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Abstract— In preparation of the micro-bolometer-based
MIcro Satellite for Thermal Infrared GRound surface Imag-
ing (MISTIGRI) mission, we study the error budget of the
Temperature-Emissivity Separation (TES) method using several
spectral configurations that differ in channel numbers, locations,
and widths. The error budget quantifies the contribution of 1) the
TES underlying assumption about emissivity spectral contrast,
2) the errors on atmospheric corrections, and 3) the instrumental
noise. When dealing with atmospheric corrections, we consider
errors in atmospheric temperature, water vapor content, and
concentrations of CO2 and O3. To that end, we design an
end-to-end simulator of MISTIGRI measurements in order to
simulate the radiative and biophysical quantities involved in
the data processing. We conduct numerous simulations over
a wide range of realistic setups that include cavity effect,
i.e., radiance trapping within vegetation canopy. In the case of
micro-bolometer-based sensing, the current study highlights that
atmospheric and instrumental noises have similar impacts on
the TES retrievals, with resulting errors twice as large as those
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due to the TES intrinsic assumption about spectral contrast,
where the latter contributes to the TES error budget within the
[0.005–0.009] interval for emissivity, and within the [0.3–0.4 K]
interval for land surface temperature (LST). Also, we show that
retrieval performance of surface temperature is very similar
across all considered MISTIGRI spectral configurations, with
RMSE variation within 0.2 K. Eventually, our study permits
us to select a 4-channels spectral configuration as the most
suited for the MISTIGRI instrument, notably because it enables
a moderately better capture of the emissivity contrast than a
3-channels one.

Index Terms— Atmospheric corrections, micro-bolometers
detectors, satellite mission design, temperature emissivity sep-
aration (TES) error budget, temperature/emissivity separation,
thermal infrared remote sensing, vegetation canopy-scaled cavity
effects.

I. INTRODUCTION

THERMAL InfraRed (TIR) remote sensing is a power-
ful tool for Earth system monitoring, since it provides

proxies of Earth surface emissivity spectrum/radiometric tem-
perature that are widely used in several thematic studies.
Involved processes are related to radiation budget [1]–[5],
land surface energy balance and evapotranspiration [6]–[15],
soil moisture and vegetation water status [16]–[18], crop
micro-meteorological conditions [19], urban heat island and
urban atmospheric flows [20]–[22], volcanic ashes with sulfate
and sulfur dioxide deposits [23], [24], lava flow monitor-
ing and modeling [25], [26], mineral mapping [27], [28],
cryospheric inventory and worldwide glacier balance [29],
[30], as well as numerical weather prediction and ocean
forecasting modeling [31], [32]. Various satellite TIR mis-
sions have been dedicated to the estimation of land surface
temperature (LST) during the last three decades, either with
high spatial resolution sensors such as Landsat [33], [34]
and advanced spaceborne thermal emission and reflection
radiometer (ASTER) [7], [35], [36], or with high tempo-
ral resolution sensors such as advanced very high-resolution
radiometer (AVHRR) [37], [38], météosat seconde génération
(MSG) [39], [40], moderate-resolution imaging spectrora-
diometer (MODIS) [41], [42], or sea and LST radiometer
(SLSTR) onboard Sentinel 3 [31], [43]. Although disaggre-
gation approaches have been explored to overcome the lack
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of TIR data with both high spatial and temporal resolu-
tions [44], [45], several studies have campaigned for satel-
lite missions providing such TIR data, including Infra Red
miniSatellite Unit for Terrestrial Environment (IRSUTE) [46],
SPECTRA [47], ECOsystem Spaceborne Thermal Radiometer
Experiment on Space Station (ECOSTRESS) [48], or LST
monitoring (LSTM) [49].

The MIcro Satellite for Thermal Infrared GRound surface
Imaging (MISTIGRI) preparatory mission was initiated and
conducted by CNES (French space agency) in collaboration
with Spain, between 2010 and 2015 [50]. Follow-on from
IRSUTE and SPECTRA, it was the precursor of the TIR
Imaging Satellite for High-resolution Natural resource Assess-
ment (TRISHNA) mission, to be launched in 2025 [51].
The primary objective of the MISTIGRI mission was the
monitoring of land surface energy and water budgets. The
spatial resolution was set to 50 m, and the revisiting rate was
set to one day, with an overpass within the [12:00–13:00] solar
time interval. The one-day revisit induced a constant off-nadir
viewing with a view zenith angle lower than 40◦. Finally,
the MISTIGRI instrument was designed with micro-bolometer
sensors, which led to a set of large spectral channels for
reducing instrumental noise, whose expected values were
between 0.2 and 0.5 K at 290 K. The baseline instrument
spectral configuration included 4 channels labeled TIR3, TIR4,
TIR1, and TIR2, respectively, centered at 8.6 μm (0.32 μm
width), 9.1 μm (0.32 μm width), 10.3 μm (1.02 μm width),
and 11.5 μm (1.02 μm width).

Retrieving surface emissivity and temperature from TIR
remote sensor measurements is an ill-posed problem, with Nb

equations from channel measurements and Nb + 1 unknowns
that include Nb channel emissivities and one radiometric tem-
perature. Among the existing solutions that consist in adding
an Nb + 1 equation to the system [52]–[54], we chose the
Temperature Emissivity Separation method (TES, [35], [55]).
This choice is motivated by the TES capability to retrieve
surface emissivity and temperature from a unique multispectral
snapshot at the satellite overpass time, thus making possible
the monitoring of temporal changes of surface temperature on
the basis of a one-day revisiting rate. The TES method relies
on the assumption that any natural surface emissivity spectrum
includes a value close to unity within the TIR spectral range,
which induces the possibility to derive the emissivity minimum
value from emissivity contrast by using an empirical relation-
ship [56], [57]. The TES method has been extensively used and
studied in the past three decades, notably in order to enhance
its stability and performance, with regard to observation con-
ditions driven by sensor capabilities, atmospheric conditions
and land surface spectral properties [1], [3], [36], [55]–[75].

When designing any satellite mission, an important step is
the definition of the mission characteristics in accordance with
the approaches that are used for data processing and thematic
uses. As overviewed in [50] for the MISTIGRI mission, some
instances are the revisiting rate/overpass time in the light of
evapotranspiration diurnal course or the viewing direction in
the light of radiative transfer processes. In the context of
monitoring LST, the definition of the spectral configuration of
the MISTIGRI sensor has to be investigated with regards to
sensor technologies (i.e., micro-bolometers detectors) and used

methods (e.g., TES retrieval of emissivity/temperature with
prior atmospheric corrections). More particularly, the appropri-
ate locations and widths for the MISTIGRI spectral channels
should balance between three constraints: capturing spec-
tral contrasts of the observed emissivity spectra, minimizing
atmospheric perturbations, and minimizing instrumental noise.

The current study aims to conduct an error budget for the
TES method when used over MISTIGRI imagery of vegetated
land surfaces (mission primary objective), in order to find
an appropriate sensor spectral configuration among predefined
configurations, on the basis of balancing between the three
aforementioned constraints. To that end, an end-to-end simula-
tor is implemented, which is dedicated to: 1) the simulation of
TIR multispectral measurements and 2) use of the TES method
for LST retrieval after prerequisite atmospheric corrections.
The simulator relies on simulated land surface emissivity
spectra that account for radiance trapping within vegetation
canopy since [57] showed that the subsequent cavity effect
induces an upper shift of emissivity for both the TES empirical
relationship and the subsequent retrievals. We first detail the
process flow of both the TES method and the end-to-end
simulator in § II and § III, respectively. Next, we present the
simulator implementation in § IV, and the simulation strategy
when addressing the MISTIGRI mission in § V. We finally
present and discuss our results in § VI, and we conclude with
current limitations and further perspectives in § VII.

II. TES PRESENTATION

A. TES Principle and Overview
Rather than associating the maximum emissivity with a

nominal value [76], the TES approach assumes that the emis-
sivity spectrum of a natural surface in the TIR spectral domain
includes a maximum value bounded within the [0.98–1]
interval. Subsequently, any change in the emissivity spectrum
minimum value is related to a change in the spectral contrast
across the emissivity spectrum [57]. Thus, by empirically
relating the minimum emissivity to the spectral dynamics
observed across the Nb channels [68], TES overcomes the
indetermination by removing the (Nb + 1)th unknown of the
ill-posed problem for LST retrieval (see § I). To that end,
channel emissivities and radiometric temperature are retrieved
via an iterative process that includes four steps described
below.

B. TES Processing Flow
The first step estimates radiometric surface temperature T sur

R
as the maximum temperature over the Nb channels j

T sur
R = max

(
Tj
)

(1)

where radiometric temperature Tj for channel j is deduced
via the inverse Planck’s law L−1

BB applied to the corresponding
surface-emitted radiance Lem

j , itself derived from measured
surface outgoing radiance Lsur↑

j after atmospheric corrections,
and from atmospheric downwelling irradiance Eatm↓

j

Lem
j = Lsur↑

j − (1 − ε j
) Eatm↓

j

π
(2)

Tj = L−1
BB

(
Lem

j

ε j
, λ j

)
(3)
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L−1
BB

(
L j , λ j

) = c2

[
λ j ln

(
c1

πλ5
j L j

+ 1

)]−1

(4)

with c1 and c2 the first and second radiation constants, equal
to 3.74151.10−16 W.m−2 and 0.0143879 m.K, respectively.
ε j and λ j are channel emissivity and central wavelength,
respectively.

The second step is the calculation of relative emissivities
as the ratios of channel emissivities ε j to the mean emissivity
over the Nb channels

β j = ε j

〈ε j 〉 = Lem
j /LBB

(
T sur

R , λ j
)

〈
Lem

j /LBB
(
T sur

R , λ j
)〉 (5)

where LBB is the Planck’s law

LBB
(
T sur

R , λ j
) = c1

[
λ5

jπ

[
exp

(
c2

λ j T sur
R

)
− 1

]]−1

. (6)

The third step consists of calculating the minimum value
of the emissivity spectrum as an empirical relationship of the
Maximum Minimum Difference (MMD ≡ spectral contrast)
of the relative emissivities β j

MMD = βmax − βmin = max(ε j) − min(ε j)

〈ε j 〉 (7)

εmin = A + B × MMDC (8)

where A, B , and C are coefficients that depend on the spectral
configuration of the instrument, and which are estimated from
nonlinear regression over a database of emissivity spectra (see
details in [57]).

In the fourth and last step, the channel emissivities over the
Nb channels are derived from the minimum channel emissivity
value as

ε j = εmin

βmin
β j . (9)

The TES iterative process is initialized by setting to unity
the emissivity values ε j in (2) for each channel j (radiometric
temperature is set to brightness temperature). From this initial-
ization, the iterative procedure follows (1)–(9). For our study,
we set a maximum of ten iterations, but the process systemati-
cally converges in fewer than six iterations. Once convergence
is reached, TES retrievals of both channel emissivity TES-
ε j over the Nb channels and radiometric temperature surface
TES-T sur

R are obtained from the last iteration on (9) and (1),
respectively.

III. SIMI DESCRIPTION

A. SiMi Overview

The specification of the optimal MISTIGRI spectral con-
figuration is performed using simulated data. The simulator
for MISTIGRI measurements (SiMi) is designed, on a single
pixel basis, 1/ to simulate radiative transfer processes involved
in TIR data measurements along with related quantities, and
2/ to analyze the performance of the retrieval procedure for
the variables of interest, including atmospheric corrections
and recovering of land surface emissivity/temperature with the
TES method. The simulations cover the TIR spectral range
([7.5–13.5] μm) with a 10−3 μm resolution. SiMi includes five

connected modules illustrated in Fig. 1 and described below
(quantities mentioned in Fig. 1 are defined in Table I).

1) The synthetic scene module (Module 1) describes the
scene at the land surface level, by considering an equiv-
alent homogeneous body with the same radiative char-
acteristics, namely emissivity spectrum and radiometric
temperature, than the actual composite of plant canopy
and underlying soil [77].

2) The atmosphere module (Module 2) is dedicated to the
simulation of atmospheric effects on the measured sig-
nal. On the basis of predefined atmospheric conditions,
it simulates the atmospheric radiative transfer and the
resulting signal at the sensor input top of the atmosphere
(TOA), and it quantifies the atmospheric radiative quan-
tities to be used for atmospheric corrections.

3) The instrument module (Module 3a) computes the
quantities measured by the instrument (channel
radiances/brightness temperatures) in accordance with
spectral response function and instrumental noise for
each channel.

4) The calibration module (Module 3b) deals with the
calibration of the TES empirical relationship εmin =
f (MMD) (8). This relationship depends upon the chan-
nel locations and widths, and has to be calibrated for
each spectral configuration [57].

5) The inversion module (Module 4) performs the inver-
sion of the simulated measurements. It first applies
atmospheric corrections and then makes use of the TES
method to separate target emissivity and temperature.

B. Land Surface Module (Module 1)

The land surface module generates emissivity spectra
for a given scene consisting of vegetation canopy and
underlying soil, using the Scattering by Arbitrarily Inclined
Leaves-Thermique (SAIL-Thermique) radiative transfer model
[78], [79]. It describes land surface as a turbid medium, with
a stack of homogeneous vegetation layers above a soil sub-
strate. Vegetation canopy is characterized by canopy structure
[i.e., leaf area index (LAI) and leaf inclination distribution
function average leaf angle (ALA)] and leaf optical properties
(reflectance and transmittance spectra). The underlying soil
surface is characterized by optical properties (soil reflectance
spectra). Radiative transfer is simulated by accounting for suc-
cessive scattering within the canopy, and between the canopy
and the soil. SAIL-Thermique considers the Kirchhoff’s law
at the thermodynamical equilibrium, where directional surface
emissivity ελ is calculated from the directional-hemispherical
reflectance ρλ: ελ =1−ρλ. SAIL-Thermique is used to gener-
ate two datasets.

1) The first dataset, called DB1, is used to compute
the spectral surface leaving radiance Lsur↑

λ , by com-
bining any emissivity spectrum ελ with prescribed
values of surface radiometric temperature T sur

R . Each
pair {ελ spectrum, T sur

R value} corresponds to a land
surface scene. This pair is provided to Module 2,
and further serves as a reference for validation exer-
cises. The first exercise consists in validating the TES
semi-empirical relationship, once calibrated. The second
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Fig. 1. Overview of the approach used to identify an optimal spectral configuration in the TIR range for the MISTIGRI instrument. Quantities mentioned
in the Figure are defined in Table I.

exercise consists in validating TES retrievals of channel
emissivity and radiometric temperature (Fig. 1).

2) The second dataset, called DB2, is used to calibrate the
TES semi-empirical relationship (Module 3b).

C. Atmosphere Module (Module 2)

For any pair {ελ spectrum, T sur
R value}, the atmosphere mod-

ule computes several spectral quantities: atmospheric down-
welling irradiance Eatm↓

λ , surface-leaving radiance Lsur↑
λ (10)

and (11), atmospheric transmittance τ atm
λ , atmospheric

upwelling radiance at the sensor level Latm↑
λ , and TOA radiance

at the sensor entrance LTOA
λ (12)

Lsur↑
λ = Lem

λ + (1 − ελ)
Eatm↓

λ

π
(10)

Lem
λ = ελLBB

(
T sur

R , λ
)

(11)

LTOA
λ = τ atm

λ Lsur↑
λ + Latm↑

λ . (12)

The calculations of Eatm↓
λ , τ atm

λ , and Latm↑
λ involve the sim-

ulation of atmospheric radiative transfer based on atmospheric
profiles of pressure, temperature, humidity, as well as of
concentrations in carbon dioxide [CO2] and ozone [O3] [80],
[81]. The radiative transfer is simulated using the modélisation
avancée de la terre pour l’imagerie et la simulation des scénes
et de leur environnement (MATISSE)-v2 code [82], [83].

MATISSE is chosen for its consistent atmospheric profile
database, given that it is very similar to its counterparts
such as MODerate resolution atmospheric TRANsmission
(MODTRAN) for radiative transfer simulation. After these
calculations, each atmospheric profile is characterized by a
triplet {Eatm↓

λ , τ atm
λ , Latm↑

λ }, to be combined with each pair
{ελ spectrum, T sur

R value}.
The atmosphere module also computes the atmospheric

radiative quantities, namely E N atm↓
λ , τ N atm

λ , and L N atm↑
λ , to be

used for atmospheric corrections in Module 4 after convolution
with the instrumental spectral response function (ISRF) in
Module 3a (Fig. 1). To that end, and in order to account for
errors on atmospheric corrections due to partial knowledge on
atmospheric status, atmospheric profiles are noised on temper-
ature Tatm(z) and humidity hr(z), as well as on concentrations
of carbon dioxide [CO2](z) and ozone [O3](z), where z is the
altitude above sea level. Each variable profile Var(z) is noised
using a Gaussian white noise

Var(z) = Var(z) + N (0; α.Var(z) + β) (13)

Var(z) ∈ {Tatm(z), hr(z), [CO2](z), [O3](z)} (14)

where α and β are set up as follows:

1) in accordance with [84], we set a standard deviation
of 0.8 K for Tatm(z) (α = 0, β = 0.8), which
corresponds to a maximum error of 2 K;
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TABLE I

SIGNIFICATION OF THE RADIATIVE QUANTITIES THAT ARE MENTIONED IN FIG. 1

2) in accordance with [85] and [84], we set a standard
deviation of 0.1 × hr(z) for hr(z) (α = 0.1, β = 0),
which corresponds to a maximum relative error of 25%;

3) in accordance with [81], we set a standard deviation
of 0.15 × [CO2](z) for [CO2](z) (α = 0.15, β = 0),
which corresponds to a maximum relative error of 40%;

4) In accordance with [85], we set a standard deviation
of 0.2 × [O3](z) on [O3](z) (α = 0.2, β = 0), which
corresponds to a maximum relative error of 50%.

D. Instrument Module (Module 3a)
The instrument module accounts for the sensitivity of each

spectral channel, and for the associated Noise Equivalent
Difference Temperature (NEDT) that depends upon channel
width.

To account for sensitivity of channel j , any spectrum (e.g.,
emissivity, radiance, transmittance) Qλ is convolved with the
dedicated ISRF that spreads over the [λmin, j −λmax, j ] interval,
thus providing the waveband equivalent value Q j

Q j =
∫ λmax, j

λmin, j
QλSj (λ)dλ∫ λmax, j

λmin, j
S j (λ)dλ

. (15)

Accounting for instrumental noise on measured temperature
consists of adding, for any channel j , a Gaussian white noise

with a standard deviation equal to the corresponding NEDT j

OSBT j = BT j + N (0, NEDT j

)
(16)

where BT j is the brightness temperature at the sensor level,
and out of sensor brightness temperaturen (OSBT) j is the
output sensor (OS) brightness temperature with instrumental
noise. NEDT j is provided by the sensor manufacturer as a
function of both measured brightness temperature and channel
width (full-width at half-maximum, FWHM).

In the context of satellite mission design, it is valuable
to characterize the error budget at different levels. To that
end, Module 3a provides estimates of measured brightness
temperatures over the Nb channels j for three different cases
of BT j (Fig. 1):

1) SBT j corresponds to brightness temperatures at the
surface level, it is derived from radiance spectrum Lsur↑

λ ;
2) top-of-atmosphere brightness temperature (TOABT) j

corresponds to brightness temperatures at the satellite
level above the atmosphere, it is derived from radiance
spectrum LTOA

λ ;
3) OSBT j is derived from TOABT j by applying the

Gaussian white noise formulation (16).
Note that both SBT j and TOABT j are derived from corre-
sponding radiances after convolution with the dedicated ISRF
and application of the inverse Planck’s Law L−1

BB (4).
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E. Calibration Module (Module 3b)

The calibration module aims to calibrate the TES empirical
relationship εmin = f (MMD) that derives minimum emis-
sivity from the spectral contrast captured by multispectral
TIR measurements over Nb channels. To that end, emissivity
minimum and maximum values, as well as MMD (7), are
derived for each emissivity spectrum from DB2 database, after
convolution with ISRF S(λ) (15).

The calibration is performed by computing the empirical
coefficients A, B and C of the εmin = f (MMD) rela-
tionship (8) using the “Optim” R function [86]. The latter
minimizes the calibration residual error expressed as the root
mean square error (RMSE)εmin

cal [87]

RMSEεmin
cal =

√∑
n2

(
εobs-cal

min − εest
min

)2

n2
(17)

where εobs-cal
min and εest

min are, respectively, the εmin reference
values from the DB2 subset of emissivity spectra and the εmin

estimates from (8) with the calibrated coefficients, and n2 is
the number of emissivity spectra within the DB2 subset:

The validation of the calibrated empirical relationship is
conducted using the DB1 subset of emissivity spectra, by com-
puting RMSEεmin

val as

RMSEεmin
val =

√∑
n1

(
εobs-val

min − εest
min

)2

n1
(18)

where εobs-val
min are the εmin reference values from DB1 subset of

emissivity spectra, and n1 is the number of emissivity spectra
within the DB1 subset.

F. Inversion Module (Module 4)

The inversion module aims to retrieve land surface emissiv-
ity and radiometric temperature from the MISTIGRI simulated
measurements. It first corrects sensor data from atmospheric
perturbations, and second applies the TES method to retrieve
emissivity ε j over the Nb channels j along with the associated
radiometric surface temperature T sur

R (see Fig. 1).
Upon entry in the inversion module, brightness temperatures

from Module 3a are converted into channel radiances by
using the Planck’s law LBB (6). Atmospheric corrections
are then performed using the noised atmospheric radiative
quantities that are computed from noised atmospheric profiles
in Module 2 and next ISRF-convolved in Module 3a, namely
the noised channel atmospheric transmittance τ N atm

j and the
noised upwelling radiance at the sensor level L N atm↑

j

Lsur↑
j = LOS

j − L N atm↑
j

τ N atm
j

(19)

where LOS
j and Lsur↑

j are the radiances over channel j at the
sensor level (before atmospheric corrections) and at the surface
level (after atmospheric corrections), respectively.

Afterward, the TES method is applied on the channel radi-
ances at the surface level Lsur↑

j , by using the ISRF-convolved
values of noised atmospheric downwelling irradiance E N atm↓

j

[see Fig. 1 and (2)]. As explained in Section III-D, it is valu-
able to characterize the error budget at different levels, in the
context of satellite mission design. To that end, SiMi permits
to apply the inversion procedure at three levels (Fig. 1):

1) applying the TES method on sensor measurements
of surface brightness temperature at the surface level,
so-called SBT j , to quantify errors resulting from TES
assumptions only;

2) applying atmospheric corrections and the TES method
on TOA brightness temperature at the sensor level,
so-called TOABT j , to quantify errors resulting from
both atmospheric perturbations and TES assumptions;

3) applying atmospheric corrections and the TES method
on OS brightness temperature, so-called OSBT j ,
to quantify errors resulting from instrumental noise,
atmospheric perturbations, and TES assumptions.

Thus, TES retrieves the pairs {TES-εBOA
j , TES-T sur,BOA

R } from
SBT j (BOA stands for bottom of atmosphere), {TES-εTOA

j ,
TES-T sur,TOA

R } from TOABT j (TOA stands for top of
atmosphere), and {TES-εOS

j , TES-T sur,OS
R } from OSBT j (OS

stands for out of sensor), where each pair corresponds to each
of the three aforementioned cases, respectively.

G. Performance Analysis

For each spectral configuration characterized by a set of
Nb channels with the corresponding ISRF Sj (λ), the TES
retrievals of surface emissivities and temperatures are com-
pared with their initial counterparts at the simulator entrance
(see Fig. 1). For emissivity, these counterparts are the
ISRF-convolved values of the emissivity spectra ελ within the
DB1 subset. The comparison is based on the quantification
of RMSE values between the initial counterparts (ε j , T sur

R )
and their corresponding values for the three types of product
considered (TES-εk

j , TES-T sur,k
R )k∈{BOA,TOA,OS}

RMSETES
εk

j
=
√∑

Nret

(
TES-εk

j − ε j
)2

Nret
(20)

RMSETES
T sur,k

R
=

√√√√∑Nret

(
TES-T sur,k

R − T sur
R

)2

Nret
(21)

where Nret is the number of retrievals considered in each case.

IV. SIMI IMPLEMENTATION

Once the SiMi simulator is designed, the next step is imple-
mentation. This consists of providing ancillary information in
order to document land surface and atmospheric conditions.

A. Database for Land Surface Emissivity
We select for the current study the emissivity dataset

computed with Module 1 in the framework of a previous
study that evaluated the impact of vegetation cavity effect
on the performance of the TES method [57]. The resulting
dataset includes simulated emissivity spectra for a panel
of soil/vegetation canopy combinations, which provides a
representative dataset for satellite mission design. By con-
sidering a large range of inputs related to vegetation canopy
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Fig. 2. 271 SAIL-generated emissivity spectra of vegetation canopy over soils.

architecture and vegetation/soil optical properties (LAI, ALA,
spectra of leaf reflectance and transmittance, and spectra
of soil reflectance), the dataset includes 63700 spectra of
emissivity of vegetated surface over the [7.5–13.5] μm spectral
range.

Since large similarities appear between several simulated
spectra of emissivity, and in order to reduce computation time,
the database is reduced by selecting emissivity spectra using
the Spectral Angle Mapper (SAM) method [88]. The resulting
subset includes 271 emissivity spectra represented in Fig. 2.
Eventually, and as described in § III-B, a random equal split of
the dataset is conducted (Fig. 1). The first part, namely DB1,
includes 135 spectra and is used for the simulations and for
validation exercise. The second part, namely DB2, includes
136 spectra and is used to calibrate the MMD empirical
relationship of the TES method.

We verify the robustness of the split between DB1 and
DB2, by quantifying the variability of the calibrated coeffi-
cients for the TES empirical relationship when repeating the
procedure 100 times on a random basis. The observed vari-
ability, about 1%–2% relative, confirms the robustness of the
split.

B. Atmospheric Profile Dataset

For documenting the atmospheric status, we used the
MATISSE-v2 atmospheric profile database that includes three
libraries called Air Force Geophysics Laboratory (AFGL)-lib,
CLIMATO-lib, and Thermodynamic Initial Guess Retrieval
(TIGR)3-lib.

1) AFGL-lib includes six profiles that are known as tropi-
cal, mid-latitude summer, mid-latitude winter, subarctic
summer, subarctic winter, and 1976 US Standard [89].

2) CLIMATO-lib includes 144 profiles from a climatology
database that provides an averaged thermodynamic pro-
file for each latitude [90].

3) TIGR3-lib includes 2311 atmospheric profiles. It is
a climatological library of representative atmospheric
situations selected by statistical methods from 80000
radiosonde-based profiles [91].

Each of the 2461 atmospheric profiles of the database includes
vertical profiles of atmospheric pressure Patm(z), temperature
Tatm(z), humidity hr(z), as well as of concentration in carbon
dioxide [CO2](z) and ozone [O3](z).

Given the large size of the MATISSE-v2 atmospheric
profile database, and in order to minimize the computa-
tion load, a first step consists of reducing the number of
atmospheric profiles to construct a representative dataset with-
out redundancy. This process is conducted by considering main
drivers of atmospheric radiative transfer in the TIR domain,
namely atmospheric water vapor content (AWVC), which
drives atmospheric transmittance and emission, and equivalent
atmospheric temperature T eq

atm, which drives atmospheric emis-
sion. Both values are computed by following (22) and (23):

AWVC =
∫ zmax

0
ρv(z)dz (22)

T atm
eq =

∫ zmax

0 Tatm(z)ρv(z)dz

AWVC
(23)

where zmax is the highest altitude of the atmospheric profile
and ρv (z) is the water vapor density. Hence, the reduction
method consists of selecting a set of profiles that verify two
comparison criteria: 1) differences between two AWVC values
are larger than 0.15 g.cm−2 and 2) differences between two
T atm

eq values are larger than 2 K. This reduction method leads
to the selection of a subset of 248 atmospheric profiles among
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Fig. 3. Representation of the MATISSE-v2 and SEL1 subset of atmospheric profiles in the {T eq
atm, AWVC}, {[CO2], AWVC} and {[O3], AWVC} spaces.

AWVC and T eq
atm are computed using (22) and (23), respectively. [CO2] and [O3] are integrated values across the vertical profiles.

the 2461 initial profiles, hereafter referred to as SEL1 sub-
set. Fig. 3 illustrates the distribution of the original dataset
(top panels) and of the SEL1 subset (bottom panels) in the
spaces {T eq

atm, AWVC}, {[CO2], AWVC}, and {[O3], AWVC}.
We note that the envelopes of the scatterplots are preserved,
while their densities are reduced.

When conducting the inversion procedure to retrieve surface
emissivity and radiometric temperature from the simulated
MISTIGRI measurements (§ III-C), we account for uncer-
tainties on atmospheric corrections by noising atmospheric
profiles. When dealing with uncertainties on atmospheric tem-
perature and humidity, we use the SEL1 subset of atmospheric
profiles. For uncertainties on atmospheric concentrations of
carbon dioxide [CO2] and ozone [O3], we use portions of
the SEL1 subset, always with the objective of reducing the
computation load. A portion of SEL1, namely SEL2, is gen-
erated by selecting SEL1 profiles that verify two comparison
criteria: 1) differences between two AWVC values are larger
than 1 g.cm−2 and 2) differences between two vertically inte-
grated values of [CO2(z)] are larger than 10 ppmv. Similarly,
a portion of SEL1, namely SEL3, is generated by selecting
SEL1 profiles that verify two comparison criteria: 1) differ-
ences between two AWVC values are larger than 0.5 g.cm−2

and 2) differences between two vertically integrated values of

[03(z)] are larger than 0.15 ppmv. The resulting SEL2 and
SEL3 selections contain 16 and 41 atmospheric profiles. We
observe that SEL2 and SEL3 datasets are representative of
the [CO2] and [O3] dynamics depicted by the SEL1 subset.
Indeed, the envelopes of the scatterplots are preserved, while
their densities are reduced (figure not shown).

C. Computation of Radiative Quantities and
of Variables of Interest

First, each of the 135 emissivity spectra of DB1
(see § IV-A) is associated with ten values of radiometric tem-
perature T sur

R . These temperatures are determined by a random
selection within the [270–340] K interval, by setting up a
constraint to provide realistic cases: for large canopy coverage
(LAI larger than 4), the T sur

R value is lower than 315 K.
Second, each pair {emissivity spectra ελ, radiometric tem-

perature T sur
R } is combined with each atmospheric profile

within the SEL1 subset, when the following condition is
verified: T sur

R ∈ [Tatm (1)-10; Tatm (1) + 30], where Tatm (1)
is the temperature of the lowest atmospheric level. For this,
we combine each pair {ελ, T sur

R } with the triplet {atmospheric
transmission τ atm

λ , atmospheric downwelling irradiance Eatm↓
λ ,

atmospheric upwelling radiance Latm↑
λ } of any atmospheric

profile, by using (10)–(12) to compute surface-leaving Lsur↑
λ
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and top-of-atmosphere LTOA
λ radiances (Fig. 1). This process

results in a number of simulated MISTIGRI measurements =
52916 sets of SBT j , TOABT j and of OSBT j (Fig. 1).

Third, atmospheric profiles from subsets SEL1, SEL2 and
SEL3 are noised on Tatm(z) and hr(z) only, on [CO2](z) only
and on [O3](z) only, respectively, by following the proce-
dure detailed in § III-C, to next calculate the corresponding
radiative atmospheric quantities, namely τ N atm

λ , L N atm↑
λ and

E N atm↓
λ . Then, the latter are used to perform atmospheric cor-

rections in Module 4 (19) after convolution with channel filters
[ISRF S(λ), (15)]. Atmospheric corrections are performed on
simulated data at the sensor level (prior to instrumental noise,
TOABT j ), and on simulated data of OS brightness temperature
(after instrumental noises, OSBT j ).

For both OSBT j and TOABT j , atmospheric corrections
using the SEL1, SEL2 and SEL3 subsets, respectively, result
in Nret = 52916, 3126, and 8531 sets of corrected MISTIGRI
measurements. Finally, the TES method is applied to all sets
of atmospherically corrected MISTIGRI measurements. When
dealing with SBT j , we apply TES on sensor measurements
at the surface level by including errors on atmospheric down-
welling radiance, which is consistent with former studies based
on field measurements [71], [92]–[94].

V. SETUP OF THE SIMI SIMULATOR FOR MISTIGRI

A. Instrumental Configuration

As mentioned in the introduction, the solution chosen
for the MISTIGRI was micro-bolometer sensors. This solu-
tion imposes to consider wide spectral channels of at
least 0.5 μm FWHM, in order to minimize radiometric
noise [NEDT, see (16)]. For comparison, in the case of
the ASTER sensor, which used first-generation mercury–
cadmium–telluride (MCT) detectors, the minimum FWHM is
0.25 μm [95]. The ISRF set for the reference configuration
is provided by the sensor manufacturer (top panel of Fig. 4).
This configuration includes four channels: TIR1 over [9.8–
10.8] μm, TIR2 over [11–12] μm, TIR3 over [8.15–9.1] μm,
and TIR4 over [8.6–9.55] μm. According to the sensor man-
ufacturer, uncertainty on both central wavelengths λ j and
FWHMs is 0.15 μm. For the current study, this reference con-
figuration is disregarded since the TIR1 channel significantly
overlaps the strong ozone absorption region around 9.6 μm.

From the reference configuration, other configurations are
generated by varying the number of channels, their positions,
and their FWHM, with the following constraints.

1) The number of spectral channels Nb is fewer than five
as regard to mission requirements, and greater than two
in order to capture the spectral variability of natural
surfaces, for the sake of consistency with the use of
the TES method.

2) The spectral channels are as wide as possible to min-
imize instrumental noise, and as narrow as possible
to capture emissivity variations, especially between 8
and 10 μm.

3) The spectral channels are located on atmospheric win-
dows, i.e., spectral intervals where atmospheric trans-
mittance is large.

From these considerations, six spectral configurations are
proposed for the MISTIGRI mission (see Fig. 4): two sets
of two configurations with Nb = 4 channels (MIS-1, MIS-2)
on the one hand, and (MIS-3, MIS-4) on the other hand; as
well as one set of two configurations with Nb = 3 channels
(MIS-5, MIS-6). These six configurations are selected for the
reasons discussed below.

1) The set of configurations (MIS-5, MIS-6) differs from
the sets (MIS-1, MIS-2) and (MIS-3, MIS-4) by the
number of spectral channels Nb . These differences per-
mit to study the impact of channel number over the
[8–10] μm spectral interval that is typified by large
emissivity variations (see Fig. 2).

2) The sets (MIS-1, MIS-2) and (MIS-3, MIS-4) differ in
the location of the two channels over the [8–10] μm
range. Similarly, the MIS-5 and MIS-6 configurations
differ in the location of the single channel over the
[8–10] μm range. Again, these differences permit to
study the impact of channel localization within the
[8–10] μm spectral interval that is characterized by large
emissivity variations (see Fig. 2).

3) The MIS-1 and MIS-2 configurations differ in channel
widths for TIR1 and TIR2, as do MIS-3 and MIS-4
configurations for TIR3 and TIR4. These differences
permit to evaluate the impact of channel FWHM.

Each spectral channel j has a Gaussian shape with a central
wavelength λ j and a FWHM j (Table II).

From the abacuses provided by the manufacturer,
the NEDT j values are finally computed for all channels
included in each of the six MISTIGRI spectral configurations
to be evaluated (see Fig. 5). Any abacus expresses NEDT j
as a function of both measured brightness temperature and
channel width (FWHM). Using micro-bolometer detectors,
NEDT j is significantly larger when channel width decreases.
Furthermore, NEDT j decreases when the measured brightness
temperature is larger, whereas channel central wavelength as
a negligible impact.

B. MMD Calibration and Validation
The empirical relationship εmin = f (MMD) is calibrated

by using the DB2 subset of emissivity spectra that contains
135 samples, and it is validated by using the 136 emis-
sivity included into the DB1 subset. Emissivity spectra are
ISRF-convolved by using the MISTIGRI spectral configura-
tions defined in § V-A. Initial values of empirical coefficients
are set according to previous studies [55]: A = 0.994, B =
−0.687, and C = 0.737. Note that we obtained the same
calibration results regardless of initial guess.

VI. RESULTS AND DISCUSSION

We report and discuss the results we obtain when calibrat-
ing the TES empirical relationship, and when validating the
TES retrievals of emissivity and radiometric temperature. For
TES retrievals, we report results by considering first uncer-
tainties on atmospheric profiles of temperature and humid-
ity, and second uncertainties on carbon dioxide and ozone
concentrations. In both cases, we compare TES retrievals
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Fig. 4. Various MISTIGRI spectral configurations considered in the current study, typified by their ISRF, along with a typical example of atmospheric
transmittance. Central wavelengths and FWHMs are given into Table II.

derived from brightness temperature at the surface level
(TES-εBOA

j , TES-T sur,BOA
R ), from brightness temperature at the

sensor level (TES-εTOA
j , TES-T sur,TOA

R ), and from out-of-sensor

brightness temperature (TES-εOS
j , TES-T sur,OS

R ). The results
are discussed in the light of spectral configuration, including
channel number, widths, and locations, in order to highlight
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TABLE II

SUMMARY OF THE SIX MISTIGRI SPECTRAL COMPOSITIONS WE CONSIDER IN THE CURRENT STUDY. CHANNELS
ARE ORDERED ACCORDING TO INCREASING WAVELENGTHS

Fig. 5. NEDT values as a function of brightness temperature and channel width (FWHM), for all channels in each of the six MISTIGRI spectral configurations
to be evaluated. A unique illustration is given when a channel is identical across several spectral configurations (see Table II for channel equality across
configurations).

any influence of these factors in the context of the MISTIGRI
mission.

A. Calibrating the TES Empirical Relationship
Fig. 6 displays the MMD calibration results obtained for

each of the six MISTIGRI configurations, along with the
corresponding values for the A, B , and C coefficients (8) and
the associated residual errors RMSEεmin

cal (17).
In all cases, the calibration results are good, with RMSEεmin

cal
values lower than 0.007. The MIS-3 and MIS-4 configurations
have the lowest calibration residual errors, which is ascribed
to the combination of channel locations (subplots 4 and 5
in Fig. 4) and emissivity spectral dynamics (Fig. 2), where
the location of TIR3 below 8.5 μm allows better capture
of the spectral contrasts. The 3-channels configurations MIS-
5 and MIS-6 have the largest calibration residual errors since
they capture less spectral variability of emissivity with only
one channel over the [8–9.5] μm spectral range. The A, B ,

and C coefficients are different from one configuration to
another, but they are similar when channel numbers are equal,
i.e., spectral configurations MIS-1 to MIS-4 with 4 channels
versus spectral configurations MIS-5 and MIS-6 with 3
channels.

The validation results are very similar to the calibration
results, both in error magnitude and error variations from
one spectral configuration to another (figure not shown).
Indeed, the RMSEεmin

val values are consistent with those obtained
for calibration and remain as well below 0.007 for all
MISTIGRI spectral configurations. However, the similitude
between RMSE values for calibration and validation must be
considered with caution. Indeed, the calibration and validation
datasets are not fully independent since they are extracted
from a unique dataset that was simulated by the same model.
Overall, the calibration errors we report here are similar to
those reported in previous studies [1], [56], [57], [62], [63],
[66], [68], [74].
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Fig. 6. Results of the εmin = f (MMD) calibration for each of the six MISTIGRI spectral configurations.

B. Retrieval Accuracies With Errors on Atmospheric
Corrections Related to Temperature and Humidity

Table III displays the validation results obtained with the
TES method when using the SEL1 subset of atmospheric
profiles noised on temperature and humidity. We consider each
of the three types of retrievals to be considered (Fig. 1):
retrievals from brightness temperatures SBT j at the surface
level (TES-εBOA

j , TES-T sur,BOA
R ), retrievals from brightness

temperatures TOABT j at the TOA (TES-εTOA
j , TES-T sur,TOA

R ),
and retrievals from OS brightness temperature OSBT j at the
TOA with instrumental noise (TES-εOS

j , TES-T sur,OS
R ).

For the BOA retrievals (TES-εBOA
j , TES-T sur,BOA

R ),
the RMSE values on channel emissivities RMSETES

εBOA
j

and

radiometric temperature RMSETES
T sur,BOA

R
across all MISTIGRI

configurations range between 0.005 and 0.009, and between
0.30 and 0.45 K, respectively. These RMSE values correspond
to the errors due to the TES underlying assumptions (i.e.,
empirical relationship), as well as to the errors on the
quantification of atmospheric downwelling radiance (§ IV-C).
Regardless of spectral configuration, the relative variations
in emissivity RMSE values across spectral channels range
up to 20%, and larger RMSE values are observed at lower
wavelengths. This can be explained by two factors in this
range of wavelength. The first factor is related to sharp
changes in emissivity between 8 and 9.5 μm, which are
more difficult to capture as compared to flatter spectra
portions between 10 and 12.5 μm (Fig. 2). The second
factor is related to error propagation in the right term of (2),
for which errors in emissivity combine with a magnitude
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TABLE III

ERRORS ON RETRIEVALS OF EMISSIVITY AND RADIOMETRIC TEMPERATURE FROM THE TES METHOD ALONG WITH ATMOSPHERIC CORRECTIONS

FROM PROFILES NOISED ON TEMPERATURE AND HUMIDITY. WE REPORT RMSE VALUES FOR 1) THE PAIR {TES-εBOA
j , TES-T sur,BOA

R } THAT

CORRESPONDS TO APPLYING THE TES METHOD ON SENSOR MEASUREMENTS OF SURFACE BRIGHTNESS TEMPERATURE AT THE SURFACE
LEVEL, 2) FOR THE PAIR {TES-εTOA

j , TES-T sur,TOA
R } THAT CORRESPONDS TO APPLYING ATMOSPHERIC CORRECTIONS AND THE

TES METHOD ON TOA BRIGHTNESS TEMPERATURE AT THE SENSOR LEVEL, AND 3) THE PAIR {TES-εOS
j , TES-T sur,OS

R }
THAT CORRESPONDS TO APPLYING ATMOSPHERIC CORRECTIONS AND THE TES METHOD ON OS BRIGHTNESS

TEMPERATURE (FIG. 1). CHANNEL EMISSIVITIES ARE ORDERED

ACCORDING TO INCREASING WAVELENGTHS

of atmospheric downwelling irradiance that increases at
lower wavelengths [57]. Given a large part of MMD values
are below 0.03 over our dataset of simulated emissivity
spectra (Fig. 6), this can also be explained by the gray
body problem of the TES method that occurs over land
surfaces with low spectral contrasts [36], [57], [70], [96].
When dealing with spectral configuration, the inclusion of
one more channel over the [8–9.5] μm spectral interval
induces slightly lower RMSE values on channel emissivities
and radiometric temperature (i.e., MIS-1 to MIS-4 versus
MIS-5 and MIS-6). This is associated with a better capture
of spectral variability across the aforementioned spectral
interval with large emissivity variations (Fig. 2). When
considering the four-channels configurations, a larger gap
between the TIR3 and TIR4 channels over the [8–9.5] μm
spectral interval induces lower RMSE values (MIS-3 and
MIS-4 versus MIS-1 and MIS-2), which is also explained
by a better capture of spectral variability. Finally, decreasing
channel widths over both spectral intervals (i.e., [8–9.5] μm
and [10–12.5] μm) does not impact the captured spectral
variability, since the RMSE values are similar (MIS-1 versus
MIS-2 and MIS-3 versus MIS-4). Beyond the changes
in RMSE values explained above, it is worth noting that
differences in RMSE values remain low from one spectral
configuration to another, up to 0.0023 and 0.13 K on channel
emissivity and radiometric temperature, respectively.

For the TOA retrievals (TES-εTOA
j , TES-T sur,TOA

R ),
the RMSE values on channel emissivities RMSETES

εTOA
j

and

radiometric temperature RMSETES
T sur,TOA

R
across all MISTIGRI

configurations range between 0.008 and 0.0140, and bet-
ween 0.70 and 0.80 K, respectively. These RMSE values
are due to the combination of uncertainties related to the
TES implementation (see the previous paragraph) and
uncertainties on atmospheric corrections. Regardless of
spectral configuration, the relative variations in emissivity
RMSE values across spectral channels range up to 85%, and
larger RMSE values are observed at extreme wavelengths,
namely 8.6 and 11.9 μm. This is ascribed to lower
atmospheric transmittances at these wavelengths (Fig. 4),
which enhance errors on atmospheric corrections [36], [80],
[97]. When dealing with spectral configuration, the inclusion
of one more channel over the [8–9.5] μm spectral interval
induces slightly lower RMSE values on channel emissivities
and radiometric temperature (i.e., MIS-1 to MIS-4 versus
MIS-5 and MIS-6), which, as in the BOA case, can be
explained by a better capture of spectral variability. When
considering the four-channels configurations, a larger gap
between the TIR3 and TIR4 channels over the [8–9.5] μm
spectral interval does not induce any change in RMSE values
(MIS-3 and MIS-4 versus MIS-1 and MIS-2). This is converse
to what is reported for the BOA retrievals, and it is therefore
ascribed to uncertainties on atmospheric corrections. Finally,
decreasing channel widths does not induce significant changes
on RMSE values (MIS-1 versus MIS-2 and MIS-3 versus
MIS-4). Overall, the differences in RMSE values remain low
from one spectral configuration to another, up to 0.002 and
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Fig. 7. Comparison of TES retrievals against reference values when considering 1) the MIS-5 spectral configuration with 3 channels (Fig. 4), 2) atmospheric
corrections from atmospheric profiles noised on temperature and humidity, and 3) the TES retrievals of channel emissivities and radiometric temperature from
OS brightness temperatures OSBT j (TES-εOS

j , TES-T sur,OS
R ).

0.1 K on channel emissivity and radiometric temperature,
respectively.

For the OS retrievals (TES-εOS
j , TES-T sur,OS

R ), the RMSE
values on channel emissivities RMSETES

εOS
j

and radiometric

temperature RMSETES
T sur,OS

R
across all MISTIGRI configura-

tions range between 0.0160 and 0.037, and between and
0.8 and 0.9 K, respectively. These larger RMSE values result
from the combination of uncertainties related to the TES
implementation, of uncertainties on atmospheric corrections,
and of uncertainties induced by instrumental noise. Regardless
of spectral configuration, the relative variations in emissivity
RMSE values across spectral channels range up to 85%, and
larger RMSE values are observed at extreme wavelengths,
namely 8.6 and 11.9 μm. This is ascribed to the combined
effects of uncertainties induced by instrumental noise and
uncertainties on atmospheric corrections at wavelengths with
lower atmospheric transmittances. Moreover, the RMSE values
for emissivity are larger than in the TOA case, with increases
up to a factor 3 for some channels, which highlights the impact
of instrumental noise when dealing with micro-bolometer
detectors. In terms of spectral configuration, the largest
(respectively, lowest) RMSE values are observed for configura-
tions with lowest (respectively, largest) channel widths, namely
MIS-2 (respectively, MIS-5 and MIS-6), which is ascribed to
the impact of channel width on instrumental noise (Fig. 5).

Overall, the differences in RMSE values remain low from one
spectral configuration to another, up to 0.0185 and 0.1 K on
channel emissivity and radiometric temperature, respectively.
Fig. 7 displays examples of scatterplots when considering the
TES retrievals from OS brightness temperature OSBT j after
atmospheric corrections, for the three-channels spectral config-
uration MIS-5. It is shown that retrievals and reference values
are in agreement for channel emissivity at 8.88 μm and radio-
metric temperature, whereas a moderate (respectively, large)
discrepancy is observed for channel emissivity at 10.7 and
11.9 μm. Such discrepancies are not observed when validating
TES retrievals from measurements of brightness temperature
at the surface level [57], and they underline the impact of
inaccurate atmospheric corrections on the performance of the
TES method.

The aforementioned results for the BOA, TOA, and OS
retrievals, permit to address the TES error budget at different
levels and to compare the combined effects of uncertainties
that accumulate at each step, namely TES implementation,
atmospheric corrections, and instrumental noise related to the
use of bolometer-based sensors.

1) First, the impacts of sharp emissivity changes at
lower wavelengths (i.e., larger RMSE values for lower
wavelengths, benefit of larger gap between channels
within the [8–9.5] μm spectral interval, benefit of
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TABLE IV

ERRORS ON RETRIEVALS OF EMISSIVITY AND RADIOMETRIC TEMPERATURE FROM THE TES METHOD ALONG WITH ATMOSPHERIC CORRECTIONS

FROM PROFILES NOISED ON [CO2]. WE REPORT RMSE VALUES FOR 1) THE PAIR {TES-εBOA
j , TES-T sur,BOA

R } THAT CORRESPONDS TO APPLYING

THE TES METHOD ON SENSOR MEASUREMENTS OF SURFACE BRIGHTNESS TEMPERATURE AT THE SURFACE LEVEL, 2) FOR THE PAIR

{TES-εTOA
j , TES-T sur,TOA

R } THAT CORRESPONDS TO APPLYING ATMOSPHERIC CORRECTIONS AND THE TES METHOD ON TOA

BRIGHTNESS TEMPERATURE AT THE SENSOR LEVEL, AND 3) THE PAIR {TES-εOS
j , TES-T sur,OS

R } THAT CORRESPONDS

TO APPLYING ATMOSPHERIC CORRECTIONS AND THE TES METHOD ON OS BRIGHTNESS TEMPERATURE (FIG. 1).
CHANNEL EMISSIVITIES ARE ORDERED ACCORDING TO INCREASING WAVELENGTHS

a second channel over the [8–9.5] μm spectral inter-
val) tend to vanish when accumulating errors induced
by atmospheric corrections and uncertainties related to
instrumental noise.

2) Second, the impact of errors on atmospheric correction
is large, since it almost doubles the RMSE values on
channel emissivities and radiometric temperature, with
the largest impacts for channels located close to the
atmospheric window boundaries (8 and 12.5 μm).

3) Third, consideration for additional instrumental noise
significantly increases the errors on channel emissivity,
but the resulting impact on radiometric temperature is
limited. However, the benefit of adding a second channel
over the [8–9.5] μm spectral interval is very limited
when alternatively considering a unique channel with
a large width. This underlines the balance between
capturing spectral contrast and minimizing instrumental
noise for bolometer-based sensors with large instrumen-
tal noise.

The MIS-5 configuration seems to be the most robust
to the coupling of errors on atmospheric corrections and
instrumental noise since it corresponds to the lowest error
increase on radiometric temperature (from 0.43 to 0.85 K).
In absolute terms, i.e., by adding the intrinsic uncertainty of
TES, the most accurate configuration is MIS-4, since it pro-
vides the lowest error on radiometric temperature (0.79 K).
Overall, the RMSE values that encompass all uncertainties
range between 0.83 and 0.91 K across all MISTIGRI spectral
configurations. This shows that the spectral configuration is not
a critical issue for surface temperature retrieval in our study
case with bolometer-based detectors. We note we deal here

with accuracy on radiometric temperature, in accordance with
the primary objectives of the MISTIGRI mission on land sur-
face energy and water budgets. Nevertheless, we note that there
is no systematic agreement between RMSE values on channel
emissivities and on radiometric temperature, especially when
the number of the channel varies (i.e., from three to four
channels). This is ascribed to the high nonlinearity of the TES
equation system (1)–(9), where any retrieval of radiometric
temperature results from an iterative process that involves
an incremental estimation of minimum emissivity across Nb

channels. Eventually, the TES performance we observe here
is moderately larger than those reported in former studies also
based on modeling approaches, with RMSE values ranging
between 0.6 and 1 K [48], [59], [63], [74], [75].

C. Retrieval Accuracies With Errors on Atmospheric
Corrections Related to Carbon Dioxide
and Ozone Concentration

Tables IV and V display the validation results obtained with
the TES method when using the SEL2 and SEL3 subset of
atmospheric profiles noised on [CO2] and [O3]. We consider
each of the three types of retrievals to be considered (Fig. 1):
retrievals from brightness temperatures SBT j at the surface
level (TES-εBOA

j , TES-T sur,BOA
R ), retrievals from brightness

temperatures TOABT j at the TOA (TES-εTOA
j , TES-T sur,TOA

R ),
and retrievals from OS brightness temperature OSBT j at the
TOA with instrumental noise (TES-εOS

j , TES-T sur,OS
R ). Since

the TES retrievals from brightness temperatures SBT j at the
surface level were previously analyzed in § VI-B, we do not
discuss them here, and they are included in Tables IV and V
to serve as references when analyzing 1) the TOA retrievals
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TABLE V

ERRORS ON RETRIEVALS OF EMISSIVITY AND RADIOMETRIC TEMPERATURE FROM THE TES METHOD ALONG WITH ATMOSPHERIC CORRECTIONS

FROM PROFILES NOISED ON [O3]. WE REPORT RMSE VALUES FOR 1) THE PAIR {TES-εBOA
j , TES-T sur,BOA

R } THAT CORRESPONDS TO APPLYING

THE TES METHOD ON SENSOR MEASUREMENTS OF SURFACE BRIGHTNESS TEMPERATURE AT THE SURFACE LEVEL, 2) FOR THE PAIR

{TES-εTOA
j , TES-T sur,TOA

R } THAT CORRESPONDS TO APPLYING ATMOSPHERIC CORRECTIONS AND THE TES METHOD ON TOA

BRIGHTNESS TEMPERATURE AT THE SENSOR LEVEL, AND 3) THE PAIR {TES-εOS
j , TES-T sur,OS

R } THAT CORRESPONDS

TO APPLYING ATMOSPHERIC CORRECTIONS AND THE TES METHOD ON OS BRIGHTNESS TEMPERATURE (FIG. 1).
CHANNEL EMISSIVITIES ARE ORDERED ACCORDING TO INCREASING WAVELENGTHS

that involve errors on atmospheric corrections related to [CO2]
and [O3], and 2) the OS retrievals that additionally involve
uncertainties related to instrumental noise. We note the results
for BOA retrievals are not identical in Tables III–V, since they
correspond to different numbers of retrievals (52916 with the
SEL1 subset, 3126 with the SEL2 subset, and 8531 with the
SEL3 subset, see § IV-C), as well as to different values for
noised atmospheric downwelling irradiance.

For the TOA retrievals (TES-εTOA
j , TES-T sur,TOA

R ), the
RMSE values on channel emissivities RMSETES

εTOA
j

and

radiometric temperature RMSETES
T sur,TOA

R
across all MISTIGRI

configurations range between 0.060 and 0.013, and
between 0.30 and 0.45 K, respectively, for both SEL2 and
SEL3 subsets of atmospheric profiles noised on [CO2] and
[O3]. Across both subsets, errors on TOA retrievals are very
similar to those observed on BOA retrievals, which indicates
that errors on atmospheric corrections related to [CO2] and
[03] have a very small impact on the TES retrievals.

For the OS retrievals (TES-εOS
j , TES-T sur,OS

R ), the RMSE
values on channel emissivities RMSETES

εOS
j

and radiometric

temperature RMSETES
T sur,OS

R
across all MISTIGRI configurations

range between 0.02 and 0.05, and between 0.8 and 1 K,
respectively, for both SEL2 and SEL3 subsets. Thus, additional
consideration of instrumental noise has a significant impact
on the RMSE values, since these values reach the same
magnitude than those reported for TOA retrievals with the
SEL1 subset (Table III). This indicates that the impact on
TES retrievals of uncertainties due to instrumental noise is
similar to that of errors on atmospheric corrections related
to atmospheric temperature and humidity. Then, the similar

RMSE values observed for TOA and OS retrievals in Table III
are explained by compensation effects between atmospheric
and instrumental perturbations, the latter being characterized
by Gaussian processes (13) and (14).

Eventually, and similar to the result obtained with the
SEL1 subset, the spectral configuration that seems robust to
coupling between [CO2]/[O3] concentration errors and instru-
mental noise is MIS-5. In absolute terms, the most accurate
configuration is still MIS-4, although the differences with the
other configurations also remain small (Tables IV and V).

D. Sensitivity of the MISTIGRI/TES Retrievals to
Uncertainties on Channel Location and Bandwidths

Our results also provide information about the sensitivity of
the TES retrievals to uncertainties on MISTIGRI channel loca-
tions and widths, which is an important issue for sensor design
and subsequent accuracy on emissivity/temperature retrievals.
On the one hand, uncertainty on both channel locations and
widths is 0.15 μm, according to the information provided
by the detector manufacturer (§ V-A). On the other hand,
the variability on channel location and widths across the six
MISTIGRI spectral configurations is slightly larger than the
aforementioned uncertainty, i.e., around 0.2 μm, as indicated
in Fig. 4 and Table II. Therefore, it is possible to evaluate the
impact of this uncertainty, by quantifying the variability we
observe on TES retrieval accuracy across the six MISTIGRI
spectral configurations.

On the basis of the TES retrieval accuracy across the six
configurations, for each of the three cases (BOA, TOA, OS)
reported by Tables III–V, we note a variability on TES retrieval
accuracy that ranges between 0.05 and 0.15 K. This underlines
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the low impact of changes in channel locations and band-
widths, and therefore the low impact of uncertainty on channel
locations and bandwidths. Eventually, we note that changes
between the six spectral configurations (i.e., channel locations
and bandwidth) are similar to the uncertainty on channel loca-
tions and bandwidths. Indeed, the variability across spectral
configurations is constrained by both channel overlaps and
atmospheric windows, notably because of large bandwidths.
This highlights that using bolometer-based detectors induces
a tradeoff between instrumental noise and bandwidth. Such a
constraint should be overcome by using the last generation of
MCT cooled detectors.

VII. CONCLUDING REMARKS

The current study aims to propose an appropriate spectral
configuration for the micro-bolometer-based TIR sensor of the
MISTIGRI mission.

The strategy is typified by the following points. First,
we address the various errors related to each step of the
retrieval procedure: the TES underlying assumptions about
emissivity spectral contrast, the errors on atmospheric cor-
rections related to knowledge about atmospheric status when
the satellite overpasses, and the instrumental noise related
to filter response functions for micro-bolometer-based detec-
tors. Second, when dealing with uncertainties on atmospheric
status, we consider atmospheric profiles of temperature and
humidity, as well as of carbon dioxide and ozone concentra-
tions. Third, the error budget analysis is based on numerical
model simulations, by including the last generation of land
surface emissivity spectra that account for the cavity effect.
Fourth, we evaluate six predefined spectral configurations for
the MISTIGRI TIR sensor, where the spectral configurations
differ in terms of channel number, locations, and widths.

On the basis of the error budget analysis, the main out-
comes of the current study are the following. First, errors on
atmospheric corrections related to knowledge on temperature
and humidity profiles have a similar impact on TES retrievals
than uncertainties related to instrumental noise. The equiva-
lence in contribution to the error budget is ascribed to the
large instrumental errors due to the use of micro-bolometer
detectors. The resulting errors on TES retrievals are twice
as large as those due to the TES underlying assumption
about emissivity spectral contrast. Second, retrieval accuracies
are very similar across all MISTIGRI spectral configurations,
where differences are within 0.2 K on radiometric temperature.
This shows that the spectral configuration to be chosen is not a
critical issue in our study case that addresses the use of micro-
bolometer-based sensing with significant instrumental noises
or large channel widths. Third, retrieval accuracies on radio-
metric temperature are moderately larger than those reported
in former studies based on numerical model simulations,
for MCT cooled detectors such as ASTER or ECOSTRESS
sensors.

The main limitations of the current study, to be overcome
with on-going works, are the following. First, we consider a
micro-bolometer-based sensor, and results may vary if con-
sidering the last generation of MCT cooled detectors that
permit to reduce both channel widths and instrumental noises.

In this case, the challenge is to increase the accuracy of
atmospheric corrections. Second, we consider a set of prede-
fined spectral configurations to be evaluated by analyzing the
simulation-based error budget. However, results are expected
to be more robust if using an optimization procedure that
combines the simultaneous sliding of several channels, since
it is possible to identify a global minimum on retrieval errors.

From a practical point of view, eventually, the study suc-
ceeds in defining the most suited spectral configuration for the
MISTIGRI sensor, i.e., the spectral configuration that provides
retrievals of land surface radiometric temperature with lower
errors.

REFERENCES

[1] G. C. Hulley and S. J. Hook, “Generating consistent land surface
temperature and emissivity products between ASTER and MODIS data
for Earth science research,” IEEE Trans. Geosci. Remote Sens., vol. 49,
no. 4, pp. 1304–1315, Apr. 2011.

[2] K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of
broadband land surface emissivity from multi-spectral thermal infrared
remote sensing,” Agronomie, vol. 22, no. 6, pp. 695–696, 2002.

[3] K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of
land surface window (8–12 μm) emissivity from multi-spectral thermal
infrared remote sensing—A case study in a part of Sahara desert,”
Geophys. Res. Lett., vol. 30, no. 2, pp. 1–4, Jan. 2003.

[4] M. Mira et al., “Uncertainty assessment of surface net radiation derived
from Landsat images,” Remote Sens. Environ., vol. 175, pp. 251–270,
Mar. 2016.

[5] G. Yan, Z.-H. Jiao, T. Wang, and X. Mu, “Modeling surface longwave
radiation over high-relief terrain,” Remote Sens. Environ., vol. 237,
Feb. 2020, Art. no. 111556.

[6] G. Bigeard et al., “Ability of a soil–vegetation–atmosphere transfer
model and a two-source energy balance model to predict evapotran-
spiration for several crops and climate conditions,” Hydrol. Earth Syst.
Sci., vol. 23, no. 12, pp. 5033–5058, Dec. 2019.

[7] A. French et al., “Surface energy fluxes with the advanced spaceborne
thermal emission and reflection radiometer (ASTER) at the Iowa 2002
SMACEX site (USA),” Remote Sens. Environ., vol. 99, pp. 55–65,
Nov. 2005.

[8] M. Galleguillos, F. Jacob, L. Prévot, P. Lagacherie, and L. Shunlin,
“Mapping daily evapotranspiration over a Mediterranean vineyard water-
shed,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 1, pp. 168–172,
Jan. 2011.

[9] M. Gokmen, Z. Vekerdy, A. Verhoef, W. Verhoef, O. Batelaan, and
C. van der Tol, “Integration of soil moisture in SEBS for improving
evapotranspiration estimation under water stress conditions,” Remote
Sens. Environ., vol. 121, pp. 261–274, Jun. 2012.

[10] M. Gómez, A. Olioso, J. A. Sobrino, and F. Jacob, “Retrieval of
evapotranspiration over the Alpilles/ReSeDA experimental site using
airborne POLDER sensor and a thermal camera,” Remote Sens. Environ.,
vol. 96, pp. 399–408, Jun. 2005.

[11] F. Jacob, A. Olioso, X. F. Gu, Z. Su, and B. Seguin, “Mapping
surface fluxes using airborne visible, near infrared, thermal infrared
remote sensing data and a spatialized surface energy balance model,”
Agronomie, vol. 22, no. 6, pp. 669–680, 2002.

[12] C. Montes, J.-P. Lhomme, J. Demarty, L. Prévot, and F. Jacob, “A three-
source SVAT modeling of evaporation: Application to the seasonal
dynamics of a grassed vineyard,” Agricult. Forest Meteorol., vol. 191,
pp. 64–80, Jun. 2014.

[13] C. Montes and F. Jacob, “Comparing Landsat-7 ETM+ and ASTER
imageries to estimate daily evapotranspiration within a Mediterranean
vineyard watershed,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 3,
pp. 459–463, Mar. 2017.

[14] N. Pardo, M. L. Sánchez, J. Timmermans, Z. Su, I. A. Pérez, and
M. A. García, “SEBS validation in a Spanish rotating crop,” Agricult.
Forest Meteorol., vols. 195–196, pp. 132–142, Sep. 2014.

[15] R. K. Vinukollu, E. F. Wood, C. R. Ferguson, and J. B. Fisher,
“Global estimates of evapotranspiration for climate studies using
multi-sensor remote sensing data: Evaluation of three process-based
approaches,” Remote Sens. Environ., vol. 115, no. 3, pp. 801–823,
Mar. 2011.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

[16] T. N. Carlson and G. P. Petropoulos, “A new method for estimating of
evapotranspiration and surface soil moisture from optical and thermal
infrared measurements: The simplified triangle,” Int. J. Remote Sens.,
vol. 40, no. 20, pp. 7716–7729, Oct. 2019.

[17] J. A. Sobrino, B. Franch, C. Mattar, J. C. Jiménez-Muñoz,
and C. Corbari, “A method to estimate soil moisture from air-
borne hyperspectral scanner (AHS) and ASTER data: Application
to SEN2FLEX and SEN3EXP campaigns,” Remote Sens. Environ.,
vol. 117, pp. 415–428, Feb. 2012.

[18] J. A. Taylor, F. Jacob, M. Galleguillos, L. Prévot, N. Guix, and
P. Lagacherie, “The utility of remotely-sensed vegetative and terrain
covariates at different spatial resolutions in modelling soil and watertable
depth (for digital soil mapping),” Geoderma, vols. 193–194, pp. 83–93,
Feb. 2013.

[19] D. Courault et al., “Influence of agricultural practices on micrometero-
logical spatial variations at local and regional scales,” Int. J. Remote
Sens., vol. 30, no. 5, pp. 1183–1205, Mar. 2009.

[20] B. Cao et al., “A review of Earth surface thermal radiation directionality
observing and modeling: Historical development, current status and per-
spectives,” Remote Sens. Environ., vol. 232, Oct. 2019, Art. no. 111304.

[21] J.-P. Lagouarde et al., “Modelling daytime thermal infrared directional
anisotropy over Toulouse city centre,” Remote Sens. Environ., vol. 114,
no. 1, pp. 87–105, Jan. 2010.

[22] J. P. Lagouarde et al., “Experimental characterization and modelling of
the nighttime directional anisotropy of thermal infrared measurements
over an urban area: Case study of Toulouse (France),” Remote Sens.
Environ., vol. 117, pp. 19–33, Feb. 2012.

[23] I. M. Watson et al., “Thermal infrared remote sensing of volcanic
emissions using the moderate resolution imaging spectroradiometer,”
J. Volcanol. Geothermal Res., vol. 135, nos. 1–2, pp. 75–89, Jul. 2004.

[24] P. Lundgren et al., “The dynamics of large silicic systems from satellite
remote sensing observations: The intriguing case of Domuyo volcano,
Argentina,” Sci. Rep., vol. 10, no. 1, pp. 1–15, Dec. 2020.

[25] G. Ganci et al., “A year of lava fountaining at Etna: Volumes from
SEVIRI,” Geophys. Res. Lett., vol. 39, no. 6, pp. 1–6, Mar. 2012.

[26] H.-P. Chan, C.-P. Chang, T.-H. Lin, M. Blackett, H. Kuo-Chen, and
A. T.-S. Lin, “The potential of satellite remote sensing for monitoring
the onset of volcanic activity on Taipei’s doorstep,” Int. J. Remote Sens.,
vol. 41, no. 4, pp. 1372–1388, Feb. 2020.

[27] F. van der Meer, C. Hecker, F. van Ruitenbeek, H. van der Werff,
C. de Wijkerslooth, and C. Wechsler, “Geologic remote sensing for
geothermal exploration: A review,” Int. J. Appl. Earth Observ. Geoinf.,
vol. 33, pp. 255–269, Dec. 2014.

[28] Y. Ninomiya and B. Fu, “Thermal infrared multispectral remote sensing
of lithology and mineralogy based on spectral properties of materials,”
Ore Geol. Rev., vol. 108, pp. 54–72, May 2019.

[29] N. Karimi, A. Farokhnia, L. Karimi, M. Eftekhari, and H. Ghalkhani,
“Combining optical and thermal remote sensing data for mapping debris-
covered glaciers (Alamkouh Glaciers, Iran),” Cold Regions Sci. Technol.,
vol. 71, pp. 73–83, Feb. 2012.

[30] V. Singh and M. K. Goyal, “An improved coupled framework for glacier
classification: An integration of optical and thermal infrared remote-
sensing bands,” Int. J. Remote Sens., vol. 39, no. 20, pp. 6864–6892,
Oct. 2018.

[31] C. J. Donlon, M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and
W. Wimmer, “The operational sea surface temperature and sea ice analy-
sis (OSTIA) system,” Remote Sens. Environ., vol. 116, pp. 140–158,
Jan. 2012.

[32] T. Kuleli and S. Bayazit, “Summer season sea surface temperature
changes in the Aegean Sea based on 30 years (1989–2019) of Landsat
thermal infrared data,” Environ. Monitor. Assessment, vol. 192, no. 11,
pp. 1–13, Nov. 2020.

[33] J. R. Irons, J. L. Dwyer, and J. A. Barsi, “The next Landsat satellite:
The Landsat data continuity mission,” Remote Sens. Environ., vol. 122,
pp. 11–21, Jul. 2012.

[34] D. P. Roy et al., “Landsat-8: Science and product vision for terrestrial
global change research,” Remote Sens. Environ., vol. 145, pp. 154–172,
Apr. 2014.

[35] A. Gillespie et al., “A temperature and emissivity separation algorithm
for advanced spaceborne thermal emission and reflection radiome-
ter (ASTER) images,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 4,
pp. 1113–1126, Apr. 1998.

[36] F. Jacob, F. Petitcolin, T. Schmugge, É. Vermote, A. French, and
K. Ogawa, “Comparison of land surface emissivity and radiometric
temperature derived from MODIS and ASTER sensors,” Remote Sens.
Environ., vol. 90, no. 2, pp. 137–152, Mar. 2004.

[37] A. P. Cracknell, Advanced Very High Resolution Radiometer AVHRR.
Boca Raton, FL, USA: CRC Press, 1997.

[38] Z. Song, S. Liang, D. Wang, Y. Zhou, and A. Jia, “Long-term record
of top-of-atmosphere albedo over land generated from AVHRR data,”
Remote Sens. Environ., vol. 211, pp. 71–88, Jun. 2018.

[39] D. M. A. Aminou, B. Jacquet, and F. Pasternak, “Characteristics of
the meteosat second generation (MSG) radiometer/imager: Seviri,” Proc.
SPIE, vol. 3221, pp. 19–31, Dec. 1997.

[40] I. F. Trigo et al., “The satellite application facility for land surface analy-
sis,” Int. J. Remote Sens., vol. 32, no. 10, pp. 2725–2744, May 2011.

[41] A. Savtchenko, D. Ouzounov, A. Gopalan, D. Yuan, D. Nickless, and
D. Ostrenga, “MODIS data from Terra and Aqua satellites,” in Proc.
IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), vol. 5, Jul. 2003,
pp. 3028–3030.

[42] V. V. Salomonson, W. Barnes, and E. J. Masuoka, “Introduction to
MODIS and an overview of associated activities,” in Earth Science
Satellite Remote Sensing. Berlin, Germany: Springer, 2006, pp. 12–32.

[43] D. Smith et al., “Sentinel-3A/B SLSTR pre-launch calibration of the
thermal InfraRed channels,” Remote Sens., vol. 12, no. 16, p. 2510,
Aug. 2020.

[44] O. Merlin et al., “Disaggregation of MODIS surface temperature over
an agricultural area using a time series of Formosat-2 images,” Remote
Sens. Environ., vol. 114, no. 11, pp. 2500–2512, Nov. 2010.

[45] O. Merlin, F. Jacob, J.-P. Wigneron, J. Walker, and G. Chehbouni,
“Multidimensional disaggregation of land surface temperature using
high-resolution red, near-infrared, shortwave-infrared, and microwave-
L bands,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5,
pp. 1864–1880, May 2012.

[46] B. Seguin et al., “IRSUTE: A minisatellite project for land surface heat
flux estimation from field to regional scale,” Remote Sens. Environ.,
vol. 68, no. 3, pp. 357–369, 1999.

[47] J. A. Sobrino and J. C. Jiménez-Muñoz, “Land surface temperature
retrieval from thermal infrared data: An assessment in the context of
the surface processes and ecosystem changes through response analysis
(SPECTRA) mission,” J. Geophys. Res., Atmos., vol. 110, no. D16,
pp. 1–10, 2005.

[48] G. Hulley, S. Hook, J. Fisher, and C. Lee, “ECOSTRESS, a NASA
Earth-ventures instrument for studying links between the water cycle
and plant health over the diurnal cycle,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp. (IGARSS), Jul. 2017, pp. 5494–5496.

[49] B. Koetz et al., “High spatio-temporal resolution land surface tempera-
ture mission—A Copernicus candidate mission in support of agricultural
monitoring,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Jul. 2018, pp. 8160–8162.

[50] J.-P. Lagouarde et al., “The MISTIGRI thermal infrared project: Scien-
tific objectives and mission specifications,” Int. J. Remote Sens., vol. 34,
nos. 9–10, pp. 3437–3466, 2013.

[51] J.-P. Lagouarde et al., “Indo-French high-resolution thermal infrared
space mission for Earth natural resources assessment and monitoring-
concept and definition of TRISHNA,” in Proc. ISPRS-GEOGLAM-ISRS
Joint Int. Workshop Earth Observat. Agricult. Monit., vol. 42, 2019,
p. 403.

[52] P. Dash, F.-M. Göttsche, F.-S. Olesen, and H. Fischer, “Land surface
temperature and emissivity estimation from passive sensor data: Theory
and practice-current trends,” Int. J. Remote Sens., vol. 23, no. 3,
pp. 2563–2594, 2002.

[53] F. Jacob et al., “Modeling and inversion in thermal infrared remote
sensing over vegetated land surfaces,” in Advances in Land Remote
Sensing. Dordrecht, The Netherlands: Springer, 2008, pp. 245–291.

[54] Z.-L. Li et al., “Satellite-derived land surface temperature: Current
status and perspectives,” Remote Sens. Environ., vol. 131, pp. 14–37,
Apr. 2013.

[55] T. Schmugge, S. J. Hook, and C. Coll, “Recovering surface temperature
and emissivity from thermal infrared multispectral data,” Remote Sens.
Environ., vol. 65, no. 2, pp. 121–131, Aug. 1998.

[56] V. Payan and A. Royer, “Analysis of temperature emissivity separation
(TES) algorithm applicability and sensitivity,” Int. J. Remote Sens.,
vol. 25, no. 1, pp. 15–37, Jan. 2004.

[57] F. Jacob et al., “Reassessment of the temperature-emissivity separation
from multispectral thermal infrared data: Introducing the impact of veg-
etation canopy by simulating the cavity effect with the SAIL-Thermique
model,” Remote Sens. Environ., vol. 198, pp. 160–172, Sep. 2017.

[58] A. N. French, T. J. Schmugge, J. C. Ritchie, A. Hsu, F. Jacob, and
K. Ogawa, “Detecting land cover change at the Jornada Experimental
Range, New Mexico with ASTER emissivities,” Remote Sens. Environ.,
vol. 112, no. 4, pp. 1730–1748, Apr. 2008.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JACOB et al.: SIMULATION-BASED ERROR BUDGET OF THE TES METHOD 19

[59] A. R. Gillespie, S. Rokugawa, S. J. Hook, T. Matsunaga, and
A. B. Kahle, “Temperature/emissivity separation algorithm theoret-
ical basis document, version 2.4,” NASA, Washington, DC, USA,
Tech. Rep. ATBD NAS5-31372, 1999.

[60] A. R. Gillespie, E. A. Abbott, L. Gilson, G. Hulley,
J. C. Jiménez-Muñoz, and J. A. Sobrino, “Residual errors in ASTER
temperature and emissivity standard products AST08 and AST05,”
Remote Sens. Environ., vol. 115, pp. 3681–3694, Dec. 2011.

[61] F.-M. Göttsche and G. C. Hulley, “Validation of six satellite-retrieved
land surface emissivity products over two land cover types in a
hyper-arid region,” Remote Sens. Environ., vol. 124, pp. 149–158,
Sep. 2012.

[62] S. P. Grigsby, G. C. Hulley, D. A. Roberts, C. Scheele, S. L. Ustin,
and M. M. Alsina, “Improved surface temperature estimates with
MASTER/AVIRIS sensor fusion,” Remote Sens. Environ., vol. 167,
pp. 53–63, Sep. 2015.

[63] S. J. Hook et al., “HyspIRI level-2 thermal infrared (TIR) land sur-
face temperature and emissivity algorithm theoretical basis document,”
Jet Propuls. Lab., Nat. Aeronaut. Space, Pasadena, CA, USA, Tech.
Rep. JPL Publication 11-5, 2011.

[64] G. C. Hulley, S. J. Hook, and A. M. Baldridge, “ASTER land surface
emissivity database of California and Nevada,” Geophys. Res. Lett.,
vol. 35, no. 13, pp. 1–6, 2008.

[65] G. C. Hulley, C. G. Hughes, and S. J. Hook, “Quantifying uncertainties
in land surface temperature and emissivity retrievals from ASTER and
MODIS thermal infrared data,” J. Geophys. Res., Atmos., vol. 117,
no. D23, pp. 1–18, Dec. 2012.

[66] G. Hulley, S. Veraverbeke, and S. Hook, “Thermal-based techniques
for land cover change detection using a new dynamic MODIS multi-
spectral emissivity product (MOD21),” Remote Sens. Environ., vol. 140,
pp. 755–765, Jan. 2014.

[67] J. C. Jiménez-Muñoz, J. A. Sobrino, A. Gillespie, D. Sabol, and
W. T. Gustafson, “Improved land surface emissivities over agricultural
areas using ASTER NDVI,” Remote Sens. Environ., vol. 103, no. 4,
pp. 474–487, Aug. 2006.

[68] J. C. Jiménez-Muñoz, J. A. Sobrino, C. Mattar, G. Hulley,
and F.-M. Göttsche, “Temperature and emissivity separation from
MSG/SEVIRI data,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 9,
pp. 5937–5951, Sep. 2014.

[69] M. Mira, T. J. Schmugge, E. Valor, V. Caselles, and C. Coll, “Compar-
ison of thermal infrared emissivities retrieved with the two-lid box and
the TES methods with laboratory spectra,” IEEE Trans. Geosci. Remote
Sens., vol. 47, no. 4, pp. 1012–1021, Apr. 2009.

[70] M. Mira, T. J. Schmugge, E. Valor, V. Caselles, and C. Coll, “Analysis
of ASTER emissivity product over an arid area in southern New Mexico,
USA,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 4, pp. 1316–1324,
Apr. 2011.

[71] D. E. Sabol, Jr., A. R. Gillespie, E. Abbott, and G. Yamada,
“Field validation of the ASTER temperature–emissivity separation
algorithm,” Remote Sens. Environ., vol. 113, no. 11, pp. 2328–2344,
Nov. 2009.

[72] T. Schmugge, A. French, J. C. Ritchie, A. Rango, and H. Pelgrum, “Tem-
perature and emissivity separation from multispectral thermal infrared
observations,” Remote Sens. Environ., vol. 79, nos. 2–3, pp. 189–198,
2002.

[73] J. A. Sobrino, J. C. Jiménez-Muñoz, L. Balick, A. R. Gillespie,
D. A. Sabol, and W. T. Gustafson, “Accuracy of ASTER level-2
thermal-infrared standard products of an agricultural area in Spain,”
Remote Sens. Environ., vol. 106, no. 2, pp. 146–153, Jan. 2007.

[74] J. A. Sobrino and J. C. Jiménez-Muñoz, “Minimum configuration of
thermal infrared bands for land surface temperature and emissivity
estimation in the context of potential future missions,” Remote Sens.
Environ., vol. 148, pp. 158–167, May 2014.

[75] X. Zheng, Z.-L. Li, F. Nerry, and X. Zhang, “A new thermal infrared
channel configuration for accurate land surface temperature retrieval
from satellite data,” Remote Sens. Environ., vol. 231, Sep. 2019,
Art. no. 111216.

[76] T. Warner, D. Levandowski, and E. Abbott, “Optimum band selection
for estimating emittance,” in Proc. 2nd TIMS Workshop, Pasadena, CA,
USA, 1990, pp. 26–30.

[77] J. M. Norman and F. Becker, “Terminology in thermal infrared remote
sensing of natural surfaces,” Agricult. Forest Meteorol., vol. 77, nos. 3–4,
pp. 153–166, Dec. 1995.

[78] A. Olioso, “Simulating the relationship between thermal emissivity and
the normalized difference vegetation index,” Int. J. Remote Sens., vol. 16,
no. 16, pp. 3211–3216, Nov. 1995.

[79] A. Olioso, F. Jacob, and M. Weiss, “First evaluation of land surface emis-
sivity spectra simulated with the sail-thermique model,” in Proc. IEEE
Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2018, pp. 3951–3954.

[80] F. Jacob, X. F. Gu, J.-F. Hanocq, N. Tallet, and F. Baret, “Atmospheric
corrections of single broadband channel and multidirectional airborne
thermal infrared data: Application to the ReSeDA experiment,” Int. J.
Remote Sens., vol. 24, no. 16, pp. 3269–3290, Jan. 2003.

[81] J. C. Jiménez-Muñoz and J. A. Sobrino, “Error sources on the land sur-
face temperature retrieved from thermal infrared single channel remote
sensing data,” Int. J. Remote Sens., vol. 27, nos. 5–6, pp. 999–1014,
Mar. 2006.

[82] L. Labarre et al., “An overview of MATISSE-v2.0,” Proc. SPIE,
vol. 7828, Oct. 2010, Art. no. 782802.

[83] L. Labarre et al., “MATISSE-v2.0: New functionalities and comparison
with MODIS satellite images,” Proc. SPIE, vol. 8014, May 2011,
Art. no. 80140Z.

[84] J. A. Barsi, J. L. Barker, and J. R. Schott, “An atmospheric correction
parameter calculator for a single thermal band Earth-sensing instrument,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), vol. 5,
Jul. 2003, pp. 3014–3016.

[85] F. Palluconi, G. Hoover, R. Alley, M. Jentoft-Nilsen, and T. Thompson,
“An atmospheric correction method for aster thermal radiometry over
land,” ASTER ATBD Revision 3, Jet Propuls. Lab., Pasadena, CA, USA,
Tech. Rep., 1999.

[86] R Foundation for Statistical Computing, Austria. (2011). R Core Team:
R: A Language and Environment for Statistical Computing. [Online].
Available: http://www.R-project.org/

[87] R. Fletcher and C. M. Reeves, “Function minimization by conjugate
gradients,” Comput. J., vol. 7, no. 2, pp. 149–154, 1964.

[88] G. Girouard, A. Bannari, A. El Harti, and A. Desrochers, “Vali-
dated spectral angle mapper algorithm for geological mapping: Com-
parative study between QuickBird and Landsat-TM,” in Proc. 20th
ISPRS Congr., Geo-Imag. Bridging Continents, Istanbul, Turkey, 2004,
pp. 12–23.

[89] G. P. Anderson, S. A. Clough, F. Kneizys, J. H. Chetwynd, and
E. P. Shettle, “AFGL atmospheric constituent profiles (0.120 km),”
Air Force Geophys. Lab., Hanscom AFB, MA, USA, Environ. Res.
Paper AFGL-TR-86-0110, 954, 1986.

[90] P. Simoneau et al., “MATISSE: Version 1.2 et développements futurs,”
in Proc. Int. Symp. OPTRO, Paris, France, May 2005, pp. 1–10.

[91] F. Chevallier, A. Chédin, F. Chéruy, and J.-J. Morcrette, “TIGR-
like atmospheric-profile databases for accurate radiative-flux computa-
tion,” Quart. J. Roy. Meteorol. Soc., vol. 126, no. 563, pp. 777–785,
Jan. 2000.

[92] E. Rubio, V. Caselles, and C. Badenas, “Emissivity measurements
of several soils and vegetation types in the 8–14, μm wave band:
Analysis of two field methods,” Remote Sens. Environ., vol. 59, no. 3,
pp. 490–521, 1997.

[93] H. Tonooka, F. D. Palluconi, S. J. Hook, and T. Matsunaga,
“Vicarious calibration of ASTER thermal infrared bands,” IEEE
Trans. Geosci. Remote Sens., vol. 43, no. 12, pp. 2733–2746,
Dec. 2005.

[94] J. C. Jiménez-Muñoz and J. A. Sobrino, “Emissitivity spectra obtained
from field and laboratory measurements using the temperature and emis-
sivity separation algorithm,” Appl. Opt., vol. 45, no. 27, pp. 7104–7109,
2006.

[95] H. Fujisada, “Design and performance of aster instrument,” Proc. SPIE,
vol. 2583, pp. 16–25, Dec. 1995.

[96] C. Coll et al., “Temperature and emissivity separation from ASTER
data for low spectral contrast surfaces,” Remote Sens. Environ., vol. 110,
no. 2, pp. 162–175, 2007.

[97] J. Gomis-Cebolla, J. C. Jimenez, and J. A. Sobrino, “LST retrieval
algorithm adapted to the Amazon evergreen forests using MODIS data,”
Remote Sens. Environ., vol. 204, pp. 401–411, Jan. 2018.


