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Abstract: Sediment transport in basins disturbs the ecological systems of the water bodies and leads
to reservoir siltation. Its evaluation is crucial for managing water resources. The practical application
of the process-based model can confront some limitations noticed in the lower accuracy during the
validation process due to the lack of reliable physical datasets. In this study, we attempt to apply
machine-learning-based modeling (ML) to predict the suspended sediment load, using hydro-climatic
data as input variables in the semi-arid Bouregreg basin, Morocco. To that end, data for the years
2016 to 2020 were used for the training process, and the validation was performed with 2021 data.
The results showed that most ML models have good accuracy, with a Nash–Schiff efficiency (NSE)
ranging from 0.47 to 0.80 during the validation phase, which indicates satisfactory performances
in predicting the SSL. Furthermore, the models were ranked against their generalization ability
(GA), which revealed that the developed models are good to excellent in terms of GA. Overall, the
present study provides new insight into predicting the SSL in a semi-arid environment, such as the
Bouregreg basin.

Keywords: suspended sediment load; generalization ability; uncertainty; Bouregreg; Morocco

1. Introduction

Sediment transport in hydrodynamic systems is still not a well-understood phe-
nomenon and, therefore, it is a crucial topic in hydrological studies. Its exceedance existence
in streams can significantly impact the river flows by changing the rheological proprieties
of the water, which can impact the design capacity of the channel culverts and increase the
damages associated with flash floods [1–4]. The siltation of sediments in dam reservoirs
also reduces their storage capacity, leading to freshwater scarcity, especially in arid and
semi-arid regions [5]. Moreover, sediments can pose a threat to the water bodies’ quality
and lead to ecological damages by disturbing aquatic systems [6,7]. Consequently, the
understanding of the sediment transport mechanism and its quantification at the basin
scale are challenging problems in water resources planning and management, particularly
in dynamic basins under high climatic variability.

For decades, many soil erosion models have been developed and evaluated to assess
the soil erosion phenomenon, such as the most known empirical-based models: the univer-
sal soil loss equation (USLE) [8]; its derivatives, modified USLE, named MUSLE [9]; and
the revised one, which is called RUSLE [10]. Indeed, these models embedded in geographic
information system (GIS) tools are considered as an outstanding approach to assess water
erosion at the basin scale [11–13]. However, the applications of the process-based models
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require several physical and hydrological parameters and characteristics of basins, which
can be a source of uncertainties, especially in poorly monitored areas. Additionally, the
highly dynamic basin characteristics leads to the questionable ability of the process-based
model to evaluate the sediment load over time.

In poorly monitored areas, the machine learning (ML) models can overcome the short-
age and variability of the physical parameters using available archived datasets. Indeed,
their construction relies on the statistical input–output equation rather than explaining the
mechanism involved in the process. Recently, several studies showed that the data-based
models are powerful tools to overcome some limitations of the conceptual-based models
in predicting the water resources status [14–18]. For instance, ref. [19] demonstrated the
accuracy of the support vector machine method to estimate the shear stress in the rectan-
gular channel. As for the prediction of the sediment transport, ref. [20] applied ensemble
genetic programming to estimate the incipient sediment motions in rectangular channels,
and demonstrated the superiority of the applied approach with a coefficient of correlation r
of approximately 0.92. Similarly, in hydrologic studies, ref. [21] applied a long short-term
memory neural network (LSMNN) to predict the suspended sediment concentration (SSC)
in the Johor River in Malaysia and found a high accuracy prediction in these models. In [22],
three artificial intelligence models were used to estimate the sediment load in Ethiopia.
In [23], a multiple linear regression model was applied to predict the suspended sediment
yield (SSY) in the Cuyahoga River in Ohio through satellite images and rainfall datasets.
Importantly, all of these studies demonstrated that the ML-based models presented a high
accuracy for predicting the sediment load at various basin scales.

In Morocco, water resource planning and management processes are facing several
issues, such as reservoir sedimentation, the continuous decline of groundwater level in
most aquifers, seawater intrusion into the costal aquifers, inappropriate practices applied to
groundwater-based agriculture, and flood risk [24–26]. Importantly, according to the Water
Department of Morocco, reservoir silting causes a global decrease in the reservoir capacity
of approximately 70 mm3·yr−1,which means 0.4% each year, with large regional variability,
and much higher values in some regions, such as the north of the country. Indeed, this loss
is generally assessed through topo-bathymetric surveys at the reservoir’s scale. Despite
being an efficient approach to directly evaluate the sediment in reservoirs, this method does
not allow for making decisions to reduce the soil erosion at the scale of basins. Meanwhile,
the evaluation of the suspended sediment load (SSL) at basin scales could be valuable in
classifying basin vulnerabilities to the soil erosion and, therefore, in prioritizing mitigation
measures. The models of USLE and its derived versions are commonly applied approaches
in Northern African countries to evaluate the soil erosion, including Morocco [27]. Recently,
in our study [28], the comparison of two years of the sediment measurement with MUSLE-
based simulation results demonstrated a low prediction accuracy, with a Nash–Sutcliffe
efficiency index (NSE) lower than 0.5 [29]. Consequently, it is highly needed to test new
procedures, such as ML-based modeling, to predict the daily suspended sediment load
(SSL) and to improve the prediction accuracy using hydro-climatic input variables.

In this study, we apply a ML model to overcome the drawbacks of the process-based
models and to improve the prediction accuracy of the daily SSL at four runoff gauging
stations in the Bouregreg semi-arid basin, Morocco. This goal can be achieved by (1)
developing ML models with NARX hydro-climatic input variables, (2) evaluating the
prediction accuracy of the models, and (3) ranking the models for simulation purposes
based on the generalization ability (GA) metric and uncertainty analysis.

2. Materials and Methods
2.1. Study Area Description

This work focuses on the Bouregreg basin, which is located in the Rabat-Sale-Kenitra
and Beni Mellal-Khenifra provinces in the Mediterranean area (Figure 1). This basin covers
9970 km2 and consists of 4 basins; three main rivers form the hydrographic network,
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namely: Bouregreg River (264 km long), Grou River (249 km long), and Mechraa River
(132 km long). It is monitored by 9 rainfall runoff stations, as presented in Figure 1.

Figure 1. Study area location in Morocco.

However, according to the River Basin Agency of Bouregreg and Chaouia, the annual
precipitation in the basin is 400 mm·yr−1 in the northwest part and 760 mm·yr−1 in
the mountainous part, whereas the mean inflow volume of SMBA’s dam reservoir is
approximately 680 mm3·yr−1 (1975–2021). This reservoir has a normal capacity of 975 mm3

and supplies drinking water to the coastal area between Rabat and Casablanca cities
for 8 million habitants. Geologically, the Bouregreg basin in located in the Moroccan
Central Massif, which mainly consists of Paleozoic formations that were subjected to the
Hercynian orogeny.
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2.2. Datasets
2.2.1. Concentration of Suspended Solid Measurements

For the modeling of the concentrations of suspended solids (CSS), we chose four
hydrological stations located at the entrance of the SMBA dam reservoir. These hydro-
logical stations are Aguibat Ziar on the Bouregreg River, Ras Fatia on the Grou river, Sidi
Mohammed Cherif on the Mechraa River and Ain Loudah on the Korifla River. At all of
the stations involved, we carried out daily monitoring of the CSS. These stations control
a basin of approximately 87% of the total catchment area of the SMBA dam. In addition,
samples were taken daily during low water periods and hourly during high water periods.
For each sample, the date, time, and scale values were noted on the bottle. The samples
were then analyzed in the laboratory, filtered under vacuum using filtering membranes
(0.45 µm), and weighed. Table 1 summarizes the number of daily data samples used at the
four hydrologic stations.

Table 1. Statistical characteristics of CSS samples at 4 hydrological stations studied.

Name of
Hydrological

Station
River

Basin
Area
(km2)

N◦IRE
ABHBC

Code

Period of
Observation
Considered

Number of
CSS

Sample

Mean
Period
(g/L)

Max
Period
(g/L)

Min
Period
(g/L)

Standard
Deviation

Aguibat Ziar Bouregreg 3681 3118/13 1 September
2016 to 31

August 2021

1253 0.83 32.72 0.00 1.08
Ras Fathia Grou 3485 989/20 1634 1.20 86.9 0.00 1.70
S.M. Cherif Mechraa 656 2673/20 1662 0.63 16.89 0.00 0.76
Ain Loudah Korifla 699 2674/21 470 1.05 24.7 0.00 1.47

2.2.2. Rainfall and Runoff Measurements

For the prediction of the suspended sediment load at each of the four stations located
immediately upstream of the SMBA dam, we used the daily data of the rainfall and the
runoff of the rivers measured at the hydrological stations located at the level of each sub-
basin controlled by one of the 4 stations studied (Tables 2 and 3). These parameters were
selected as they are the main influencing factors in erosion process [8,9]. The following
tables give the distribution and characteristics of the data by sub-basin of these stations.

Table 2. Statistical characteristics of rainfall data by sub-basin during the period from 1 September
2016 to 31 August 2021.

Name of Sub-Basin Rainfall Station N◦IRE
Code

Mean
(mm)

Max
(mm)

Min
(mm)

Standard
Deviation

Bouregreg basin at Aguibat
Ziar

Aguibat Ziar 3118/13 1.3 122.5 0.0 2.23
Lalla Chafia 0.9 42.9 0.0 1.64
Sidi Amar 1.1 50.0 0.0 1.94

Tslat 1.3 60.0 0.0 2.11

Grou at Ras Fathia
Ras Fathia 989/20 1.0 41.2 0.0 1.81
Sidi Jabeur 0.8 44.5 0.0 1.50

Ouljat Haboub 0.8 39.8 0.0 1.38
Korefla basin at Ain Loudah Ain Loudah 2674/21 0.9 59.6 0.0 1.57
Korefla basin at S.M. Cherif S.M. Cherif 2673/20 0.9 54.7 0.0 1.56

Table 3. Statistical characteristics of runoff data by sub-basin for the period from 1 September 2016 to
31 August 2021.

Name of Sub-Basin Rainfall Station N◦IRE
Code

Mean
(m3/s)

Max
(m3/s)

Min
(m3/s)

Standard
Deviation

Bouregreg basin at Aguibat
Ziar

Aguibat Ziar 3118/13 4.16 199.04 0.00 5.64
Lalla Chafia 3.06 196.70 0.00 4.85
Sidi Amar 0.48 24.04 0.00 0.61

Tslat 0.81 23.50 0.00 1.04

Grou at Ras Fathia
Ras Fathia 989/20 4.58 349.21 0.00 6.59
Sidi Jabeur 3.74 326.54 0.00 5.29

Ouljat Haboub 3.52 262.37 0.00 5.43
Korefla basin at Ain Loudah Ain Loudah 2674/21 0.52 48.83 0.00 0.88
Korefla basin at S.M. Cherif S.M. Cherif 2673/20 0.42 38.58 0.00 0.62
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2.3. Methodology
2.3.1. Machine Learning Models

In the present study, we applied the regression-based ML models, namely: random
forest (RF), adaptive boosting (AdaBoost), support vector machine for regression (SVR),
k-nearest neighbor (k-NN), and artificial neural network (ANN) models. Further details on
the ML-based models can be found in [30–35]. However, the following subsections provide
a short description of these models.

Random Forest

Random forest (RF) is a tree-based ML model [36]. Regression and classification
are conducted by aggregating a technique that operates by constructing an ensemble
of decision trees in training by swapping and changing the covariates to improve the
prediction performance. The final output (target) is calculated through the weighted
average of tree outputs. Executing this model requires a number of trained trees and an
amount of the variable used in each tree [37]. Indeed, these parameters have an important
role in the model stability and, therefore, in its prediction accuracy [38].

AdaBoost

Adaboost is an ensemble ML model developed by Freund and Schapire (1997) [33]. It
can be applied either for classification or regression purpose. Adaptive boosting (AdaBoost)
is a tree-based ensemble ML model [39,40]. Recently, this approach appeared to be an
efficient regression model in environmental sciences, namely, for regression and data-based
augmentation techniques [15,41].

For the data, S = {(xi, yi), i = 1, 2, 3, . . . , N}, where each xi is in some instance X and
each yi is in some target (output) Y, and, for a series of rounds (M), the algorithm initializes
the distribution (D) (or weight) as follows:

D1
i =

1
N

f or i = {1, . . . .N} (1)

Then, for j = 1 to M, Adaboost algorithm builds weak models hj from the training
dataset using D, which minimizes ε j and satisfies ε j < 0.5 conditions.

ε j is a weighted error of the jth model and is given by Equation (2).

ε j = ∑i:hj (xi) 6=yi
Dj

i (2)

The weight “confidence” αj of the jth model is calculated by Equation (3).

αj =
1
2

ln

(
1− ε j

ε j

)
(3)

The distributions for next iteration were updated as follows:

Dj+1
i = e−yihj(xi)αj Dj

i (4)

Dj+1
i =

Dj+1
i

∑N
i=1 Dj+1

i

(5)

The prediction for new dataset was conducted by combining weighted majority vote
of the models hj.

H
(
x′
)
= sign[∑M

j αjhj
(
x′
)
] (whithout sign f or the regression) (6)
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Support Vector Machine (SVM)

Support vector machine (SVM) is a discriminative technique that was introduced for
the first time by Vapnik (1995) [42]. It is based on a hyper-plane in order to minimize the
error and the kernel function, such as radial basis function [43], sigmoid, linear kernel, and
polynomial function. This method has demonstrated a high accuracy prediction for several
regression applications [24].

For modeling system (S) with observation dataset (Ds), Ds = {(xi, yi)}n
i=1, where xi

represents the inputs and yi the outputs, with a linear function, as shown in Equation (7).

f (x) = 〈ω×∅(x) + b〉 (7)

The optimal function is the minimization of Function (8) (subject to Equation (9)).
Hence, the loss functions, such as ε-insensitive, quadratic, and Hubber methods, can
be used.

min
(
ω, b, ξ−, ξ+

)
=

1
2
×
∣∣∣∣∣∣ω2

∣∣∣∣∣∣+ C×
n

∑
i=1

(
ξi− + ξi+

)
(8)

Subject to


yi −ωT ×∅(x)− b ≤ ε + ξi−

−yi + ωT ×∅(x) + b ≤ ε + ξi+

ξi−, ξi+ ≥ 0
i = 1, 2 . . . ..n

 (9)

where ∅(x) is a Kernel function (k), such as polynomial, radial basis, and linear functions;
ω and b represent weigh and basis vectors; C is a pre-specified value to penalize the training
error; and ξi− and ξi+ are the lower and upper constraints on the output.

This study adopted the radial basis function (RBF) given by Equation (16) as kernel
function [43].

k
(
xi, xj

)
= exp(−γ|xi−xj |2) (10)

Artificial Neural Network (ANN)

ANN models are constructed by three layer types, namely: input layer, hidden layers
(HL), and the output layer [44]. They are interconnected through neurons, which are
characterized by weight and bias. The weighted input variables summed with the bias of
the layer are transformed from the jth layer to the (j + 1)th layer by transfer function (f ), and
so on, until the output [44]. The training phase is repeated by changing the weights and the
biases of the layers until good prediction accuracy (root mean square error) is achieved. To
simplify this method, let us take a simple model with one HL. The outputs (Yk) are given
by the following equation [45]:

Yk = fk(
m

∑
i=1

Wjk × f j(
n

∑
i=1

XiWij)) + W0 (11)

where n is the input variable numbers, m is the neurons in the HL, p is the neurons of the
output layer, W0 is the bias, and Wjk and Wij are the weights between the jth neuron and
the kth output neuron and between the ith neuron and jth neuron, respectively, whereas
fk and f j are the transfer functions of the neurons k and j of the output and hidden
layers, respectively.

k-Nearest Neighbor (k-NN)

The k-NN algorithm is a memory-based method (non-parametric method); the pre-
dicted values are estimated based on the information on the neighboring observed ones.
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The estimated values are obtained by the average of the nearest k observed values and give
more weight to the nearer ones, as shown in Equations (12) and (13).

f
(→

x 0

)
=

k

∑
i=1

i0ג f
(→

x i

)
(12)

f
(→

x 0

)
is the predicted response,

→
x 0 is the vector of independent inputs, f (

→
x i) is the

observed response,
→
x i is the vector of the nearest k observed values, and i0ג is the weight

between the
→
x 0 and

→
x i, and is given by Equation (13).

i0ג =
∑k

i=1

∣∣∣→x i −
→
x 0

∣∣∣∣∣∣→x i −
→
x 0

∣∣∣ (13)

As shown in this equation, the number k is important for the model performances.
It should be noted that there are others distance functions such as Euclidian, Shebyshev,
and Mahalanobis.

2.3.2. NARX Input Method

In this study, we proposed NARX-based modeling to incorporate the delay response
of the suspended sediment load to the hydrological events. Considering N of datasets
related to the system (S) to be modeled using ML algorithms, S = {(Xi, yi), i = 1, 2, . . . , N},
where Xi = [xi,1, xi,2, xi,3 . . . xi,p]T is the input matrixes (p is the input numbers), yi = [yi,1,
yi,2, yi,3 . . . yi,q]T is the output vector, and i is the time instant. Hence, the NARX-based ML
algorithms for predicting the SSL have NARX input variables as follows:

yi = ML fm(ϕ(i), θ) (14)

where ϕ(i) = (xi, xi−1, xi−2, . . . , xi−lx) is the regression vector, θ is the parameter vector,
MLfm is a unknown ML model function, and lx and ly denote the lag numbers of the input
x and output y, respectively. Therefore, the final input matrixes Xi

T and the output vector
yi

T for training of the ML models are as follows:
XT = [xi, xi−1, xi−2, . . . ., xi−lx]

yT = yi
max(lx) < i ≤ N

(15)

The unknown function MLfm of the models includes, as examples, the hyper-parameter,
loss functions, and model structures depending on the model. For instance, number of
the hidden layers and function transfer for ANN model, and kernel function and penalty
parameter (C) for SVR model. However, the MLfm and lag numbers are identified during
the tuning process using trial-error procedures.

In this study, we used Python language embedded in Anaconda platform. Pandas,
Matplotlib, and Scikit-learn libraries were imported and used. Pandas and Matplotlib are
the libraries that were used for dataset loading and visualization processes, respectively.
Meanwhile, Scikit-learn library was used for implementing regressor ML models.

2.3.3. Model Evaluation Metrics

To evaluate prediction model performances, several indices and metrics can be used, such
as coefficient of correlation, root mean square error (RMSE), and Nash–Sutcliffe-efficiency.

RMSE =

√
∑(Pi−Oi)2

n
(16)



Water 2022, 14, 862 8 of 19

NSE = 1− ∑n
i=1(Pi−Oi)2

∑n
i=1
(

Pi−O
)2 (17)

r = (
∑n

i=1
(
Oi−O

)(
Pi− P

)
[∑n

i=1 (Oi−O)
2

∑n
i=1
(

Pi− P
)2
]
0.5 ) (18)

Oi and Pi are observed and model-simulated values, respectively; O represents the
mean of observed values; and n = number of the observations used.

However, in this study, we used the generalization ability as an additional metric to
evaluate the models. This metric was defined by [46] through the following equation:

GA =
RMSE (validation)
RMSE (training)

(19)

However, to rank the models for simulation purposes, EL Bilali et al. [47] suggested the
classification of the machine learning models according to categories of perfect, excellent,
good, and poor models in terms of GA as follows:

• If GA = 1, model is perfect;
• If 0.75 ≤ GA < 1 or 1 < GA ≤ 1.35, the model is excellent;
• If 1.35 < GA ≤ 2 or 0.5 ≤ GA < 0.75, the model is good;
• If GA > 2 or GA < 0.5, the model is poor and considered unsuitable for simulation purposes.

3. Results
3.1. Exploratory Data Analysis (EDA)

In developing ML models, the selection of the feature variables is a keystone process
in the improvement of the prediction accuracy and the generalization ability of the models.
Despite being black box models that do not explain the mechanism involved in the process
to be modeled, selecting the causal input variables for training ML models is required. In
this study, we focused on the hydro-climatic variables in order to predict the suspended
sediment load (SSL), namely: rainfall in the basins and discharges both upstream and
downstream. The principal component analysis was conducted to demonstrate the impor-
tance of the selected variables, especially for the basin monitored by several hydrological
stations. Figure 2 illustrates the PCA of the datasets at the Bouregreg basin (Aguibat Ziar)
and Grou basin (Ras Fathia Station. The PCA of Bouregreg datasets (Aguibat Ziar) revealed
that there is 74.4% of information regarding the total variance, of which, 46.9% is explained
by PC1 and 27.5% by PC2 (Figure 2a). As for the Grou basin, the PCA showed that 69.4% of
information on the total variance is explained by the PC1 (46.6%) and PC2 (23.0%). These
results demonstrate the importance of the input variables. However, the antecedent values
of these variables can impact the suspended sediment load, as the soil erosion does not
only depend on the current conditions but also on the initial conditions. For this reason,
using NARX input variables is suggested to improve the prediction accuracy of the models.

A Pearson correlation-based analysis of the dataset was carried out to explore the
potential relationship between the variables, including antecedent values. Figure 3 presents
the matrix correlation of the variables in the studied basins. It was observed that, except
for the discharge at Ras Fathia stations and Sidi Jabeur stations, all other variables are
not highly inter-correlated. Such results demonstrate that the selected variables are not
redundant in the prediction of the SSL. Interestingly, except for some cases, the antecedent
variables of rainfall and discharge at (day-1) and (day-2) are more correlated than the actual
variable. For instance, the actual variables at the basin outlets are more important than
those of antecedent days. This is due to the delayed SSL response to the hydrological events
of the basin. Consequently, embedding the antecedent hydroclimatic conditions as input
variables is suggested to improve the prediction accuracy of the models.
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Figure 2. Principal component analysis (PCA). (a): PCA of data recorded at Bouregreg basin; ln(SSL)
is the Napierian logarithm of the suspended solid; Ras and Qas are rainfall and discharge at Aguibat
Ziar station; Rlc and Qlc are rainfall and discharge at Lala Chafia station; Rts and Qts are the rainfall
and discharge at Tsalat station; Rsa and Qsa are the rainfall and discharge at Sidi Amar station.
(b): PCA of dataset recorded at Grou basin.

Figure 3. Cont.
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Figure 3. Correlation matrix of the variables. (a): Correlation matrix of the variables at Aguibat
Ziar (az) station; (b): correlation matrix of the variables at Sidi Mohammed Cherif (sm) station;
(c) correlation matrix of the variables at Ras Fathia (rf) station (sm); (d): correlation matrix of the
variables at Ain Loudah (al) station. The Napierian logarithm of the suspended sediment load ln(SSL)
is positively correlated with discharges and rainfalls in the basin. The rainfalls and flow discharge at
(day-i) are more important.

3.2. Training Process of the Machine Learning Models

In this step, five ML models with NARX input variables, namely random forest,
AdaBoost, support vector machine (SVM), k-nearest neighbor (kNN), and artificial neural
network (ANN), were trained, tuned, and evaluated using cross-validation with a number
of folds (k = 10) to improve the prediction accuracy. The tuning process includes changing
the hyper-parameter and transfer functions of the models. However, Table 4 presents the
adopted parameters in this study.

Table 5 presents the ML performance during the training phase. This table clearly
shows that all models have a high potential accuracy in predicting the daily suspended
solid (SSL) in four main basins in the Great Bouregreg basin (BW), justified by the fact
that the NSE ranges from 0.57 to 0.84 in the Aguibat Ziar station, from 0.61 to 0.8 in the
Ras Fathia station, from 0.41 to 0.62 for the SM Cherif station, and from 0.66 to 0.76 in
the Ain Loudah station. It was observed that the random forest and AdaBoost models
outperformed the other models during the training phase.
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Table 4. Adopted hyper-parameter and functions of the trained models.

Model Parameters/Functions/Algorithm
RF 50 Trees

AdaBoost
Loss function: exponential

learning rate: 0.5
Estimator number: 250

SVR
C = 350

Kernel function: RBF (γ = 1.3)
ε-function loss, ε = 0.002

k-NN
k = 5

Distance function: Euclidian

ANN

3 layers
12 neurons in hidden layer

Algorithm: Levenberg
Function activation: Sigmoid

Identity in output layer
Epoch number: 1000
Learning rate: 0.01

Momentum coefficient: 0.85
Notes: RF: random forest; AdaBoost: adaptive boosting; SVR: support vector regression; k-NN: k-nearest neighbor;
ANN: artificial neural network.

Table 5. Machine learning model performances during the training phase.

Models r RMSE NSE
ML Musle_Calibrated

Aguibat Ziar
Random Forest 0.92 1.18 0.84

AdaBoost 0.92 1.20 0.84
SVM 0.76 1.95 0.57 0.46
kNN 0.88 1.49 0.75

Neural Network 0.79 1.83 0.62
Ras Fathia

Random Forest 0.89 1.50 0.80
AdaBoost 0.89 1.54 0.78

SVM 0.78 2.08 0.61 0.02
kNN 0.85 1.83 0.70

Neural Network 0.82 1.90 0.67
SM Cherif

Random Forest 0.79 1.62 0.62
AdaBoost 0.76 1.74 0.56

SVM 0.73 1.79 0.54 0.47
kNN 0.68 2.01 0.41

Neural Network 0.76 1.70 0.58
Ain Loudah

Random Forest 0.87 1.91 0.76
AdaBoost 0.84 2.13 0.70

SVM 0.81 2.26 0.66 0.30
kNN 0.83 2.26 0.66

Neural Network 0.84 2.12 0.70

3.3. Validation of the ML Models

This step was carried out to evaluate whether the trained ML models are generalizable
in order to predict the suspended sediment load for the dataset unseen during the training
phase. To that end, we simulated the SSL recorded during the year 2021 and evaluated the
model performances. Table 6 presents the model performances during the validation phase.
It was observed that, except for the kNN model in predicting the SSL in the Ain Loudah
station, most of the models presented good accuracy during the validation phase, with a
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NSE ranging from 0.77 to 0.55, an r ranging from 0.82 to 0.92, and a RMSE ranging from
1.34 to 2.96 ln(t·d−1).

Table 6. Machine learning model performances during the validation phase.

Models r RMSEln (t·d−1) NSE

Aguibat Ziar
RF 0.84 1.52 0.68

AdaBoost 0.84 1.51 0.68
SVM 0.79 1.68 0.61
kNN 0.78 1.81 0.55
ANN 0.80 1.61 0.64

Ras Fathia
RF 0.90 2.27 0.70

AdaBoost 0.88 2.38 0.67
SVM 0.90 2.35 0.68
kNN 0.82 2.56 0.62
ANN 0.92 1.99 0.77

SM Cherif
RF 0.86 1.53 0.74

AdaBoost 0.84 1.66 0.69
SVM 0.85 1.69 0.69
kNN 0.82 1.75 0.66
ANN 0.91 1.34 0.80

Ain Loudah
RF 0.90 2.60 0.64

AdaBoost 0.84 2.76 0.61
SVM 0.84 2.96 0.55
kNN 0.78 3.19 0.47
ANN 0.86 2.72 0.61

To compare the trained models for simulating the SSL recorded during the 2021 year,
Taylor diagrams were plotted, and are presented in Figure 4. It shows that the AdaBoost
and RF models outperform the other models in predicting the SSL in Aguibat Ziar. The
ANN model is more accurate than the other ones for simulating the SSL in the Ras Fathia
and SM Cherif stations. As for the Ain Loudah station, the RF model is more accurate,
followed by the ANN, RF, and SVM models. However, the kNN model has the lowest
accuracy in predicting the SSL in all stations in comparison to the other models. However,
according to the suggestions in [48], it has fairly acceptable performances (NSE > 0.5) for
the SM Cherif, Ras Fathia, and Aguibat Ziar stations (Table 6).

Besides, Figure 5 illustrates the boxplot and the fitted normal distribution of the
model errors in simulating the SSL recoded during 2021. This figure demonstrates that
the model errors obey a Gaussian distribution, as they are evenly distributed over small
values. Figure 5a shows that the SVM model has a narrow box in comparison to the other
models in simulating the SSL in Aguibat Ziar, and even its NSE is lower than those of
the Adaboost, RF, and ANN models. This is justified by the fact that the NSE is sensitive
to the outlier values (Figure 5a). A similar result was observed for the kNN and SVM
models in predicting the SSL at the SM Cherif station (Figure 5c). The normal distribution
of the model errors demonstrates their stability in simulating the SSL for the dataset unseen
during the training process.
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Figure 4. Taylor diagrams for comparing trained machine learning models, namely random forest
(RF), adaptive boosting (AdaBoost), artificial neural network (ANN), and k-nearest neighbor (kNN).
(a): Comparison of the ML models for predicting suspended sediment load at Aguibat Ziar station;
(b): comparison of the ML models for predicting SSL at Ras Fathia station; (c): comparison of the ML
models at SM Cherif station; (d): comparison of the ML models at Ain Loudah station.
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Figure 5. Distribution of the model errors during the simulation of the suspended sediment load
recorded in 2021, namely random forest (RF), adaptive boosting (AdaBoost), artificial neural network
(ANN), and k-nearest neighbor (kNN). Red lines represent the fitted normal distributions of the error,
and points outside the box plots are the outlier values of the errors. (a): at Aguibat Ziar station; (b): at
Ras Fathia station; (c): at SM Cherif station; (d): at Ain Loudah station.

3.4. Generalization Ability and Uncertainties

In this study, the uncertainty analysis and classification of the developed models were
conducted, and are presented in Table 7. From this table, it was observed that most of
the models have a GA that is good to excellent, demonstrating the good training of these
models and, therefore, their utility for simulating the SSL at the studied basin. Besides, the
confidence intervals with a significance level of 95% (z-score = 1.96) of the models were
computed, and are presented in Table 7.

Table 7. Generalization ability, lower limit errors, and upper limit errors of the models.

Basin RF AdaBoost SVM kNN ANN

GA 1.29 1.26 0.86 1.21 0.88
Aguibat Ziar LL 95% −2.88 −2.93 −3.71 −3.88 −3.50

UL 95% 2.73 2.80 3.78 2.87 3.71
GA 1.52 1.54 1.13 1.40 1.04

Ras Fathia LL 95% −3.02 −3.05 −4.11 −3.92 −3.68
UL 95% 2.85 3.00 4.03 3.02 3.78

GA 0.94 0.96 0.94 0.87 0.79
SM Cherif LL 95% −3.22 −3.20 −3.55 −4.35 −3.35

UL 95% 3.14 3.57 3.45 3.26 3.33
GA 1.36 1.30 1.31 1.41 1.28

Ain Loudah LL 95% −3.88 −4.26 −4.47 −4.89 −4.18
UL 95% 3.59 4.08 4.41 3.65 4.16

Notes: GA: generalization ability; LL 95%: lower limit with 95% level confidence; UL 95%: upper limit with 95%
level confidence; SVM: support vector machine; kNN: k-nearest neighbor; Adaboost: adaptive boosting.
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Based on Table 6 and Figure 4, the best models for predicting the SSL in the Aguibat
Ziar, Ras Fathia, SM Cherif, and Ain Loudah stations are Adaboost, ANN, and random
forest, respectively. Figure 6 presents a graphical comparison of the observed and simulated
ln(SSL) with regard to the UL and LL errors provided by these models. This figure shows
that, except for isolated cases, most of the simulated ln(SSL) values are included in the
confidence interval with a level of 95%. More importantly, the models are capable of
predicting the SSL peaks, as shown in Figure 6.

Figure 6. Superimposed plots of the measured and simulated ln(SSL) with 95% upper and lower
limits using the best fitted ML models, namely: (a) adaptive boosting (Adaboost) model for simulating
the SSL in Aguibat Ziar; (b) artificial neural network (ANN) model for simulating the SSL in Ras
Fathia station; (c) artificial neural network (ANN) model for simulating the SSL in SM Cherif station;
(d) random forest (RF) model for simulating the SSL in Ain Loudah station.

4. Discussion

Sediment transport at the basin’s scale is a highly dynamic phenomenon and depends
on a multitude of combination variables that make its estimation a difficult task. Indeed,
several process-based models appeared to be valuable tools to predict the sediment load
at the basin’s scale. Meanwhile, this approach requires the monitoring of several physical
parameters for calibration and validation processes that affect the accuracy of the developed
model, especially in poorly monitored areas. For instance, in the Bouregreg basin, the
MUSLE model had a NSE less than 0.5 in the prediction of the sediment yield in the Aguibat
Ziar, Ras Fathia, SM Cherif, and Ain Loudah stations [28]. Interestingly, ref. [48] suggested
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that, in order to be acceptable for simulating the sediment load, it should have a NSE > 0.5.
Therefore, to overcome this challenge, this study proposed ML-based modeling to improve
the prediction accuracy in predicting the suspended sediment load in the Bourereg basin.

The evaluation of the model performance during the simulation of the SSL recorded in
2021 showed that most ML models (except for kNN in the Ain Loudah station) presented a
NSE over 0.5, indicating their suitability for simulation purposes. kNN and SVM models
had a lower performance for simulating the SSL in all studied stations. This is in agreement
with previous published studies, such as Wang et al. [49] and El Bilali et al. [14], where
their findings demonstrated that the tree-based and ANN models are more accurate than
SVM and k-NN ones. Regarding the SSL prediction, ref. [50] found that the data-driven
techniques can efficiently predict the SSL, with a NSE of 0.90, in China. Indeed, the authors
used several inputs variables, including the antecedent SSL. Meanwhile, including the
antecedent SSL as an input variable to predict the actual SSL can reduce the practical
implication of the models, since this variable needs measurement. In contrast, using only
hydro-climatic variables as input features in this study was enough to accurately predict
the SSL. More importantly, the generalization ability (GA) of the ML models in predicting
the SSL is crucial for the selection of the suitable model. This study evaluated the models
according to the performances, in addition to the GA, to assess whether the models keep
the accuracy during the validation process, and the variation of this accuracy, especially
when the models were over-fitted or under-trained. The results showed that the models
were ranked.

The applied methodology was an accurate tool to predict the daily SSL in immediate
upstream stations of the SMBA reservoir, which could be integrated as a powerful module
in a decision support system (DSS) of water resource planning and management in the
studied area in order to evaluate the reservoir sedimentation with a high frequency. Indeed,
the suspended sediment load from the intermediate basin and the erosion of the banks
of the SMBA reservoir were not considered in the present study, which can be among
its limitations.

Meanwhile, coupling the proposed ML models with a stream-based model to evaluate
the sediment inflow into the SMBA reservoir is suggested to improve the accuracy, since the
studied stations are upstream of the reservoir [51]. Since the stream-based models require
too many physical datasets pertaining to the river reach, such as the digital elevation
model (DEM), Manning–Strickler coefficient, topographical surveys of the bridges and
culverts, and others, the availability of the bathymetric survey dataset could be valuable for
statistically linking the cumulative SSL and the cumulative reservoir sedimentation. Hence,
it will be a reliable alternative to the previous suggestion. Additionally, the evaluation of the
erosion of the SMBA reservoir banks using ML models requires bathymetric measurement
datasets with enough frequency, and can be suggested to improve the SMBA reservoir
sedimentation monitoring.

Besides, the sedimentation can be managed both at the reservoir scale and at the
basin scale. At the reservoir scale, the flushing process through the water outflow rate and
the dredging techniques are the main operations used to manage/reduce the reservoir
sedimentation [52], whereas, at the basin scale, the best practice management (BPM) are
outstanding methods to mitigate the soil erosion. Despite being an accurate approach to
estimate the SSL upstream of the SMBA reservoir, the proposed ML models are not capable
of simulating the BPM at the basin scale, because the input features do not include the
physical parameters related to the basin, such as the land cover, soil type, and anthropogenic
activities related to the basin to be studied. However, this limitation could be overcome
by coupling ML models and process-based models (the soil water assessment tool model,
for instance); therefore, it can be suggested for future works. Interestingly, spatial machine
learning models embedded in GIS tools could be a fruitful approach to simulate the BPMs
in order to reduce the soil erosion over basins.

Eventually, it must be reminded that all of the results of the modelling process are
based on daily measurements of suspended sediment loads in the streams of all of the
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tributaries of the SMBA dam, performed by the River Basin Agency. Ground observations
are indispensable, prior to any modeling process for future predictions, in order to improve
the river and dam management.

5. Conclusions

An accurate estimation of the suspended sediment load (SSL) in the basins is consid-
ered to be a crucial challenge in water resource planning and management. The response
of the SSL in basins is nonlinear and highly dynamic, especially in semi-arid regions. In
this study, five machine learning models with the NARX input method were applied and
evaluated. The mains conclusions of the present study are as follows:

1. Empowering machine learning by adopting the NARX hydro-climatic input variable
method is valuable in the prediction of the daily suspended sediment load;

2. The artificial neural network is accurate in simulating the SSL in two basins out of
four, followed by AdaBoost and random forest models;

3. The generalization ability metric demonstrated the stability of the applied models in
predicting the SSL.

In summary, the proposed methods are powerful tools to overcome the scarce physical
dataset required by the process-based model to predict the SSL. However, the continuous
monitoring of the SSL in the studied basin will increase the amount of the datasets and,
therefore, exploration of the DNN is suggested for future work.
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6. Česonienė, L.; Šileikienė, D.; Dapkienė, M. Relationship between the Water Quality Elements of Water Bodies and the Hydrometric

Parameters: Case Study in Lithuania. Water 2020, 12, 500. [CrossRef]
7. Ustaoglu, F.; Tepe, B. Water quality and sediment contamination assessment of Pazarsuyu Stream, Turkey using multivariate

statistical methods and pollution indicators. Int. Soil Water Conserv. Res. 2019, 7, 47–56. [CrossRef]
8. Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of

Practices for Soil and Water Conservation; US Department of Agriculture: Washington, DC, USA, 1965.
9. Williams, J.R.; Berndt, H.D. Sediment Yield Prediction Based on Watershed Hydrology. Trans. ASAE 1977, 20, 1100–1104.

[CrossRef]
10. Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised universal soil loss equation. J. Soil Water Conserv. 1991, 46,

30–33.
11. Sadeghi, S.; Gholami, L.; Darvishan, A.K.; Saeidi, P. A review of the application of the MUSLE model worldwide. Hydrol. Sci. J.

2014, 59, 365–375. [CrossRef]
12. Bouguerra, H.; Bouanani, A.; Khanchoul, K.; Derdous, O.; Tachi, S.E. Mapping erosion prone areas in the Bouhamdane watershed

(Algeria) using the Revised Universal Soil Loss Equation through GIS. J. Water Land Dev. 2017, 32, 13–23. [CrossRef]

http://doi.org/10.1002/esp.5044
http://doi.org/10.1029/2019RG000679
http://doi.org/10.1080/00221689809498611
http://doi.org/10.1061/(ASCE)GM.1943-5622.0002243
http://doi.org/10.1016/j.ijsrc.2017.02.007
http://doi.org/10.3390/w12020500
http://doi.org/10.1016/j.iswcr.2018.09.001
http://doi.org/10.13031/2013.35710
http://doi.org/10.1080/02626667.2013.866239
http://doi.org/10.1515/jwld-2017-0002


Water 2022, 14, 862 18 of 19

13. Bouguerra, S.; Jebari, S.; Tarhouni, J. An analysis of sediment production and control in Rmel river basin using InVEST sediment
retention model. J. New Sci. 2019, 66, 4170–4181.

14. El Bilali, A.; Taleb, A.; Brouziyne, Y. Comparing four machine learning model performances in forecasting the alluvial aquifer
level in a semi-arid region. J. Afr. Earth Sci. 2021, 181, 104244. [CrossRef]

15. El Bilali, A.; Taleb, A. Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment.
J. Saudi Soc. Agric. Sci. 2020, 19, 439–451. [CrossRef]

16. el Bilali, A.; Abdeslam, T.; Mazigh, N.; Moukhliss, M. Prediction of chemical water quality used for drinking purposes based on
artificial neural networks. Moroc. J. Chem. 2020, 3, 665–672.

17. Chen, C.; He, W.; Zhou, H.; Xue, Y.; Zhu, M. A comparative study among machine learning and numerical models for simulating
groundwater dynamics in the Heihe River Basin, northwestern China. Sci. Rep. 2020, 10, 3904. [CrossRef]

18. Mohanty, S.; Jha, M.K.; Raul, S.K.; Panda, R.K.; Sudheer, K.P. Using Artificial Neural Network Approach for Simultaneous
Forecasting of Weekly Groundwater Levels at Multiple Sites. Water Resour. Manag. 2015, 29, 5521–5532. [CrossRef]

19. Khozani, Z.S.; Bonakdari, H.; Zaji, A.H. Estimating shear stress in a rectangular channel with rough boundaries using an
optimized SVM method. Neural Comput. Appl. 2018, 30, 2555–2567. [CrossRef]

20. Khozani, Z.S.; Safari, M.J.S.; Mehr, A.D.; Mohtar, W.H.M.W. An ensemble genetic programming approach to develop incipient
sediment motion models in rectangular channels. J. Hydrol. 2020, 584, 124753. [CrossRef]

21. Al Dahoul, N.; Essam, Y.; Kumar, P.; Ahmed, A.N.; Sherif, M.; Sefelnasr, A.; Elshafie, A. Suspended sediment load prediction
using long short-term memory neural network. Sci. Rep. 2021, 11, 7826. [CrossRef]

22. Nourani, V.; Gokcekus, H.; Gelete, G. Estimation of Suspended Sediment Load Using Artificial Intelligence-Based Ensemble
Model. Complex 2021, 2021, 6633760. [CrossRef]

23. Ampomah, R.; Hosseiny, H.; Zhang, L.; Smith, V.; Sample-Lord, K. A Regression-Based Prediction Model of Suspended Sediment
Yield in the Cuyahoga River in Ohio Using Historical Satellite Images and Precipitation Data. Water 2020, 12, 881. [CrossRef]

24. El Bilali, A.; Taleb, A.; Nafii, A.; Alabjah, B.; Mazigh, N. Prediction of sodium adsorption ratio and chloride concentration in a
coastal aquifer under seawater intrusion using machine learning models. Environ. Technol. Innov. 2021, 23, 101641. [CrossRef]

25. Alabjah, B.; Amraoui, F.; Chibout, M.M.; Slimani, M. Assessment of saltwater contamination extent in the coastal aquifers of
Chaouia (Morocco) using the electric recognition. J. Hydrol. 2018, 566, 363–376. [CrossRef]

26. El Bilali, A.; Taghi, Y.; Briouel, O.; Taleb, A.; Brouziyne, Y. A framework based on high-resolution imagery datasets and MCS
for forecasting evaporation loss from small reservoirs in groundwater-based agriculture. Agric. Water Manag. 2021, 262, 107434.
[CrossRef]

27. Mazigh, N.; Taleb, A.; El Bilali, A.; Ballah, A. The Effect of Erosion Control Practices on the Vulnerability of Soil Degradation in
Oued EL Malleh Catchment using the USLE Model Integrated into GIS, Morocco. Trends Sci. 2022, 19, 2059. [CrossRef]

28. Ezzaouini, M.A.; Mahé, G.; Kacimi, I.; Zerouali, A. Comparison of the MUSLE Model and two years of Solid Transport
Measurement, in the Bouregreg Basin, and Impact on the sedimentation in the Sidi Mohamed Ben Abdellah Reservoir, Morocco.
Water 2020, 12, 1882. [CrossRef]

29. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10,
282–290. [CrossRef]

30. Aggarwal, C.C. Data Mining; Springer: Cham, Switzerland, 2015. [CrossRef]
31. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
32. Bonaccorso, G. Machine Learning Algorithms: Popular Algorithms for Data Science and Machine Learning; Packt Publishing Ltd.:

Birmingham, UK, 2018.
33. Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput.

Syst. Sci. 1997, 55, 119–139. [CrossRef]
34. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science &

Business Media: New York, NY, USA, 2009.
35. Kubat, M. An Introduction to Machine Learning; Springer: Cham, Switzerland, 2017. [CrossRef]
36. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
37. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
38. Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How Many Trees in a Random Forest? In International Workshop on Machine Learning

and Data Mining in Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 154–168. [CrossRef]
39. Schapire, R.E. A brief introduction to boosting. Int. Jt. Conf. Artif. Intell. 1999, 2, 1401–1406.
40. Freund, Y.; Schapire, R.E. Experiments with a New Boosting Algorithm. In Proceedings of the ICML ’96 13th International

Conference on Machine Learning, Bari, Italy, 3–6 July 1996; pp. 148–156.
41. EL Bilali, A.; Taleb, A.; Bahlaoui, M.A.; Brouziyne, Y. An integrated approach based on Gaussian noises-based data augmentation

method and Ada, Boost model to predict faecal coliforms in rivers with small dataset. J. Hydrol. 2021, 599, 126510. [CrossRef]
42. Vapnik, V.N. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 2000.
43. Ghosh, S. SVM-PGSL coupled approach for statistical downscaling to predict rainfall from GCM output. J. Geophys. Res. Earth

Surf. 2010, 115, D22. [CrossRef]
44. Dawson, C.; Wilby, R. An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 1998, 43, 47–66. [CrossRef]
45. Schalkoff, R.J. Artificial Neural Networks; McGraw-Hill: New York, NY, USA, 1997.

http://doi.org/10.1016/j.jafrearsci.2021.104244
http://doi.org/10.1016/j.jssas.2020.08.001
http://doi.org/10.1038/s41598-020-60698-9
http://doi.org/10.1007/s11269-015-1132-6
http://doi.org/10.1007/s00521-016-2792-8
http://doi.org/10.1016/j.jhydrol.2020.124753
http://doi.org/10.1038/s41598-021-87415-4
http://doi.org/10.1155/2021/6633760
http://doi.org/10.3390/w12030881
http://doi.org/10.1016/j.eti.2021.101641
http://doi.org/10.1016/j.jhydrol.2018.09.003
http://doi.org/10.1016/j.agwat.2021.107434
http://doi.org/10.48048/tis.2022.2059
http://doi.org/10.3390/w12071882
http://doi.org/10.1016/0022-1694(70)90255-6
http://doi.org/10.1007/978-3-319-14142-8
http://doi.org/10.1006/jcss.1997.1504
http://doi.org/10.1007/978-3-319-63913-0
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1007/978-3-642-31537-4_13
http://doi.org/10.1016/j.jhydrol.2021.126510
http://doi.org/10.1029/2009JD013548
http://doi.org/10.1080/02626669809492102


Water 2022, 14, 862 19 of 19

46. Yoon, H.; Jun, S.-C.; Hyun, Y.; Bae, G.-O.; Lee, K.-K. A comparative study of artificial neural networks and support vector
machines for predicting groundwater levels in a coastal aquifer. J. Hydrol. 2011, 396, 128–138. [CrossRef]

47. El Bilali, A.; Moukhliss, M.; Taleb, A.; Nafii, A.; Alabjah, B.; Brouziyne, Y.; Mazigh, N.; Teznine, K.; Mhamed, M. Predicting
daily pore water pressure in embankment dam: Empowering Machine Learning-based modeling. Environ. Sci. Pollut. Res. 2022.
[CrossRef]

48. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic
Quantification of Accuracy in Watershed Simulations. Trans. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [CrossRef]

49. Wang, L.; Long, F.; Liao, W.; Liu, H. Prediction of anaerobic digestion performance and identification of critical operational
parameters using machine learning algorithms. Bioresour. Technol. 2020, 298, 122495. [CrossRef]

50. Adnan, R.M.; Liang, Z.; El-Shafie, A.; Zounemat-Kermani, M.; Kisi, O. Prediction of Suspended Sediment Load Using Data-Driven
Models. Water 2019, 11, 2060. [CrossRef]

51. Tadesse, A.; Dai, W. Prediction of sedimentation in reservoirs by combining catchment based model and stream based model
with limited data. Int. J. Sediment Res. 2019, 34, 27–37. [CrossRef]

52. Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable
sediment management in reservoirs and regulated rivers: Experiences from five continents. Earths Future 2014, 2, 256–280.
[CrossRef]

http://doi.org/10.1016/j.jhydrol.2010.11.002
http://doi.org/10.1007/s11356-022-18559-7
http://doi.org/10.13031/2013.23153
http://doi.org/10.1016/j.biortech.2019.122495
http://doi.org/10.3390/w11102060
http://doi.org/10.1016/j.ijsrc.2018.08.001
http://doi.org/10.1002/2013EF000184

	Introduction 
	Materials and Methods 
	Study Area Description 
	Datasets 
	Concentration of Suspended Solid Measurements 
	Rainfall and Runoff Measurements 

	Methodology 
	Machine Learning Models 
	NARX Input Method 
	Model Evaluation Metrics 


	Results 
	Exploratory Data Analysis (EDA) 
	Training Process of the Machine Learning Models 
	Validation of the ML Models 
	Generalization Ability and Uncertainties 

	Discussion 
	Conclusions 
	References

