upper panel) Time series (1997–2001) of the vertical eddy flux of nitrate at 40-m depth calculated as follows: �� = �� +�′� ′ , where the overbar 
represents a monthly average, and the prime the deviation from this average, for region covering the entire Southern California Bight (31.4°–35.3°N and 116.5°–
121.8°W). The minimum and maximum values (i.e., the envelope) of the flux are shown in blue for the 4-km solution, in red for the 1-km solution, and in green for the 
1/3 km. (Lower panel) Snapshot of the vertical flux of nitrate in spring at 40-m off the coast of Palos Verdes that shows higher magnitudes and enhanced variability as 
resolution increases.
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statistical sense, strongly supports the validity of the model for coastal biogeochemical applications, even though 
aspects of the simulations such as submesoscale processes remain challenging to directly assess.

2.3. Terrestrial and Atmospheric Forcing of Freshwater, Nutrients, and Carbon

Model simulations were forced with a monthly time series of spatially explicit inputs (Figure 3, upper), including 
freshwater flow, nitrogen, phosphorus, silica, iron, and organic carbon representing natural and anthropogenic 
sources (Sutula et al., 2021b). These data include POTW ocean outfalls and riverine discharges (1997–2017) and 
spatially explicit modeled estimates of atmospheric deposition. POTW effluent data were compiled from permit 
monitoring databases and communication with sanitary agencies. Monthly time series of surface water runoff 
from 75 rivers are derived from model simulations and monitoring data (Sutula et al., 2021b). Direct atmospheric 
deposition is derived from the Community Multiscale Air Quality (CMAQ) model (Byun et al., 2006) and follows 

Figure 3. (Upper panel) Location of rivers and Publicly Owned Treatment Plants (POTW) outfalls along the Publicly Owned 
Treatment Plants (SCB). (Lower panel) Location of monitoring stations used for the validation, including POTW quarterly 
monitoring surveys, California Cooperative Oceanic Fisheries Investigations (CalCOFI) seasonal observations, showing the 
line numbers, Santa Monica Bay Observatory (SMBO), and San Pedro Oceanographic Time Series (SPOT), mooring.



Journal of Advances in Modeling Earth Systems

KESSOURI ET AL.

10.1029/2020MS002296

7 of 34

the implementation of Deutsch et al. (2021). In this paper, we discuss in detail the formulation of the river and 
wastewater outfall inputs.

2.4. Configuration of River and Wastewater Outfall Forcing in the Model

Ocean outfalls and coastal rivers are modeled as mass sources into the ocean (Figure 3, upper). To accomplish 
this, we add explicit volume fluxes to the otherwise divergence-free flow in the ocean. The inclusion of these 
fluxes makes it possible to account for associated sources of tracers, while satisfying conservation laws. Specif-
ically, our approach allows for the proper influx of fresh water in the ocean, without resorting to a “virtual salt” 
flux, which is a common approach in larger scale ocean models (Kang et al., 2017). Since we explicitly include 
known volume fluxes for both rivers and outfall pipes, specification of tracer concentration is sufficient to cor-
rectly model the source terms. The tracer evolution equations that are used in ROMS are implemented by using 
control volumes (Shchepetkin & McWilliams, 2005) where for each tracer concentration C = C(x, y, z, t),

𝜕𝜕∭ 𝐶𝐶 𝐶𝐶𝐶𝐶
𝜕𝜕t

= ∬ 𝑢𝑢𝑛𝑛𝐶𝐶 𝐶𝐶𝐶𝐶𝐶 (1)

where V = V(x, y, z, t) is the volume of the entire domain, un is the normal velocity into the volume, and A = A(x, 
y) is the total area of grid cells source is being input. Additionally, we enforce mass conservation which implies

𝜕𝜕V
𝜕𝜕t

= ∬ 𝑢𝑢𝑛𝑛 𝑑𝑑𝑑𝑑𝑑 (2)

In absence of rivers and outfalls, the flow is volume conservative, and the integral on the right-hand side of Equa-
tion 2 is zero. Using Equations 1 and 2, it is easy to see that the mean concentration of a tracer can be lowered 
if the average concentration of the flux entering the control volume is less than the mean concentration in that 
volume. In this manner, fresh water rivers will lower the salinity of the water in which they enter. All 75 rivers 
and 23 POTW pipes that are considered in this study are implemented in this manner.

Each individual source is based on the following equation:

𝑆𝑆(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) =
𝑊𝑊 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥)𝑄𝑄𝑠𝑠(𝑥𝑥)𝐶𝐶𝑠𝑠(𝑥𝑥)

𝑉𝑉𝑠𝑠
𝑥 (3)

with S(x, y, z, t) is the volume source of contaminant (mmol m−3 s−1), W(x, y, z) the nondimensional shape func-
tion (with values between 0 and 1), Qs(t) the water volume flux from the source (m3 s−1), Cs(t) the concentration 
of the tracer C in the source water (mmol m−3), and Vs is the effective volume of the source (m3).

For each source, Qs(t) and Cs(t) are prescribed as time series. The shape function W(x, y, z) distributes the tracer 
spatially and in the water column, representing nonresolved mixing and dilution effects. Its values represent the 
relative intensity of the in situ tracer injection, with values between 0 and 1. Tracer concentration C is distributed 
in the water column as C(x, y, z, t) = W(x, y, z)Cs(t) The effective 3-D volume of the source is calculated from the 
shape function W(x, y, z) as

𝑉𝑉𝑠𝑠 = ∭ 𝑊𝑊 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) 𝑑𝑑𝑉𝑉 𝑥 (4)

where the integral is over the model domain. For convenience, we assume that W(x, y, z) can be separated into 
a horizontal shape function A(x, y), multiplied by a vertical shape function H(z) (both nondimensional and with 
values between 0 and 1), such that

𝑉𝑉𝑠𝑠 = ∬ 𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥) 𝑑𝑑𝑥𝑥 𝑑𝑑𝑥𝑥∫ 𝐻𝐻(𝑧𝑧)𝑑𝑑𝑧𝑧 = 𝐴𝐴𝑠𝑠 𝐻𝐻𝑠𝑠. (5)

Here, As represents the effective source surface area (m2), and Hs the effective source thickness (m). The functions 
A(x, y) and H(z) are defined differently for POTW and rivers. They are assumed to be fixed in time; a time-de-
pendent generalization (e.g., to mimic variations in the depth of the POTW buoyant plume) is straightforward. 
For POTW inputs, at each main diffuser, the horizontal distribution A(x, y) of the source is shown in Figure S1 
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of Supporting Information S1. This method of weighting the plume in different cells allows the effluent to be 
properly diluted vertically and horizontally at this resolution and prevents the model from developing numerical 
instabilities.

Each large treatment plant has specialized outfall configurations that are taken into account for representation 
in the model (Figure S1 in Supporting Information S1). The flow is divided in two at Hyperion Treatment Plant 
(HTP) located 6 km off Marina Del Rey (Santa Monica Bay; Figure S1a in Supporting Information S1) and Point 
Loma Wastewater Treatment Plant (PLWTP) in San Diego coast (Figure S1d in Supporting Information S1) to 
account for their Y-shaped diffuser, partitioning 50% of the flow to each diffuser. Orange County Sanitation 
District (OCSD) located 6 km off Huntington Beach (Figure S1c in Supporting Information S1) has one flow 
through its L-shaped diffuser. Joint Water Pollution Control Plant (JWPCP) in Palos Verdes shelf (Los Angeles; 
Figure S1b in Supporting Information S1) has three diffusers, the Y-shape northern typically discharges 17.5% of 
the flow for each leg of the Y-diffuser, and the southern L-shape diffuser discharges 65% of the flow. The vertical 
profile of the POTW sources is defined by a Gaussian function centered at a height z above the bottom (hb), to 
mimic a buoyant plume, so that H(z) is given by

𝐻𝐻(𝑧𝑧) = 𝑒𝑒−𝑧𝑧2∕𝑑𝑑2𝑠𝑠 , (6)

where z = −hb + hs, with hb is the bottom depth (m), hs the depth of the buoyant plume above the bottom (m), 
and ds is the vertical scale of the POTW plume (m). We further assume hs = 20 m and ds = 10 m, as in Uchiyama 
et al. (2014).

We distribute the SCB rivers on one horizontal grid point (0.3 km wide), where we assume A(x, y) = 1, and 
similarly distribute the source vertically, with the Gaussian function centered at the surface. hs here is simply the 
water column depth to put the maximum input at the surface. Because in ROMS the thickness of vertical grid 
cells varies in time, to ensure tracer conservation the calculation of the input source volume Vs must be done at 
each time step, even in the case of a time-independent source shape function W(x, y, z). Effectively, only Hs = H(z) 
needs to be recalculated at each time step.

3. Model Performance Assessment Approach
The conceptual approach for model performance assessment comprises three components, addressing different 
aspects of skill assessment: (a) statistical comparison of model output to observational data for state variables 
by region and season, (b) comparison of model output to observational data for biogeochemical rates, and (c) 
evaluation of model behavior compared to expected biogeochemical dynamics for coastal zones. Comparison of 
model output to observational data by region and season is designed to document model skill at reproducing the 
statistics (e.g., mean values and variability) of ocean physical and biogeochemical parameters at the spatiotempo-
ral scales more relevant for evaluating human impacts on the coastal environment. Comparison of model output 
to observational data for biogeochemical rates assures that model is capturing the appropriate transformations 
in nutrients and carbon that structure the ecosystem response to eutrophication. Finally, the evaluation of model 
behavior compared to the expected physical and biogeochemical dynamics for coastal zones is a more qualitative 
evaluation of model performance to document that the model broadly reproduces oceanographic phenomena in a 
way that reflects our understanding of nearshore ocean environments.

3.1. Description of Observational Data Sets

3.1.1. Ship-Based Ocean Monitoring

The SCB is home to a suite of long-running monitoring programs that make it one of the best observed coastal 
ecosystems in the world (3, lower). Among them, the California Cooperative Oceanic Fisheries Investigations 
(CalCOFI) program (McClatchie, 2016), initiated in the 1950s, samples the SCB quarterly each year, collecting 
hydrographic and biogeochemical measurements in coordination with the SCCOOS. These observations are aug-
mented nearshore by quarterly surveys of nearshore water column and benthic parameters conducted collabora-
tively since 1990 by POTW agencies as a part of their regulatory monitoring requirements (Booth et al., 2014; 
Howard et al., 2014; McLaughlin et al., 2018; Nezlin et al., 2018). These programs provide good temporal and 
geographical coverage of both the offshore (CalCOFI) and nearshore (POTW) areas, coinciding with the model 
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period, and include publicly available water quality data for targeted sites measured quarterly. We validated 
model output against observed temperature, dissolved oxygen, nitrate, ammonium, chlorophyll, carbon system 
parameters (pH and aragonite saturation state), primary production, and nitrification.

In situ measurements have inherent uncertainty, due to a combination of measurement sensitivity and sampling 
frequency and intensity, making them an imperfect “truth” with which to compare to model output. However, 
this uncertainty is not the same for all parameters. Both temperature and dissolved oxygen are collected using 
high-resolution probes, though the two programs used in this study incorporate slightly different calibration 
protocols for dissolved oxygen, lending greater confidence to data–model comparisons for these data sets. Chlo-
rophyll is measured on discrete bottle samples in the CalCOFI program, a high-quality measurement, but inferred 
from in situ fluorescence measurements in the POTW monitoring program, adding uncertainty to these meas-
urements. Nitrate and ammonium concentrations are measured on discrete bottle samples for both programs, but 
the detection limits are more sensitive in the CalCOFI program. Furthermore, nutrients are not measured with 
the same sampling density in POTW monitoring programs as sensor data. Similarly, primary production is meas-
ured at a subset of locations in the CalCOFI program and as a short-term special study in Southern California 
Bight Regional Marine Monitoring Program (Bight Program). Details on measurements and sample collection 
protocols for the CalCOFI program can be found on their website (https://calcofi.org; McClatchie, 2016) and for 
the POTW monitoring programs in Howard et al. (2014). We also use selected nutrient observations from the 
Santa Monica Bay Observatory (SMBO) mooring located in the Santa Monica Bay (Leinweber et al., 2009). Fig-
ure 3 shows a map of all monitoring stations used in this study. The repository of data can be found in Kessouri, 
McLaughlin, et al. (2020).

3.1.2. High-Frequency Radar and Acoustic Doppler Current Profilers

HF radar data from the database of the University of California, San Diego (https://hfrnet-tds.ucsd.edu/thredds/
catalog.html) provide surface currents along the west coast of the United States, including the SCB. Seasonally 
averaged data from 2012 to 2020 were used to analyze trends of surface currents in the Bight compared to the 
model. Acoustic Doppler Current Profilers (ADCP) provide current data in the water column. ADCP meas-
urement data from OCSD for the period June 1999 to June 2000 and Los Angeles County Sanitation District 
(LACSD) during November 2000 to June 2007 were used to validate vertical profiles of currents.

3.1.3. Remote Sensing Observations

Satellite ocean color measurements for chlorophyll were used to characterize horizontal gradients at finer scales 
and higher density than possible with the ship-based monitoring. We use monthly averaged surface chlorophyll 
concentration from the period 1997 to 2000 derived from the SeaWiFS sensor at 4-km spatial resolution. Large 
gaps in the data set can occur because of dense cloud cover that occurs in late spring and early summer. The 
products of the Vertically Generalized Production Model (VGPM) net primary production algorithm (Behrenfeld 
& Falkowski, 1997) were also considered for this validation. Despite limitations, satellite data provide a valuable 
representation of the spatial distribution of chlorophyll, temperature, and primary production at seasonal scales 
over the region.

3.2. Performance Statistics

Our approach to a statistical assessment of agreement between model predictions versus observations reflects 
the fact that the hydrodynamic model, under the influence of realistic forcings (e.g., wind fields) and without 
data assimilation, develops its own intrinsic variability in circulation, for example, submesoscale eddies (McWil-
liams, 2007). The resulting modeled state variables would not necessarily overlap with observations on a point-
by-point basis but would be comparable to observations when averaged over appropriate spatiotemporal scales. 
We assessed a suite of statistics and metrics, following the methodology of Allen et al. (2007), to assess how well 
the model reproduces the magnitude and gradients of selected state variables, whether the model agreement has 
an apparent bias, and how well the model reproduces natural variability. We calculated six metrics, defined in the 
following, where N is the total number of appropriate observational data, D represents each individual observa-
tional datum, 𝐴𝐴 �̄�𝐷 is the mean of the observational data, M is the model estimate representing an observation, and 

𝐴𝐴 �̄�𝑀 is the mean of the model estimate. The metrics considered include the following.

https://calcofi.org
https://hfrnet-tds.ucsd.edu/thredds/catalog.html
https://hfrnet-tds.ucsd.edu/thredds/catalog.html
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The Pearson correlation coefficient, reflecting the degree of linear correlation between the observed and model 
variable, and the statistical significance (p-value) of this correlation:

��� =
∑�

�=1(�� −�)(�� −�)
√

∑�
�=1 (�� −�)

2
√

∑�
�=1 (�� −�)

2
. (7)

The cost function (CF), which gives a nondimensional value indicative of the “goodness of fit” between two sets 
of data, quantifying the difference between model results and measurement data:

CF = 1
𝑁𝑁

𝑁𝑁
∑

𝑛𝑛=1

|𝐷𝐷𝑛𝑛 −𝑀𝑀𝑛𝑛|

𝜎𝜎𝐷𝐷
, (8)

where σD is the standard deviation of the observations.

The bias (B; the sum of model error normalized by the data):

B =
∑

(𝐷𝐷 −𝑀𝑀)
∑

𝐷𝐷
. (9)

The ratio of the standard deviations (RSD):

RSD = 𝜎𝜎𝐷𝐷

𝜎𝜎𝑀𝑀
, (10)

where σM is the standard deviation of model outputs.

The Nash–Sutcliffe model efficiency (ME; Nash & Sutcliffe, 1970), a measure of the ratio of the model error to 
the variability of the data:

ME = 1 −
∑

(�� −��)2
∑

(� −�)
. (11)

And the two-sample t test, or Welch's t test (Derrick et al., 2016; Welch, 1947):

� = (� −�)∕

√

�2
�

�
+

�2
�

�
. (12)

We score the model performance following Table 1 per the methodology of Allen et al. (2007).

Statistic Excellent Good Reasonable Poor

Cost function (Moll & Radach, 2003) <1 1–2 2–3 >3

Nash–Sutcliff model efficiency (Nash & Sutcliffe, 1970) >0.65 0.65–0.5 0.5–0.2 <0.2

Bias (Maréchal, 2004) <|0.1| |0.1–0.2| |0.2–0.4| >|0.4|

H (Welch, 1947) 0 1

Correlation coefficient 1–0.9 0.9–0.8 0.8–0.6 <0.6

p-Value <0.05 >0.05

Ratio of standard deviations 1–0.9, 1–1.1 0.9–0.8, 1.1–1.2 0.8–0.6, 1.2–1.4 <0.6, >1.4

Table 1 
Summary of Statistical Tests of Model Performance and Their Interpretation Used in This Paper
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4. Model Performance Assessment Findings
4.1. Ocean Circulation

The SCB is situated at the confluence of water masses from the subarctic Pacific via the California Current, and 
from the eastern tropical North Pacific via the California Undercurrent, which all interact with the local topogra-
phy, the coast, and the atmosphere to sustain variability in circulation on interannual, seasonal, and intraseasonal 
time scales (Bograd et al., 2015; Dong et al., 2009). The effects of this variability in circulation have profound 
consequences for coastal ocean biogeochemistry (Bograd et al., 2015; Gruber et al., 2011; Nagai et al., 2015; 
Nezlin et al., 2018) and are therefore critical that the model accurately simulates spatial and temporal variability 
in circulation patterns.

Figure 4 shows the hydrodynamic characteristics of the SCB in the model compared to data. In the northern SCB, 
the model shows similar qualitative and quantitative patterns for the horizontal circulation compared to HF data 
(Figures 4a and 4b) and as seen in Dong et al. (2009). The circulation in the SCB is characterized by northward 
currents in the first 20 km of the coast and cyclonic circulation in the middle of the SCB that is stronger in sum-
mer and weaker in winter. The model successfully reproduces observed current patterns, with similar current 
magnitudes. The intensity of the northward coastal branch of the current is on average about 0.15–0.3 m s−1 
in summer versus 0.05–0.15 m s−1 in winter. The offshore southward branch is generally about 0.3 m s−1 all 
year-round (Figures 4a and 4b). The dominant current in the coastal band (15 km from coast) of the SCB flows 
northward and follows the topography along isobaths on the shelf (Figures 4g and 4h).

The simulated June 1999 to June 2000 variability of the current in depth is shown in the vertical profiles extracted 
off the coast of Palos Verdes and Orange County compared to the ADCP data at the same locations (Figures 4c–
4f). The location of both of these profiles is a few kilometers from the continental slope and therefore captures a 
suite of physical processes, including mesoscale and submesoscale eddies, fronts, jets, and internal tides (Capet, 
McWilliams, et al., 2008; Dong et al., 2009; Kim et al., 2011). The model generally reproduces the means and 
range of the variability shown in these close to shore horizontal currents, which demonstrates that ROMS at 
dx = 0.3-km resolution captures the submesoscale variability described in Section 2.2.

In the northern SCB, cyclonic vortices are generated inside the Santa Barbara Channel (Figure 4i) when the 
northward current that flows along the Ventura coast meets the eastern side of the Channel Islands, with higher 
intensity in summer (Figure 4a vs. Figure 4b; Winant et al., 2003). Submesoscale eddies are particularly promi-
nent in this region, in particular persistent cyclonic eddies that drive an upward doming of isopycnals (Figure 4j; 
McGillicuddy, 2016), which supplies nutrients to the euphotic layer. The model correctly reproduces this vertical 
transport, described in Brzezinski and Washburn (2011), and the high concentrations of nitrate and other nutri-
ents in the upper layers of the Santa Barbara Channel, as further detailed in Section 4.3.1.

In the central and southern SCB (latitude <34.7°N), the model successfully captures flow regimes around the 
large POTW outfalls, indicating that it can appropriately represent the dispersal of wastewater plumes in these 
regions. In the Santa Monica and San Pedro Bays, topography drives the circulation of currents inside the Bays, 
converging back to the main current offshore (Figures 4g and 4h). On top of the Hyperion and JWPCP outfalls (in 
the Santa Monica Bay and offshore of the Palos Verdes peninsula, respectively), the current is mostly south-east-
ward. Near the OCSD outfall, the current direction varies in winter between south-eastward and north-westward 
but is primarily southward in summer (Figures 4a, 4b, 4e, and 4f). At the PLWTP outfall, the current is narrow, 
with a dominant south-eastern direction, parallel to the coast, demonstrated by both model and HF radar data.

4.2. Vertical Gradients and Seasonal Variability of Temperature and Mixed Layer Depth

The model successfully reproduces the three-dimensional and seasonal variability of physical tracers, here ex-
emplified by temperature. Temperature is the parameter in which we have the highest confidence in the obser-
vational record, because observations are abundant, and sensors are accurate and precise, regularly calibrated, 
and with negligible drifts. The greatest source of observational uncertainty is temporal undersampling, but some 
sources of model bias may also be important (e.g., from atmospheric forcing, wind, or shortwave detailed in Re-
nault et al. [2021]). Quantitative statistical analysis indicates that model performance is “excellent” or “good” for 
nearly all metrics for all regions and seasons (see Table 2). The lowest performance of the model is characterized 
as “reasonable” for certain subregions (Palos Verdes, Orange County, and San Diego) in spring and fall (Palos 
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Figure 4. (a) Mean surface currents in the Southern California Bight from high-frequency (HF) data during 2012–2020 (thick red arrows) and model during 1999–
2000 (black arrows) in summer and (b) winter. (c–f) Vertical profiles of horizontal velocity components from Acoustic Doppler Current Profilers (ADCP) instruments 
(thick red lines) and model (thinner black lines). The two dashed lines indicate the 5th and 95th percentile current values. (c, d) ADCP data come from the Los Angeles 
County Sanitation District (LACSD) mooring A3 stationed at the teal “X” in (a) and (b) and (e, f) come from the Orange County Sanitation District (OCSD) mooring 
OC-T-1 located at the teal “O.” (g) Mean model current direction and speed (colored) at 40 m depth with bathymetry contoured in summer and (h) winter. (i) Surface 
model vorticity normalized by f in spring in Santa Barbara Channel showing cyclonic eddies. (j) Cross section of temperature and density isopycnals as drawn by the 
dashed line in (i) from model to show eddy-driven uplifting of the isopycnals in the center of Santa Barbara Channel.
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Verdes only; see Table S2 in Supporting Information S1). As noted above, this may be due to undersampling 
during these months, which can be highly variable because the region is shifting between a well-mixed to a more 
stratified ocean regime. Detailed information on the other subregions and their statistical comparison can be 
found in Tables S1–S4 in Supporting Information S1.

Following common practices (de Boyer Montégut et al., 2004), we define the mixed layer depth (MLD) as the 
depth at which temperature decreases from its surface value by more than 0.2°C. On average, the MLD deepens 
from the coast to offshore and varies with season (e.g., in Santa Monica Bay in Figure 5b). The model successful-
ly simulates the seasonal cycle of MLD along the coast. For example, the model recreates the observed seasonal 

Santa Monica: temperature

H
Correlation 
coefficient p-value

Cost 
function Bias

Ratio of standard 
deviations

Nash–Sutcliffe 
model efficiency

Number of 
observations

Winter 0 E 0.96 E 7E−06 E 0.05 E −0.04 E 1.10 G 0.81 E 716

Spring 0 E 0.98 E 8E−07 E 0.10 E −0.10 G 0.78 R 0.51 G 716

Summer 0 E 0.97 E 9E−06 E 0.04 E −0.02 E 1.07 E 0.93 E 712

Fall 0 E 0.89 G 3E−06 E 0.09 E −0.08 E 0.98 E 0.51 G 718

All seasons 0 E 0.95 E 3E−05 E 0.08 E −0.07 E 1.02 E 0.73 E 2,862

Note. Letters next to numbers indicate model performance: E, excellent; G, good; R, reasonable; P, poor.

Table 2 
Statistical Comparison Between In Situ Data and Model Outputs for Temperature Profile in Santa Monica Bay (City of LA 
Stations)

Figure 5. (a) Average seasonal profiles of temperature in the Santa Monica Bay. The red lines and red bars show the spatiotemporal mean and the variability from 
the model, respectively. The black dots and the gray shading show the spatiotemporal mean and the variability from in situ data (City of LA stations), respectively. (b) 
Hovmöller diagram of temperature at the location of the Hyperion POTW outfall (Hyperion Treatment Plant [HTP]) in the Santa Monica Bay issued from the model. 
The black line shows the simulated time series of mixed layer depth. The deepest mixing occurs during El Niño 1998 (>40 m). Colored dots are average concentrations 
from in situ measurements.
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deepening of the mixed layer in the Santa Monica Bay to depths greater than 16–20 m (the typical depth of the 
upper signature of the POTW plumes, see Section 4.3.2) nearly every winter (black line in Figure 5b).

Regular winter shows a homogeneous upper layer of <14°C temperature, and a mixed layer located at 18–20 m 
in the coastal region and 40–60 m offshore. The surface ocean is colder around the Channel Islands (SST <12°C; 
see Figure 19). In the open ocean, the model reproduces the destratification with deepening of the thermocline 
to about 70 m and a MLD at about 40 m (Figures 6c and 6d). In summer, stratification is the strongest, reflecting 
an intense vertical temperature gradient, and the MLD (both in the model and in the observations) is found few 
meters below the surface (approximately 10 m). Temperature varies rapidly from more than 20°C at the surface 
in the southern domain (16°C–17°C in the northern domain) to less than 12°C at 50 m depth over the entire SCB 
(see also Figure 19). In the open ocean, the model succeeds in reproducing the stratification that brings the sea-
sonal thermocline to 50 m and the MLD to 15 m (Figures 6c and 6e).

The model reproduces interannual variability in MLD under the influence of ENSO (hereafter referred to as 
El Niño, i.e., the period from fall 1997 to spring 1998 in Figure 5b), when the MLD reached 40 m. We show 
that during winter of El Niño year, the entire water column of the SCB is warmer than on average, and surface 

Figure 6. (a) Cross section of average temperature following line 86.7 from CalCOFI monitoring stations during an El 
Niño winter (December 1997 to February 1998). (b) Profile at station P2. Black dots are CalCOFI in situ data; red line is the 
simulated profile. The horizontal line is the MLD (black is CalCOFI; red is simulated). Diamonds (black is CalCOFI; red is 
simulated) is the depth of the maximum gradient to estimate the depth of the seasonal thermocline at 12°C. (c, d) Similar to 
(a) and (b) for average winter, and (e, f) for average summer.
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temperature is more homogeneous, varying between 15.5°C and 17°C (Figure 6a). In the open ocean, during 
El Niño, with warmer upper layer than regular winters, the model shows good performance in reproducing the 
deepening of the seasonal thermocline (>120 m) and of the MLD (>50 m; e.g., offshore Santa Monica Bay in 
Figures 6a and 6b). These patterns of variability in temperature are consistent with regional observations of El 
Niño in the SCB (Todd et al., 2011).

4.3. Dissolved Inorganic Nitrogen

4.3.1. Spatial Patterns and Seasonality of Nitrate

Nitrate observations are only broadly available in the offshore CalCOFI data set, so only large-scale regional pat-
terns in nitrate concentration can be validated. There is a clear seasonality of nitrate, where surface concentrations 
are higher in spring and summer and decrease in fall and winter (Figure 7). The model reproduces the average 
seasonal patterns observed in the in situ nitrate data across multiple regions. The model also captures along-shore 
variability in coastal nitrate concentrations, reproducing values greater than 25 mmol N m−3 off Santa Barbara, 
20 mmol N m−3 off Los Angeles, and 15 mmol N m−3 off San Diego.

The model also reproduces observed patterns in the depth of the nitracline (Mantyla et  al.,  2008; Nezlin 
et al., 2018), which tends to follow sloping density surfaces in the region. These patterns include the high values 
at the euphotic depth limit (∼50 m below the surface) along the Santa Barbara coast in spring; the doming of 
the nitracline in the center of the Santa Barbara Channel (Figure 7b); the 20–30 m deep nitracline along the Los 
Angeles coast; and the deepening of the nitracline from about 30 m at the coast to more than 60 m offshore in 
San Diego. In the offshore region of the SCB, the model is consistent with observations showing high nitrate 
(>20 mmol N m−3) around the Channel Islands (not shown) as compared to less than 5 mmol N m−3 farther 
offshore. This pattern is strongest in winter and summer, when the offshore regions are particularly oligotrophic 
(surface 𝐴𝐴 NO−

3  < 1 mmol m−3) throughout the SCB.

4.3.2. Vertical Gradients and Seasonal Variability of Ammonium

Ammonium concentrations above a natural background concentration of 1 mmol N m−3 are indicative of POTW 
wastewater plumes. The model reproduces the observed average vertical profile of ammonium in the Santa Mon-
ica Bay, falling within the range of observed variability (Figure S8a in Supporting  Information  S1). Similar 
figures for other regions are shown in Figures S6–S9 of Supporting Information S1. All regions show a similar 
maximum concentration between 30 and 45 m below the surface, in all seasons. The highest concentrations are 
seen in summer, when stratification is stronger, while lower concentrations in winter likely reflect increased dilu-
tion by seasonal mixing from the deepening of the mixed layer (Figure 8b). Near ocean outfalls, both model and 
observations show middepth peaks of ammonium concentration, occasionally exceeding 10 mmol m−3, which 
considerably overshadow values observed away from outfalls. In the model, these high ammonium concentrations 
are caused by wastewater plumes.

The main source of uncertainty in data–model comparisons is the limited spatial and temporal coverage of meas-
urements. Ammonium is typically measured near ocean outfalls and is therefore biased toward high concentra-
tions, but the data set is highly variable. Methodological difficulties exist with the measurement of ammonium in 
seawater, and as such, we excluded nondetectable ammonium values in our analyses. Near the submarine outfalls, 
ammonium concentrations are likely extremely heterogeneous due to buoyant plume filaments, as observed in 
DiGiacomo et al. (2004) and in Warrick et al. (2007) in the Santa Monica Bay, as well as in other regions (e.g., 
Florida, in Marmorino et al. [2010]) and in idealized case studies (e.g., Ho et al., 2021). These plume filaments 
are caused by horizontal advection and straining of the discharged effluent by currents. As a result, the under-
sampling of ammonium may have led to poor statistical agreement between observations and model output. The 
model shows high to moderate agreement for the shape of the profile and the mean concentration (Table 3). 
However, p-values for the correlations were not always significant. Similarly, there were often biases and low 
performance regarding variability statistics. This low model performance can be explained by the following two 
reasons: (a) spatial sampling is likely missing plume filaments, for example observational data points with high 
ammonium values that are capturing the plume are recorded next to very low or nondetectable values and (b) the 
resolution of the model (0.3 km), as well as model averaging over the day, season, and depth range causes plume 
filaments to appear more uniformly spread near the outfalls. Because plume filaments are lost in this averaging, 
the model represents plumes as cloud-like distributions around outfalls; nevertheless, the average ammonium 
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Figure 7. (a–c) Time series of nitrate concentration at 50 m depth in three different locations of the SCB: (a) is near the center of Santa Barbara Channel, (b) is 
offshore the Santa Monica Bay, and (c) is offshore San Diego. Model outputs are represented by the lines for three different years, with the dots showing mean values 
from in situ measurement from CalCOFI, and gray bars the standard deviation from the mean. The time series show prominent interannual variability in addition to 
seasonal variability. While the years 1997 and 1999 show similar nitrate distributions, the El Niño period between the end of 1997 and 1998 is significantly different, 
showing nearly uniform concentrations between November 1997 and May 1998. This is caused by the deepening of the thermocline during El Niño, which depresses 
the nutricline. (d–f) Cross sections showing the average springtime nitrate concentration in (d) the Santa Barbara region, (e) the SM region, and (f) the SD region. 
Background are model outputs and dots are CalCOFI in situ measurements. Model and in situ data agree on the vertical and seasonal patterns in the three regions. They 
highlight the main differences in these three regimes, consisting of a shallower nitracline in the Santa Barbara Channel, and a deeper nitracline in southern waters. (g, h) 
Comparison of nitrate concentrations during (g) winter El Niño (January–March 1998) and (h) during an upwelling event (the first week of May 1999) to illustrate the 
ability of the model (vs. in situ CalCOFI data) to simulate the vertical displacement of the nitracline during these specific events.
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concentration of wastewater plumes is reasonably well represented. Detailed information on the other subregions 
and their statistical comparison can be found in Tables S1–S4 of Supporting Information S1.

4.3.3. Horizontal Gradients of Ammonium

Both in situ observations (dots in Figures 9 and 8a) and model output (background colors in Figure 9 and red line 
in Figure 8a) show high concentrations of ammonium in the subsurface layer below the thermocline (Figure 9c), 
which we refer to as “high-ammonium plume.” This high-ammonium plume can extend from Huntington Beach 
to South Ventura, encompassing three of the four major wastewater treatment plant outfalls in the SCB (see 
Section 2.4). Both model and observations show that the width and strength of the high-ammonium plume are 
greatest in summer compared to other seasons. The SMBO mooring (Leinweber et al., 2009) located 17 km north-
west of the submarine pipe Hyperion in Santa Monica Bay (Figure 9g) frequently recorded concentrations higher 
than 2 mmol m−3, and up to 4 mmol m−3 at middepth (Figure 9e), consistent with the model (Figure 9f). The depth 
of the maximum variability is at 40 m in the model, and slightly shallower in the SMBO data, possibly because 

Figure 8. As for Figure 5, but for ammonium concentration. These profiles are showing agreement on intensity, seasonality, and shape of the vertical profile with 
exceptionally high concentrations at middepth.

Santa Monica: ammonium

H
Correlation 
coefficient p-Value

Cost 
function Bias

Ratio of standard 
deviations

Nash–Sutcliffe 
model efficiency

Number of 
observations

Winter 0 E 0.94 E 0.06 P 0.54 E 0.24 R 1.86 P 0.68 E 20

Spring 0 E 0.85 G 0.14 P 0.58 E −0.57 P 0.69 R −0.61 P 21

Summer 0 E 0.58 P 0.42 P 0.72 E 0.19 G 1.76 P 0.29 R 21

Fall 0 E 0.91 E 0.09 P 0.42 E 0.07 E 1.47 P 0.80 E 21

All seasons 0 E 0.81 G 0.10 P 0.36 E −0.03 E 1.23 R 0.60 G 83

Table 3 
Statistical Comparison Between In Situ Data and Model Outputs for Ammonium Profile in Santa Monica Bay
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of a mismatch in the time period (1997–2000 for the model, and 2004–2010 for the SMBO). During winter, the 
model indicates vertical mixing and dilution of the plume at the surface. Accordingly, ammonium concentrations 
decrease slightly at depth (Figure 9a) and increase at the surface, reaching values up to 2–6 mmol m−3, also con-
sistent with observations around the outfall pipes (Figure 8a).

4.3.4. Spatial Patterns in Rates of Nitrogen Transformation

Although we had no in situ nitrogen transformation rates with which to compare model output during the sim-
ulation period, several data sets exist for the region that can serve as a test for whether the model is simulating 
reasonable patterns in rates via the right mechanisms. We found that modeled rates do agree with observed 
nitrogen transformation rates. Nitrification rates, the sequential oxidation of 𝐴𝐴 NH+

4  to 𝐴𝐴 NO−
3  via 𝐴𝐴 NO−

2  , have been 

Figure 9. (a–d) Seasonal average ammonium concentration between 30 and 45 m depth from the model and dots from observations. High values highlight the 
movement and dispersion of subsurface wastewater plumes along the Orange and Los Angeles Counties. The highest concentrations are located within a narrow coastal 
band of about 10–15 km width and are carried along the topography by the mean currents. (e, f) A statistical comparison of the vertical profiles of ammonium at the 
SMBO mooring and the same location in the model. The anthropogenic ammonium plume signature is apparent, albeit intermittently, 17 km away from the Hyperion 
outfall. (g) The simulated vertical maximum concentration of 𝐴𝐴 NH+

4  averaged during a representative day to illustrate the dispersal of the effluent toward SMBO 
originating from the two diffusers of Hyperion Treatment Plant (HTP).
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observed to be higher within wastewater plumes in the SCB (McLaughlin et al., 2021), a pattern driven by high 
ammonium concentrations in the discharges (McLaughlin, Nezlin, et al., 2017). In both observations and the 
model, nitrification predominately occurs below the euphotic layer. Modeled vertically integrated nitrification 
rates vary between 0.15 and 1.5 mmol N m−2 day−1, consistent with observations within the SCB and in the 
California Current (Table 5). The model also reproduces higher nitrification rates within wastewater plumes (see 
Figure S22 in Supporting Information S1). There is also good agreement between observed and modeled rates 
of nitrate and ammonium uptake by phytoplankton communities (Kudela et al., 2017; McLaughlin et al., 2021). 
Modeled nitrate uptake rates vary between 2 and 11 mmol N m−2 day−1 and ammonium uptake rates vary between 
6 and 51 mmol N m−2 day−1 in the Los Angeles and Orange County coasts, consistent with observations in the 
SCB (Table 5).

4.4. Chlorophyll Concentrations

In general, the model was found to reproduce vertical and horizontal gradients in chlorophyll concentration in 
different subregions (Figure 12). The timing of blooms was consistent with changes in mixing and nutrient deliv-
ery in the SCB. We present three different subregions characterized by distinct hydrodynamic regimes: the Santa 
Barbara Channel, the Los Angeles coast, and San Diego coast.

There are several sources of uncertainty in the chlorophyll, primary production, phytoplankton growth, and graz-
ing rates observational records. For chlorophyll, bottle measurements are accurate and precise but measure a lim-
ited portion of the water column. Sensors are accurate and precise in their measurement of fluorescence and have 
a rapid response time, providing vertically resolved profiles; however, the algorithm to convert fluorescence to 
chlorophyll concentration is inaccurate for the SCB. As a result, a correction factor has been applied to Bight data 
which adds uncertainty to the observational data set (Nezlin et al., 2018). Satellite measurements of chlorophyll 
are inferred from ocean color (Kahru et al., 2009). This method works well offshore but breaks down nearshore 
where terrestrially derived colored dissolved organic matter creates uncertainty in reported satellite chlorophyll 
estimates on the order of 100% or greater (Zheng & DiGiacomo, 2017). For primary production, the incubation 
method to derive the rates is sensitive and precise (Cullen, 2001), though measured rates are subject to bottle ef-
fects and there is some ambiguity as to whether the experiments measure net primary production or gross primary 
production (Regaudie-de Gioux et al., 2014). Phytoplankton growth and zooplankton grazing are also determined 
experimentally, and duplicate measurements indicate that these methods are not very precise, with differences 
between duplicates ranging from 80% to 200% (Landry et al., 2009; Li et al., 2011). For all three measurements, 
spatial and temporal undersampling, particularly during seasons with high variability, adds uncertainty to the 
data–model comparison.

4.4.1. Horizontal Gradients in Chlorophyll

Despite the uncertainties outlined above, the model successfully simulates horizontal gradients in chlorophyll in 
the three subregions (Santa Barbara, Los Angeles, and San Diego). The model captures the early, wide-spread 
spring bloom in the Santa Barbara Channel, which occurs as a combination of a coastal bloom driven by spring 
upwelling, followed by a bloom in the central and southwestern regions of the Channel (near the islands) in 
spring and summer (Figure 10). The latter is driven by the strengthening of the cyclonic circulation in the Chan-
nel, which transports nutrients to the upper layers, and is regularly observed in the region (Brzezinski & Wash-
burn, 2011). The model captures the strong seasonality in chlorophyll, wherein concentrations change from near 
zero in winter to up to 8 mg Chl m−3 in spring. Of the three regions, the blooms off Santa Barbara extend further 
into late summer and fall, where the average concentration is approximately 1–2 mg Chl m−3, a pattern replicated 
in both model and observations. Spatially, the model correctly reproduces the main patterns observed in satel-
lite-based reconstructions, with spatial correlation coefficient varying between 0.5 and 0.9, and a cost function 
demonstrating excellent scores. The bias is also excellent (<0.05) in all seasons except winter, when it is reason-
able, potentially because of weaker spatial gradients than observed.

In the Los Angeles subregion, the model predicts broad patterns in chlorophyll concentrations with good spatial 
correlation coefficients across the seasons (0.75–0.89), including a persistent bloom in the San Pedro Bay, con-
sistent with in situ observations (Nezlin et al., 2012), and remote sensing (Figure 11). Spatially, the cost function 
shows excellent scores across all seasons, and the bias is good to reasonable. Both satellite-derived and modeled 
chlorophyll show concentrations in the San Pedro Bay consistently higher than 3 mg Chl m−3 year-round, often 
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extending into the Santa Monica Bay. The model also reproduces the strong offshore gradients in chlorophyll, 
where across less than 15 km offshore surface concentrations are reduced 3–4-fold (<1 mg Chl m−3) further de-
creasing toward the open ocean. The model also reproduces the timing and magnitude of the blooms in the Santa 
Monica and San Pedro Bays. The difference in timing of maximum chlorophyll concentrations between the Santa 
Monica and San Pedro Bays likely reflects differences in nutrient supply. Nutrients, in particular ammonium, are 
available near the surface during winter (see Section 4.3.2), reflecting more vigorous mixing of the wastewater 
plume and land-based nutrient supply by rivers (in particular in the San Pedro Bay) during winter storms (Lyon & 
Stein, 2009). Storms and winter mixing events have been connected to phytoplankton blooms in the region (Man-
tyla et al., 2008; Nezlin et al., 2012). Further offshore in the Los Angeles region, the model recreates the weak 
seasonality of surface chlorophyll, with higher concentrations during winter and spring, and lower concentrations 
in summer and fall. In the offshore region of the Santa Monica Bay, the seasonal cycle is marked by the increase 
of surface phytoplankton between March and May as shown in Figure 12b. Mean chlorophyll values reach up to 
3–4 mg Chl m−3 in April and May, although concentrations below 2 mg Chl m−3 are more common, consistent 
with observations over the same period.

Offshore of the San Diego coast, the model recreates a slight increase in surface chlorophyll in March; however, 
concentrations are generally below 1 mg Chl m−3 year-round (Figure 12c). The oligotrophic conditions of the 
southern Bight (Mantyla et al., 2008; Nezlin et al., 2012) have been attributed to a deeper nitracline, which in 

Figure 10. Comparison of seasonally averaged surface chlorophyll between SeaWiFS remote sensing data (left panels) and the model (right panels) in the Santa 
Barbara Channel, where an important seasonal bloom is observed. The three numbers for each season represent statistics of spatial comparison between the observed 
and simulated chlorophyll: Pearson's correlation (R), cost function (C), and bias (B).
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turns supports a deep chlorophyll maximum layer (Mantyla et al., 2008). This feature is well represented in the 
model, which reproduces relatively high concentrations of chlorophyll in subsurface layers (generally between 20 
and 90 m depth in the region).

4.4.2. Vertical Gradients and Seasonal Variability of Chlorophyll

The goodness-of-fit statistical metrics (correlation coefficient and cost function) for chlorophyll are generally 
excellent or good for most seasons for all subregions (Table 4). We were most concerned with performance for 
these metrics because the remaining statistics may be affected by the aforementioned uncertainties due to the 
fluorometry calibration. The observational measurements should be internally consistent (if not accurate), so the 
shapes of profiles should be “correct” even if the magnitude is off due to poor calibration, and the model was 
able to replicate these shapes accurately. Despite calibration issues, the model reproduced chlorophyll reasonably 
well for the northern Bight subregions of Santa Monica Bay (Figure 13) and Ventura/Oxnard (Figure S11 in Sup-
porting Information S1). Similar figures for other regions are shown in Figures S10–S13 of Supporting Informa-
tion S1. All show that the model is reproducing the magnitude and general shape of observed profiles. However, 
the model did not capture the variability for most regions (except for Palos Verdes), generally scoring reasonable 

Figure 11. Comparison of seasonally averaged surface chlorophyll between SeaWiFS remote sensing data (left panels) and the model (right panels) for years 1998–
2000 in the Santa Monica and San Pedro Bays, where major POTW outfalls are found. The figure highlights the persistent coastal phytoplankton bloom and the sharp 
inshore–offshore gradients. The three numbers for each season represent statistics of spatial comparison between the observed and simulated chlorophyll: Pearson's 
correlation (R), cost function (C), and bias (B).
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or poor in the ratio of standard deviations for most seasons, particularly spring. This is likely a result of the spatial 
and temporal averaging. Chlorophyll is highly variable in space and time and undersampling in either of these 
dimensions will adversely affect variability estimates for a region and season. Therefore, reasonable performance 
for these metrics was not unexpected. This suggests that the model may provide a conservative estimate of phyto-
plankton biomass in the southern Bight, while reproducing accurate spatial and temporal patterns in that biomass.

In addition to transporting nutrients from depth, upwelling “seeds” surface waters with subsurface water masses 
dominated by selected phytoplankton species, stimulating surface blooms near the coast (Seegers et al., 2015). 
The model successfully reproduces this process, wherein the subsurface chlorophyll maximum shoals and inten-
sifies in spring, forced by the vertical movement of the thermocline driven by upwelling. This seasonal dynamics 
occurs across the domain in the model.

Figure 12. Comparison of surface chlorophyll concentration between different years of model output and a climatology from 
CalCOFI in situ data. (a) Near the center of Santa Barbara Channel, (b) offshore the Santa Monica Bay, and (c) offshore San 
Diego. The model reproduces different productivity regimes across the Southern California Bight, with highly productive 
waters in the northern region, where average concentrations greater than 3 mg m−3 are observed for more than half of the 
year, and oligotrophic southern regions, where average surface concentrations rarely exceed 1 mg m−3.
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Offshore, in the more oligotrophic portion of the SCB, the model predicts that more than 60% of the maximum 
concentration of phytoplankton biomass remains below the surface year-round, constantly fed by subsurface 
nutrients injections. This is consistent with observations of a deep chlorophyll maximum throughout the region 
(Mantyla et al., 2008; Nezlin et al., 2018; Seegers et al., 2015), and with observations at SPOT located between 
the Palos Verdes Peninsula and Catalina Island (Figure 3, lower panel). At SPOT, a region weakly influenced by 
anthropogenic nutrients inputs at the surface, the model realistically simulates the seasonal cycle of chlorophyll. 
While ammonium does not exceed typical “natural” values of ∼1  mmol  m−3 below the surface, chlorophyll 
concentrations regularly reach more than 2 mg m−3 between 20 and 40 m in summer, in agreement with in situ 
measurement (Beman et al., 2011; Teel et al., 2018). (Additional figures to support the analysis are reported in 
Figure S23 of Supporting Information S1.)

Santa Monica: chlorophyll

H
Correlation 
coefficient p-value

Cost 
function Bias

Ratio of standard 
deviations

Nash–Sutcliffe 
model efficiency

Number of 
observations

Winter 0 E 0.99 E 9E−06 E 0.48 E 0.09 E 0.91 E 0.94 E 714

Spring 0 E 0.93 E 9E−05 E 0.90 E −0.42 P 0.52 P −0.49 P 716

Summer 0 E 0.99 E 1E−08 E 0.58 E −0.07 E 0.60 R 0.47 R 712

Fall 0 E 0.99 E 8E−08 E 0.48 E 0.16 G 0.75 R 0.76 E 718

All seasons 0 E 0.99 E 4E−08 E 0.50 E −0.01 E 0.73 R 0.80 E 2,860

Table 4 
Statistical Comparison Between In Situ Data and Model Outputs for Chlorophyll Profile in Santa Monica Bay

Figure 13. As for Figure 5, but for chlorophyll concentration. Vertical profiles show a good agreement between simulated and in situ data and display the formation 
of a subsurface chlorophyll maximum in summer, and a surface maximum in winter and spring. Concentrations in winter vary up to +5 mg Chl m−3. Note the very low 
concentrations during 1998 El Niño in the entire water column.
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However, in regions more heavily influenced by anthropogenic nutrients, such as the Santa Monica Bay, the 
chlorophyll maximum progressively deepens from the surface in winter to about 25–30 m depth in spring and 
summer, with chlorophyll concentrations exceeding 5  mg  Chl  m−3 (Figure 13a). This subsurface chlorophyll 
maximum is maintained for 4–5 months (Figure 13b) before the stratification is weakened by winter mixing.

4.4.3. Primary Production

Validation of the rates of primary production, phytoplankton growth, and zooplankton grazing (Table 5) provides 
an independent check on mechanisms responsible for chlorophyll as a state variable. The spatial and temporal 
frequency of these data, garnered from CalCOFI observations and literature values, is low. The most data as well 
as the most standardized methodologies are available for primary production. However, many of the primary 
production measurements used in this validation do not temporally coincide with the model period. Despite these 
uncertainties, the model generally reproduces expected large-scale patterns and seasonal variability in primary 
production.

This large-scale variability was also mentioned in Deutsch et al. (2021). Model and data both show lower produc-
tivity in winter (Figures 14a and 14c) and higher in spring (Figures 14b and 14d), when the primary production 
is high along the coastal band, in the northern Bight around the Channel Islands (Figure 14d), consistent with 
observations (Figure 14b). This is also consistent with the so-called “green ribbon” of high chlorophyll observed 
along the coast throughout the SCB (Lucas et al., 2011). The model reasonably reproduces the seasonal cycle of 
primary production in each of the subregions.

Phytoplankton are generally limited by a combination of nutrients and light, the latter of which is only limiting at 
depth in the SCB (Deutsch et al., 2021).

In winter, nitrogen is high at the surface in the northern SCB, and thus is not limiting. In the southern SCB, light 
and nitrogen are colimiting due to stronger stratification, leading to oligotrophic conditions. In spring and through 
the summer, nitrogen is limiting nearly everywhere except in the Santa Barbara Channel and near the Channel 
Islands, where upwelling and submesoscale eddies maintain high nutrients at the surface.

The scatter plots in Figures 14e and 14f show a comparison of the simulated primary production between the 
in situ CalCOFI data and that derived from remote sensing (empirically adjusting the Behrenfeld–Falkowski 
VGPM). The model shows a correlation coefficient of about 0.6 with CalCOFI, similarly to that reported by 
Kahru et al. (2009) when comparing the VGPM product with CalCOFI. The model shows a stronger correlation 
with VGPM data, with a correlation coefficient of the order of 0.8.

Finally, while slightly outside our model domain and simulation period, the modeled phytoplankton growth and 
zooplankton grazing rates were within the same order of magnitude as the measured rates from the California 
Current Long Term Ecological Research (CC-LTER) project (see Landry et al., 2009; Table 5) in the northern 
portion of the Bight.

Bight 13 Literature Model

Primary production (g C m−2 year−1) 47.4, 1,037.4 250, 1,660

Nitrification (mmol m−3 day−1) 0, 0.225 0.02, 0.08 0.001, 0.27

𝐴𝐴 NO−
3  uptake rate (mmol N mg Chl−1 day−1) 0.005, 2.16 0.03, 0.15

𝐴𝐴 NH+
4  uptake rate (mmol N mg Chl−1 day−1) 0.10, 8.30 0.08, 0.15

Total phytoplankton growth μ (day−1) 0.05, 0.8 0.3, 0.4

Grazing (day−1) 0.02, 0.5 0.3, 1.5

Note. Values are minimum and maximum. Literature values come from Landry et al. (2009) and Li et al. (2011). Bight 13 is 
extracted from McLaughlin et al. (2021) study.

Table 5 
Comparison of Biogeochemical Rates Between Published Literature and Model
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4.5. Carbonate System and Oxygen Parameters

The model predicts changes in dissolved oxygen and carbon system parameters related to photosynthesis and 
respiration, as well as horizontal transport and vertical mixing. As described in Section 4.4.1, the coasts of Los 
Angeles and Santa Barbara are hot-spots of intensified plankton activity, and both systems are impacted by high 
variability and small-scale eddy circulation. In the upper layers, photosynthesis increases both dissolved oxygen 
and pH (Figures 16–18), consistent with observations in these regions. The Santa Monica Bay shows the highest 
oxygen production rates (60 mmol m−2 day−1), followed by the Santa Barbara coast (57 mmol m−2 day−1), while 
rates in the Orange County and San Diego coasts are nearly 2 times lower. Oxygen and carbon are further replen-
ished at the surface by air–sea gas exchange with the atmosphere. Export of newly fixed organic carbon leads in 
both regions to high remineralization rates that consume oxygen and release carbon dioxide at depth. We simulate 
similar high organic matter export (around 30 mmol m−2 day−1) in the Santa Barbara and Los Angeles coasts (see 
Figure S24 in Supporting Information S1).

The reliability of these predictions can be tested by validation of dissolved oxygen and carbonate system pa-
rameters. There are several sources of uncertainty in the dissolved oxygen, pH, and aragonite saturation state 
observational records, which affect data–model comparisons. For dissolved oxygen, sensors are relatively ac-
curate and precise and have a rapid response time (<1 s) when generating vertically resolved profiles. Repeated 
field measurement accuracy for CTD dissolved oxygen sensors was reported to be approximately 8 mmol m−3 
(Coppola et al., 2013). The pH observational record is particularly fraught with uncertainty. An evaluation of pH 
sensor data in the SCB indicated that, while sensor pH measurements were well correlated with discrete bottle 
samples collected at the same depth, there was a clear bias in pH, with sensor measurements underpredicting 
bottle measurements and high variability in the differences between paired bottle and sensor measurements (ΔpH 
ranging from ±0.5; McLaughlin, Dickson, et  al.,  2017). The aragonite saturation state is estimated using an 
algorithm developed for the region (Alin et al., 2012) for both in situ observations and model output, because 
complete measurements of carbon system parameters required to calculate ΩAr are missing. For all three varia-
bles, spatial and temporal undersampling, particularly during seasons with high variability, adds uncertainty to 
the data–model comparison.

Figure 14. (a, b) Maps of vertically integrated Vertically Generalized Production Model (VGPM) net primary production and 
CalCOFI in situ measurements plotted as dots for (a) winter (January and February) and (b) spring (April–June). (c, d) Maps 
of vertically integrated primary production from the model, in (c) winter and (d) spring. Note the higher values for CalCOFI 
in situ measurements as compared to the satellite estimate, in better agreement with the model.
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4.5.1. Vertical Gradients and Seasonal Variability of Dissolved Oxygen

The model reproduces observed seasonal and spatial patterns in dissolved oxygen concentration (Figure 15), 
accurately simulating magnitude, vertical and horizontal gradients, and variability. Quantitative statistical anal-
ysis (see Table 6) indicated that the model performance was “excellent” or “good” for nearly all metrics for all 
regions and seasons. The lowest performance of the model was characterized as “poor” for two subregions for the 
Nash–Sutcliff model efficiency during spring and “reasonable” for some metrics in some subregions, which may 
be related to undersampling during seasons with high variability, as described above. Similar to temperature, we 
tested whether the variability in spring may be impacting the performance statistics by extracting random profiles 
for the region (not shown, expressed with large error-bars in the spring season plots in Figure 16), which show 
how dissolved oxygen on a single arbitrary day can more closely align with the observations. This supports the 
hypothesis that observational uncertainty is behind the lack of observational agreement with the model. Model 
performance was lowest in the Orange County and San Diego subregions, where model predictions tended to 
overestimate dissolved oxygen, consistent with the chlorophyll underprediction, a likely consequence of the lack 
of cross-border inputs from Mexican waters.

The model also reproduces the seasonality in dissolved oxygen in all subregions (Figure 16), characterized by 
large meridional and vertical variability. Near the Channel Islands, dissolved oxygen varies at 50 m by up to 
140 mmol O2 m

−3 between the highest winter values and the lowest summer values, reflecting the dynamics 
of upwelling, productivity, and air–sea gas exchange. Offshore the coasts of Santa Monica and San Diego, the 
variability between winter and summer is of the order of 80–90 mmol O2 m

−3. Surface concentrations are every-
where above 240 mmol O2 m

−3 year-round, consistent with observations. The highest summer concentrations are 
observed at the depth of the deep chlorophyll maximum, reflecting photosynthesis, while decreasing at depth to 
below 150 mmol O2 m

−3. These patterns are generally consistent with observations in the same regions.

During the 1998 El Niño event, the model shows a net decrease of dissolved oxygen near the surface, and a net 
increase below it. During this period, the entire upper layer (0–80 m) is characterized by a homogeneous oxygen 
concentration of about 240 mmol O2 m

−3 over almost the entire SCB (not shown). Only the San Pedro and Santa 
Monica Bays show higher concentrations, which we attribute to the local anthropogenic nutrient enrichment and 
subsequent blooms (see Figure 19). This is consistent with observations of the 1998 El Niño event in California 
coastal waters (Booth et al., 2014; Chavez et al., 2002).

4.5.2. Vertical Gradients and Seasonal Variability of Carbon System Parameters

Together with pH, the saturation state of aragonite (ΩAr) is often used as a metric to identify the potential impact 
of ocean acidification on marine calcifiers, because it is a measure of the availability of carbonate ions for cal-
cium carbonate precipitation (Bednarsek et al., 2019). ΩAr shows similar vertical variability as dissolved oxygen 
(Alin et al., 2012; Juranek et al., 2009). Similar to oxygen loss, reduction in pH and ΩAr in the upper layers can 
be caused by coastal upwelling and local physical processes (Feely et al., 2018); over longer time scales it also 

Figure 15. As for Figure 5, but for oxygen concentration.
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reflects oceanic uptake of anthropogenic carbon from the atmosphere. We utilize sensor pH data sets to evaluate 
vertical profiles in the carbonate system. Because of the known uncertainty in pH measurements, we are most 
concerned with how well the model reproduced the shape of the profiles (i.e., goodness-of-fit estimates, as with 

Figure 16. Comparison of dissolved oxygen concentration between different years of model output and a climatology from CalCOFI in situ data. SB is near the center 
of Santa Barbara Channel, SM is offshore the Santa Monica Bay, and SD is offshore San Diego. Left panels show surface concentrations, right panels concentrations at 
50 m depth.

Figure 17. As for Figure 5 but for seawater pH.
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Figure 18. Comparison of the saturation state of aragonite between different years of model output and a climatology from CalCOFI in situ data. SB is near the center 
of Santa Barbara Channel, SM is offshore the Santa Monica Bay, and SD is offshore San Diego. Left panels show surface values, right panels values at 50 m depth.

Santa Monica

H
Correlation 
coefficient p-value

Cost 
function Bias

Ratio of standard 
deviations

Nash–Sutcliffe 
model efficiency

Number of 
observations

Oxygen

 Winter 0 E 0.97 E 9E−07 E 0.14 E −0.09 E 1.20 G 0.77 E 716

 Spring 0 E 0.91 E 3E−04 E 0.26 E −0.23 R 1.03 E 0.37 R 702

 Summer 0 E 0.99 E 2E−10 E 0.07 E 0.07 E 0.99 E 0.86 E 712

 Fall 0 E 0.97 E 2E−06 E 0.19 E −0.14 G 1.49 P 0.42 R 718

 All seasons 0 E 0.97 E 3E−06 E 0.14 E −0.11 G 1.18 G 0.69 E 2,848

pH

 Winter 0 E 0.99 E 2E−08 E 0.01 E 0.01 E 0.59 P 0.57 G 632

 Spring 0 E 0.97 E 2E−06 E 0.02 E −0.02 E 1.45 P 0.15 P 702

 Summer 0 E 0.96 E 9E−06 E 0.01 E 0.01 E 1.01 E 0.85 E 712

 Fall 0 E 0.97 E 3E−06 E 0.01 E 0.01 E 1.49 P 0.78 E 715

 All seasons 0 E 0.97 E 5E−06 E 0.01 E −0.01 E 1.12 G 0.84 E 2,761

Table 6 
Statistical Comparison Between In Situ Data and Model Outputs for Dissolved Oxygen and pH Profile in Santa Monica 
Bay
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chlorophyll). Sensor-derived pH profile measurements should be internally consistent within a data set (if the sen-
sor is working properly and if pressure issues are minimal), providing some value to goodness-of-fit assessments. 
Given these constraints, the data–model comparisons for pH sensor data were generally “excellent” or “good” for 
all subregions and all seasons 17. Unsurprisingly, the model performance reproducing observational means and 
variability was generally “reasonable” or “poor” for most subregions and seasons, with some, if not most, of this 
disagreement due to difficulties in conducting a validation of the model with large uncertainties in sensor-derived 
pH profiles. Recently, the CalCOFI program has incorporated ΩAr into its sampling design. Although the data do 
not line up with the model period, they are useful for evaluating seasonal variability in the model. Generally, the 
model reproduces seasonal and vertical variability in ΩAr, with higher saturation states in the summer and fall, 
when waters are generally more stratified, and lower values in winter and spring, when upwelling brings under-
saturated waters closer to the surface. ΩAr is also much lower and more highly variable at depth. These patterns 
are consistent with observations throughout the SCB (McLaughlin et al., 2018).

5. Discussion and Conclusions
In this study, we demonstrated the readiness of a high-resolution, dynamically downscaled, physical–biogeo-
chemical model to mechanistically investigate links between a comprehensive reconstruction of terrestrial and 
atmospheric nutrient inputs, coastal eutrophication, and biogeochemical change in the SCB coastal waters. This 

Figure 19. Three-dimensional illustration of temperature, DIN (𝐴𝐴 NO−
3   + 𝐴𝐴 NH+

4  ) and chlorophyll in the Southern California Bight. Panels show winter 1999 and 2000 (left 
panels), winter 1998 during El Niño period (right panels).
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modeling platform is an important achievement because it strikes a balance of capturing the forcing of coast-wide 
basin mesoscale phenomena, while capturing the combined effects of bathymetry and submesoscale eddies that 
intensify transport of nutrients and biological material. Moreover, this model allows hindcast simulations of pri-
mary production, ocean acidification, and oxygen loss at time scales that can approach the multiannual frequen-
cies of intrinsic ocean variability. Future research using this model will make the grand challenge of disentangling 
natural variability, climate change, and local anthropogenic forcing a tractable task in the near-term. The model 
evaluation developed in this manuscript discusses sources of uncertainties for the circulation, nitrogen, carbon, 
and oxygen cycles that serve as a critical element to communicate results to regional stakeholders.

ROMS has a long history of validation and management acceptance through various applications in the CCS 
(e.g., Capet, Campos, et al., 2008; Capet, Colas, et al., 2008; Capet, McWilliams, et al., 2008; Capet et al., 2004; 
Marchesiello et al., 2003; Renault, Molemaker, Gula, et al., 2016; Shchepetkin & McWilliams, 2011). In contrast, 
experience with BEC within the SCB is more limited. Our validation study of coastal eutrophication gradients 
in the SCB nearshore complements the U.S. West Coast-wide study of Deutsch et al.  (2021) and strengthens 
confidence that the basic CCS BEC model formulation, forcing and parameterization is appropriate not only 
for coast-wide analyses but also for detailed local studies of coastal eutrophication in the highly urbanized SCB 
(Kessouri et al., 2021).

In Table 1, we summarize a series of statistical tests of model performance and provide guidelines for their inter-
pretation. These tests are helpful for the validation and interpretation of the model results, because they quantify 
in an accessible and succinct way information related to magnitude, variability, gradients, and systematic biases 
of model variables relative to observations. We further apply these tests to the most relevant biogeochemical var-
iables (see Tables 2–4 and 6). In particular, tests that compare variability are essential for a model that resolves 
submesoscale circulation and the environmental heterogeneity it produces. These tests are used to build confi-
dence in the use of the model for coastal applications, including scenarios and attribution experiments (Kessouri 
et al., 2021). Likewise, they could be helpful metrics for multimodel ensemble comparisons.

The representation of physical processes such as vertical mixing and horizontal circulation was consistent across 
the model and measurements. The model reproduces the main structure of the climatological upwelling front 
and cross-shore isopycnal slopes, and the mean current patterns and associated temperature gradients. We also 
demonstrate good agreement between model simulations and the mean distributions and variability of key eco-
system metrics, including surface nutrients and productivity, and subsurface O2 and carbonate saturation. The 
spatial patterns of primary production, phytoplankton growth rates, and zooplankton grazing are broadly consist-
ent with measured rates. The distribution of primary production is governed by the trade-off between nutrient and 
light limitation, a balance that reproduces and explains the observed spatial variations in the depth of the deep 
chlorophyll maximum. Statistical measures of model agreement on biogeochemical state variables were excellent 
to good and the range of predicted biogeochemical rates on par with observations. Under the realistic flow fields 
produced by ROMS, the conformity of model predictions with a rich observational data set is a strong demon-
stration of model validity for coastal eutrophication applications (Kessouri et al., 2021). We also demonstrated 
that the model responds with confidence to the variability caused by El Niño, modifying the vertical distribution 
of the physical and biogeochemical properties across the upper ocean of the entire Bight, as illustrated by the 
three-dimensional change in key ocean variables shown in Figure 19.

While the broad agreement between the model and observations for a range of variables is encouraging, some 
aspects of the model require further investigation and improvement. Some of the model biases are shared across 
multiple variables, reflecting common underlying processes, such as stoichiometry of biogeochemical reactions 
and solubility. We highlighted some of these biases, for example: (a) spring is the season when we see the larg-
est variability, in particular between March and June, when we move from vigorous surface mixing to a strong 
stratification; (b) along the coasts of Orange County and San Diego, missing nutrients sources from the southern 
boundary (i.e., from the Mexican coast) likely drive underestimation of phytoplankton concentration, productiv-
ity, and carbon export, causing an overestimation of oxygen, pH, and calcium carbonate saturation in the subsur-
face; (c) overestimation of temperature in the water column impacts oxygen and carbon solubility by decreasing 
their equilibrium concentrations; this suggests that some biases, such as too high oxygen in spring, hide over-
compensation by other biogeochemical processes, for example, high productivity or reduced gas exchange; and 
(d) underestimation or overestimation of pH and calcium carbonate saturation state is tightly linked by inorganic 
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carbon chemistry and can in turn reflect biases in circulation, water column structure, temperature, and nutrient 
cycles of the type discussed above.

The structure of the model is also limited in its representation of ecosystem dynamics. For example, phytoplank-
ton diversity is limited in the model, preventing it from properly simulating events such as dinoflagellate-driven 
red tides, which occur over short periods on nearshore coastal scales, typically in spring. Despite the good perfor-
mance of the model in reproducing total primary production and grazing rates, the model does not include mul-
tiple zooplankton functional groups, thus providing little information on the dynamics and transfer of energy to 
higher trophic levels, or the formation of rapidly sinking fecal pellets. From a hydrodynamics point of view, with 
a horizontal resolution of 300 m, the model does not directly resolve physical processes occurring at sales of tens 
of meters (Dauhajre et al., 2019), for example the dilution and entrainment of buoyant wastewater plumes, which 
are parameterized in the model, or the vertical and horizontal transport of tracers in the very nearshore surf zone.

Quantitative and qualitative results of confidence assessments are essential for informing management decisions, 
evaluating management strategies, and providing a basis for risk analyses. The most successful management 
approaches are those that explicitly incorporate uncertainty (e.g., Taylor et al., 2000). An assessment of model 
validation must consider the complex combination of model and observational uncertainties (Allen et al., 2007), 
including (a) uncertainty/error in the model, with the inclusion of intrinsic variability; (b) uncertainty/error in 
measured data; (c) uncertainty from the difference in spatial scale of the model output relative to the measured 
data used in the comparison (specifically, comparing a 0.3-km grid cell to a discrete sampling station); and (d) 
uncertainty from the difference in temporal averaging of the model output relative to the measured data. For pa-
rameters in which we have high confidence in the observational record, that is, temperature and dissolved oxygen, 
model performance statistics show excellent agreement for mean profiles, vertical and horizontal gradients, as 
well as seasonal variability. The model reproduces chlorophyll reasonably well, albeit with some biases, which 
can be in part attributed to a simplified representation of plankton diversity, measurement uncertainty, sparseness 
of in situ data, cloud cover, and algorithm biases in satellite products. Variables such as pH and ammonium show 
lower agreement, likely due to measurement uncertainty and sampling bias, but general spatial and temporal 
patterns are correctly reproduced in the model.

Greater clarity is needed in the requirements for model performance and uncertainty to support decisions on 
management of SCB coastal water quality and eutrophication (Boesch, 2019). These requirements are likely to 
be driven largely by the approach that will be used to interpret a “significant impact” (e.g., existing water quality 
pH and dissolved oxygen criteria, or biologically relevant thresholds; Weisberg et al., 2016), as these have sig-
nificant implications for required model precision and accuracy on different spatial and temporal scales. Future 
efforts to constrain uncertainty could include sensitivity analyses and model ensemble comparisons of the BEC 
biogeochemical component with other biogeochemical models that feature increasingly complex representations 
of planktonic functional groups, benthic communities, and sediment–pelagic interactions. Finally, long-term in-
vestments are needed in coupled chemical–biological observations of phytoplankton and zooplankton diversity 
and community structure. These observations are critical to provide understanding of the evolution of lower 
trophic ecosystem structure with climate change, and their relationship with biogeochemical cycles linked to 
ocean acidification and oxygen loss (Sailley et al., 2013). Ultimately, the need to constrain uncertainty will likely 
scale with the economic import of management decisions under consideration, which could range from increased 
monitoring requirements to multibillion dollar nonpoint source controls and wastewater treatment plant upgrades.

Data Availability Statement
Code is available in Kessouri, McWilliams, et al. (2020). In situ observation data to generate the figures and sta-
tistics are available in Kessouri, McLaughlin, et al. (2020). Local land-based and atmospheric data can be found 
in Sutula et al. (2021a).
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