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Discovered in 1988 by R. Oslisly and B. Peyrot, Elarmékora is a high terrace
that, today, is situated 175 m above the Ogooué River in the historical com-
plex of Elarmékora, attached to the Lopé National Park in Gabon, a World
Heritage site since 2007. The site yielded a small lithic assemblage, including
mainly cobble artefacts embedded within the 1 m thick alluvial material.
Based on geomorphological and palaeoclimatological criteria, the prelimi-
nary dating suggested an age of 400 ka. However, Elarmékora could be
a key site for Atlantic Central Africa if this lithic industry can be dated
absolutely. In 2018 and 2019, two field trips were organized to collect
surface samples as well as samples in vertical depth profiles with the aim
of measuring their in situ-produced cosmogenic nuclide (10Be and 26Al) con-
tent. Results suggest a surface abandonment between 730 and 620 ka ago
representing a minimum age for the cobble artefacts. Concurrently, techno-
logical reappraisal of the artefacts suggests an atypical lithic industry that
should, for the moment, be considered as ‘undiagnostic’ Earlier Stone
Age. This age bracketing may be compared with a similar age range
obtained for prehistoric occupations in Angola using the same approach.
This age will place Elarmékora among the oldest evidence for the presence
of hominins in western Central Africa and raises the question of a ‘West
Side Story’ to early human dispersals in Africa.

This article is part of the theme issue ‘Tropical forests in the deep human
past’.
1. Introduction
In Africa, the major contribution of Earlier Stone Age (ESA) archaeology in recent
decades has been the establishment of a multidisciplinary approach combining
palaeoenvironmental, palaeoanthropological and behavioural data within an
increasingly reliable chronological framework. These data have allowed the recon-
struction of global trends in human evolution in Africa from the first stone tool
makers, 3.3 Ma ago [1], to the emergence of Homo sapiens ca 300 ka ago [2]. This
long period, namely the ESA, is divided into two main techno-complexes based
on chronological and techno-typological criteria: the Oldowan and the Acheulean.
The Oldowan is a flake and core industry sometimes associated with a pebble
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(4–64 mm) and cobble (64–256 mm) tool component [3,4],
ranging from 2.58 Ma [5] to ca 1.5 Ma. So far it is only reported
in eastern, southern and northern Africa [6]. The subsequent
Acheulean techno-complex, broadly associated with the
genus Homo, is considered as the first technology to be wide-
spread over the entire African continent and beyond, especially
since ca 1 Ma [7–9]. However, once again, this techno-complex
is best known from eastern, southern and northern Africa,
with a large gap in our knowledge still for Central and
West Africa. The Acheulean is characterized by the emergence
and development of bifacial shaping, new flaking methods,
large flake production (larger than 10 cm) and specific new tool
types among which are large cutting tools such as handaxes
and cleavers [10–14]. Some Acheulean technical patterns are
believed to have persisted until the Late Pleistocene in some
regions [15]. There are very few dates and geoarchaeological
studies available for ESA sites in Central Africa, an area that
covers theAtlantic coast to theAfricanGreatRift Lakes, spanning
from Chad to Angola [16]. It also covers a broad range environ-
mentally, characterized by Soudano-Zambezian environments
in its periphery and Guineo-Congolian environments in its
centre [17].

However, a major limitation in current prehistoric research
in Central Africa is its poorly resolved Pleistocene chronologi-
cal and techno-cultural framework [18]. The underlying
reasons for this relate both to research bias, with little specific
scientific research carried out, and taphonomy, with vegetation
such as tropical forest or certain climatic conditions erasing or
disturbing potential evidence of past human occupation
[19–21]. Also, despite the fact that several sites have suggested
the presence of hominin groups in the region during the ESA
[22–27], only the site of Dungo IV in Angola, located at the
southern limit of Central Africa, has been dated, with an age
of ca 600–650 ka [28]. However, this evidence is insufficient
for assessing dispersal process(es) in the region, neither pro-
viding a robust palaeoenvironmental reconstruction for the
specific equatorial environments of the time nor defining the
hominin technical and subsistence behaviours that prevailed
in the equatorial belt of Central Africa. The site of Elarmékora
in the middle valley of the Ogooué River in the Lopé National
Park, central Gabon, possesses numerous alluvial deposits
amalgamating ESA cobble artefacts [29]. While it was discov-
ered at the end of the 1980s, renewed consideration of the site
can challenge our current understanding of early Middle Pleis-
tocene technological variability and population dispersal
within sub-Saharan Africa.

Typologically ESA stone artefacts were found at Elarmé-
kora in 1988 within an alluvial terrace perched 175 m above
the Ogooué River (figure 1). As no source of quartz (like
stone lines) can be found in the middle Ogooué valley
above an altitude of 250 m, the presence of the studied
stone artefacts in these deposits is puzzling.
2. Site presentation
The studied site is located near the Otoumbi railway station
(−0.09408 S; 11.17027 E; approx. 240 m above sea level and
approx. 175 m above the Ogooué River) in the northwestern
part of the World Heritage site ‘Ecosystem and Relict Cul-
tural Landscape of Lopé-Okanda’ (figure 1a). In this region
of central Gabon, dense and well-conserved tropical rainfor-
est coexists with relict savannah environments. A 1.2 m
high exposure of the alluvial terrace can be observed near
an old path formerly used in logging activities.

The Elarmékora site was probably connected to an old
erosion glacis where a palaeo-Ogooué has left deposits over-
lying artefacts, subsequently flowing in a wider valley under
arid climatic conditions that can be connected to the Middle
Brunhes period [30]. Then, due to tectonic changes, the
river started incising the relief, implying high denudation
rates that have dismantled the old glacis and left the elevated
deposits untouched. One can observe an alluvial deposit
composed of rounded quartz cobbles (1–10 cm) embedded
in a reddish sandy matrix and underlying a homogeneous
autochthonous saprolite. Lithic artefacts have been described
at the interface of the alluvial deposit and the saprolite
(approx. 90 cm under the surface) [30]. These artefacts have
thus been produced before their alluvial deposition at a
higher elevation. Due to its dominant position and the
smooth relief, one cannot observe any lateral displacements
or potential arrival of colluvium from higher up that may
have buried the original deposits at the site.

To better constrain the chronology of this site, possibly the
oldest in Atlantic Central Africa, reinvestigations at Elarmékora
aimed to identify the timingof this terrace formation, undertaken
within the framework of the CAWHFI (Central Africa World
Heritage Forest Initiative) programme (UNESCO). To do so, sev-
eral samples were collected for dating by in situ-produced
cosmogenic nuclides 10Be (T1/2= 1.387 ± 0.012 My [29,31]) and
26Al (T1/2= 0.717 ± 0.017 My [32]). This approach is now
widely used but has never been attempted in such hostile con-
ditions: at low latitude, which reduces the production rate; on a
stable craton environment with potentially high inheritance
implying potential difficulties for dating multiple exposure his-
tories; and lithic artefacts close to the surface with potential
continuous exposure. Usually lithic artefacts dated by burial
dating are completely or mostly shielded from cosmic rays
since their deposition, allowing radioactive decay of 26Al and
10Be [33–35].

Samples (quartz pebbles or coarse sand (table 1) were col-
lected during two field campaigns inMay 2018 andMay 2019.
In 2018, sampleswere collected along avertical profile from the
surface down to 140 cm (in the alluvial material from 0 to
100 cm, then in the saprolite; figure 1b) and three surface
samples (S1, S2 and S3) were collected at the surface in the her-
baceous formation. Two lithic artefacts were collected at the
interface of the alluvial deposit and the saprolite to be dated
(EKA 18-Outil 1 and EKA18-Outil 2). Both artefacts are quart-
zite cobble tools: EKA18-Outil 1 is 9 cm long and presents
unifacial centripetal removals associated with a disto-lateral
retouched edge, and EKA18-Outil 2 is a partially shaped tool
with apointeddistal part. Regarding the technological features
described in the section below, these artefacts correspond to a
core tool and shaped tool, respectively. Interpretation of the
2018 results was quite difficult due to the unexpected nuclide
concentration variabilitywithin the deposit (only two samples
within the saprolite evidenced an exponential decrease); there-
fore, a second field trip was organized in 2019; the same depth
profile was re-sampled but a bit deeper (195 cm). One lithic
artefact, EKA19-90 has been collected at the interface of the
alluvial deposit and the saprolite; this is a quartzite angular
cobble. First, a distal surface is used as a flaking surface for cen-
tripetal sequence of removals. Second, a disto-lateral sequence
of bifacial invasive retouch is shaping a bevel suggesting EKA
19 is a core tool.
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Figure 1. Stone artefacts from Elarmékora. A and B are core tools presenting bidirectional flaking followed by unifacial regulating retouch sequence. C is a shaped
tool on angular cobble. In [30], artefact A is illustrated as no. 2, B as no. 1 and C as no. 13 (Photo credit: Isis Mesfin). (Online version in colour.)
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Finally, a 1 m deep depth profile was excavated in the
autochthonous formation on top of the hill, just above the
alluvial deposit.
3. Description of stone artefacts
The assemblage of Elarmékora is composed of 14 artefacts
(figures 2 and 3) presenting clear intentional anthropic modi-
fications: all artefacts have several regular and large removals
with clear negative bulbs, and the removal orientations indi-
cate clear flaking strategies (e.g. bidirectional, unidirectional,
centripetal) [36]. These artefacts were first described as Early
Acheulean in [30] based on a classic typological approach.
However, it is now broadly acknowledged that ESA lithic
assemblages reveal much more variable hominin behaviours
than previously stated, both during the Early and the Middle
Pleistocene [15,37–39], and that typological approaches pro-
vide few insights into lithic assemblage variability [40].
Consequently, we considered it necessary to revisit the arte-
facts and reassess their primary techno-cultural affiliation.
To do so, we conducted a qualitative technological analysis
and made a diacritical sketch for each artefact, grouping the
removals in distinct sequences according to their orientation
[41,42]. However, all of the pieces are slightly rolled,
making it difficult to precisely determine the removal chron-
ology on every piece. The dominant raw material is quartzite
which was used on three types of blanks: morphologically
homogeneous flat cobbles, angular cobbles and large flakes
(greater than 10 cm) detached from large blocks.

Due to the small number of artefacts (n = 14), it is difficult to
establish a robust techno-typology of the assemblage. We
identified two main categories of artefacts, the shaped tools
(n = 6)—characterized by unstandardized removals aiming to
modify the shape of the blank—and the core tools (n = 6)—
characterized by core shaping and a recurrence in the mor-
phology and modality of removals, which may suggest
intentional flake production prior to retouching [43,44]. These
artefacts were identified along with one raw unmodified large
and thick flake and one core presenting two sequences of uni-
directional removals. All detailed measurements, weight and
additional attributes are presented in a supplementary file
(electronic supplementary material, table S1) along with sup-
plementary photographs (electronic supplementary material,
figure S1). Medium- to small-sized flakes and debris are
absent from the assemblage. Indeed, we must consider this
assemblage as influenced by the sorting of larger artefacts in
the deposit. However, among the shaped tool and core tool
groups, we could observe some repetitive technological and
morphometrical features, suggesting an important homogen-
eity in the production of these artefacts. The assemblage of
Elarmékora is characterized by the production of massive
heavy-duty tools by using cobble blanks, taking advantage of
their natural morphologies.



Table 1. Sample positions and measured 10Be,26Al and 27Al concentrations. Topographic shielding factor for all samples is 1. All samples were prepared at
CEREGE and measured on Accélérateur pour les Sciences de la Terre, Environnement, Risques (ASTER) accelerator mass spectrometer (AMS; see §4).

depth latitude longitude alt. 10Be 26Al R(26Al/10Be) natural 27Al

sample type cm ° ° m kat/g kat/g ppm

EKA18 -0 quartz pebble 0 −0.09408 11.17027 226 2312 ± 41 6663 ± 538 2.88 ± 0.24 3.59 ± 0.07

EKA18 -20 quartz pebble 20 1390 ± 29 6942 ± 354 4.99 ± 0.28 18.68 ± 0.37

EKA18 -40 quartz pebble 40 1410 ± 27 5586 ± 560 3.96 ± 0.4 16.46 ± 0.33

EKA18 -60 quartz pebble 60 776 ± 16 4777 ± 320 6.15 ± 0.43 20.1 ± 0.4

EKA18 -75-80 coarse gravel 77 912 ± 19 2187 ± 306 2.4 ± 0.34 3.3 ± 0.07

EKA18 -Outil 1 quartzite cobble 90 1576 ± 27 7183 ± 318 4.56 ± 0.22 14.33 ± 0.29

EKA18 -Outil 2 quartzite cobble 90 1077 ± 20 2786 ± 329 2.59 ± 0.31 12.29 ± 0.25

EKA18 -95 quartz cobble 95 1433 ± 29 2765 ± 223 1.93 ± 0.16 2.76 ± 0.06

EKA18 115-120 coarse gravel 117 251 ± 8 1717 ± 302 6.85 ± 1.22 22.99 ± 0.46

EKA18 -140 coarse gravel 140 147 ± 5 928 ± 179 6.33 ± 1.24 15.84 ± 0.32

EKA18 - S1 quartz cobble 0 −0.09296 11.17063 240 710 ± 14 3484 ± 456 4.9 ± 0.65 1.64 ± 0.03

EKA18 - S2 quartz cobble 0 920 ± 20 4619 ± 248 5.02 ± 0.29 3.93 ± 0.08

EKA18 - S3 quartz cobble 0 469 ± 12 2756 ± 227 5.88 ± 0.51 14.27 ± 0.29

EKA19 - 0 quartz cobble 0 −0.09408 11.17027 226 851 ± 153 4682 ± 140 5.5 ± 1.01 19.57 ± 0.39

EKA19 -20 coarse gravel 20 1253 ± 26 5583 ± 170 4.46 ± 0.16 25.02 ± 0.5

EKA19 -50 quartz pebble 50 1334 ± 27 6313 ± 213 4.73 ± 0.19 17.44 ± 0.35

EKA19 -70 quartz pebble 70 1254 ± 27 5782 ± 196 4.61 ± 0.19 15.52 ± 0.31

EKA19 -90 Q

Roulé

quartz cobble 90 1349 ± 29 4508 ± 147 3.34 ± 0.13 25.52 ± 0.51

EKA19 -100 quartz pebble 100 983 ± 28 3602 ± 114 3.67 ± 0.16 15.22 ± 0.3

EKA19 -120 quartz pebble 120 295 ± 8 2014 ± 86 6.84 ± 0.34 13.14 ± 0.26

EKA19 -140 coarse gravel 140 203 ± 7 1307 ± 61 6.44 ± 0.37 16.47 ± 0.33

EKA19 -150 coarse gravel 150 195 ± 6 1315 ± 62 6.75 ± 0.38 20.91 ± 0.42

EKA19 -170 coarse gravel 170 135 ± 5 889 ± 43 6.56 ± 0.39 16.27 ± 0.33

EKA19-190-195 coarse gravel 192.5 101 ± 3 746 ± 74 7.41 ± 0.77 13.16 ± 0.26

EKA19-90-outil quartzite cobble 90 2118 ± 39 9095 ± 272 4.29 ± 0.15 6.04 ± 0.12

EKA-HT -0 coarse gravel 0 −0.09305 11.17057 257 2169 ± 40 7478 ± 225 3.45 ± 0.12 13.94 ± 0.28

EKA-HT -30 coarse gravel 30 1039 ± 21 5336 ± 177 5.13 ± 0.2 11.36 ± 0.23

EKA-HT -50 coarse gravel 50 754 ± 23 4704 ± 185 6.24 ± 0.31 13.35 ± 0.27

EKA-HT -70 coarse gravel 70 605 ± 14 3416 ± 141 5.64 ± 0.27 11.76 ± 0.24

EKA-HT -90 coarse gravel 90 442 ± 13 2306 ± 89 5.21 ± 0.26 13.72 ± 0.27
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The shaped tools (n = 6, length: �X ¼ 138:2 mm, s.d. = 26.4;
width: �X ¼ 89:7 mm, s.d. = 11.2; thickness �X ¼ 59:7 mm,
s.d. = 18.3) are large tools with a trihedral or rhomboid sec-
tion from the mesial to the distal and a proximal pointed
tip. These tools present high indices of elongation (length/
width: �X ¼ 1:53, s.d. = 0.17) and robustness (width/thick-
ness: �X ¼ 1:60, s.d. = 0.40) demonstrating their massive
character. Their overall morphology echoes the ‘pick’ tool
type [45,46]. These tools are mainly shaped on angular cob-
bles (n = 4). The different flat surfaces of these blanks are
used to provide several striking surfaces for shaping.
Indeed, we observe that all of the shaped tools present
more than two surfaces, with the exception of one cortical
flake with partial unifacial shaping (figure 3b). It suggests
that knappers were not familiar with bifacial symmetry for
shaping; instead, they saw an opportunity for using the
different natural flat surfaces of the angular cobbles
(figure 2c). Consequently, the different surfaces of the tools
are partially shaped, but we can observe the use of three or
more striking surfaces. The peripheral edges are thick and
rarely have retouch removals. Among the three retouched
shaped tools, two have retouch scars with feather or step ter-
minations (figure 2c), while the third tool has bifacial low-
angle retouch. We note that thin and long cutting edges are
absent from this group.

The core tools (n = 6, length: �X ¼ 126:7 mm, s.d. = 10.9;
width: �X ¼ 103:8 mm, s.d. = 20.1; thickness �X ¼ 61:5 mm,
s.d. = 6.5) are slightly smaller than shaped tools, but the
former are larger and thicker. Also, these pieces are much
broader (length/width: �X ¼ 1:25, s.d. = 0.23) and slightly
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Figure 2. (a) Location of Elarmékora in centre of Gabon. (b) Picture of the alluvial terrace overlying the autochthonous saprolite. (Photo credit: R. Oslisly). (c) Map of
western Central Africa and location of the sites mentioned in the text. (Online version in colour.)
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less robust (width/thickness: �X ¼ 1:69, s.d. = 0.32) than
shaped tools. Their shape varies from oval to quadrangular,
and the section is elongated. These artefacts all show a first
sequence of removals, suggesting flake production through
uni- or bidirectional flaking on the lateral edge of a flat
cobble. The use of two opposite large and flat cortical striking
platforms may echo the use of the bipolar-on-anvil technique
(figures 2a,b and 3a,d) [47,48]. Nevertheless, one piece
(figure 3c) possesses a centripetal sequence of removals on
a convex surface of a rounded cobble. The secondary modifi-
cation of the artefact occurs through retouch sequences.
Usually retouch removals aim to modify one or several per-
ipheral cutting edges and exhibit different morphologies:
abrupt, low-angle, unifacial, bifacial, invasive or short and
continuous or discontinuous. This variability depicts a ten-
dency to regularization of the initial core blank to obtain
functional cutting edges.
4. Methods
All samples were crushed, sieved and cleaned with a mixture of
HCl and H2SiF6. The extraction method [49,50] for 10Be and 26Al
involves isolation and purification of quartz and elimination of
atmospheric 10Be. Exactly 150 µl of a (3025 ± 9) ppm 9Be solution
were added to the decontaminated quartz. Natural content of
aluminum was determined by an inductively coupled plasma-
optical emission spectrometer (ICP-OES) using an ICAP6500 from
Thermo. Beryllium and aluminum were subsequently separated
from the solution by successive anionic and cationic resin extrac-
tions (DOWEX 1X8 then 50WX8) and precipitations. The final
precipitates were dried and heated at 800°C to obtain BeO and
Al2O3 and finally mixed with niobium (BeO) and silver (Al2O3)
powders prior to measurements, which were performed at the
French accelerator mass spectrometer (AMS) National Facility,
Accélérateur pour les Sciences de la Terre, Environnement, Risques
(ASTER), located at CEREGE in Aix-en-Provence. Beryllium
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Figure 3. Stone artefacts from Elarmékora. (a), (c) and (d) are core tools. (d) also has a shaping sequence on the left lateral edge. (b) is a unifacially and partially
shaped tool on a large cortical flake. In [30], artefact (a) is illustrated as no. 6, (b) as no. 7, (c) as no. 4 and (d) as no. 14. (Photo credit: Isis Mesfin.) (Online version
in colour.)
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data were calibrated directly against the STD11 standard [51] with a
10Be/9Be ratio of (1.191± 0.013) × 10−11. Aluminum measurements
were performed against an in-house standard called SM-Al-
11with 26Al/27Al = (7.401 ± 0.064) × 10−12,whichhas been cross-cali-
brated against the primary standards certified by a round-robin
exercise [50]. Analytical uncertainties (reported as 1σ) include uncer-
tainties associated with AMS counting statistics, AMS external error
(0.5% for 10Be), chemical blank measurement and, regarding 26Al,
27Al measurements.

Measurements of chemically processedblank yield ratios on the
order of (2.0 ± 0.75) × 10−15 for 10Be and (2.0 ± 2.0) × 10−15 for 26Al.
A sea-level high-latitude spallation production rate of 4.02 ±
0.32 at. g–1 a–1 [52] was used and scaled using [53] polynomials.
The 26Al/10Be production ratio induced by the standardization
used at ASTER is 6.61 ± 0.50.

The general equation used to model 10Be and 26Al concen-
trations considering the three types of particles involved is
given by equation (4.1):

N(x, 1, t) ¼ Pn: e�rx=Ln : (1� e(�t(ðr1=LnÞþl)))
r1

Ln
þ l

þ Pslow: e�rx=Lslow : (1� e�t(ðr1LslowÞþl))
ðr1=LslowÞ þ l

þ Pfast: e�rxLfast : (1� e�t(ðr1=LfastÞþl))
ðr1=LfastÞ þ l

,

þN(0,12,1) : e�lt ð4:1Þ

where Pn, Pslow and Pfast are the production of neutrons, stopping
and fast muons respectively, ρ is the material density, ε is the denu-
dation rate, t is time, Λn, Λstop and Λfast are the attenuation lengths
of neutrons (150 g cm−2) and stopping (1500 g cm−2) and fast
muons (4320 g cm−2), respectively. The term N(0, 12,1) is a
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potential inheritance coming from a previous exposure at steady
state (T = infinite) and with a denudation ε2. This denudation ε2
will be referred to in the following as a palaeo denudation rate;
since the samples might have undergone different exposure his-
tories before the deposition event, the term ε2 is allowed to vary
among samples. λ is the radioactive decay constant (λ = ln2/
half-life). Muon contribution scheme follows [54].
5. Results and discussion
All data are presented in table 1. Regarding the depth profile
samples EKA18 and EKA19, one can observe two groups
of data delimited by the interface between the alluvial
deposit and the saprolite (figure 1b). Within the saprolite
(2018 samples EKA18-115-120 and EKA18-140 extended with
2019 samples EKA19-120, EKA19-140, EKA19-150, EKA19-170
and EKA19-190-195), the concentrations clearly follow the
expected exponential decrease due to the attenuation of cosmic
ray particles in the Earth’s matter. In the first metre, these
attenuation lengths are 156(+13/−12) g cm−2 for 26Al and
145(+8/−6) g cm−2 for 10Be in quartz for neutrons [55]. For
EKA19 samples within the saprolite, using a mean density of
2.4 g cm−3 deduced from individual density measurements,
the experimental apparent attenuations are approximately
162 g cm−2 for 10Be and approximately 169 g cm−2 for 26Al.
This thus unambiguously implies that the studied saprolite
was always exposed within the first metres and therefore was
never deeply buried by the alluvial deposits.

In the alluvial deposit above the interface, concentrations
are, at first glance, more randomly distributed for samples
from both the 2018 and 2019 field campaigns. This was one
reason behind sampling the top hill depth profile at a slightly
higher elevation than the alluvial terrace, but in an area with-
out any signs of the deposit that may be the cause of the
variability. In fact, at this position, the expected exponential
decrease is observed (stars in figure 4 in the two upper
panels). Moreover, when considering the concentrations of
the EKA-TH profile, one can see that the exponential decrease
of EKA-TH sample concentrations can be extended to the
deeper ones within the saprolite (samples mentioned above);
this is represented by the black lines in figure 4 in the two
upper panels.

Considering 26Al/10Be ratios, one can observe (figure 4c
and d ) that they are quite homogeneous within the saprolite



Table 2. Model outputs. The first number is the age (ka) and the second the denudation rate (m Ma–1). For all simulations and based on the considered
samples, inheritance is negligible.

profile

10Be 26Al 10Be and 26Al

min (T/ε) max (T/ε) min (T/ε) max (T/ε) min (T/ε) max (T/ε)

saprolite sample 663/0 999/0.31 470/0 526/0.05 627/0 720/0.2

max. samples 674/0 1017/0.44 460/0 558/0.23 620/0 730/0.25

hill top 772/0 1179/0.4 457/0 988/0.98 512/0.9 infinite/0.95

composite (saprolite samples + hill top) 772/0 1180/0.4 482/0 529/0.1 700/0.22 1018/ 0.72
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and more scattered above the interface, with some values
that may indicate a complex burial history (EKA18-0;
EKA18-Outil2, EKA18-95).

This confirms again that alluvial disturbance has affected
only the upper first metre of the studied surface. Finally, one
can also observe in figure 4 that all sample concentrations
above the interface are: (i) higher than the interface concen-
tration (approx. 440 kat g−1 and 2300 kat g−1 for 10Be and
26Al respectively) and (ii) lower than the top surface concen-
tration (approx. 2300 kat g−1 and 6800 kat g−1 for 10Be and
26Al, respectively), with the exception of EKA19-90-outil
26Al concentration. These observations suggest that all
samples may have thus evolved in situ and that the first
metre has been subsequently perturbed that may be poten-
tially link to biological activity [56,57] or, may be the results
of a strong event that has dismantled an old indurated ferri-
crust whose relicts can be observed in the field (see electronic
supplementary material, figures S2 and S3).

All these observations being made, the big challenge is to
date this surface in order to have at least a minimum age for
the found artefacts.

Based on our data descriptions, it was decided that four
models should be performed to better bracket the most probable
exposure age.Allmodels are basedon thedepthprofile approach
[58,59]. Although the approach of Hidy et al. [59] has been devel-
oped on amalgamated samples, it can also be applied on single
clasts even though inheritance may be less homogeneous for
clasts. Using this single nuclide approach for the first time is
interesting to see if both 10Be and 26Al outputs agree.

The Monte Carlo approach of [59] has thus been performed
on samples that lie on the exponential decrease shown on
figure 4 considering: (i) the depth profile from saprolite samples
only, (ii) a depth profile considering the maximum of samples
that are near the exponential decrease curve, (iii) the ‘top hill’
depth profile samples and finally (iv) a composite profile
grouping the saprolite and the ‘top hill’ samples (a and c).

Outputs can be observed in table 2; all exposure ages (mini-
mum or maximum) determined by 26Al are always lower than
those determined by 10Be. Considering 10Be and 26Al separ-
ately, the overall maximum and minimum ages for the EKA
profiles (alluvial deposit and/or saprolite samples, ‘top hill’
profile not included) range from 456.4 to 1017 ka.

For the same selected profiles, a model based on equation
(4.1), combining the two nuclides has been also performed
using an Excel spreadsheet. For all samples, a unique exposure
time (t) and a unique denudation rate (ε) after the deposition
event have been considered, but palaeo denudation rates (ε2)
were considered as free parameters for each sample. Uncer-
tainties were determined following [60] using the χ2 plus one.
Combining the two nuclides allows a reduction in the time
span from 620 ka to 730 ka and denudation rates from 0 to
0.25 m Ma−1 for the alluvial deposit and/or saprolite samples.

For all simulations, inheritance can be neglected when
considering samples close to the exponential decrease.

Considering the three lithic artefacts totally shielded from
cosmic rays, their concentrations yield minimum burial ages
(no post production) close to 300 ka for EKA18-Outil 1 and
EKA19-90-Outil and close to 1.4 Ma for EKA18-Outil2 with
palaeo-denudation rates within the range of 0.45–0.7 m Ma−1.
EKA18-Outil 2 clearly has a complex exposure history or was
produced on a previously buried cobble.

One has to be resigned and accept the fact that the mini-
mum age of these artefacts is that of the deposit they belong
to, i.e. 620 ka, and that no direct age can be determined.

The same dating difficulties arose in Angola [28], where
lithic remains were found buried in a sandy matrix whose
age was determined to be close to 650 ka, contemporaneous
with the Elarmékora site. However, the Angolan artefacts
were buried deeper (approx. 3 m) and have buried ages ran-
ging from 0.7 to 2 Ma but as for Elarmékora, the minimum
age to be trusted is the matrix age they belong to.

While few archaeological studies have been done in wes-
tern Africa, the minimum age of 620 ka falls just after the
mid-Pleistocene transition [61,62], coincident with the onset
and intensification of high-latitude glacial cycles [63]. These
climatic changes, probably coupled with tectonic activity,
have been identified in other parts of Africa and seem to
have impacted faunal populations [64–68].

When considering the technological patterns of the Elarmé-
kora lithic assemblage, we face a difficulty in its classification.
On the one hand, the large flake production evidenced by
two artefacts and the presence of a pick tool-type may echo
the Acheulean techno-complex, which is contemporary to Elar-
mékora and more broadly prevails in sub-Saharan Africa
during the early Middle Pleistocene [10–12,46,69]. On the
other hand, some typical Acheulean technical patterns such as
large cutting tools, bifacial shaping and specific tool types
such as cleavers, handaxes or polyhedra are absent from the
Elarmékora assemblage. A shaping strategy is present, but it
never involves the use of bifacial symmetry for guiding
the reduction sequence. In addition, the types of flaking strat-
egies identified at Elarmékora may not be associated with a
specific time period or any techno-cultural entity as these are
pan-chronological features. Overall, in the Elarmékora assem-
blage we identified both general technological affinities
with the Acheulean techno-complex and specific local technical
features, such as exploiting the natural volumetric advantages
of the pebbles, the ‘multifacial’ shaping and the close
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Figure 5. (a) ESA artefacts from Baboungué, Central African Republic. (b) ESA artefacts on pebbles and cobbles from Dungo IV. (Photo credit: Isis Mesfin.) (Online
version in colour.)
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relationship between cores and pebble tools. Consequently,
due to these specific patterns and to the small size of the assem-
blage,we nowmay consider the lithic technologyof Elarmékora
as an ‘undiagnostic ESA’. Finally, this site provides data on
ESA technology in the equatorial belt of Central Africa
which may, in the future, contribute to refining our under-
standing of the specific role of equatorial regions in human
evolution [70,71].

So far, only the site of Dungo in Angola presents ages that
converge with those of Elarmékora, dated by cosmogenic
nuclides to ca 600–650 ka. The technological patterns of
Dungo also suggest a dominance of pebble and cobbles
tools (figure 5b) along with some shaped tool production
[72,73]. Similar patterns have been reported from a number
of undated ESA sites in western Central Africa (figure 1c),
among which are the Lunda-Norte sites in northeastern
Angola [74]. Comparable technological trends have been
observed on other Central African ESA sites such as Baboun-
gué in the Sangha River Basin in Central African Republic
(figure 5a) [23] and Kontcha in Cameroon [75]. While
these remain undated, the site of Kontcha offers good
characteristics for applying the same cosmogenic dating
methods as those used here, since it is located on a high allu-
vial terrace covered with a lateritic cuirass that is elevated
more than 35 m above the Mayo Deo River.

Despite the current lack of hominin fossils in western sub-
Saharan Africa, the convergence of the Elarmékora ages with
the sites of Dungo in Angola is remarkable because for the
first time we can glimpse a new hominin dispersal scenario.
To confirm this ‘West Side Story’, more dateable sites are
necessary to refine the chronology of early human dispersals
and to provide inter-site lithic comparison to better under-
stand local technical trajectories during the Middle Pleistocene.
6. Conclusion
The significance of this discovery lies in the fact that it is
the first time that an ESA site has been dated on the Atlantic
edge of the Congo Basin, a vast region where research is not
developed due to dense forest cover that does not promote
accessibility and complicates logistics.
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Despite hostile climatic conditions that prevent the good
conservation of open-air Pleistocene sites, the lithic artefacts
discovered in the alluvial deposit of Elarmékora have been
dated as old as 650 ka at a minimum by the use of cosmogenic
10Be and 26Al pairs. This minimum age falls just at the end of a
major climatic change, the mid-Pleistocene transition, observed
throughout theworld. The atypical lithic assemblage of Elarmé-
kora points toward a specific ESA technology inwestern Congo
Basin. Even though the assemblage needs to be enlarged, we
presented technical specificities that raise questions on the ori-
gins of these populations, on the relationships between the
contemporary Acheulean technology that prevails in a large
part of Africa during the mid-Pleistocene transition and on
the potential adaptation of the tool-kits in the equatorial belt.

This study confirms the antiquity of the hominin presence
in western Central Africa more than 3500 km away from the
closest hominin fossil sites in South Africa. It shows a tremen-
dous advance in our knowledge of the evolution of our
ancestors that could upset the established models and could
provide the first evidence of a ‘West Side Story’ for early
hominin dispersal within Africa.
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