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Abstract: Demand for agricultural products is increasing as population continues to grow in Africa.
To attain a higher crop yield while preserving the environment, appropriate management of macronu-
trients (i.e., nitrogen (N), phosphorus (P) and potassium (K)) and crops are of critical prominence.
This paper aims to review the state of art of the use of remote sensing in soil agricultural applica-
tions, especially in monitoring NPK availability for widely grown crops in Africa. In this study, we
conducted a substantial literature review of the use of airborne imaging technology (e.g., different
platforms and sensors), methods available for processing and analyzing spectral information, and
advances of these applications in farming practices by the African scientific community. Here we
aimed to identify knowledge gaps in this field and challenges related to the acquisition, processing,
and analysis of hyperspectral imagery for soil agriculture investigations. To do so, publications
over the past 10 years (i.e., 2008–2021) in hyperspectral imaging technology and applications in
monitoring macronutrients status for crops were reviewed. In this study, the imaging platforms
and sensors, as well as the different methods of processing encountered across the literature, were
investigated and their benefit for NPK assessment were highlighted. Furthermore, we identified and
selected particular spectral regions, bands, or features that are most sensitive to describe NPK content
(both in crop and soil) that allowed to characterize NPK. In this review, we proposed a hyperspectral
data-based research protocol to quantify variability of NPK in soil and crop at the field scale for the
sake of optimizing fertilizers application. We believe that this review will contribute promoting the
adoption of hyperspectral technology (i.e., imaging and spectroscopy) for the optimization of soil
NPK investigation, mapping, and monitoring in many African countries.

Keywords: hyperspectral imaging; agricultural soils; variable rate fertilization; fertigation;
precision agriculture; machine learning; remote sensing; crop yield

1. Introduction

Modern agriculture faces the challenging issue of meeting global food demands of an
increasing population while sustainably utilizing available resources [1]. In Africa, demand
for agricultural products is increasing as population continues to grow in Africa [2]. To
respond to such demand, nutrient availability can play a major role in increasing plant
production and improve soil fertility for sustainable agricultural production. Macronutri-
ents (i.e., nitrogen (N), phosphorus (P), potassium (K), referred to hereafter as NPK) are
one of the main farming inputs in plant production. [3]. Crops respond sensitively to the
dosage of fertilizers, highlighting the importance of these in determining crop yield [4].
Insufficient doses can lead to low yield and quality of crop; whereas excessive application
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can lead to yield loss and negative environmental consequences [5]. Thus, obtaining and
providing access to detailed in-field information can decrease input costs and increase
yields while reducing the environmental footprint of fertilizers. One potential solution
to optimize fertilizer application lies in providing farm operators with instantaneous and
spatially distributed information on crops and soil [6]. Assessing and monitoring NPK in
crops and soils are of great importance, so that appropriate and timely interventions can be
made to adjust management practices and/or fertilization rate, and therefore help avoiding
yield loss and potential negative environmental consequences, usually due the application
of unspecified dosages. Soil NPK rates, a proxy for soil fertility [7], and their quantification
is usually based on a conventional approach consisting of using punctual soil sampling
and laboratory-based soil chemical analysis. However, these methods are proved to be
costly and have limitation in time and space applications, especially if we plan to apply
variable rate fertilization over large fields [8] and different time periods. Alternatively,
previous studies have proven that multispectral and hyperspectral remote sensing datasets
can be employed for successful determination and assessment of NPK. The following is an
overview of these studies for NPK.

Nitrogen: based on the assumption which stipulates the existence of a strong cor-
relation between N and some leaf traits, namely chlorophyll content [9], many studies
have arisen, in which it is aimed to design remotely sensed approaches able to define the
optimal N fertilizers recommendation for specific crops. In other words, the approach
consisted of monitoring the variation of the spectral signature, as well as the sensitive bands
(typically amid Red-edge and NIR wavelengths) to the photosynthetic pigment content in
the crop in response to a variation of N fertilizers [10]. The critical importance of N to crop
yield and photosynthesis makes it easier to highlight using biomass reflectance at specific
wavelengths, compared to other nutrients. In fact, it is the main reason of the meteoric
increase of the publications that treat the question of the optimization of N fertilizers for
crops using remote sensing [11]. Besides studies that involved empirical regression on
hyperspectral remote sensing data to quantify crop N content, other investigations assessed
the outcomes of coupling and inversing state-of-art radiative transfer models, dedicated
to characterizing spectral and directional reflectance of the vegetation cover type (i.e.,
PROSPECT, SAIL) [12]. Although being strongly impacted by the timing and availability
of remote sensing data [13], this approach aimed to provide an indirect estimation of
N, that is ultimately retrieved from the crop leaf characteristics through the inversion of
the corresponding radiative transfer modeling (RTM), taking pre-processed hyperspec-
tral signals of the subject ‘s leaves as input [14]. The inversion algorithms are usually
memory-hungry processes as they are based on concepts such as Look up tables [15].
Other studies assessed soil N content for the sake of digital soil mapping, which basically
relies on remote sensing data as a complementary source of information due to its time
and cost effectiveness, as opposed to the traditional approaches that rely heavily on the
analysis of soil samples. In this context, the soil spectral signature in response to a variation
of N content in soil samples is analyzed, with a consideration of the tradeoff between the
spatial and spectral resolution. While some investigations examined direct soil reflectance
at different wavelengths ranging in the NIR (1100–2300 nm [16,17] and up to the MIR
(2500–25000 nm) [18] to the variation of soil N content, others investigated the potential of
spectral derivative of soil hyperspectral signature to draw insights about soil N status [8].
In the same scope, we find works that combined the high spectral resolution of Vis-NIR
spectroscopy signal, with the high spatial resolution and coverage of satellite imagery to
map the spatial variability of soil in N [19,20].

Phosphorus: P concentration in soil plays a major role in soil fertility management [21].
In terms of variable rate fertilization implementation, the prediction of the spatial variability
of P is more effective than monitoring its content in crops [22]. Rather, the attention of
recent studies shifted into using remote sensing data. In fact, some have chosen the
reflectance at specific wavelengths, or various indices approach (e.g., NDVI) based on
hyperspectral response of soil, to indirectly predict total and extractable P, assuming the
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relationship between the variability of soil P concentration with soil dynamic properties
associated with mechanical factors (e.g., erosion) and chemical deposits (e.g., soil organic
matter) [23–25]. Nevertheless, other investigations tried to monitor P deficiency within
crops using hyperspectral reflectance, as a method to detect responses of crop next to a
specific nutrient stress such that of phosphorus [26,27]. Multiple prediction models were
deployed, as from the simple and interpretable models (e.g., PLSR, RF) [28–30], to the
most black boxed deep learning algorithms (e.g.,NN, CNN) [31]. Among the studies that
investigated the estimation of P, an instance was carried out in Morocco by Reda et al. [32]
which assessed the performance of empirical regression models combined with variable
selection algorithms to predict total P and Olsen P, under variable soil texture conditions.
The study showed that Olsen P prediction with Support Vector Machine regression coupled
with Genetic Algorithm exhibited the best performance and resulted in a wide variation in
regression accuracy between the different combinations of algorithms and soil textures.

Potassium: Few studies have estimated K content using remote sensing data. Among
these studies, was Abdel-Rahman et al. [33] who used ground-based hyperspectral data
to build prediction models for the concentration of Swiss chard foliar macronutrients
under four partial least square regression (PLSR) approaches using rainwater, tap water,
and wastewater. The validation of the predictive models was assessed through R2 after
leave one out cross validation (R2-LOOCV) and root mean square error (RMSE) metrics.
The authors [33] have found that the different approaches exhibited better predictive
accuracy of the Swiss chard foliar of K content, mostly the ones developed under tap
water fertigation treatment. Another recent study [20] coupled soil chemical analyses
with moderate-resolution (i.e., Landsat-8 imagery) and high-resolution remote sensing
(VNIR-SWIR spectroscopy) datasets for the prediction of the content of K among other soil
nutrients in arid zone in Egypt. The spatial prediction of soil K quantities using partial
least- squares regression (PLSR) from ground hyperspectral data and Landsat images,
achieved a high validation accuracy (i.e., R2 of 0.91 and 0.55, respectively).

With the recent advances made in the hyperspectral field, it is becoming more widely
available to use these data in agricultural applications, particularly with the launch of
regional airborne hyperspectral missions (e.g., AVIRIS NG) and the development from
low-cost handheld solutions to global spaceborne hyperspectral sensors (e.g., Hyperion
EO1, PRISMA, EnMAP). Nevertheless, it can be a promising technology as it will feature
higher capabilities for acquiring a detailed spectral response of NPK content, as opposed
to multispectral imaging, hyperspectral images have not been widely used over Africa,
most probably due to several limitations (i.e., few operational airborne and spaceborne
missions, and dimensionality of the high-volume datasets storage requirements). A recent
study by Khechba et al. [34] has reported that the African scientific community can typically
encounter such limitations [33]. To our knowledge, no research in Africa had previously
assessed hyperspectral remote sensing-based models that fall within optimization of NPK
rates in arid and semi-arid region in Africa on any kind of crops.

Although there is much potential in these hyperspectral platforms, significant devel-
opment is required by African scientists to develop ways for translating the large amount
of data collected into quantities that can be used for precision agriculture. In this study,
we aim to (i) conduct a review to assess the status of NPK quantification and assessment
over the African continent using remote sensing during the last decade, and (ii) to identify
knowledge gaps in this field of quantification of soil and crop NPK content using remote
sensing data in Africa. To do so, publications that explored the applications in monitoring
soil NPK macronutrients in Africa over the timespan 2008–2020 are reviewed in this study.
The imaging platforms and sensors, besides the different methods of processing encoun-
tered across the literature, will be introduced. Furthermore, performance of spectroscopy,
coupled with different algorithms of regression and classification for the quantification
of macronutrients, in addition to the covariates affecting the nutrients dynamics in soil
were also examined. Furthermore, the pending questions regarding the state of art of the
assessment of soil NPK availability through hyperspectral remote sensing will be exhibited.



Remote Sens. 2022, 14, 81 4 of 17

2. Overview of Remote Sensing Sensors Used for NPK Assessment and Mapping
2.1. Satellite Mounted Sensors

Several studies of soil and crop nutrient concentrations used multispectral satellite
remote sensing data, as they provide a continuously updated catalog of tiles that map the
whole land surface with a decent spatial, spectral resolution, merely at no cost (i.e., Landsat,
Sentinel) [35]. These satellite missions allowed the development of time series analysis
workflows for the purposes of developing good practices of the integration of variable rate
management for large field scale [36]. The high temporal resolution of these constellations
have made possible the consideration of soil and crops temporal variability within the
growing season over a large timespan [37]. Although similar studies also highlighted
the potential of remote sensing data to provide quantitative insights about soil and crop
nutrients status [38], they emphasized that the resulting accuracy level amounts essentially
to the spatial and spectral resolution of the input images [20]. Others pointed out to the
constraint of the limited number of spectral bands in multispectral data, which hinders the
soil and crop spectral analyses. They rather suggested for better results, the employment
of hyperspectral data [39]. Despites the few missions that have been launched so far, they
covered most of the land surface during a large period of time (e.g., Hyperion EO-1). In this
context, a recent hyperspectral Satellite mission “PRISMA” launched in 2019 [40], collects
data within the 350–2500 nm wavelength range with a spectral resolution of 10 nm all
around the globe. It holds many opportunities for a better monitoring of ground targets,
especially the investigation of crops and soils variability [41].

Several studies that have been conducted over the world to monitor performances
of hyperspectral imagery and multispectral imagery in precision agriculture applications,
notably for estimating Nutrient content in soil and crops. For instance, in a recent study, [8]
used the Derivative Analysis for Spectral Unmixing (DASU) approach on hyperspectral
signatures of different types of soils and found that endmember features of NPK compost
and soil have diagnostic spectral absorption bands respectively. Another study [20] com-
pared Visible and NIR spectroscopy with Landsat 8 multispectral imagery to investigate
the spatial variability soil nutrients under arid climate. The authors reported better per-
formances of using hyperspectral imagery than using Landsat imagery for both research
purposes. Similarly, Bostan et al. [42] compared Hyperion and Landsat images for crop
classification and found that higher classification accuracy can be achieved by using hy-
perspectral imagery. [43]. Nevertheless, reaching a high spatial resolution from satellite
perspective has always been a challenge (e.g., 30 m for PRISMA, and EnMAP) with respect
to the level of accuracy required for estimating nutrients, crop yield and health assessment,
and yet remains not high enough for deployment in precision agriculture and variable rate
management practices.

2.2. Airborne and Unmanned Aerial Vehicles (UAVs) Mounted Sensors

Airborne and Unmanned Aerial Vehicles (UAV) multi-sensor imaging is being globally
used in capturing remote sensing data for various soil and crops properties, including
NPK. Its operating affordability, low cost and high use flexibility made its integration in
precision agriculture operations much more practical, especially for soil and crop nutrient
management purposes [44]. In fact, the release of UAV compatible digital RGB, multispec-
tral, thermal and hyperspectral sensors, enabled in-depth remote sensing investigations
of precision agriculture questions, mainly those related to crop yield estimation and field
nutrients variability assessment, as these mounted sensors permit having control over a
wide range of setups, ranging over the acquisition operation, the mission schedule, flight
altitude, and the geographical coverage, which help achieving a high spatial resolution [43].
Other advantages of these platforms are that they allow users to drastically reduce the
atmospheric effect on resulting imagery, as well as turning away the cloud drawbacks
that often face optical satellites and high-altitude airborne mounted optical sensors [45].
The spectral resolution of sensors on-board UAV can vary from being multispectral, with
few specific wide bands, to hyperspectral with continuous narrow hundreds of bands;
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both covering a range between 400–2500 nm [46]. In terms of the application on precision
fertilization, previous studies highlighted that UAV hyperspectral sensors can lead to
highly accurate estimates of crop nutrients, especially leaf N [44].

To balance the tradeoff between the accuracy and the cost of the nutrient estimations
in a crop field, various experimental trials exist, from the sole rely on multispectral [47]or
hyperspectral data captured in a single campaign [45], all the way to the combination of
ground-measured data of soil and/or crop nutrients concentrations with a time series of
UAV’s flight missions’ data, captured at different crop growth [48]. Insights about soil and
crop nutrient contents are brought through the analysis of the UAV surface reflectance
responses from designed crop plots, using ground-measured data, and the formulation of
appropriate spectral indices. These explain most of the statistical variations in nutrients
content by the combination of the bands of interest whether (i) inside an interpretable
parametric model [44]; (ii) the incorporation of the entire spectrum response into the
inverse algorithms of a canopy RTM [15]; (iii) or by means of machine and deep learning
algorithms. It is worth mentioning that the wide use of machine learning algorithms
and their growing ubiquity in the data science field, have exhibited a potential track for
remote sensing based variable rate fertilization, to find significant patterns about nutrient
availability in the crop field [49].

2.3. Ground-Based and Proximal Sensing

Although ground-based hyperspectral reflectance data can be quickly measured
using a spectroradiometer (e.g., ASD FieldSpec, [44,50,51]) and have been widely used
for observing canopy and leaf-level spectral features [52–54]. Spectroscopy ground-based
measurements are limited to a few numbers of field sites, and they cannot be applied across
large areas; in contrast to airborne and space borne hyperspectral imaging sensors. There
exist other advanced sensing technologies based on physical properties to characterize soil
properties. As soil conductivity is enabling the characterization of soil physical properties
(i.e., texture, water content, salinity), vis–NIR diffuse reflectance spectroscopy [55] and
Gamma- ray spectroscopy [56] serve in retrieving properties with direct spectral responses
(e.g., OC, TN, SOM, MC, and clay) under laboratory conditions, which provide accurate
results as compared to aerial measurement, due to the entire elimination of the atmospheric
errors usually affecting the measurements. It is worth noting that properties soil chemical
properties (e.g., P and K) don’t have direct spectral responses, let alone K variation in soil is
hard to identify with NIR spectroscopy. Most of these instrument exhibit high deployment
charges, hence future research should focus on finding the optimal tradeoff between the
profitability of adopting advanced sensing methods, the spatial extent beside the accuracy
they provide versus the soil conventional laboratory analysis [57].

3. Synthesis of Reviewed and Retained Publications

This synthesis review focus on presenting a categorization scheme for distinct inves-
tigated NPK, followed by a discussion of the important findings with regards to remote
sensing data sources, modeling and spatial prediction approaches. Several papers that
show how remote sensing data methods can be used to quantify and monitor macronutrient
concentrations in soil and crops were introduced and discussed. “Nitrogen”, “Phosphorus”,
“Potassium” “remote sensing”, “Soil” and “Crop” were the main keywords which we based
our document search on literature databases. To this end, we have employed the same
query exercise with different literature databases (i.e., Scopus, Google Scholar, and Web of
Science), and have chosen the most performant one, which is the Web of Science database.
It is important to mention that the query was applied to the entire paper sections, including
the title, abstract, and the keywords. Furthermore, this study searched for publications
that based their investigations on remote sensing data to delineate key absorption features
of NPK in soil and/or crops features and benchmarked the performance of different re-
gression and machine learning methods in achieving spatial prediction. Our study aimed
to cover the time frame ranging from 2008 all the way to 2021, as 2008 marked the year
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when widely used remote sensing imagery (i.e., Landsat) became free open access for
scientists. However, it’s important to mention that no publication was found for 2008 and
2009. The African continent was used as the key search. Our first query results showed
a 6077 publications, and the second query that integrated remote sensing keywords led
to 47 articles, and a scoping exercise we retained 26 publications designed to answer the
study objectives. Figure 1 summarize the entire research and filtering process we carry out
in Web of Science database.

Figure 1. Flowchart of the methodology used for the literature review queries.

In addition, to the time period and geographical region, our search was based on
the following set of search criteria: (i) the papers must be published in indexed journals
and (ii) they had to directly address soil or crop NPK quantification using remote sensing
data. In terms of the geographical footprint, the resulting studies were conducted in eleven
African countries: Algeria, Burkina Faso, Egypt, Kenya, Madagascar, Malawi, Morocco,
Nigeria, South Africa, Tanzania, and Zimbabwe (Figure 2). The ultimate result is a logic
diagram summarizing the selected papers that studied individual N, P, K, or a combination
of more than one nutrient.
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Figure 2. Map showing the the African countries investigated (hatched) in this study.

4. Results and Discussion

The results of our research showed that between 2008 and 2021, only 26 publications
that explicitly aimed to quantify soil and crops NPK content using remote sensing in
Africa were retained (Table 1). In term of the studied nutrients covered in the 26 retained
studies, N has ranked first with 23 publications in total, followed by P with 12 papers,
and K with 6 papers (Figure 3). It is important to mention that the proportion of these
remote sensing-based studies compared to those that used the traditional ground-based
monitoring methods (i.e., other than remote sensing techniques) to monitor NPK in Africa
remain very low (i.e., about 846 papers, figure not shown here).

This reviewing study indicates that recent studies in Africa are increasingly adopt-
ing remote sensing based spatial prediction approach in comparison to other tools for
monitoring the variation of soil and crops NPK content. This is consistent with a recent
study [34] that reported the same increasing trend regarding the use of remote sensing
for field studies in Africa. The presented case studies showcased a difference in cost-
effectiveness and performance between remote sensing approach and traditional soil and
crop sampling methods. It is worth mentioning that a minimum field sampling is still
required for remote sensing-based studies, as a step to validate the prediction models with
ground truth measurements.
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Table 1. Summary of previous studies that quantified NPK in vegetations and soil.

Country Publication
Year

Targeted
Nutrient Soil/Crop Remote Sensing

Source Reference

South Africa 2010 N Sugarcane HSS [58]
South Africa 2010 N Sugarcane HSS [50]
South Africa 2011 N Maize HSS [59]
South Africa 2012 NP Forage HSS [60]
South Africa 2013 NP Grass HSS [61]

Kenya 2016 N Mixte * MS-L8 [62]
Zimbabwe 2016 NP Maize UAV [63]

Burkina Faso 2017 N Soil MS-L8, RE [19]
Egypt 2017 N Peanut HSS [64]

Madagascar 2017 N Soil HSS [65]
South Africa 2017 NPK Swiss chard HSS [33]

Tanzania 2017 N Coffee MS-S2 [66]
Zimbabwe 2017 N Maize UAV [67]
Zimbabwe 2017 P Wheat MS-L8 [68]
Tanzania 2018 NP Rice UAV [69]

Madagascar 2019 P Maize HSS [70]
South Africa 2019 P Eucalyptus HSS [71]

Algeria 2019 N Wheat HSS [72]
Egypt 2020 NPK Soil MS-L8, HSS [20]
Egypt 2020 N Maize HSS [73]
Africa 2021 NPK Soil HSS [74]

Madagascar 2021 NPK Soil UAV [25]
Malawi 2021 N Maize UAV [75]
Morocco 2021 N Wheat MS-L8 [48]
Morocco 2021 NPK Soil HSI [76]
Nigeria 2021 NPK Soil MS-S2, MS-L8 [77]

* Maize, Beans, Wheat, Potatoes. N :Nitrogen; P: Phosphorus; K: Potassium; HSS: Hyperspectral spectroscopy;
HSI: Hyperspectral imaging; MS-L8: Multispectral Landsat 8; UAV MS: Unmanned Arial Vehicle Multispectral;
RE: RapidEye; MS S2: Multispectral Sentinel 2.

Figure 3 shows the distribution of papers that used multispectral versus hyperspec-
tral remote sensing data since 2008. Overall, the number of publications that employed
hyperspectral-based remote sensing data for NPK monitoring has significantly increased
over time compared to studies that used multispectral remote sensing. This is consistent
with previous studies that have demonstrated the superior performance of hyperspectral
imagery over multispectral images in monitoring soil properties including soil and crop
NPK content [39,78].
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Figure 3. Proportion of the 26 selected studies that used multispectral vs hyperspectral data to
monitor NPK over Africa between 2008 and 2021).

Our results also showed that more than half of the selected papers (i.e., nine publica-
tions) used hyperspectral spectroscopy approaches for NPK monitoring and assessment;
most likely because the high spectral resolution of hyperspectral data can be used to select
particular spectral regions, bands, or features that are most sensitive to describe NPK con-
tent both in crop the spectral bands/regions that allowed to characterize NPK (Figure 4).
Overall, the number of the found specific bands for N and P are significantly higher than
the bands for K (Figure 4). Despite its outstanding performance, hyperspectral imaging
has been utilized comparatively less in African operational agricultural applications in
the past few decades. This might be explained by the high cost of imagery and various
other technical and practical challenges (e.g., access to the specialized software needed
and the skills to process this the large data volume) [34]. This might also explain why
most of the papers reviewed in this study used spectroscopy instead of hyperspectral
imaging. However, we believe that more studies will be conducted in the near future using
hyperspectral imagery (i.e., PRISMA [76]) to monitor NPK over Africa, as these images are
becoming freely open accessed for African scientists.

Recently, precision agriculture has emerged as a promising technique [79] and aims to
optimize farm inputs (i.e., NPK, SOC) by focusing on the right management practices, at
the right time, in the right place [80]. This concept is based on monitoring and responding
to intra-field variability in plants and soil. Thus, UAV-based remote sensing approach
can provide an effective way to analyze the heterogeneity of agricultural surfaces at the
field-scale [81]. This fast emerging technology provides the opportunity to reveal new
insights into agricultural processes and represents a game-changing sensing platform for
precision agriculture over the world, including Africa. The key advantages of UAV-based
remote sensing are their capacities to collect data on demand and at very high resolution.
Our investigation has confirmed the increasing trend in the use of UAV technologies.
Indeed, we have found that since 2016 on-board UAV sensors have been increasingly used
to assess and monitor NPK both in soil and crop, especially because of their unprecedented
spatiotemporal resolutions. Thus, it is expected that in the coming decade, African scientists
will benefit from the advancements in drone multi-sensor derived data (e.g., hyperspectral,
multispectral, thermal), and thereby produce a high number of publications on NPK
assessment to ensure sustainable production and development.
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Figure 4. Graphs showing some of the selected 26 papers that used spectral regions, bands, and/or
features that are most sensitive to describe NPK content both in crops and soil (top and bottom
graphs, respectively).

Finally, our investigation has focused on reviewing the current state of research re-
garding monitoring soil and crop NPK content in Africa using remote sensing (Table 2);
which has an important interest towards promoting the appropriate use fertilization prac-
tices. In addition to the remote sensing techniques to assess NPK, we should mention that
digital soil maps can be important products for NPK soil management and monitoring
for precision agriculture applications in Africa [82]. However, the accuracy and the extent
of such maps in Africa remains questionable. To date, the first spatial predictive map
of soil nutrients, including NPK, was conducted in sub-Saharan Africa at 250 m resolu-
tion [83] and narrowed down recently to 30 m [74]. Despite the reported good precision
of certain soil attributes (i.e., P) of these recent maps, their accuracy and uncertainty need
further investigation.
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Table 2. Key findings, The most frequently used remote sensing and regression methods as defined by the selected publications.

Findings Remote Sensing Source Modeling Approach Reference

First-order derivatives of sugarcane leaf
reflectance in VIS_NIR demonstrated high
correlation with the underlying N concentration.

Spectroscopy Simple linear regression [58]

Red-edge Index based on leaf reflectance
exhibited a linear relation to N concentration. Spectroscopy Spectral vegetation indices [50]

Chlorophyll absorption centre wavebands-based
indices were the best performers in estimating
N concentration.

Spectroscopy Spectral vegetation indices
Linear regression and bootstrapping [59]

Red-Edge Position showed a significant
association to forage nitrogen content,
whereas the variation in foliar phosphorus
concentrations seemed to be associated with
sugars and starch absorption features.

Spectroscopy Linear regression [60]

Grass Protein absorption features contributes
significantly to the prediction of foliar N content.
However no spectral features were found to
be explaining the foliar P concentration.

Spectroscopy Non-linear PLSR [61]

The topographical and climatic parameters showed
significant influence on the spatial variation of
the estimated total nitrogen stock in soil

Landsat Bivariate Correlations [62]

High correlation between Leaf Chlorophyll content
and the associated N concentration across under
different N fertilization rates.

Multispectral UAV

Multiple linear regression
Multiple Linear Regression-Kriging
Geographically Weighted Re-gression
Geographically Weighted Regression-Kriging

[63]

The weak association observed between soil N and
soil reflectance data is due to the heterogenity in the
agricultural soil management practices, and the
variability of the climatic factors.

Landsat-RapidEye PLSR [19]
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Table 2. Cont.

Findings Remote Sensing Source Modeling Approach Reference

Studied spectral indices showed a significant
relationship with nitrogen concentration and
peanut nitrogen uptake.

Spectroscopy Random Forest [64]

Iterative stepwise elimination-based PLS performed
a high prediction of soil total nitrogen from the
first derivative of the Visible and Near-Infrared
diffuse reflectance spectra.

Spectroscopy regression analys [65]

Inspite of the good performance of the model in
predicting foliar NPK content from hyperspectral
data, no specific region in the VIS-NIR spectra
has made a particular absorption feature for
foliar NPK concentration.

Spectroscopy PLSR [33]

Combining optimized bands of Sentinel 2 and
derived vegetation indices achieved optimal
models for the estimation of coffee foliar N

Sentinel 2 MLR, RF, SVM
Stochastic Gradient Boosting (SGB) [66]

Some visible bands showed a significant but
weak correlation with P content in maize
leave, In contrast to the multispectral bands
that significantly correlated with the difference
in grain yield and N content under different P
fertilization methods.

UAV Multi Linear Regression [67]

The relative greener area index showed a
significant association with N status in wheat
crop under different N fertilizers treatments.

Multispectral UAV PLSR [70]

Wavenbands that are sensitive to Al and Fe are found
to be informative for estimating bound Extractable
P bound contents.

Multispectral UAV PLSR [71]



Remote Sens. 2022, 14, 81 13 of 17

Table 2. Cont.

Findings Remote Sensing Source Modeling Approach Reference

The Model population Analysis framework
associated with PLSR algorithm accurately
selected optimal spectral absorption signals
in the SWIR region that precdicts of leaf
nitrogen content.

Landsat-Spectroscopy Simple linear regression (SLR)
Multivariate Regression Analyses [20]

Reflectance resulting from spectroscopy
demonstrated better estimation of soil NPK than
satellite band reflectance

Spectroscopy Multi Linear Regression [73]

Penalized linear discriminant analysis (PLDA)
applied on crop reflectance response was able
to distinguish between different gradients of
moisture and nitrogen induced stress.

Spectroscopy PLSR, RF [25]

The 1D-Convolutional Neural Network model
showed a significant improvement in predicting
soil P and the associated spectral wavebands.

Multispectral UAV [75]

RTVI index highly correlated with N uptake
for all tested wheat varieties. Multispectral UAV Random Forest [48]

The topographic attributes, Land surface
temperature, soil bulk density, water holding
capacity and soil organic matter significantly
contributed to the variation of soil NPK.

Landsat [77]
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5. Conclusions

This study was conducted to determine the state of art of multispectral and hyper-
spectral remote sensing capabilities in quantifying the variations of soil and crop NPK
content over selected African countries. The low cost and spatial extent of this approach has
uncovered the potential of RS in monitoring soil macronutrients with the aim of optimizing
input through the adoption of variable rate fertilization and ultimately narrow the yield
gap. The novelty of this study not only lies in the exhibition of the studies carried out in
macronutrient assessment with a focus on the African continent, but more importantly,
showed the relationship between the reflectance of different soils properties and crops and
the underlying variation of NPK. Further analysis and assessment at the continental scale,
are required to reach a level of a maturity in deploying remote sensing for the application of
variable rate fertigation. The most used and recent RS mapping methods including support
vector machine (SVM) method, random forest (RF) regression models, principal component
analysis (PCA), partial least square regression (PLSR) analysis, multiple regression analysis,
neural network model and various spectral soil and vegetation indices derived mostly
from red-edge and NIR were summarized. Finally, we aim for this review to highlights not
only the knowledge gap and the pending questions in the field, but also identify the most
sensitive wavelengths to the variation of NPK in soil and crops.
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