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Abstract: A method that formulates the retrieval of drop size distribution (DSD) parameters from po-
larimetric radar variables at attenuating frequency as the solution of an inverse problem is presented.
The DSD in each radar bin is represented by a normalized Gamma distribution defined by three
parameters (Dm, N∗0 , µ). The direct problem that describes polarimetric radar observables—scattering
and propagation terms—and their dependency on DSD parameters is analyzed based on T-matrix
scattering simulations. The inverse algorithm and its application to the DSD retrieval are then pre-
sented. The inverse method is applied to an African Monsoon Multidisciplinary Analysis (AMMA)
field campaign that deployed an X-band dual-polarization Doppler radar and optical disdrometers in
Benin, West Africa, in 2006 and 2007. The dataset is composed of X-band polarimetric radar PPIs and
disdrometer data for 15 organized convective systems observed in 2006. A priori information on DSD
parameters (benchmark method) is derived from the polarimetric radar observables by applying
power law relationships. The proposed retrieval method of DSD parameters leads to the following
results as compared to the benchmark: (i) we found a better spatial consistency of the retrieved pa-
rameters, (ii) the reconstructed polarimetric radar observables are closer to the observations, (iii) The
validation with disdrometer data confirms an improved estimation of the DSD parameters.

Keywords: radar polarimetry; drop size distribution retrieval; inverse problem; attenuation correction;
X-band radar; tropical rainfall; convective rainfall

1. Introduction

Rainfall estimation has greatly benefitted from the progress of weather radar and
the development of dual-polarization methods. A whole branch of weather radar re-
search has been devoted to rain or cloud drop size distributions (DSD), with two purposes:
(i) characterizing DSD and its variability as a source of uncertainty in radar estimation
of rainfall [1–6] and (ii) deriving information on the DSD from the radar measurements
itself [7–9]. The determination of the DSD over various spatial and temporal scales is
interesting for a range of scientific applications, including: rain rate estimation, rain ero-
sivity [10], satellite and radar remote sensing studies [11,12], rain microphysics, cloud
modeling, among others. Most of the early work on the DSD was based on disdrometers
and mainly focused on investigating if some standard form of DSD could be defined [13].
It is commonly accepted that rainfall DSD can be represented by a Gamma law governed
by three parameters characterizing: the number of drops, the characteristic diameter, and
the distribution shape [14]; other laws such as lognormal or four-parameters extended
gamma have also been proposed, but are less commonly used. Many studies have been
devoted to analyzing how the DSD parameters vary with rain bulk variables (rain rate,
radar reflectivity factor, liquid water content, median-volume diameter) and to finding
expressions for the DSD function and parameters that reduce the variability [14,15]. A
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well-adapted solution consists in normalizing the DSD and the drop diameters by one or
two integral moments of the DSD [13,14] among others).

Disdrometers provide only local information on the DSD and no information on its
spatial variability unless an extensive network of disdrometers is used. Radar polarime-
try has led to significant progress in rainfall characterization, helping to document both
spatial and temporal variability. A polarimetric radar provides several variables useful
to characterize rainfall (see Section 3.1). The retrieval of DSDs was initially proposed
as a means to improve rainfall estimation from polarimetric variables [16]. The authors
of [16,17] proposed the β-method, improved in [18], to retrieve the parameters of a DSD
gamma distribution. The authors of [19,20] developed the constrained gamma method to
derive relations expressing the DSD parameters as functions of reflectivity and differential
reflectivity. According to [21,22], the constrained gamma method performs better than
the β-method. The authors of [23] developed a method applicable to a double-moment
normalized DSD, defined by two parameters. The authors of [8] tested retrievals of DSD
based on empirical relationships applied to radar polarimetric variables in Africa. The
authors of [24] used a tree-based genetic program to retrieve the parameters of a gamma
DSD from reflectivity and differential reflectivity. The authors of [25] proposed a Bayesian
approach with DSD parameters as state variables to estimate rainfall rate from S-band
polarimetric radar. The authors of [26] formulated the retrieval of DSD parameters from
S-band polarimetric radar variables as an inverse problem.

The studies above do not explicitly account for radar attenuation by rain. For X-band
radars, the reflectivity variables must be corrected for attenuation to avoid underestimation
of the DSD parameters. The authors of [27–29] adapted the self-consistent method proposed
by [30] for attenuation correction of X-band data. The authors of [18] also used a self-
consistency method. The authors of [23] proposed a variation on the ZPHI algorithm [31].
In most studies, a relationship between the path integrated attenuation and the differential
phase shift is used as in [30–32]. The authors of [33] presented the self-consistent with
optimal parameterization (SCOP) algorithm to correct X-band radar for attenuation. The
authors of [34] proposed an improved version of the attenuation correction for C-Band.
The authors of [8,35] followed [36] and found that a simple attenuation correction based
on a linear relationship between attenuation and φDP gave robust results. The authors
of [37] formulated the attenuation estimation of X-band polarimetric radar by means of
a variational algorithm. The authors of [38] noticed that the two-step procedure that
applies sequentially attenuation correction and then DSD retrieval may result in errors and
inconsistency in the retrieved DSD. They proposed a three-step procedure, based on a cost
function minimization, to retrieve the DSD in each gate along a radar radial.

The present study builds upon these papers and formulates the retrieval of a radial
profile of DSD parameters from X-band polarimetric radar observables in the framework of
inverse theory [39,40]. It is assumed that DSDs are represented by a gamma law described
by three parameters, namely (Dm, N∗0 , µ). The objective is to determine the three DSD
parameters at each radar bin in order to provide a mapping over the rain field. The inverse
algorithm starts from a first estimation (denoted as an a priori estimation) of the DSD
parameters and modifies them to better fit the profile of polarimetric radar observables
along each radar radial. The retrieval method presented in this study can be viewed as an
evolution of the method proposed by [38]. Its originality lies in the following points: (i) it
extends to X-band polarimetric radar affected by attenuation of the statistical approach
proposed by [25] on S-band radar data, (ii) the algorithm is different from that used by [26]
that did not account for attenuation and from [38] who did not explicitly account for a
priori information, (iii) special attention is given to a priori information that may strongly
influence the solution, (iv) the method is tested with X-band radar data in West Africa, on
case studies with intense rainfall and heavy attenuation—challenging conditions for DSD
retrieval. This real case study meets more demanding conditions than a simulation exercise
in which the simulated errors are most often well-conditioned.
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Section 2 introduces the radar and disdrometer dataset gathered in West Africa, and
the previous findings (benchmark). Section 3 provides a detailed description of the forward
problem relating polarimetric radar variables at attenuating frequency to the DSDs along
the radar beam. Section 4 presents the method used for DSD retrieval. The practical
implementation and sensitivity to model parameters and to the a priori information are
discussed. Section 5 provides the quantitative results and statistics when the radar retrieved
DSDs are compared with disdrometer data. The discussion, conclusion, and perspective of
this work are proposed in Sections 6 and 7.

2. Materials and Methods

This work was initiated as part of the African Monsoon Multidisciplinary Analysis
(AMMA) program [41]. One of many AMMA objectives was a better characterization of
the meso-scale convective systems (MCS) which bring most of the rainfall during the West
African Monsoon [42]. For this purpose, several super sites were equipped during AMMA,
including one in Northern Benin near the town of Djougou situated in the upper basin of
the Oueme river. This area has been equipped as a hydro-meteorological observatory since
the late 90s, with a dense network of rain and stream gauges, as part of the AMMA-CATCH
observing system [41]. During the AMMA intensive observation period, from 2005 to
2007, an X-band polarimetric radar was installed in Djougou. Several disdrometers [43]
complemented the experiment during this period. The dataset and some results that are a
starting point for the present study are summarized below.

2.1. X-Band Polarimetric Radar Data

The Xport X-band polarimetric radar was developed by the Institut de Recherche
pour le Developpement (IRD) as a transportable unit to study rainfall associated with
tropical convection [44]. The radar operates at 9.4 GHz with simultaneous transmission and
reception of horizontal (H) and vertical (V) signals thanks to an orthomode feed. The peak
transmitted power in each polarization is 50 kW, and the 1.4 m antenna provides a 1.4◦

radar beam. For the present dataset, the radar pulse length is set to 1 µs, and the radar pulse
repetition frequency is 1 kHz. The raw data from 128 instant pulses are processed in order
to provide the radar variables for every range gate (150 m length) along a given azimuth.
The stored radar variables are: radar reflectivity in horizontal and vertical polarization
(ZH and ZV), differential phase shift (φDP), cross-polarization correlation coefficient (ρHV),
and Doppler radial velocity calculated for each polarization (VH and VV). In this work,
the radial velocity is used only to detect and remove ground clutters. During AMMA, the
radar was located in Djougou (9.66◦ N, 1.69◦ E) and operated with a ‘volumetric’ protocol
composed of 12 successive Plan Position Indicator scans (PPI) in a sequence of 5 or 10 min.
In the present work, only the PPI with elevation 2.8◦ is used; it is low enough to avoid the
melting layer (which is quite high and stable at 3.5 to 4 km height in this region) and better
than the lowest elevation angles (0.9–1.8◦) in terms of ground clutter contamination.

In the present study, the derivation of KDP from the measured ΦDP uses the filtering
technique proposed by [45] with a threshold of 2◦. This technique allows filtering ΦDP
from the specific effect of the backscattering phase shift δDP presented later in Equation (9).

2.2. Optical Disdrometer Data

Optical disdrometers [43] were installed in three locations in the AMMA super-site
of Benin, West-Africa: the further away from the radar was in Copargo (1.53◦ E; 9.83◦ N)
situated 18 km from the radar; the two others were closer, in Nangatchiori (about 10 km
from the radar) and Djougou at the radar site. These disdrometers provide the diameter
and fall velocity of the drops. For the present dataset, the rain drop spectra are acquired
every minute with 22 diameter classes from 0.06 mm to 6.5 mm. The whole database
(described in [43] is composed of 11.640 spectra, belonging to 93 different storms and a total
of 1220 mm rainfall acquired in 2005 (Nangatchori, Djougou), 2006 (Copargo, Djougou), and
2007 (Djougou) by one (or two) of the disdrometers. The quality of the dataset was verified
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by comparing the rain rates distributions and daily total collected by each disdrometer
with the closest rain gauge [43].

In the present work, radar retrieval of DSDs is compared with the dual-beam dis-
drometer [46] that operated in Copargo during the peak of rainy season, June-September
2006 (Table 1). This disdrometer was the only one situated far enough from the radar for
attenuation to be perceived.

Table 1. List of events recorded by the disdrometer and the radar, and number of PPIs used to test
the DSD retrieval.

Event Beginning Date and Time Number of PPIs

23 June 2006 04:51 24

25 July 2006 13:22 30

28 July 2006 05:21 27

2 August 2006 01:22 32

5 August 2006 14:57 6

7 August 2006 14:39 7

10 August 2006 16:49 12

14 August 2006 16:44 3

17 August 2006 16:43 28

30 August 2006 15:18 3

31 August 2006 13:09 12

3 September 2006 10:30 16

8 September 2006 16:22 10

9 September 2006 12:33 16

12 September 2006 17:59 18

2.3. Previous Findings from This Dataset

The authors of [43,47] provide an extensive analysis of the AMMA DSD dataset. They
investigated which form of DSD and normalization best fitted the observed spectra. Their
main conclusion is that the double moment normalization of the DSD introduced by [14]
provides a good framework to represent the shape, fit the parameters, and explain the
variability of the observed DSDs. The DSD is therefore expressed:

NG(Dm, N∗0 , µ; D) = N∗0 F
(

D
Dm

, µ

)
(1)

where the three parameters of the normalized DSD distribution are the volume-weighted
mean diameter Dm, the scaling parameter of concentration N∗0 and the shape parameter µ.
Dm and N∗0 are defined by:

Dm =
M4

M3
with Mn =

∫ ∞

0
N(D)DndD (2)

N∗0 =
44

πρw

LWC
D4

m
with LWC =

πρw

6
M3 (3)

where Mn is the moment of order n of the DSD distribution, ρw is the density of water, and
LWC is the total liquid water content.
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F(X, µ) represents the shape of the normalized distribution, in our case, the gamma
function well fitted on the observed DSD with µ the shape parameter of the gamma law:

F(X, µ) =
Γ(4)(µ + 4)µ+4

44Γ(µ + 4)
Xµ exp[−(µ + 4)X] (4)

The authors of [43] confirmed on the African DSD the findings of [14]: the normalized
DSD function F is remarkably stable and independent of the rain type. The variability of the
DSD within and between systems is well explained by the variability of the parameters N∗0
and Dm. Another finding from [43] consistent with [14,48] is the existence of a ‘N0 jump’ or
clear distinction in the DSD characteristics between the convective and stratiform rain. For
a given rain rate, N∗0 tends to be higher, and corollary Dm smaller in convective rain; this
existence of relative large drops for low or moderate rain rates in the stratiform part can
be explained by the melting of large aggregates in this part of the squall lines [44,49]. The
characterization of the shape parameter µ from disdrometer spectra is more delicate. The
authors of [43] showed that very different values of µ are obtained if the moment method
is used or if µ is fitted directly on the shape of the DSD.

The combined radar/disdrometer dataset, together with the AMMA-CATCH rain
gauges, have been used in [8,35] to study the influence of DSD variability on the polari-
metric variables and to test various attenuation correction, rain rate, and DSD estimation
algorithms. The authors of [8] used reflectivity (Zcorr

H ), differential reflectivity (Zcorr
DR ), both

corrected for attenuation and (KDP) to test various expressions of DSD parameters N∗0 and
Dm. The best estimation of these two parameters was evaluated on four rain events by
comparison with the Copargo disdrometer. The comparison between radar and disdrome-
ter derived DSDs exhibited a correlation coefficient above 0.6 for N∗0 and 0.5 for Dm and
low relative biases in both cases (less than 3% for N∗0 and 1% for Dm, respectively). The
proposed power-law expressions are:

log10 (N∗0 ) = a + b Zcorr
H + c log10 (KDP) + d log10 (Zcorr

DR ) (5)

Dm = e Zcorr
DR

f (6)

With a = 2.16, b = 0.039, c = 0.41, d = −2.04, e = 1.699, f = 0.353. KDP in
[
◦ km−1

]
,

Zcorr
H and Zcorr

DR (in dB), Dm in [mm] and N∗0 in
[
m−3mm−1].

As detailed in Section 4, the fields of N∗0 and Dm derived from the above expressions is
used as an a priori solution for the new DSD retrieval scheme presented in the next sections.
The above relations proposed for an a priori model were established on the dataset used
in [8], over Benin.

3. Forward Modelling of Polarimetric Radar Observables
3.1. Measured Radar Variables at X-Band

At attenuated frequencies such as X-band (and to a lesser extent C-band), radar mea-
surement is strongly influenced by the effect of atmosphere and especially of precipitation
encountered along the path. This is reminded in the equations below for the variables of
interest measured by a polarimetric radar, the reflectivities in each polarization, and the
differential phase shift:

Zatt
H,V(r) = ZH,V(r)− 2

∫ r

0
AH,V(s)ds (7)

where H and V denote polarization, Zatt
H,V is the attenuated reflectivity (dBZ) measured at

range r, ZH,V is the intrinsic reflectivity (dBZ) of the volume of precipitation at range r,
and AH,V is the specific attenuation (in dB/km ) along the radial.
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The differential reflectivity ZDR (dB) is derived as the difference between ZH and ZV .
Its measured value Zatt

DR at range r is expressed:

Zatt
DR(r) = ZDR(r)− 2

∫ r

0
ADPds (8)

where the differential attenuation ADP = AH − AV is introduced. Similarly, the differential
phase shift measured at range r is the sum of the cumulative effect of the specific differential
phase shift KDP [rad/km] and the backscattering phase shift δDP at range r.

ΦDP(r) = δDP(r) +
∫ r

0
KDP(s) ds (9)

The derivation of KDP from measured ΦDP may be affected by significant contributions
of δDP, resulting in apparent jumps of the measured ΦDP in the vicinity of strong convective
cells. The importance of δDP in radar polarimetry is now better identified, including its
possible applications [50]. Several methods have been proposed to isolate ΦDP from δDP
contributions. The authors of [45] proposed an iterative filtering technique for ΦDP range
profiles which reduce strong and localized fluctuations (less than 1.5 km). This method
smoothes, without suppressing them, the meaningful variations of ΦDP. The authors
of [51] developed a method to correct KDP estimates for δDP influence. The authors of [52]
proposed a processing method for X-band polarimetric data based on an extended Kalman
filter; the state equation of the filter accounts for the relation between δDP and ZDR pointed
by [53]. The authors of [54] have recently presented a procedure in five steps to estimate
δDP. In the present study, the filtering technique proposed by [45] has been used to derive
KDP from the measured ΦDP, while eliminating δDP. The effect of δDP is then not taken
into account in our forward or inverse model: (i) in order to simplify the formulation of the
DSD retrieval, (ii) and because previous works based on the present data set [8,35] have
shown that the actual effect of δDP is low.

3.2. Polarimetric Radar Observables/Variables

All polarimetric radar variables introduced on the right-hand side of Equations (7)–(9):
ZH,V , ZDR, KDP, AH,V,, ADP characterize the interactions between radar waves and
precipitation [55]. They depend on the number, size, and shape of the raindrops (or other
hydrometeors) inside the radar beam. A commonly adopted assumption is to consider
drops as ellipsoids with a revolution symmetry along their vertical axis (b) and an oblate
shape, the horizontal axis (a) being the largest. The shape and deformation of drops as
they grow and fall, and the expression of the aspect ratio (ra =

a
b ) has been the subject of

many studies based on direct or indirect observations. Three recent reviews summarize the
literature on rain drop shapes [56–58]. In this work, the oblateness law proposed by [59] is
adopted unless otherwise stated:

ra =

{
1.012− 0.1445De − 1.028D2

e f or 1.1 ≤ De ≤ 4.4 mm
1.0048− 0.0057De − 2.628D2

e + 3.682D3
e − 1.677D4

e f or De〈1.1∪ De〉4.4 mm,
(10)

With De the equivalent spherical diameter of the drop in mm.
To model explicitly the electromagnetic properties of drops, the T-matrix method for

microwave scattering by non-spherical particles [60–62] is a reference in weather radar
polarimetry, and an open-source code has generalized its use. The method calculates the
propagative and scattering properties of populations of spheroids defined by their aspect
ratio, their orientation compared to the incident electromagnetic field, their size relative
to the wavelength, and their refractive index. In order to account for drop oscillation, a
distribution of canting angles can be provided.
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The polarimetric radar variables for a given DSD can be estimated by convoluting the
T-matrix simulations for a single drop size by the DSD:

FPOL(NG, p) =
∫ Dmax

Dmin
FPOL(D, p) NG(D) dD (11)

where FPOL denotes the radar polarimetric variable (ZH,V , KDP, AH,V etc.), NG is the DSD
(as in Equation (1)) with its triplet of parameters (N∗0 , Dm, µ); the vector p contains all the
other parameters of the T-matrix model (oblateness law; temperature, etc.). By replacing
the DSD by its expression (1), Equation (11) is rewritten:

FPOL(NG, p) = N∗0
∫ Dmax

Dmin
FPOL(D, p) F

(
D

Dm
, µ

)
dD (12)

Equation (12) shows the linear dependence of the radar variables (KDP; ZH,V ; AH,V,DP)
on N∗0 . ZDR which is the ratio of ZH over ZV , is totally independent of N∗0 . The dependence
on µ and Dm is more complex. The polarimetric variables are very sensitive to Dm and
less to µ, except for ZDR. ZDR dependence on Dm is close to linear (as shown in many
previous works); KDP and AH have a dependency close to the 5th power of Dm and ZH to
the 6th power.

3.3. The Forward Discretized Model between Polarimetric Radar Observables and DSD Parameters

The forward model needs to be discretized in view of the inversion. For each radial,
the radar data is discretized along n range gates with a spatial resolution ∆r. In each radar
gate of index i (located at range i∆r), the useful radar observables are the triplet of variables(

Zatt
H i, Zatt

DR i, KDP i
)
, namely attenuated reflectivity in horizontal polarization, attenuated

differential reflectivity, and specific differential phase. In addition, the phase shift ΦDP n at
the last gate of the radar radial is also taken as an additional constraint. The rain DSD in
each radar gate is defined by a triplet of parameters XGi =

(
N∗0 i, Dm i, µi

)
. The objective

of the inversion in Section 4 is to retrieve these XGi .
Following Equation (11), the system of equations at each gate can be written:

Zatt
H i = ZH (NG i)− 2 ∆r

k=i

∑
k=1

AH (NG k) (13)

Zatt
DR i = ZDR (NG i)− 2 ∆r

k=i

∑
k=1

ADP(NG k) (14)

KDP i = KDP(NG i) (15)

And in addition, for i = n

ΦDP n = ∆r

[
k=n

∑
k=1

KDP k
− − ΦDP 1

]
(16)

Equations (13) and (14) are expressed in dBZ. Note that Equation (16) is an approxima-
tion and does not account for the backscattering phase δDP at gate 1 and n. As discussed in
Section 3.1, δDP is filtered out by pre-processing.

The vector regrouping the attenuated reflectivity, attenuated differential reflectivity,
specific differential phase in the n successive gates, and the total differential phase shift at
gate n, for a radar radial is denoted Y =

[
Zatt

h , Zatt
dr , Kdp , ΦDP n

]
. The vector regrouping

the parameters of the gamma DSD in the n successive gates of the same radar radial is
denoted X = [N∗0 , Dm , µ], N∗0 , Dm , µ being the vectors regrouping each three parameters
in the n successive gates of this radial. The vector Y has a length of [3n + 1] and the vector
X has a length of [3n].
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The relationships between polarimetric radar observables and DSD parameters along
a radar radial are regrouped in the nonlinear model m based on Equations (11)–(16):

Y = m(X) (17)

The objective is to retrieve the vector X that best explains the radar observables Y
measured along each radar radial. The next section explains the method used to reach
this objective.

4. The DSD Retrieval from Polarimetric Radar Observations

The proposed method formulates the retrieval of DSD parameters as an inverse
problem. The inverse theory was defined by [40] as “a set of mathematical techniques for
reducing data to obtain knowledge about the physical world on the basis of inferences
drawn from observations”. In this study, the objective is to infer the triplet of gamma DSD
parameters [N∗0 , Dm , µ] in any point from the polarimetric radar observables, called data.
Radar observables can be expressed as functions of the DSD parameters by the theoretical
model presented in Section 3. The objective of the inverse algorithm is to achieve the best
coherence between the various sources of information available: data, parameters, and
models according to the confidence granted to these sources of information. The originality
of this study is to rely on an inverse algorithm in order to reach the optimal solution at the
scale of radar radials (tilts). For that purpose, the DSD retrieval is carried out in two steps:-
A first estimation of the DSD parameters in each gate of radar radial, hereafter denoted as
the a priori estimation (Xprior) is derived from the polarimetric radar observables, thanks
to the relationships proposed by [8] and detailed in Section 2.3 (Equations (5) and (6)). The
measured reflectivity and differential reflectivity need to be corrected for attenuation before
applying Equations (5) and (6). The self-consistency method proposed by [30] is used to
estimate the attenuation at any gate of radar radials and to correct the observed values of
ZH and ZDR for attenuation.

The second step is to obtain an optimal solution that is consistent with (i.e., allows
to reproduce with the forward model) the radar observables along the radar tilts. The
objective is, therefore, to adapt the set of a priori estimations of DSD parameters into a
solution that is optimal at the scale of the whole radar radial. This second step is addressed
by considering the retrieval of DSD triplets as an inverse problem.

4.1. Inverse Modeling Framework

The retrieval of the DSD triplets all along the radial based on the system of Equation (17)
is solved within the framework of inverse theory, as detailed in [39,40], with the algorithm
proposed by [63].

In the problem to solve (Equation (17)), the input data are the variables measured
by a polarimetric weather radar regrouped in a vector denoted Y0. The parameters to be
retrieved are the three parameters of the Gamma DSD distributions along a radar radial,
components of the vector XG. The solution minimizes the following expression:

Φ(Y, X) =
[
m(X)−Y0

]t
C−1

Y

[
m(X)−Y0

]
+
[

X− Xprior
]t

C−1
X

[
X− Xprior

]
(18)

where Φ is the likelihood function, t signifies transpose, Y0 is the vector of observed
(attenuated) radar data, Xprior is the vector of a priori DSD parameters, CX is the covariance
matrix of the residuals between the true and a priori values of X and CY is the covariance
matrix of measurement errors.

The statistical distributions of both
[
Y−Y0] and

[
X− Xprior] are assumed to be

unbiased and Gaussian. The author of [40] showed that the solution vector X′ satisfies:

X′ = Xprior + CX Jt [JtCX J + CY
]−1
[
Y0 −m

(
X′
)
+ J
(

X′ − Xprior
)]

(19)
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where J is the matrix of (first-order) partial derivatives of the model m. If the model m is
nonlinear, [39] demonstrates that the solution can be obtained by an algorithm that can
be written:

Xk+1 ≈ Xk + α
[

Jt
k C−1

Y Jk + C−1
X

]−1 [
Jt
k C−1

Y

〈
Y0 −m(Xk)

〉
+ C−1

X

〈
Xk − Xprior

〉]
(20)

in which Xk constitutes the result of the kth iteration, Jk = ∂ m(Xk)
∂(Xk)

is the Jacobian matrix
of (first order) partial derivatives of the model at point Xk. Further information about
the stability, convergence, and uniqueness of the solution of such nonlinear problems can
be found in Chapter 9 of [40,63]. The α parameter in Equation (20) is used to control the
convergence of the gradient descend algorithm: for highly nonlinear problems, a low value
for α helps avoid brutal jumps on the descent and divergence.

According to Equation (18), the solution provided by the inverse algorithm results
from a compromise between (i) a solution that perfectly fits the observed data through the
theoretical model and (ii) a solution that remains very close to a priori information on the
parameters. This compromise solution depends on the confidence put on the various terms
of the system. If the confidence in the observed data (as defined by the covariance matrix
CY) is weak, a priori information takes a dominant role. If the problem is overdetermined
(very good quality data in sufficient number, or weakly informative a priori values of
the parameters as defined by the covariance matrix CX) then a priori information plays a
minor role.

The next paragraphs present and discuss the implementation of this inverse algorithm
which requires the definition of: (i) the vector Y0 of radar data and its covariance matrix
CY which characterizes the level of confidence in the data, (ii) the vector Xprior of a priori
values of DSD parameters and its covariance matrix CX which contain the initial estimation
of the parameters and the error covariance hypothesis, (iii) the applications conditions of
the algorithm.

4.2. The Vector Y0 of Radar Data and Its Covariance Matrix CY

The covariance matrix of measurement errors CY is assumed fully diagonal, which
means that the measurement error of each radar observable is independent of the measure-
ment error of the same variable measured at a different radar bin and independent from the
other radar observables, including at the same location. The diagonal of the matrix CY can
be written diag CY =

[
σ2

ZH , σ2
ZDR, σ2

KDP, σ2
Φdpn

]
, where σ2

ZH , σ2
ZDR, σ2

KDP are vectors, and
their components are the variances of measurement error of the (attenuated) reflectivity
Zatt

H , the (attenuated) differential reflectivity Zatt
DR and the differential phase shift KDP. σ2

Φdpn
is the variance of measurement error of the phase shift at gate n.

The variance of measurement errors associated with Zatt
H and Zatt

DR can be estimated
on the base of the fluctuations of the measured reflectivities. The error on KDP is quite
high due to the noisy nature of ΦDP and its derivative. After some sensitivity analy-
sis, we have adopted the following constant values (for all radar gates): σ ZH = 3 dBZ,
σ ZDR = 0.5 dB, σKDP = 0.1 deg/km and σΦDP n = 2 deg.

4.3. A Priori Information: DSD Parameters and Associated Covariance Matrix

A priori values (N∗0 , Dm) of the DSD parameters are obtained using the empirical power
laws suited to the local climatology (Equations (5) and (6)), as previously detailed. A priori
value of µ is more difficult to set as the bulk radar variables do not carry any information
about the shape of the DSD. The choice of a priori value of µ is based on [43], who showed by
fitting gamma laws on observed DSD of the same dataset that convective precipitation tends
to have higher values of µ than stratiform precipitation. They showed that the values of µ
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fall in the interval µ ∈ [0.5, 12]. We choose to set a constant a priori value of µ = 2 for all the
radar gates as the stratiform rainfall is more frequent in the radar PPIs.

µ
prior
i = 2.0 (21)

The covariance matrix of parameters stands for the errors between a priori values of
parameters and the true values. We assume that residuals of the variables N∗0 , Dm , µ are
independent, but a correlation between these variables could eventually be introduced into
the algorithm by means of the covariance matrices.

For each radial, the matrix CX is then a “block-diagonal” matrix of size [3n× 3n]
composed of three sub-matrixes:

CX =

 βN∗0
βDm

βµ

 with β
ij
par = σ2

parexp
(−dij

dcorr

)
(22)

where σ2
par is the estimated a priori variance of the parameter par, that is N∗0 , Dm , µ and

dij the distance between the gates i and j of a radial. For this work, dcorr = 3 km has been
adopted, which is consistent with the spatial correlation of the DSD parameters in the
study region.

The standard deviation on parameters is defined as a fraction of its a priori value
and expressed:

σDm = ε Dprior
m , σN∗0

= ε N∗prior
0 and σµ = ε µprior (23)

We set the value of the coefficient ε = 0.5—or in other words, a relative uncertainty of
50% for all three parameters- by testing the convergence speed of the algorithm.

4.4. Application Conditions

The calculation of the Jacobian matrix of the partial derivatives of the radar observables
with respect to the parameters on vector is detailed in Appendix A. The calculation of the
radar variables as a function of raindrop size and shapes is based on T-matrix modeling
with the [59] ratio law (Equation (10)) and a temperature equal to 20 ◦C (compatible with
observations in Africa). The convergence parameter α (Equation (20)) is set to α = 0.2 in
order to ensure a careful convergence of the algorithm. At each iteration of the algorithm
described in Equation (23), the convergence is evaluated through the normalized root
mean square error (NRMSE) between the retrieved (Yn) and observed (Y0) attenuated
polarimetric variables [ZDR; ZH ; KDP]. This variable is written: NRMSE = NRMSEZDR +
NRMSEZH + NRMSEKDP . The condition fixed to stop the algorithm is NRMSE < 0.25 and
an absolute difference between retrieved and observed total ΦDP lower than 5◦. A value
of NRMSE of 0.25 is equivalent to a mean residual variance of 8% between each retrieved
and observed polar variable. Typically, a stable solution is reached after 4–5 iterations, the
maximum number of iterations we experienced being 20.

5. Results
5.1. Retrieved DSD and Gain from an a Priori Solution

Figure 1 illustrates the retrieval along a given radial, extracted from the 28 July 2006
case study (Azimuth 251◦; 7h58 UTC; 2.8◦ elevation PPI). The observed system is typical of
African squall lines and KDP shows two peaks of convective rainfall at 42 km and 53 km
range, and stratiform rainfall at 30–40 km, while the system is moving away from the radar
(Westwards). The left column shows four radar variables along the radial: the observed
(thus attenuated) ZH , the attenuated ZDR, the differential phase shift ΦDP and the specific
differential phase shift KDP. On each plot, the observed variables (in black) are displayed
together with the radar variables simulated (attenuation included) from a priori DSD (blue)
and from the inverse model framework (red). On the right column, the retrieved DSD
parameters N∗0 , Dm , µ (red) are compared with the a priori solution (blue).
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Figure 1. Example of the observed, a priori and retrieved polar variables and DSD parameters for a
given radial (251◦ azimuth of 28 July 2006 07:58 2.8◦ elevation PPI). (a–d): Values of the indicated
4 radar variables as a function of range: the attenuated ZDR, the differential phase shift ΦDP, the
specific differential phase shift KDP and the attenuated ZH . On each plot the observed variables (in
black) are displayed together with the radar variables simulated (attenuation included) from a priori
DSD (blue) and from the inverse model framework (red). On (a–d) the dotted lines are the attenuation
corrected reflectivities ZDR, ZH , in red, based on the inverse method and in black, based on the Bringi
et al. (2001) method (see text), (f–h) the 3 retrieved DSD parameters N∗0 , Dm , µ (red) are compared
with a priori solution (blue).

The radar variables simulated by the retrieval algorithm are globally closer to the
observations than the radar variables only simulated with a priori DSD parameters, thus
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illustrating that the retrieval algorithm improves a priori estimation by finding a solution
more consistent with the observations at the scale of the entire radar radial. The difference
between the retrieved solution and the observation is lower for KDP which is due to the
low relative uncertainty prescribed on this observation (Section 4.3). In this example, the
attenuation is high due to the intense rainfall seen by the X-band radar. It can be noticed
that the constraint imposed on ΦDP by Equation (16) is efficient and ensures a low bias
in the integrated KDP, allowing a good estimation of the attenuation. Concerning ZH , the
observed and retrieved values are very close all along the radial. ZDR show a possible over
correction at the end of the radial, probably caused by the use of a fixed oblateness law.

On the right column in Figure 1, the retrieved parameters [N∗0 , Dm] show peaks at
the convective rainfall range (~54 km). The peak of Dm at the end of the radial may be an
artifact related to the high peak of ZDR: at the end of the radial, the radar signal became
closer to the noise level, and the variables were less reliable (also confirmed by low values
of the cross-correlation coefficient ρHV—not shown).

Figure 2 illustrates the maps of retrieved DSD parameters, and Figure 3 shows the
consistency between the observed radar variables and those simulated from the forward
model using the retrieved DSDs. The presented PPI is at 2.8◦ elevation for the 12 September
2006 event at 19:08 UTC. As for Figure 1, the case is typical of an African squall line, with a
marked line of convective cells on the West front followed by stratiform rain. The retrieved
fields of N∗0 , Dm, µ (Figure 2 top) and from a priori solution based on [8] (Figure 2 bottom)
exhibit some differences. The retrieval algorithm leads to a better spatial consistency of
the DSD field. The radial stripes that appear on the field N∗0 for a priori (bottom left in
Figure 2) have disappeared after applying the retrieval algorithm (top left in Figure 2).
The stripes in a priori solution are quite typical of radial-to-radial inconsistency in φDP
which have a strong effect on the DSD retrieval when the attenuation correction based on
this variable is applied prior to -and independently of- the retrieval (the 2-step problem
already noticed by [38]. The improved radial to radial consistency obtained with the
retrieval algorithm is noteworthy as this is not imposed by the algorithm (only a spatial
correlation of 3km inside the radial is imposed by the covariance matrix)—it is an indirect
benefit of the retrieval method, which absorbs better the observation uncertainty. The
previously observed jump [43] between the relatively high value of N∗0 in the convective
cells and lower values in the stratiform parts is well reproduced in the field. The stratiform
and convective regions are clearly differentiable. Comparing a priori field of N∗0 and the
retrieved, we observe clusters of high N∗0 values in the convective region of the retrieved
field (yellow dots) associated with convective cells, which are less highlighted in a priori
field. A global overestimation of Dm in a priori is corrected by the algorithm—this will be
further confirmed by the results in Figure 4.

The retrieved values for µ are globally higher than a priori value (constant µ = 2) and
especially in the convective part. This is consistent with what was observed statistically
with the disdrometer by [43]. The radar variables have a relatively low sensitivity to µ
(except for ZDR) and µ is therefore less constrained by the observations than the two other
DSD parameters. The retrieved values of µ appear weakly correlated with the retrieved
values of Dm without imposing such cofluctuation in the retrieval algorithm. According
to prior studies using disdrometer data [12,20] Dm and µ are anticorrelated, which is in
contradiction with our results. On the other hand, [47] did not find any evidence of Dm-µ
relation on the present dataset. Probably µ is absorbing the noise in the retrieval procedure.

Figure 3 shows the radar variables simulated with the forward model and the retrieved
DSDs and the absolute errors with respect to the observed fields (residuals). For KDP the
residuals are non-biased (thanks to the strong constraint on φDP at the end of each radial).
ZDR shows little or no bias in the fields indistinctly of the type of rainfall. All the errors in
the model are absorbed by ZH in the convective part, where the attenuation is high. As
seen in the residual map of ZH (Figure 3 bottom left), there is a positive bias in the retrieved
ZH in the convective region. The same bias can be observed in Figure 1d in the retrieved
ZH at 54 km.
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Figure 2. Retrieved (top) and a priori (bottom) maps of DSD parameters for the 2.8◦ PPI for the
12 September 2006 event at 19:08 UTC. As indicated the columns, from left to right are for: log10(N∗0 )
Dm (mm) and µ.

Figure 3. Retrieved fields of radar observables (simulated from the retrieved DSDs using the forward
model) and respective residuals relative to the observations. Same PPI than Figure 2. From left
to right attenuated ZH [dB], attenuated ZDR [dB] and KDP [deg/km]. Nota: the color bar range is
different for the variables (top) and errors (bottom).
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Figure 4. Time series of Dm (a,c,e) and log10[N∗0 ] (b,d,f) retrieved through the inverse method (red),
a priori (blue) and observed (black) by the disdrometer for three events. The parameters from the
inversion are retrieved at the radar gate where the disdrometer is located (see text). The event in 4e
plot is the same event (12 September 2006) as the DSD fields showed in Figures 2 and 3.

5.2. Comparison of Disdrometer and Radar Derived DSD

In this section, we compare the collocated radar retrieved and disdrometer DSDs.
The comparisons are performed for all the organized convective systems observed on site
in 2006, as summarized in Table 1. The comparisons are for the disdrometer situated in
Copargo, 18 km from the radar. At the disdrometer range, the volume scan of the radar is
between 0.7 and 1.2 km height considering a ±0.7◦ radar aperture angle. Considering the
typical fall speed of drops, we could expect a few minutes shift between the radar aloft and
disdrometer observation at the ground.

Figure 4 shows the time series of DSD parameters retrieved by the radar (a priori
and final result) and observed by the disdrometer for three cases that illustrate the variety
of obtained results. The retrieved DSD (red) exhibits a good dynamic through the three
events when compared with the disdrometer (black circles), and the consistency is better
than a priori solution (blue). The improvement between a priori and retrieved solutions is
more marked for N∗0 ; the retrieved is much smoother than the a priori value and closer to
the ground reference. Nevertheless, a bias on N∗0 appears for some events (the highest on
17 August 2006) and is only partially corrected by the retrieval algorithm. A calibration
problem on the reflectivities could be the cause of this retrieved bias on N∗0 —at the moment
the calibration constant is not parameterized in the inverse model but could be included in
a future extension of the model.

Figure 5 displays the scatter plot of retrieved DSD parameters versus collocated
disdrometer measurements for all events reported in Table 1. The improvement of the
inverse method compared to the a priori two-step method is visible. The global statistics
are improved in terms of correlation and bias, with a slight reduction in nRMSE for Dm).
Note that the retrieval skill is almost unchanged when a calibration error of + or—2dBZ is
applied to the reflectivities (not shown, see Table A1).



Remote Sens. 2022, 14, 1116 15 of 24

Figure 5. Scatterplot of the radar retrieved (Y axis) DSD parameters against the disdrometer (X axis)
for collocated radar gate and time step. Top plot, Dm bottom, N∗0 . Both a priori (blue) and the inverse
method (red) retrieval are shown. The correlation (R), normalized bias (NB) and normalized root
mean square error (nRMSE) compared to the disdrometer for both retrievals are indicated on the
plots. Eighteen rainy systems for a total of N = 244 collocated points are displayed.

Figure 5 indicates an improvement in DSD retrieval. However, some differences
remain between the disdrometer and radar retrieved DSDs. The distribution of median
diameter Dm is narrower on radar than on the disdrometer dataset. Some of these differ-
ences are unavoidable given the different nature of the two datasets. The radar samples a
larger volume of the atmosphere and higher above ground than the disdrometer. We can
also notice that the disdrometer has points for Dm > 2.7 mm that the retrieval has not. This
can be caused by excessive filtering of the polarimetric variables or a wrong representation
of the oblateness low.

Figure 6 illustrates the improvement in DSD retrieval compared to a priori solution
over the entire disdrometer record. The figure shows the density plot of observed [N∗0 , Dm]
pairs, superimposing the disdrometer (blue) and radar (red) derived datasets. We used
radar retrieval of the 12 September 2006 event (7 PPI from 17:59 UTC to 18:48). The
disdrometer statistics include all the events sampled for the 2006 and 2007 rainy seasons.
The overall agreement is stronger for the inverse method (left plot) than for a priori solution
based on [8]. In particular, the range of retrieved N∗0 is better matched with the disdrometer
for the inverse method, while a priori solution generates lower values. We can also observe
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that the retrieval reproduces the convective precipitation distribution of [N∗0 , Dm], which
is the blue hook around Dm > 1.75 and log10(N∗0 ) > 3.5. A priori solution seems also to
reproduce a shifted hook, around Dm ∼ 2 and log10(N∗0 ) ∼ 3.25.

Figure 6. Contour plot on N∗0 -Dm distributions of disdrometer DSD and radar retrieved DSD. Left
plot: inverse method; Right plot: a priori DSD. The retrieval is for 12 September 2006 event, 7 PPI
from 17:59 UTC to 18:48. The disdrometer data is over 2006 and 2007 seasons. The number of N∗0 -Dm

pairs in each set are: Ninv = 4× 105 points for the retrieval and Ndisdro = 7× 103 for the disdrometer.

5.3. Sensitivity to Calibration and Model Parameters

The sensitivity test results are presented in detail in the Appendix B.

6. Discussion

The objectives of the implemented methodology are reminded: the proposed algorithm
starts with a benchmark method (a priori solution), based on simple parametric formulae
(Equations (5) and (6), and Section 4.3); this a priori solution is then improved using the
inverse theory framework (Section 4.1) in order to ‘inject in the solution’ what is known
about the physics, i.e., the interaction between the drops and the radar wave (Section 3).
The physics, described in the forward model (Section 3), relates the properties of the drop
size distributions along the radar beam to the polarimetric radar variables and accounts
explicitly for the attenuation. In the current implementation, the result of the retrieval once
applied to the three independent measured radar variables (Zatt

h , Zatt
dr , Kdp ) of a PPI, is a

field of three DSD variables (N∗0 , Dm , µ) as described in Sections 3 and 4.
One expected benefit from the inverse retrieval is an improvement compared to the

benchmark by providing a solution that better accounts for the consistency among the
measured variables along each beam. The objective is to achieve the best coherence between
the various sources of information available (observed data; a priori solution; forward
model) while accounting for the degree of confidence in each source (measurement noise;
trust in the forward model; trust in the a priori etc.) as described in Section 4.1.

Figure 2, which compared a priori DSD field with the retrieved one, is a visual
illustration of the benefit of the inverse framework. In the benchmark method, some radials
were inconsistent with their neighbors, showing a ray-like pattern of high N∗0 , which does
not fit with rain microphysics. The inverse method brought spatial consistency.

Figures 4–6, which compared the radar-derived values of N∗0 and Dm with those
observed by disdrometers, confirm that the retrieval is closer to the observations than a
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priori is. Compared to a priori, the retrieved solution is characterized by globally lower
values of the median diameter Dm and, to a lesser extent, higher values of N∗0 . This shift
is clear on the maps (Figure 2). Figures 4–6 confirm that these characteristics are closer to
the observations.

The retrieval has relative skill compared to a priori. Can it, however, be considered
satisfactory in absolute terms? Figures 4–6 show that the match between the retrieved and
observed DSDs is indeed not perfect. In the first two events of Figure 4, the retrieved Dm are
close to the observations, but a negative bias remains in N∗0 , even though less marked than
for the a priori. The statistics in Figure 5 show that the overall bias, all events considered, is
very low. However, some spread is visible, and the nRMSE is about 25% for Dm and 22%
for N∗0 . Comparing results with other studies is difficult as the scores used, the sample
size, and the experimental contexts are different. Our nRMSE are of the same order of
magnitude—or slightly higher—such as those reported by [25] or [22] The retrieved biases
are similar or lower than those reported in the literature [24,26]. None of the other studies
that reported direct comparisons between radar and DSDs used an attenuated frequency,
and no other experiment was in Africa, dealing with intense convection. The few studies
which evaluated DSD retrieval for attenuating frequencies were based on simulations [38]
and cannot be compared with actual observations.

The non-negligible errors reported in all studies that compared observed DSDs with
radar retrieval have been discussed by various authors [23,64]. An important source of
error is the difference in spatio-temporal sampling between a disdrometer at ground level
and the resolution volume of a radar. A typical change-of-support problem is expected
to introduce error spread (e.g., [48]). The limited sampling volume of a disdrometer can
lead to errors in the estimation of the DSD. According to [65], who used a collocated set
of 14 disdrometers in Spain, at least 5 disdrometers or a surface of 370 cm2 are necessary
to provide a robust estimation of the DSD parameters. The problem is expected to be
more acute in Africa, where the intense convective rainfall exhibits high spatiotemporal
variability and where the presence of big drops may be a challenge for disdrometers.

7. Conclusions

An inverse method to retrieve fields of DSD parameters from radar polarimetric
observations at attenuated frequency is presented and tested on X-band data in Africa.
Three parameters of a gamma DSD (the volume-weighted mean diameter Dm, the scaling
parameter of concentration N∗0 and a shape parameter, µ) are retrieved at each range gate
along a radial. The estimation of the DSD parameters using empirical power laws suited
to the local climatology is used as prior information to an inverse algorithm which then
finds the solution which best matches the entire radar radial observations. In line with
the approach developed by [38], this framework ensures a global consistency between the
retrieved DSD and all radar variables. It reduces the errors brought by the uncertainty
in the attenuation correction procedure. The iterative algorithm makes use of a strong
constraint –like the differential phase shift at the last gate—to ensure robustness.

The forward model needed by the retrieval algorithm relates the observed radar
variables to the DSD along the radial. This model is based on explicit calculations of
radar variables (reflectivities in horizontal and vertical polarization; specific differential
phase shift; specific attenuation coefficient for each polarization) as a function of drop sizes
and shapes. T-matrix calculations for drops considered as oblate spheroids were used for
this purpose. By convoluting the T-matrix output and the DSD, the radar variables were
pre-calculated for gamma DSD over a range of values of the three parameters of interest
Dm, N∗0 and µ. These calculations were made for several assumptions concerning the aspect
ratio of drops and the sensitivity to the prescribed temperature also analyzed (and found
to be small). In addition to (i) the observed radar variables and (ii) the radial profile of the
3 DSD parameters to be retrieved, many other parameters and a priori information need to
be prescribed to the inverse model
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The results of the inversion were evaluated through direct comparisons with dis-
drometer data and also by analyzing the global consistency of the retrieved DSD maps
compared to the ‘2 step’ empirical method from [8]. Fifteen rainfall events, for a total of
244 PPI, were used for direct comparison between the disdrometer and the radar DSD
retrieved at the closest pixel. The correlation between the time series, of Dm and for N∗0
is increased from r = 0.49 for a priori estimate to r = 0.58 for the final solution, and the
normalized bias is significantly reduced for both N∗0 and Dm. These numbers are similar
to the scores obtained when radar retrieved DSD is compared with disdrometer data in
other studies [23] at non-attenuating frequencies. This is quite remarkable given the intense
attenuation encountered in the study region in West Africa.

Compared to empirical methods, the proposed retrieval algorithm, by providing an
overall retrieval of the range profile of DSD, leads to a solution that is more consistent with
all observed radar variables and shows a better spatial consistency. This is apparent on the
retrieved DSD maps based on any given PPI; the spurious radials that tend to appear with
the 2 steps method because of errors brought by the attenuation correction disappear with
the retrieval method.

These results appear promising, but a more comprehensive assessment of the proposed
method is required. For that purpose, various datasets representative of different clima-
tological contexts are needed. In addition, it would be interesting to compare the present
method with the method proposed by [38] in order to assess their respective advantages
and drawbacks and to explicitly take into account the differential phase shift in the formula-
tion of the inverse algorithm. If these methods were to be used with operational radars and
in real-time, the optimization of the processing time compared to retrieval accuracy should
be analyzed. Some improvements and new implementations could be added to the inverse
model. In the current version, the calibration of reflectivities is assumed to be correct, but
a calibration (slowly varying) constant could be added to the model and retrieved as a
parameter. In future versions of the algorithm, we will consider including the parameter β
(slope of the axis ratio law as in [18] to adjust the axis ratio law for different events.

Author Contributions: The work presented was carried out in collaboration with all authors. All
authors contributed to the writing of the manuscript, and conceived and designed the content of
this paper, M.G. coordinated the deployment of the disdrometer and weather radar in Africa, H.A.
contributed to the formalization of the inverse problem and M.A. performed the calculations and
figures. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the French Centre National d’Etudes Spatiales (CNES)
under the TOSCA program in link with the Megha-Tropiques satellite mission. The deployment of
the radar and disdrometer in Africa was funded by Institut de Recherche pour le Développement
(IRD) as part of the Anayse Multi-disciplinaire de la Mousson Africaine (AMMA) program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Jacobian Matrix of Partial Derivatives

The Jacobian matrix is the derivative of the polarimetric radar observables with respect
to the DSD parameters.

The radar observables are regrouped in the vector
[
Zatt

H , Zatt
DR , KDP , ΦDP n

]
which

has (3n + 1) components, n being the number of gates of a radar radial. The number of
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parameters is 3n, (N∗0 , Dm , µ) at each of the n radar gates. The Jacobian J is composed of
12 sub-matrices

J =



∂Zatt
H

∂Dm

∂Zatt
H

∂N∗0

∂Zatt
H

∂µ
∂Zatt

DR
∂Dm

∂Zatt
DR

∂N∗0

∂Zatt
DR

∂µ

∂KDP
∂Dm

∂ΦDP tot
∂Dm

∂KDP
∂N∗0

∂ΦDP tot
∂N∗0

∂KDP
∂µ

∂ΦDP tot
∂µ

 (A1)

The columns of the sub-matrices correspond to the DSD parameters (index j) and the
rows to the radar observables (index i). Each sub matrix has a size of [n× n] except for
ΦDP tot derivatives that have a size [1× n] for total size of J of [(3n + 1)× 3n].

According to the Equation (14) of the forward model, the following expression details

the sub-matrix ∂Zatt
DR

∂Dm
:

∂Zatt
DR

∂Dm
=



∂Z1
DR

∂D1
m

−2dr ∂A1
DR

∂D1
m

. . .
0

... . . .

−2dr ∂A1
DR

∂D1
m
· · ·

∂Zn−1
DR

∂Dn−1
m

−2dr ∂An−1
DR

∂Dn−1
m

∂Zn
DR

∂Dn
m


(A2)

With ∂Z1
DR

∂D1
m

the impact on ZDR of a variation dDm on the first gate. The first column

corresponds to the impact of a variation of dD1
m in the first gate on the measured Zi

dr at

each gate. It impacts of −2dr ∂A1
DR

∂D1
m

all the following gates through an increase in differ-

ential attenuation. The sub-matrices ∂Zatt
DR

∂N∗0
and ∂Zatt

DR
∂µ are equivalent. Furthermore, ∂Zatt

H
∂Dm

is
equivalent to Equation (A2) by changing ADR by AH and ZDR by ZH .

The KDP Jacobians are diagonal matrices as only a variation of parameters at gate j = i
will impact the value Ki

DP:

∂KDP
∂Dm

=



∂K1
DP

∂D1
m

. . .
0

0
∂Kn−1

DP
∂Dn−1

m
∂Kn

DP
∂Dn

m

 (A3)

The matrix ∂ΦDP tot
∂Dm

involves only the value of ΦDP at the end of the radial, thus the
matrix is dimension [1× n]. As ΦDP is a cumulative variable, then, matrix is:

∂ΦDP tot
∂Dm

=

(
∂ΦDP tot

∂D1
m

. . .
∂ΦDP tot

∂Dn−1
m

∂ΦDP tot
∂Dn

m

)
(A4)

A variation of dDm at the first gate will add ∂Φ1
DP

∂D1
m

to all the following radar gates.
The sub matrixes are estimated using finite difference method with pre-calculated

tables of variation of the polarimetric variables for a range of DSD parameters. We have
pre calculated tables for the different radar observables for a range of N∗0 ∈

[
500; 105] by

steps of 500 m−3mm−1 for Dm ∈ [0.05, 7] by 0.02 mm and for µ ∈ [1, 14] by steps of 0.5.
The matrix J is calculated at the initial iteration (a priori vector Xprior) and then update at
each iteration Xk.
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Appendix B. Sensitivity of the Retrieval Method to Calibration and Model Parameters

As discussed in Section 4, some choices need to be made based on prior knowledge on
the DSD parameters and on the observation uncertainty. Figure A1 illustrates the sensitivity
of the retrieval to some of these parameters: the observation uncertainty attributed to each
observed variables (Equation (23)); the drop oblatness law used in the T-matrix calculations
and the initialization of µ. We have also tested different temperatures in the T-matrix
calculations (0–15–30 ◦C), and found the impact negligible (not shown).

Modifying the uncertainty associated with an observed variable (Equation (23)), results
in changing its weight in the retrieval. The Figure A1a,b show the results on the time series
retrieval of the 17 August 2006 event. The black curve shows the reference solution
obtained with: σZDR = 0.5 dB σKDP = 1◦/km σZh = 3dBZ, the red curve is for an increased
confidence in KDP with σKDP = 0.1◦/km (as in Figure 4b,e), the orange curve for an
increased confidence in ZH , with a value σZH = 0.1 dBZ and the grey curve for an increased
confidence in ZDR, with σZDR = 0.01 dB. The ‘orange’ solution which relies more on ZH
leads to some outliers, but also some points show a better comparison to the ground
reference, for example the Dm drop at 19:10 UTC. The adjustment with σKDP = 0.1◦/km
and σZDR = 0.01 dB are very close to the reference solution.

The sensitivity to the drop shape law is larger than the previous (σX), as the T-matrix
coefficients are impacted. Figure A1c,d illustrate the retrieved DSD parameters for four
drop shape law (ILLI02, ANDS99, LIN1 and LIN5 see Figure A1). For the law with the
highest aspect ratio (LIN5) the retrieved Dm decreases as only relatively small diameters
are needed to fit the observed ZDR. Conversely N∗0 increases to compensate Dm decrease
while keeping the same constraint on ZH and KDP. For this drop shape assumption
(LIN5) the bias observed on N∗0 in Figure A1 decreases; this could mean that the drops
are indeed more oblate for this event or that more extreme drops are present, or that a
given parameter (here the oblateness) may compensate some other source of uncertainty
(as an unaccounted miss-calibration). Various model parameters can compensate each
other as the problem is globally under–constrained. The sensitivity to the initialization of µ
is illustrated Figure A1e,f: for a higher initial µ (thus a narrower DSD) the retrieval leads to
a higher Dm (thus lower N∗0 ). In the natural range of variation of µ [2–5] the sensitivity is
less than for the drop shape law.

Table A1 shows the sensitivity of the retrieved and a priori DSD parameters to a bias
added on ZH and ZDR. It regroups the averaged normalized bias (%) for the three DSD
parameters and rainfall for convective and stratiform resolution volumes (10 mm/hr and
≤ 10mm/hr) of the Figure 2 PPI. A priori N∗0 is very sensitive to ZH positive bias but the
retrieval algorithm allows to partly correct a priori error on N∗0 . For the convective rainfall
rates the shape parameter µ absorbs most of the calibration bias. For stratiform rainfall the
retrieval of Dm is more impacted by a calibration error in ZH than a priori Dm is a result
which may appear counter-intuitive.

In this study, we chose to run the retrieval with higher relative confidence on observed
KDP (red curve Figure A1a,b) than on the other radar variables. The retrieval is thus more
sensitive to ΦDP filtering (removal of backscattering phase shift δDP) and can lead to errors
if not correctly filtered. The retrieval is accordingly less sensitive to calibrations errors in
ZH and ZDR (Table A1). The method can be adjusted to the relative confidence that we
have on the observed variables. In future versions of the algorithm, a calibration constant
could be included as an additional parameter in the retrieval.
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Figure A1. Sensitivity of the retrieved Dm (left) and log10[N∗0 ] (rigth) on the 17 August 2006 event to
several parameters of the inverse model: (a,b) sensitivity to the relative observation errors: black, the
default parameters as in Section 4.2; red, reduced error and therefore more weight on KDP; orange,
more weight on ZH; grey, more weight on ZDR. (c,d) sensitivity to the aspect ratio law (as indicated
on color legend). (e,f) sensitivity to µ initial value. As in Figure 4 the retrieval is compared with the
disdrometer data (black circles).
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Table A1. Sensitivity to calibration. Averaged normalized bias in % for the three retrieved parameters
(and rainfall) in the a a priori and retrieved solution in convective and stratiform radar gates. Four
different perturbation are tested ±2 dB in Zh and ±0.2 dB in ZDR.
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