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A B S T R A C T   

Land cover classification of remote sensing data is a fundamental tool to study changes in the environment such 
as deforestation or wildfires. A current challenge is to quantify land cover changes with real-time, large-scale 
data from modern hyper- or multispectral sensors. A range of methods are available for this task, several of them 
being based on the k-means classification method which is efficient when classes of land cover are well separated. 
Here a new algorithm, called probabilistic k-means, is presented to solve some of the limitations of the standard 
k-means. It is shown that the new algorithm performs better than the standard k-means when the data are noisy. 
If the number of land cover classes is unknown, an entropy-based criterion can be used to select the best number 
of classes. The proposed new algorithm is implemented in a combination of R and C computer codes which is 
particularly efficient with large data sets: a whole image with more than 3 million pixels and covering more than 
10,000 km2 can be analysed in a few minutes. Four applications with hyperspectral and multispectral data are 
presented. For the data sets with ground truth data, the overall accuracy of the probabilistic k-means was sub-
stantially improved compared to the standard k-means. One of these data sets includes more than 120 million 
pixels, demonstrating the scalability of the proposed approach. These developments open new perspectives for 
the large scale analysis of remote sensing data. All computer code are available in an open-source package called 
sentinel.   

1. Introduction 

Monitoring environmental changes has become critical for many 
issues related to sustainable development. Deforestation, wildfires, and 
other land use changes have profound impacts on human activities, our 
environment, and biodiversity (Pettorelli et al., 2005; Newbold et al., 
2016; Betts et al., 2017). For instance, there is some evidence suggesting 
that pathogen outbreaks are linked to changes in land cover and 
particularly deforestation (Jones et al., 2013; Morand et al., 2019). 

There are two main approaches to track on-going environmental 
changes: either by monitoring and measuring land uses directly in the 
field, or by remote sensing with satellites, aircrafts, or other airborne 
devices (e.g., unmanned aerial vehicles). Although the second approach 
has some limitations compared to the first one, it has some definite 
advantages that cannot be matched by field data. In particular, satellites 
can cover the whole surface of the Earth with a frequency of a few days 
or weeks (Li and Roy, 2017; Wulder et al., 2018). Furthermore, the most 
recent satellites are equipped with high-resolution sensors which are 
able to record a wide range of information such as reflectance at 

different wavelengths, altitude, or temperature (Fu et al., 2020). During 
the last decade, there has been a remarkable increase in the resolution of 
these sensors. To illustrate this progress, the University of Twente 
maintains a database listing 334 satellites (some being out of service) 
and 396 sensors with a number of bands ranging between 1 and 16,921 
(URL: https://webapps.itc.utwente.nl/sensor/; accessed 2021-08-31). 
Among these sensors, 43 (11%) are indicated to have a resolution of 
one meter or less (until 1.25 cm), and 90 (23%) others are listed with a 
resolution between 1 m and 10 m. 

Spectral imaging sensors record electromagnetic waves and provide 
data in two broad categories: hyperspectral imaging (HSI) where 
reflectance is recorded for several hundreds of narrow bands (typically a 
few nanometres wide), and multispectral imaging (MSI) where reflec-
tance is recorded for a few bands (usually less than 20) each with a width 
of few tens or hundreds nanometres. Both HSI and MSI usually record 
wavelengths beyond visible light (e.g., ultraviolet, infrared). During the 
last decade, a range of open-access remote sensing data have been made 
available (e.g., URL: https://developers.google.com/earth-engine/; see 
also Guo et al., 2020). As an example of these developments, the Sentinel 

E-mail address: Emmanuel.Paradis@ird.fr.  

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observations and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2022.102675 
Received 17 October 2021; Received in revised form 13 December 2021; Accepted 2 January 2022   

https://webapps.itc.utwente.nl/sensor/
https://developers.google.com/earth-engine/
mailto:Emmanuel.Paradis@ird.fr
www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2022.102675
https://doi.org/10.1016/j.jag.2022.102675
https://doi.org/10.1016/j.jag.2022.102675
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Applied Earth Observation and Geoinformation 107 (2022) 102675

2

program is made of seven satellites currently in orbit around the Earth 
(URL: https://sentinel.esa.int/). Two of them, Sentinel-2 A and Sentinel-2 
B, are equipped with an MSI sensor which records reflectance in thirteen 
bands from ultraviolet (UV) to infrared (IR) including three bands in 
visible light (Gascon et al., 2017). The Sentinel program stands apart 
from other similar programs because the data are available publicly in 
near-real time through the Copernicus datahub (URL: https://scihub. 
copernicus.eu/). Each satellite covers the same location every two 
weeks, so the same location is potentially covered every week giving the 
opportunity to monitor environmental and land use changes at relatively 
high temporal resolution (Li and Roy, 2017). 

One of the applications of spectral imaging data is to infer land cover 
and land use. Two types of approaches are used for this objective. In 
supervised classification methods, there is a reference sample with 
known land cover which is used to “train” the classification procedure in 
a first step, and the sample with unknown land cover is then classified in 
a second step. In unsupervised classification, there is no reference 
sample: classes or groups are defined following different criteria (see 
Wulder et al., 2018, for a recent review). As discussed below, both ap-
proaches have their respective advantages. For unsupervised classifi-
cation, the k-means algorithm has been widely used in various contexts 
(see next section). 

The objective of the present paper is to present a new method, called 
the probabilistic k-means, to analyse large-scale, spectral imaging data. 
The most important original feature of this method is to take into ac-
count variance heterogeneity among groups. Furthermore, a specific 
aim was to perform analysis of images with several millions of pixels in 
reasonable times. For instance, an image (or product) of Sentinel-2 
(about 10,000 km2) at a 10-m resolution has more than 120 million 
pixels. The method is available in a computer package called sentinel

(which also includes functions to query, manage, and download data 
from the Copernicus datahub). Before detailing the proposed method-
ological development, the next section presents a review of the recent 
literature on the applications of the k-means method to the analysis of 
remote sensing data. Four applications are then presented with two HSI 
data sets and two MSI data sets. The discussion gives further compari-
sons with previous contributions on unsupervised classification. The 
perspectives of current and future developments are also discussed. 

2. Literature review 

This review focuses on developments and applications of the k-means 
method in remote sensing data analysis published during the last ten 
years. Where possible, the sizes of the imaging data and the software 
used have been noted. 

Several papers attempted to develop methods aimed to improve the 
properties of the k-means method. Galluccio et al. (2012) developed a 
method which assumes there are modes (areas of highest densities of 
observations) in the distribution of reflectance. These modes are found 
in the multivariate density space using the link lengths of a minimum 
spanning tree. Basically, the goal of their method is to initialise the 
centres of the k-means algorithm. They applied it to image data from 
Paris (512 × 521 pixels, 7 bands) and from Mars (300 × 120 pixels, 256 
bands). Another study found that the standard k-means algorithm usu-
ally performs poorly on HSI data (Zhang et al., 2013). These last authors 
define the pure neighbourhood index (PNI) to perform neighbourhood- 
constrained k-means which adds steps to the iterations of the standard k- 
means with a weight function defined with the PNI. They applied this 
method to a 200 × 200 pixels image with 80 bands. Haut et al. (2017) 
used the MapReduce computational framework to analyse two images 
from Indian Pines (145 × 145 pixels and 2678 × 614 pixels, both with 
220 bands). They programmed their analyses with Apache Spark for 
distributed computing and Python Scikit for the k-means. However, they 
did not assess the effect of different numbers of groups. 

He et al. (2014) showed that support vector machine (SVM), a su-
pervised classification method, performs very well even with a small 

training data set. On the other hand, fuzzy k-means (FKM) was found to 
have a reduced usefulness with large data sets. These authors proposed a 
fusion of the two methods where the entropy is used to find the 
appropriate number of groups (see below for details about the use of 
entropy). They applied their method on two SPOT6 images 
(1982 × 1630 pixels and 2113 × 2151 pixels) each with six reference 
classes. Their analyses were implemented in ENVI and IDL (ver. 4.8). 

Zhang et al. (2016) used an object-based approach defining a hier-
archy from the pixels up to the scene. Their analyses used a combination 
of principal component analysis (PCA) on HSI images, k-means with 
drop-out, and SVM. The code was implemented in LIBSVM. They applied 
their approach to the Indian Pines data (145 × 145 pixels, 220 bands) 
and the University of Pavia data (610 × 340 pixels, 103 bands). They 
concluded that the drop-out k-means improves efficiency of the standard 
k-means with a small computational burden. They also demonstrated 
that the spatial information contained in the neighbourhood of pixels is 
useful, although their results did not relate this improvement with the 
identification of physical objects on the ground. Similarly, in another 
study Kavzoglu and Tonbul (2018) used k-means to perform image 
segmentation in a framework of object-based image analysis. They 
applied their approach to an image with 5000 × 3700 pixels and 8 
bands. They found that k-means generally performs well for image 
segmentation using different specific algorithms. They implemented 
their computations with ENVI and MATLAB. 

Image matching and indexing are also applications of k-means. Cao 
et al. (2013) used k-means to perform image indexing based on the 
Kullback–Leibler discrepancy. They provided code in C++ and Matlab. 
Sedaghat and Ebadi (2015) performed image matching using k-means in 
a second step to classify images into groups. They used MATLAB to 
implement their method. 

Several papers used k-means to perform fine-scale spatial structure 
analyses. Kuo et al. (2019) analysed canopy structure by quantifying leaf 
angle distribution using a combination of k-means and an octree data 
structure: they analysed point cloud data (PCD), a kind of LiDAR (light 
detection and ranging) data which can reconstruct 3-D structures. The 
PCD were first split into octree subspaces so that each single octree unit 
contained no more than 1500 points. Each octree unit was then analysed 
with a standard k-means. Direct observations led these authors to infer 
that a leaf used between 500 and 1500 points, which helped them find 
the number of groups in the k-means analyses. Reza et al. (2019) used 
graph-cut and k-means to identify rice grains and estimate their sizes: 
they first applied k-means on the red-green–blue (RGB) image data after 
converting them to the Lab colour space, and then used a graph-cut al-
gorithm to identify the rice grains. The best value of number of groups in 
the k-means analyses was found with the histogram method (Kanthana 
and Sujathab, 2013). The analysed images had 600 × 400 pixels. Wang 
et al. (2019) used k-means for image segmentation to identify roads from 
satellite images: the image data were converted from the RGB space into 
the Lab colour space and then analysed with k-means fixing the number 
of groups to three (no information on image size was given). 

Some authors used k-means to quantify temporal changes from 
several images. Kesikoglu et al. (2013) combined PCA with a fuzzy 
version of k-means called c-means to analyse temporal changes from 
image differencing, so there were effectively only two groups in their c- 
means analyses. Lv et al. (2019) used k-means with adaptive majority 
voting (AMV) to quantify change magnitude image (CMI). Their method 
starts from a “central” pixel, and builds a region around it. In a second 
step, a k-means analysis is done in the region with two groups (changed 
vs. unchanged pixels). In a third step, the region is extended with the 
AMV algorithm. They analysed four images ranging in size from 412 ×

300 to 950 × 1250 pixels. 
Overall, k-means is a widely used method in image and remote 

sensing data analysis; it is often used in combination with other data 
analysis methods (e.g., PCA). A remarkable diversity of approaches have 
been developed during the past decade most of them with different 
objectives. The sizes of the data are generally moderate, and very little 
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open-source software has been contributed by these studies. 

3. Methods 

3.1. Data 

Remote sensing data are usually arranged in a rectangular raster with 
variables associated with each pixel of the raster. These variables may be 
univariate (i.e., a single value is associated to each pixel) or multivar-
iate. In this paper, we consider a multivariate setting where these vari-
ables are the values of reflectance measured in different wavelengths 
(the bands). In the present study we do not consider the spatial 
arrangement of the pixels in their respective rasters, so that the pixels 
are assumed to be independent. Therefore, the data under consideration 
below are denoted as X with the values of reflectance arranged in a 
matrix with n rows and p columns, where n is the number of pixels of the 
raster (i.e., the product of the number of rows by the number of columns 
of the raster), and p is the number of bands of the image. Measures of 
reflectance are usually more or less noisy (Chavez, 1988; Zhang et al., 
2018). The exact values measured by the sensor depend on land cover 
and also on several factors such as the satellite or aircraft position, the 
time of the day, the atmospheric conditions, and so on. 

3.2. Probabilistic k-means 

The k-means method is a widely used, unsupervised classification 
procedure (Hastie et al., 2009). It requires specification of the number of 

groups (or clusters), denoted as K here, then the algorithm proceeds by 
assigning observations to a group depending on the distance to the 
group means (Lloyd, 1982). If the values of these means are unknown 
(which is the most common case), some initial values are chosen 
randomly, the observations are assigned as explained above, the group 
centres are recalculated, and the whole procedure is repeated until 
group assignments are stable. The method works with multivariate data 
using a multivariate distance such as the Euclidean distance. 

Standard k-means algorithms work well when within-group vari-
ances are homogeneous so that group assignments using distances are 
likely to be valid. However, when variances are heterogeneous, this is 
likely to result in misclassification of observations. Fig. 1 shows a small 
simulated example with two groups each with 200 observations drawn 
randomly from two normal distributions with means 0 and 6, and 
standard-deviations (SD) 2 and 0.1, both respectively for each group. 
Even though the two means are very different, the large SD of the first 
group is likely to result in mixing of observations from both groups, and 
thus a k-means-based classification may be in error for these observa-
tions. The standard k-means indeed resulted in 15 misclassified obser-
vations in this case. 

A solution to this problem is to rely on a probabilistic approach when 
classifying observations in the different groups. In the above simple 
simulated case, it is straightforward to apply this approach: after 
running a standard k-means classification, the means and SDs of both 
groups are calculated, then the probability densities are calculated for 
all observations using parameters of both groups: each observation is 
reclassified to the group for which it has the highest density. This can be 

Fig. 1. (A) Two normal distributions with mean and standard-deviation 0 and 2 (red) and 6 and 0.1 (blue). (B) Two hundred observations, shown above the x-axis, 
were simulated from each distribution in A. After a standard k-means classification, 15 observations were misclassified. After a probabilistic k-means, four obser-
vations remained misclassified. The curves show the densities inferred from the observations. 
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represented graphically with a classification limit where the inferred 
density curves intersect (Fig. 1B). Note, on the other hand, that the limit 
for the standard k-means is defined by the equidistant point between the 
two group means. The reclassification procedure can be repeated until 
the overall classification is stable. In this simple case, a single iteration is 
enough and results finally in four observations misclassified. 

This approach can be generalised to multivariate data using the 
densities of multivariate distributions. However, this requires estimation 
of a number of parameters which is likely to grow substantially with the 
number of variables. For instance, a multivariate normal distribution 
with p variables has 2p+p(p − 1)/2 parameters: p means, p SDs, and 
p(p − 1)/2 covariances. Therefore, the number of parameters is propor-
tional to p2. A way to avoid having to estimate too many parameters 
when p increases is to first perform a PCA on the matrix X. PCA is usually 
used to perform dimension reduction in order to obtain a number of 
variables smaller than p that maximise the overall variation in X. 
Another property of PCA is that these principal components (PCs) are 
orthogonal: in other words, the coordinates of the observations (here the 
pixels of the image) on these PCs have zero covariances. We denote the 
matrix of these PC-based coordinates as Z. From a geometrical point of 
view, a PCA resulting in p PCs is a global rotation of the axes defined by 
the original p variables with the constraint that the covariances of the 
PCs are equal to zero. Therefore, this considerably simplifies the cal-
culations of multivariate normal densities since it is now needed to es-
timate only 2p parameters (p means and p SDs) for each group of the 
classification. 

Another crucial difference with PCA as commonly used in data 

analysis is that it is important here to not scale the original variables (i. 
e., divide them by their respective SD) before performing the PCA. If one 
of the variables has a large variance compared to the others, then it will 
contribute overwhelmingly to the PCA and will pull the overall variation 
in the data compared to the patterns from the covariances. This is the 
reason why variable scaling is usually recommended before running a 
PCA (e.g., Venables and Ripley, 2002). However, the present goal is to 
discriminate groups with the calculated PCs where the overall variance 
is actually the consequence of the existence of these groups. So, in order 
to not erase this overall variance, the variables should not be scaled. 

A word should be said about the choice of the form of the density 
distribution. The present work assumes that the rows of Z (not X) follow 
a multivariate normal distribution. Furthermore, it is assumed that this 
distribution is non-homogeneous: its parameters (means and SDs) vary 
among the K groups and are assumed to be homogeneous within each 
group. In practice these assumptions may not be valid and other dis-
tributions may reflect more accurately the distribution of reflectance 
within each group. However, at the moment there is no theoretical or 
empirical justification for one distribution rather than another. 
Furthermore, the crucial point here is to assess variation among groups 
of different land cover and the normal distribution with its two pa-
rameters (mean and SD) may be flexible enough to accommodate such 
variation. 

Fig. 2. Workflow of the probabilistic k-means for the analysis of spectral imaging data.  
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3.3. Selecting the number of groups 

3.3.1. Likelihood-based information criteria 
With unsupervised classification, there are two possible situations: 

the number of groups may be known a priori, or this number must be 
inferred from the data. In the second situation, a parametric, probabi-
listic approach makes possible to use standard statistical tools such as 
Akaike’s information criterion (AIC, Akaike, 1973)which requires to 
compute the likelihood of the data. We must take care that group 
assignment is uncertain and has to be considered explicitly when 
calculating the likelihood function. Thus, we have to calculate the 
probability for the ith row of Z (zi) using the parameters (means and SDs) 
estimated for group j multiplied by the probability that pixel i belongs to 
group j. These products are then summed over all K groups for each 
pixel. Finally, the log-likelihood is the sum of the log-transformed 
probabilities over all n pixels: 

L =
∑n

i=1
ln

[
∑K

j=1
f̂ j × ξ(zi|μ̂j, σ̂ j)

]

, (1)  

where ξ if the multivariate normal density function, f̂ j if the estimated 
proportion of pixels in group j, and μ̂j and σ̂ j are the estimated param-
eters for group j. There are thus 2pK+K − 1 parameters estimated from 
the data: mean and SD for each column of Z and for each group, and 
K − 1 proportions (since 

∑K
j=1fj = 1). We may now calculate the AIC: 

AIC = − 2L + 2(2pK +K − 1). (2)  

The value of K resulting in the smallest value of AIC is to be preferred. 
Another criterion which can be used is the Bayesian information crite-
rion (BIC) defined by (Schwarz, 1978): 

BIC = − 2L +(2pK +K − 1) × lnn. (3) 

A simulation study is presented in the Supplementary Information 
which shows that both criteria are not robust to non-normality of the 
data. In particular, if the observations follow a uniform distribution and 
there is no heterogeneity (i.e., all observations are generated from the 
same distribution, thus K = 1), then both AIC and BIC will select a 
model with K > 1. Furthermore, in this situation the values of AIC and of 
BIC tend to decrease continuously when K is increased (see Supple-
mentary Information for details). 

3.3.2. Informational entropy 
Another procedure for selecting the value of K is based on the prin-

ciple of entropy (Burrough et al., 2000). This approach can be applied if 
there is a measure of uncertainty in the assignment of observations to the 
groups: in that case each observation is given a value of membership to 
each group with the constraint: 

∑K

j=1
mij = 1, (4)  

where mij is the membership value of observation i for group j. The 
entropy, H, for a given value of K, is then calculated with: 

H = −
1
n
∑n

i=1

∑K

j=1
mij × lnmij. (5)  

The value of K resulting in the smallest value of H gives the best 
description of the data. Membership values have been defined in the 
context of FKM (Burrough et al., 2000; He et al., 2014), but they can be 
adapted in a straightforward way to the probabilistic k-means developed 
here using the probability densities. Furthermore, the computation of 
the multivariate normal densities on a log-scale (see next section) makes 
possible to calculate H even when densities can reach very low values 
(see Supplementary Information). 

3.4. Computational details and implementation 

The overall workflow is summarised on Fig. 2. The whole procedure 
was implemented in code written in the R and in C computer languages. 
The PCA was performed by singular value decomposition (SVD) which is 
faster and numerically more stable than the usual eigendecomposition 
(Venables and Ripley, 2002). With HSI data, it was observed that a 
relatively substantial number of PCs had nearly zero variance so that 
keeping all PCs made the computations much slower for no benefit: the 
number of PCs selected was set to keep at least 99% of the overall 
variance. For MSI data, all PCs are kept. The coordinates on the p PCs are 
first analysed with a standard k-means using Hartigan and Wong’s 
(1979) algorithm which is particularly efficient and fast. The means and 
SDs are calculated for the p PCs and each group. The multivariate normal 
densities are calculated on a logarithmic scale which avoids numerical 
underflows and considerably simplifies the calculations (the overall 
densities are calculated with sums instead of products if full densities 
were used). Furthermore, the mathematical expression is factorised to 
avoid repeating redundant computations (e.g., the terms − ln(

̅̅̅̅̅̅
2π

√
σj)

were computed once for all observations). These factorisations result in 
running times around 2.5 times faster than using the internal log-density 
function. Finally, the densities are evaluated separately for each pixel 
and only its classification is stored, avoiding to store all densities which 
would require an array of npK real values (amounting to 4.1 GB of 
memory with n = 3.3× 106, p = 13, and K = 12). Furthermore, this 
makes the overall memory requirement independent of the value of K. 
The running times are predicted to be proportional to n, p, and K (i.e., 
O (npK)). It was evaluated that a single iteration of the algorithm takes ≈
K
5 sec on a standard laptop with n = 3,348,900 and p = 13. On the other 
hand, the number of iterations required to reach convergence depends 
on the data: analyses of data sets with strong structure converge quickly 
(typically less than 10 iterations with K = 2), whereas if there is no 
structure convergence takes longer to reach. 

The probabilistic reclassification is iterated until convergence. 
Furthermore, two stopping criteria have been defined: the maximum 
number of iterations can be fixed by the user (e.g., 200); or the pro-
cedure can be stopped when less than a fixed proportion of pixels are 
reclassified (e.g., if this proportion is zero, then iterations are stopped 
when no pixel is reclassified). This probabilistic k-means has been coded 
in a C routine called from R. 

All code is available in a package named sentinel distributed on 
GitHub (URL: https://github.com/emmanuelparadis/sentinel). Some 
code is also provided to use the standard k-means method in order to 
ease comparisons with the present method. This package includes code 
to query the SciHub repository where the Sentinel data are stored. 

3.5. Applications 

Five data sets were analysed (Table 1). They are described in details 
below. 

3.5.1. Hyperspectral data: Pavia University and Okavango 
Two hyperspectral data sets were considered. The Pavia University 

and Okavango data are two HSI data sets that have been preprocessed 
(URL: http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote 

Table 1 
Main features of the data analysed in this study.  

Site Number of pixels Resolution (m) Bands 

Pavia University 207,400 (610× 340)  1.3 103 
Okavango 377,856 (1476× 256)  30 145 
Montpellier 89,161,101 (9799× 9099)  6 4 
Eastern Thailand 120,560,400 (10980× 10980)  10 4 
Eastern Thailand 3,348,900 (1830× 1830)  60 13  
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_Sensing_Scenes; accessed 2021-07-07). Both data sets are associated 
with reference data defined as “ground truth” with 9 and 14 classes of 
land cover, respectively (Tables S1–S2). Two analyses were performed 
with both data sets. First, the ground truth data only were analysed with 
the standard and the probabilistic k-means with K set equal to the known 
number of classes of land cover for each data set. The classification 
performance of each method was quantified with the overall accuracy as 
defined by Olofsson et al. (2014). Because both k-means algorithms are 
unsupervised, the reference and inferred land cover values were 
matched with the Hungarian algorithm, a method which aims to 
maximise the values on the diagonal of a matrix, as implemented in the 
package RcppHungarian (Silverman, 2019); the diagonal values of the 
matrix output were used to calculate the accuracy. Second, the complete 
data set was analysed with the probabilistic k-means using increasing 
values of K: the value of H was computed for each value of K and the 

final maps were drawn for both standard and probabilistic k-means 
using the value of K giving the smallest value of H. 

3.5.2. Southern France 
An image data taken by the satellite SPOT6 was analysed. The image 

was taken on 2019-06-27 above the South of France and had no cloud 
cover. The area of the image was estimated to be 3207 km2. A pre-
liminary analysis of the CORINE land cover database over this area 
found that it is covered by 34 distinct land classes (as defined by the 
CORINE database). Out of these 34 classes, 17 were represented by less 
than 0.5% of the area, whereas 14 classes were represented by at least 
1% of the area (Tables S3). The data were analysed with the probabilistic 
k-means with increasing values of K: the value of H was computed for 
each value of K and the final maps were drawn for both standard and 
probabilistic k-means using the value of K giving the smallest value of H. 

Fig. 3. Maps of the Pavia University data set considering only the reference data.  

Fig. 4. Values of entropy (H) with different numbers of groups (K) for the Pavia University and Okavango data sets.  
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Fig. 5. Maps of the Pavia University data set.  

Fig. 6. Maps of the Okavango data set considering only the reference data.  
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3.5.3. Eastern Thailand 
One area was selected in Thailand extending from N 14◦27′56′′ to N 

13◦27′49′′, and from E 100◦51′19′′ to E 101◦51′39′′. A single Sentinel-2 
image taken on 2021-02-05 was selected with 0% cloud cover. The 
whole product (109.8 × 109.8 km  = 12,056.04 km2; Table 1) was 
analysed with the same procedure than for the Southern France data. 
With Sentinel-2 data, four bands are available at a resolution of 10 m, six 
at 20 m, and three at 60 m. Two data sets were built from this image: 
using the highest resolution bands (10 m, 4 bands) and using all bands 
aggregating the highest resolution bands at 60 m (13 bands). Similarly 
to the Southern France data, there was no ground truth data for this data 
set. An analysis of land cover data from the European Spatial Agency 
Climate Change Initiative (ESA/CCI; URL: http://maps.elie.ucl.ac. 
be/CCI/viewer/index.php; accessed 2019–11-27) for the period 
2016–2018 identified twelve main land cover classes (Tables S4). 

4. Results 

4.1. Pavia University 

The overall accuracies were 0.55, and 0.62 for the standard and 
probabilistic k-means, respectively. The maps drawn with the ground 
truth data only show that some areas are not correctly identified with 
both methods (Fig. 3). However, some areas look more homogeneous 
with the probabilistic than with the standard k-means which is consis-
tent with the better overall accuracy of the former. 

The smallest value of H was observed for K = 2, and then the value of 
H increased when the value of K increased as well (Fig. 4). However, two 
local minima of H were observed for K = 6 and K = 9. Fig. 5 shows the 
overall maps inferred from the k-means methods assuming K = 9. 

4.2. Okavango 

The overall accuracies were 0.62, and 0.79 for the standard and 
probabilistic k-means, respectively. The ground truth data were more 
dispersed than for the previous data so that the improvement accuracy 
of the probabilistic k-means was not so clearly visible (Fig. 6). 

A pattern similar to the previous data was observed with respect to 
the relation between H and K: the smallest value of H was observed for 
K = 2, and then the former increased when the latter increased (Fig. 4). 
Local minima were observed for K = 6, K = 9, and K = 11. Fig. 7 shows 
the overall maps inferred from the k-means methods assuming K = 11. 

4.3. Southern France 

The value of entropy was very low for K = 2 (H = 0.004) meaning 
that classification between the two groups was practically almost perfect 
(Fig. 8). However, a very substantial portion of the study area was 
covered by water which could readily explain this result. Indeed, as for 
the previous data sets, the value of H increased when K increased. 
However, a local minimum was observed for K = 15. The maps inferred 
from both k-means methods assuming K = 15 show some interesting 
differences (Fig. 9). Particularly, the coastal lagoons which were found 
to be covered with different classes by the standard k-means were all 
grouped in the same class by the probabilistic k-means (Fig. 9). 

4.4. Eastern Thailand 

The values of H varied with respect to K in the same way than for the 
previous data sets: the smallest value was observed for K = 2 and local 
minima were observed for K = 12 at the finest resolution (10 m) and for 
K = 15 at the coarsest resolution (60 m; Fig. 10). These two values of K 
were selected to infer the maps at their respective resolutions 
(Figs. 11,12). Overall, the maps inferred with probabilistic k-means 
show better delimitation of the fields compared to the results obtained 
with the standard k-means, particularly for the paddy fields on the west 
of the study area. 

4.5. Computational efficiency 

With 3,348,900 pixels and 13 variables, each iteration with K = 12 
took around 2.4 s. Therefore, 200 iterations (the default limit set in the 
code of sentinel) took 8 min. Furthermore, it was observed that in all 
cases, with either real or simulated data, there was convergence to a 
stable classification with no further reassignment. In all cases reassign-
ment was around 0.001% of the pixels after 200 iterations. 

5. Discussion 

The present work has contributed a new k-means method which 
appears as an improvement compared to currently available imple-
mentations with respect to three points: better accuracy, possibility to 

Fig. 7. Maps of the Okavango data set.  
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identify the number of groups, and ability to handle and analyse very 
large data sets. Each point is discussed below. 

With both HSI data sets for which ground truth data were available, 
the method proposed here showed better overall accuracy compared to 
the standard k-means. The improvement was particularly substantial for 
the Okavango data set. Although no ground data were available for the 
two MSI data sets analysed here, the maps suggest improved classifi-
cation with the probabilistic method compared to the standard k-means. 
These results clearly suggest that the proposed probabilistic method has 
improved performance compared to the standard k-means for land cover 
classification of spectral imaging data. The fact that the assumption of 
homogeneous variance is relaxed in this method is certainly an impor-
tant factor to explain this improvement (see further below). 

The present results emphasise the importance of selecting the num-
ber of groups, K. The above review suggests that this issue did not 
receive a lot of attention in the recent literature. Although the 

information criteria presented above seem good candidates to select the 
best value of K in a probabilistic framework, this was not conclusive (see 
Supplementary Information). Clearly, the lack of statistical robustness 
shown by this approach is problematic and needs to be investigated 
further. On the other hand, the entropy-base criterion, H, proposed by 
Burrough et al. (2000, and previous references therein) appears a good 
alternative. However, some care must be taken when using it. It was 
observed that the smallest value of H was always obtained with K = 2 
groups. This could make sense considering that spectral imaging data 
often show a strong discrimination between two broad classes of land 
cover (e.g., land vs. water, urban vs. vegetation), so that it is expected 
that classification with K = 2 yields essentially very good results so that 
all values of membership, mij, are either zero or one. On the other hand, 
in all applications the values of H showed a local minimum for more 
realistic values of K. Therefore, it is suggested here that the entropy- 
based criterion is useful provided it is used within a range of realistic 
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values of K (i.e., avoiding too small values). 
The main feature of the approach adopted in this paper is to relax the 

assumption of homogeneous variance which underlies the standard k- 
means algorithm. The assumption of homogeneous variance is an 
important feature of the ISODATA method (Ball and Hall, 1965) which is 
derived from the standard k-means. Memarsadeghi et al. (2007) when 
implementing the ISODATA assumed that ‘the clusters are well- 
separated, that is, the probability that a point belonging to one cluster 
is closer to the centre of another cluster than to its own cluster centre is 
negligible.’ As illustrated above, if the variances are homogeneous this is 
likely to result in misclassifications. Interestingly, Memarsadeghi et al. 
(2007) made no parametric assumption on the distribution of the data 
within groups (or clusters). Indeed, if the groups are well separated and 
their variances small enough, there is no need to make any such 
assumption and the standard k-means algorithms are very likely to 
perform very well. The DBSCAN method (Ester et al., 1996; Li et al., 
2019) is another unsupervised clustering method related to k-means 
which takes into account the spatial configuration of the data as well as 

noise. However, the DBSCAN, although closely related to probabilistic k- 
means, is more complex and current implementations have been 
explored only with limited data sizes, typically with a few ten thousand 
observations (Hahsler et al., 2019). 

There has been substantial research on applying the k-means method 
to the analysis of remote sensing data (e.g., Lu et al., 2010; Pascucci 
et al., 2018, and the above review of the recent literature). Besides these 
applications to remote sensing, an approach has recently been devel-
oped to take noisy data into account in the context of quantum 
computing (Kerenidis et al., 2019; Khan et al., 2019): these proposals 
can be compared to the method proposed here in the sense that they aim 
to deal with overlapping clusters; however, they treat this issue quite 
differently. Ma et al. (2016) proposed an elaborate method named 
spectral clustering which seems to outperform other classification 
methods. However, spectral clustering appears to be a computationally 
costly method and seems unfeasible even with a few ten thousands 
pixels (Pascucci et al., 2018). On the other hand, the method proposed in 
this paper is economical in terms of computations as it only requires 
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evaluation of densities for each pixel and each group. For instance, 
Rodriguez and Laio (2014) developed a clustering method based on 
densities but also requiring calculation of distances among observations. 
More recently, (Liu et al., 2021) proposed a method, with a name similar 
to that presented here, which is based on a probabilistic modelling of the 
standard k-means which is solved by numerical optimisation (see also Li 
et al., 2020). However, similarly to the standard k-means, and by 
contrast to the present method, they assumed homogeneous variance 
among groups. These authors implemented their method in MATLAB 
and presented several applications with artificial and real data sets of 
modest sizes (several thousands observations or less) with known 
number of groups. 

Richards et al. (2010) present a method that shares some similarities 
with the present one as it is based on the multivariate normal distribu-
tion. However, these authors proposed to maximise the log-likelihood 
function by expectation–maximisation (Dempster et al., 1977). Be-
sides, they weight the contributions of the pixels to the likelihood 
function with respect to their spatial contiguity, which was not consid-
ered in the present work (but see the perspectives below). 

In terms of running times, the probabilistic k-means has an attractive 
feature. As reported above, the analysis of a complete Sentinel-2 data set 
covering more than 12,000 km2 at a resolution of 60 m with 13 bands 
takes around 8 min. Additionally, three analyses with several million 
pixels (including one with more than 108 pixels) are reported showing 
how the method presented here is scalable to very large data sets. 

In addition to the developments on k-means, the package sentinel

presented in this paper adds to the software tools available for the 
analysis of Sentinel-2 data. Ranghetti et al. (2020) presented another 
package written in R, sen2r, to handle and manage Sentinel-2 data. By 
comparison, sentinel makes it possible to search, download, and manage 
products and data from all Sentinel satellites. Besides, the R environment 
makes it possible to read the different file formats used in Sentinel 
products thanks to the packages rgdal (Bivand et al., 2018) and ncdf4

(Pierce, 2019). These integrated tools have the potential to contribute to 
a software environment for time-series analysis of remote sensing data 
(Gray and Song, 2013; Cai et al., 2014; Gómez et al., 2016). 

The present paper aims at developing and implementing a fast un-
supervised classification method to analyse multispectral data. The ul-
timate goal of this work is to be able to analyse large scale remote 

sensing data to infer changes in forest cover over large areas (see e.g., 
Hermosilla et al., 2018; Paradis, 2020; Paradis, 2020). The approach 
presented in this paper offers several perspectives of future development 
in several directions. Although k-means is basically an unsupervised 
method, it could be extended into a supervised method by defining 
known groups and evaluating the a priori distribution of reflectance. This 
poses some difficulties since it is difficult to find reference sites with 
relevant information to use as ‘training’ data. Another direction which is 
currently pursued by the author is to include spatial contiguity in the 
model. Richards et al. (2010) used this information to calculate weights 
in their likelihood function. Currently, an approach using edge detection 
with Prewitt’s and Sobel’s operators (Wang et al., 2006) is under study. 
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