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Abstract: With the availability of low-cost and efficient digital cameras, ecologists can now survey the
world’s biodiversity through image sensors, especially in the previously rather inaccessible marine
realm. However, the data rapidly accumulates, and ecologists face a data processing bottleneck.
While computer vision has long been used as a tool to speed up image processing, it is only since the
breakthrough of deep learning (DL) algorithms that the revolution in the automatic assessment of
biodiversity by video recording can be considered. However, current applications of DL models to
biodiversity monitoring do not consider some universal rules of biodiversity, especially rules on the
distribution of species abundance, species rarity and ecosystem openness. Yet, these rules imply three
issues for deep learning applications: the imbalance of long-tail datasets biases the training of DL
models; scarce data greatly lessens the performances of DL models for classes with few data. Finally,
the open-world issue implies that objects that are absent from the training dataset are incorrectly
classified in the application dataset. Promising solutions to these issues are discussed, including
data augmentation, data generation, cross-entropy modification, few-shot learning and open set
recognition. At a time when biodiversity faces the immense challenges of climate change and the
Anthropocene defaunation, stronger collaboration between computer scientists and ecologists is
urgently needed to unlock the automatic monitoring of biodiversity.
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1. Introduction

In the age of climate change and anthropogenic defaunation [1,2] innovative methodol-
ogy is needed to monitor ecosystems at large-spatial scales and high-temporal frequencies.
Since the beginning of time, humans have learned from nature through visual observation,
gradually using drawings, paintings, then photographs and videos. With the advent of
low-cost digital cameras, modern ecologists can now visually gather visual data all around
the planet, but they face a data processing bottleneck. While computer vision has long
been used to speed up image processing, it is only since the emergence of deep learning
(DL) algorithms that the revolution in the automatic assessment of biodiversity by video
recording can be considered [3]. In fact, this revolution is underway, as shown by the expo-
nential number of publications combining the words “biodiversity” and “deep learning”
in a web of science bibliographic searches from 1975 to 2021, returning, on 28/10/2021,
175 publications, including zero before 2015, 12 from 2015 to 2017 and 118 since 2020.

The automation of video processing for biodiversity monitoring purposes is even
more pressing in the oceans. Indeed, with 361 million km2, the oceans cover 71% of
our planet and monitoring their biodiversity requires an immense effort only achievable
through automation. Furthermore, due to notorious difficulties in observing underwater
biodiversity (e.g., divers are limited by bottom time and by depth), video surveys have
been increasingly used for decades in many habitats, with some examples in shallow
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reefs [4], sandy lagoons [5], deep seas [6] and in the pelagic ecosystem [7]. Global video
surveys have even already been conducted. For instance, the FinPrint initiative had more
than 15,000 video stations deployed in 58 countries in just three years for the first global
assessment of the conservation status of reef sharks [8]. If the manual processing of such
a large amount of videos was achievable for sharks at the cost of a massive labour effort,
identifying and counting the abundance of thousands of other species in 15,000 video
stations appears virtually impossible without automation. Unfortunately, the field of deep
learning applied to marine biodiversity remains at a preliminary stage. A web of science
bibliographic search combining the words “biodiversity”, “deep learning” and “marine”
from 1975 to 2021 only returned 33 publications, including zero before 2016 and an average
of 5.5 publications per year since then.

While DL algorithms have the potential to unclog the data processing bottleneck of
video surveys, intrinsic characteristics of biodiversity, especially in the oceans, are in fact
challenging this field of artificial intelligence, requiring special attention from computer
scientists and strong collaboration with ecologists. Indeed, the current work of deep
learning applications to automatically detect and classify animals in imagery is based on
two premises: (1) an important database of each class of interest (thereafter “species”), and
(2) a balanced dataset. These hypotheses are not verified for unconstrained wildlife video
census. In particular, we point out three issues inherent to biodiversity video census, as
well as the state of the art of DL approaches to answer them.

The aim of this work is (1) to point out ecological questions that can or cannot yet be
tackled through DL applications by understanding its possibilities and limitations, and
(2) to highlight recent advances of DL to unclog unconstrained wildlife video census.

2. Deep Learning for Biodiversity Monitoring

In recent years, a number of studies have examined the use of deep learning applied
to ecological questions [9,10]. As shown in the most recent papers, the application of DL
for species identification or detection relied on a limited number of species to process, as
well as an important and balanced dataset. For instance, [11] discriminated 20 mammals
species with an accuracy of 87.5% thanks to a dataset composed of 111,467 images; [12]
detected and counted one species in videos with an accuracy of 93.4% with a dataset
composed of 4020 images; [13] identified eight moth species with an F-measure (a common
metric combining recall and precision) of 93% with a dataset of 1800 images, artificially
augmented to 57,600 during the training of the model; [14] discriminated 109 plant species
with an accuracy of 93.9% thanks to a dataset of 28,046 images. In the rare applications of
deep learning on underwater videos [15], discriminated 20 coral reef fish species with an
accuracy of 78% using a dataset of 69,169 images. Most proposals were adding information
to DL models in order to reinforce the identification/detection, such as image enhancement,
object tracking and class hierarchy. Historically, DL models were trained on benchmarks,
composed of hundreds to thousands of images per class, and applied to a closed testing
dataset [16] A closed dataset is defined as classes in the testing dataset that are the same
as classes in the training dataset. Thus, deep learning models trained for biodiversity
monitoring still rely on closed, relatively large and balanced collection of images, following
the framework developed in the field of computer science without considering intrinsic
properties of biodiversity.

3. Biodiversity Rules and Deep Learning Limits

Species are no simple objects to classify. Their distribution and abundance follow a few
universal rules that need to be accounted for in order to unlock the automatic assessment
of biodiversity in underwater videos.

Since the early work of [17–19], ample evidence across world ecosystems show that in
nearly every community in which species have been counted, the distribution of species
abundance is highly skewed, such that a few species are very abundant, and many species
are present in relatively low numbers. For deep learning applications, this first universal
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rule of ecology implies heavily unbalanced training datasets, while balanced datasets are a
crucial part of robust and accurate models. This issue, hereafter referenced as the “long-tail
dataset issue”, is especially acute for speciose communities, such as coral reef fishes, where
several hundred species, of which only a few dozen are abundant, can co-occur at a single
site and at a single time in a video or another sampling station [20,21].Intimately linked
to the first rule, a second universal rule of ecology was proposed by [22] based on the
early work of [23,24]. It states that species abundance is highest near the centre of their
geographic range or environmental niche and then declines towards the boundaries. Thus,
species tend to be scarce near the limits of their distribution. More generally, rarity is an
intrinsic characteristic of biodiversity, with most communities composed of a large number
of rare species. For deep learning, species rarity implies a lack of training images for a large
part of species, where only a few or one individual can be seen in hundreds of hours of
videos. This issue, hereafter referenced as the “scarce data issue”, is significantly marked in
species-rich assemblages, such as coral reef fishes, where most species are demographically
rare [20,21].

The third rule of ecology that seems relevant for deep learning stems from the open-
ness of ecosystems [25,26]. The flow of energy, material, individuals and species across
ecosystem boundaries is ubiquitous and plays a key role in ecosystem functioning. The
degree of openness of marine ecosystems is particularly high because of the aquatic envi-
ronment that facilitates the movement of species and the existence of most marine species
of a planktonic larval stage favouring dispersal [27].Ecosystem openness implies the issue
of applying a deep learning model to an “open world problem”. According to [28],this
issue is intrinsic to DL and is defined by a greater number of classes (in our case, species
or conditions) in the application dataset than in the training dataset. In the context of
biodiversity monitoring, the application dataset is composed of unconstrained recordings
of wildlife and ecosystems, and due to ecosystem openness and the limits of sampling and
annotation efforts, it cannot be considered as a closed-world application.

By comparing the current state-of-the-art of deep learning applications for biodiversity
monitoring with some universal rules of biodiversity, we highlighted three problems inher-
ent in such methods that remain to be solved in order to unlock the automatic assessment
of biodiversity in underwater videos. We now discuss some potential solutions to these
issues (Figure 1).

Figure 1. Ecological rules, their impacts on machine learning and state-of-the-art proposal to
answer it.
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4. Long-Tail Datasets

Long-tail datasets are problematic for deep learning model training. Classes with more
samples in the training dataset have more impact on the final model. As a result, a model
trained with an imbalanced dataset will have more success in predicting classes with more
data, while predicting classes with fewer data will be hampered [29–31]. Furthermore, it
was shown [32] that the degradation of predictions due to imbalanced datasets increases as
the complexity of the task increases, which makes data imbalance of great impact in the
case of complex ecosystems studies. Although a few studies suggested that training quality
(e.g., sufficient data of all classes in datasets) can decrease the impact of imbalances [31,33],
it is impossible to gather enough data for the large number of “rare” species composing
marine ecosystems.

Two major ways of tackling this issue have emerged in the literature.
The first approach to address the long-tail dataset issue consists in balancing the

dataset itself, for which the most popular methods are data augmentation or data generation.
The technique of subsampling, which removes data from classes with large samples is not
considered here because it wastes a large amount of useful information.

Data augmentation consists of artificially augmenting the number of images of classes
with fewer data in order to increase their impact on the model training [34]. There are
numerous methods to increase images datasets, such as resampling, geometric transforma-
tions, kernel filters (sharpness, colours and blurring) or feature space augmentation [35,36].
Apart from resampling, which simply uses the same image multiple times during the train-
ing phase, data augmentation consists in transforming existing images in the dataset and
induces changes in order to mimic changing conditions and limit the overfit of DL models.

Data generation, through a generative adversarial network (GAN), variational autoen-
coder (VAE) or neural style transfer, is another way to increase a dataset’s size [35,37–41].
GANs are Deep Neural Networks (DNN), which, through learning thanks to existing data,
are able to generate new images in the same representation space (i.e., images that “look
like” those of the GAN training dataset). However, similarly to data augmentation, it is
important to induce variations in the artificial dataset to prevent overfitting. Data can also
be generated through visual engines, such as Unreal or Unity.

In the field of object detection, a few studies have directly cropped out objects of their
original scenes and pasted them in new scenes [42,43]. Furthermore, a number of studies
have simultaneously used both data augmentation and data generation [44].

The second approach to tackle the long-tail dataset issue consists in accounting for
the imbalance of samples for each class in the training algorithms itself [45]. The focal
loss, introduced by [46], adds to the Cross-Entropy (CE, a value used to improve deep
model predictions during the training stage) two variables taking into account the ability
of the networks to discriminate all classes and the proportion of each class in the dataset.
In the same spirit, [47–49] propose to modify the CE with respect to dataset imbalances.
Furthermore, [48] propose to control the classification space and margin between classes to
boost the classification of classes with few data.

It has been shown that such methods can significantly improve the accuracy of DL
model predictions [41].

5. Scarce Data

Deep learning models are efficient when a reasonable number of images per class is
available during the training phase. However, ecosystems are composed of a large part of
rare species, with only a few images in training datasets (e.g., the tail of species distribution).

The current popular proposal to unlock DL training with limited datasets is Few-Shot
Learning (FSL), which builds algorithms able to discriminate classes with very few samples,
classically from 1 to 20 images per class. Finn et al. [50] was a precursor of FSL and was
based on a phase of meta-training, during which the model was trained on a different
task at each iteration. To build a model able to discriminate five classes, at each training
iteration, five classes were randomly selected from among the 64 possible training classes.
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This phase enabled the model to “learn to learn” and to adapt itself to new tasks. Once the
meta-training task was completed, the model could be adapted to a new task with very
few images. More recently, [51,52] proposed to improve meta-learning by tweaking the
meta-training or training batch compositions.

Apart from meta-training, matching network and metrics learning are other popular
options [53–56].Such methods aim to train a model to match a “Support Set” (i.e., a small
training dataset composed of 1–5 images per class) with a “Query image” (i.e., the image
to predict the label for). These approaches are two-fold: (1) they require a DL model able
to manage the classification space with few images, and (2) they require the training of a
robust metric to measure distances between the Query Image and the different Support Set
clusters. More details on FSL can be found in the more exhaustive [57] review.

FSL is usually limited to 5–20 classes. However, recent papers are trying to overcome
this limitation with approaches known as Many Classes Few-Shots [58,59] by leveraging a
possible hierarchy among classes. This could be an opportunity for ecological applications,
as there is a known hierarchy between species (i.e., taxonomy). Unfortunately, to date, most
FSL algorithms are not able to discriminate more than 20 classes or with low accuracy [60].
Moreover, the study of methods for both imbalanced datasets and scarce data is for now
limited to traditional benchmarks (such as imageNet [61] or mnist (http://yann.lecun.com/
exdb/mnist/)(accessed on 1 June 2021).) without ecological questions. However, FSL’s
application to underwater videos was first trialled in 2021 [62].

6. Open World Application

Applying a DL model of animal detection and/or species identification in the wild
necessarily implies an “Open World” application. Indeed, DL algorithms, by nature,
optimise a global function capable of discriminating several known classes of interest [16].
For species detection and identification, the algorithms also have to discriminate such
classes from the background [63]. Unfortunately, it is not possible to predict the behaviour
of a DL model when facing objects unseen during the training phase (e.g., new species,
new morphologies, weather conditions, seascapes).

Approaches to tackling open world issues are regrouped under the Open Set Recogni-
tion (OSR) proposal, whether applied to Machine Learning [64–73] or Deep [67,69,74–81].
OSR is a growing field of research that has only been studied since the last decade.

Proposals on OSR rely on three principles that can be associated. First, managing
the classification space in order to maximise inter-class margin and minimiz\se intra-class
spaces occupation. Such managing will create dense clusters of classes representation.
Second, distances are chosen or learned through machine learning to evaluate new images
with respect to learned clusters. Third, thresholds are selected or learned through machine
learning to discriminate “known classes” from “new classes” with respect to the chosen
distance. The overarching assumption is that images of new classes will be classified
in the unused classification space, away from learned classes’ clusters. Applied to DL,
most efficient methods rely on “OpenMax”, proposed by [74] and extended by [75,76],
which replaces the usual classification layer of deep architecture known as “SoftMax”.
The SoftMax function transforms the activation vector (i.e., the last feature vector of a
Deep Network input) into a vector of n values, with n being the number of classes to
discriminate. OpenMax adds a rejection function to SoftMax. This rejection function relies
on the distance computed between previously learned data and the new input. The two
main risks of OSR approaches are (1) depending on a training dataset to learn something
that is not present in the training dataset and (2) potential overfit through the minimisation
of potential classification space for learned classes. We also noted that most approaches are
applied to image classification issues, and very few works cover object detection.

To date, there is only one research article [82] trying to resolve the three issues of
imbalanced datasets, scarce data and the open world at the same time for a classification
problem. Yet, in order to be robust to real life applications, DL needs to move from its initial
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challenge of discriminating a limited number of classes with balanced and numerous data
to a more realistic imbalanced, scarce and open data distribution.

7. Conclusions

Deep learning applications for biodiversity monitoring have been increasingly ex-
plored since 2017 [9] and are still in their early stages in marine realm applications. However,
most studies rely on methods designed for and tested on generic benchmarks, which re-
strains the field of applications. To become an efficient tool for unconstrained wildlife
census and conservation monitoring, collaborative research in computing science and
ecology shall account for some of the universal rules of biodiversity. In this perspective, we
highlighted methods from the state-of-the-art of artificial intelligence. Such methods have
the potential to overcome the current limits of automatic video processing by focusing more
thoroughly on the topics of imbalanced datasets, scarce data and open-world application.
As such, efficient deep networks working with few data, such as few-shot learners and
one-shot learners, improvement of the robustness to data imbalances through a specifically
built learning process, and the ability to treat information absent from the training datasets
with Open Set Recognition paves the way for an interdisciplinary branch of science between
computer sciences and ecology. Rather than merely transferring the DL methods originally
developed to perform on benchmarks to ecological questions, ecologists and computer
scientists should foster their collaborations at the interface of both disciplines. As such, DL
algorithms would become question-driven instead of adapted, which could leverage the
immense challenges that biodiversity is facing with climate change and the Anthropocene
defaunation. Conversely, ecologists may have a great interest in understanding the full
potential offered by artificial intelligence techniques in order to develop new indicators
that require too many human resources to operate until now or for lack of available data.
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