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Instantaneous tracking of earthquake 
growth with elastogravity signals

Andrea Licciardi1 ✉, Quentin Bletery1, Bertrand Rouet-Leduc2,3, Jean-Paul Ampuero1 & 
Kévin Juhel1,4

Rapid and reliable estimation of large earthquake magnitude (above 8) is key to 
mitigating the risks associated with strong shaking and tsunamis1. Standard early 
warning systems based on seismic waves fail to rapidly estimate the size of such 
large earthquakes2–5. Geodesy-based approaches provide better estimations, but 
are also subject to large uncertainties and latency associated with the slowness of 
seismic waves. Recently discovered speed-of-light prompt elastogravity signals 
(PEGS) have raised hopes that these limitations may be overcome6,7, but have not 
been tested for operational early warning. Here we show that PEGS can be used in 
real time to track earthquake growth instantaneously after the event reaches a 
certain magnitude. We develop a deep learning model that leverages the 
information carried by PEGS recorded by regional broadband seismometers in 
Japan before the arrival of seismic waves. After training on a database of synthetic 
waveforms augmented with empirical noise, we show that the algorithm 
can instantaneously track an earthquake source time function on real data. Our 
model unlocks ‘true real-time’ access to the rupture evolution of large earthquakes 
using a portion of seismograms that is routinely treated as noise, and can be 
immediately transformative for tsunami early warning.

The sudden displacement of rock mass induced by an earthquake 
generates density variations that, in turn, modify the Earth’s gravity 
field. The signal associated with these transient gravity perturba-
tions propagates at the speed of light, much faster than the fastest 
elastic waves (P-waves)8–10. Recent theoretical studies have shown the 
potential for earthquake early warning systems (EEWS) that are based 
on the gravity signals that would be measured by a future genera-
tion of gravity-gradient sensors11,12, yet to be developed. In practice, 
existing inertial sensors (for example, seismometers) measure a 
combination of the direct gravity perturbations and their induced 
elastic response, named prompt elastogravity signals (PEGS)13,14. 
PEGS detection on real data is difficult for two reasons. First, the 
amplitude of the direct gravity perturbations is very small. Second, 
the induced elastic response tends to cancel out the gravity effects 
on seismometer recordings, especially in the early portion of the 
signal. The combination of these effects results in detectability lim-
ited to a time window preceding the P-wave arrival, which depends 
on epicentral distance (between a few seconds to a few tens of sec-
onds), where PEGS reach their maximum amplitudes (a few nm s−2 at 
most)14,15. Nevertheless, PEGS could prove beneficial for EEWS. First, 
they travel at the speed of light and might provide extra time for 
alert. Second, PEGS do not saturate, as opposed to P-waves recorded 
by near-field seismometers that may clip during large earthquakes. 
Finally, given the wavelength of the signal and the smoothness of the 
generated wavefield14, the spatial complexity of the rupture does not 

substantially affect PEGS amplitudes15. For this reason, PEGS depend-
ence on earthquake magnitude, focal mechanism and source time 
function (STF) has the potential to improve early characterization of 
earthquake size and source parameters, under a simple point-source 
approximation15,16. In this work we show that PEGS can efficiently be 
used to improve operational EEWS.

Given the expected level of background noise, previous works have 
suggested a limit for PEGS detectability to earthquakes with magni-
tude (Mw) above 8 (refs. 15,16). The occurrence of Mw > 8 earthquakes 
poses a difficult challenge for conventional EEWS. On the one hand, 
subduction megathrust earthquakes require accurate and fast esti-
mates of final magnitude to mitigate the risk associated with strong 
shaking and to forecast the potential size of tsunami waves17–19. On the 
other hand, EEWS based on point-source algorithms that rely on the 
first few seconds of P-waves tend to produce saturated magnitude 
estimation for such large earthquakes. One reason is that instruments 
saturate for very large events. Another more fundamental reason 
is that the early portion of seismograms simply does not contain 
enough information to distinguish between small and large earth-
quakes (which have longer duration) at the very early stage of rup-
ture5. An example of this paradigm is the performance of the EEWS 
of the Japan Meteorological Agency ( JMA) during the 2011 Mw = 9.0 
Tohoku-Oki earthquake, which underestimated the final Mw of the 
event to around 8.1 (ref. 20). Although the deterministic nature of 
earthquake rupture is still debated, a growing amount of evidence 
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suggests that earthquake ruptures are not deterministic21. Therefore, 
EEWS should be designed to track the moment release as the rupture 
unfolds instead of forecast the final earthquake magnitude3,22. Over 
the last decade, finite-fault EEWS based on global navigation satellite 
system (GNSS) data have emerged as a new tool with which to over-
come the magnitude saturation problem23–28. Nevertheless, subjective 
choices required in GNSS data selection and/or preprocessing24,25 may 
result in large uncertainties. Moreover, the fast responses achieved 
for megathrust earthquakes26 have recently been questioned and 
attributed not to the predictive power of GNSS data—which would 
enable the estimation of an earthquake’s final magnitude before the 
rupture is over—but to prior constraints and regularization-induced 
artefacts22. A deep learning model based on GNNS data has recently 
been proposed to overcome these limitations29. Although it proved 
promising, as for other finite-fault approaches, it requires a priori 
assumptions on slip distribution. Finally, all existing EEWS suffer from 
unavoidable latency, owing to the speed at which the information is 
carried by P-waves, and therefore produce a time-shifted version of 
the earthquake STF.

In this context, we show that a convolutional neural network (CNN)30 
approach can leverage the information carried by PEGS at the speed of 
light to overcome these limitations for large earthquakes. Successful 
applications of deep learning in seismology have provided new tools 
for pushing the detection limit of small seismic signals31,32 and for the 

characterization of earthquake source parameters (magnitude and 
location)33–35 with EEWS applications29,36,37. Here we present a deep 
learning model, PEGSNet, trained to estimate earthquake location and 
track the time-dependent magnitude, Mw(t), from PEGS data before 
P-wave arrivals.

The training database
We focus on the Japanese subduction zone because: (1) it has expe-
rienced one of the largest and most destructive subduction events 
(the 2011 Mw = 9.0 Tohoku-Oki earthquake), and (2) we can rely on a 
large and dense network of good-quality broadband seismic stations 
(Fig. 1a).

Because of the paucity of PEGS observations16, we train PEGSNet on a 
database of synthetic PEGS waveforms generated with a normal-mode 
summation code14 and add real noise recorded at each station in the 
seismic network. The training database is made of 500,000 synthetic 
earthquake sources distributed along the Japanese megathrust, with 
location, strike and dip angles following the Slab2.0 model38. We draw 
random magnitude and rake angles following uniform (from 5.5 to 10)  
and Gaussian (μ = 90°, σ = 10°) distributions, respectively. In this 
work, we consider only the most simplistic rupture spatial descrip-
tions: point sources. The difference in PEGS predictions associated 
with the source finiteness was shown to be within data uncertainties 
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Fig. 1 | Experimental set-up and input data examples from the synthetic 
database. a, Locations of the stations in our network are indicated by light red 
symbols. Triangles are stations belonging to the F-Net seismic network and 
squares are stations from various networks obtained through the IRIS data 
centre. Dark green lines are made of 1,400 discrete locations of the synthetic 
earthquakes considered in our training database (see text). The orange star 
indicates the source location for one random synthetic example (Mw = 8.9) 
extracted from the database whose moment rate (blue) and Mw evolution (grey) 

are shown in the inset. b, The corresponding vertical waveforms at stations MDJ 
and YSI, where the red trace is the noise-free synthetic PEGS and the black trace 
is the same, with empirical noise added. Only the pre-P-wave time window is 
shown. c, Synthetic vertical waveforms plus noise associated with the selected 
event for each station in the seismic network. The grey dashed line indicates 
the P-wave arrival time. Stations are sorted by their longitude. The positions of 
MDJ and YSI are indicated by black horizontal dashed lines.
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during the 2011 Tohoku earthquake15. The validity of this assump-
tion is further corroborated by the detection of PEGS generated by 
multiple events considering a simple point-source model16. How-
ever, simple triangular STFs might not suffice for modelling PEGS for 
realistic earthquake ruptures16. For this reason, we generate random 
STFs using a model designed to mimic empirical laws and statistical 
observations5 (Fig. 1a, inset, and Extended Data Fig. 1a) to produce 
three-component (east, north, vertical) waveforms representing the 
source characteristics of all expected large megathrust earthquakes. 
In this STF model the smaller and larger earthquakes start in the same 
way. We then add empirical noise recorded at each station (Fig. 1b) to 
the generated waveforms. Both synthetics and noise seismograms are 
decimated to 1 Hz and bandpass-filtered between 2 mHz (high-pass 
Butterworth, two poles, causal) and 30 mHz (low-pass Butterworth, 
six poles, causal), to enhance long-period PEGS amplitudes by sup-
pressing higher-frequency noise7. Traces are clipped to a threshold 
value of ±10 nm s−2 (the maximum expected amplitude for PEGS in 
our database) and scaled by the same value to facilitate convergence 
of the optimizer, and at the same time to preserve information about 
PEGS radiation patterns across the seismic network. Finally, we store 
each example as 700-s-long traces centred at the origin time of the 
earthquake (Fig. 1c), with its three labels corresponding to the latitude 
(φ), longitude (λ) and the time-integrated STF of the event converted 
to the time-dependent magnitude Mw(t).

Building PEGSNet, labelling and training
PEGSNet is a deep CNN that combines convolutional layers and 
fully connected layers in sequence (Extended Data Fig. 2; details 

in Methods). There exists a wealth of literature on deep learning archi-
tectures, but our goal here is to show the feasibility of PEGS-based 
EEWS using deep learning, and we therefore use a simple and clas-
sic Le-NET-like CNN architecture39. Similar architectures have been 
used for magnitude and location estimation using P and S-waves 
with a single-station approach to increase the number of training 
examples33,34. Here we take advantage of our large synthetic database 
and adopt a multi-station approach. CNNs work best with image-like 
inputs, and we arrange our data as an image, sorting stations by their 
longitude (Fig. 1c).

Our aim is to track the time-dependent magnitude, Mw(t), which 
corresponds to the time-integrated STF at a given time. For PEGSNet 
to learn Mw(t), we design a specific strategy: we randomly select the 
starting time (T1) of the analysed data during training. For each input 
example, we extract 315 s of data from T1 to T2 = T1 + 315 s and assign 
the value of Mw(T2) as the corresponding label. This allows the model 
to learn patterns in the data as the STF evolves with time.

We exclusively use the information carried by PEGS by setting to 
zero the amplitude of the seismograms for t ≥ TP, where TP is the P-wave 
arrival time at each station for a given event. Therefore, P-wave arrival 
times are assumed to be known—in practice, any existing triggering 
algorithms (whether based on deep learning or not) could be used 
to obtain them before feeding the data to the model. The final input 
data for each example consists of a three-channel image (one for each 
seismic component), and the output layer of PEGSNet predicts three 
real values for Mw(T2), φ and λ.

The synthetic database described above is randomly split into 70% 
training, 20% validation and 10% test sets, with a given synthetic STF and 
a given empirical noise measurement going to only one of the datasets. 
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Fig. 2 | Tracking Mw(t) from PEGS data. Results of predictions on the test set.  
a, Predictions accuracy as a function of time and Mw. For each pixel in the image, 
accuracy is calculated as the number of successful predictions divided by the 
total number of samples. A prediction is defined as successful if the distance 
with its corresponding label is within ±0.4 magnitude units. Dashed lines 
indicate the average values of the true Mw(t) for events with different final 

magnitudes. b, As in a, but showing the average residuals (|Mw[true] − Mw[pred]|)  
for each pixel. c, Probability density of Mw predictions for all the events in the 
test set with true final Mw of 9 ± 0.05. The solid red line is the mode of the 
distribution. The red dashed lines bound the 25th–95th percentile range.  
The blue lines are the median (solid) and the 5th–95th percentile range 
(dashed) of the labels.
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Training is performed by minimizing the Huber loss between the labels 
(the true values of Mw(t), φ and λ are known) and the predicted values. 
The model with the lowest error on the validation set is chosen as the 
final model.

Instantaneous tracking of Mw

Figure 2 summarizes the results on the synthetic test set for Mw(t), 
and those for φ and λ are displayed in Extended Data Fig. 3. Results 
for location rely on the P-wave arrival times (which are assumed to 
be known) and show errors around 25 to 30 km starting at about 50 s 
after origin. In the following, we will exclusively discuss the results 
for Mw(t). These results represent the main contribution of this work 
as they are obtained using only the pre P-wave portion of the seismo-
grams, which is routinely treated as pure noise. For each example in 
the test set, we simulate a real-time scenario by parsing the data with 
a running time window of 315 s. Each data window is fed to PEGSNet, 
which makes an Mw estimate for the end of the window, and the win-
dow is shifted in steps of 1 s as PEGSNet attempts to progressively 
reconstruct the STF (Extended Data Fig. 4). We define a successful 
prediction if the estimated Mw(t) lies within ±0.4 magnitude units 
from the true value.

PEGSNet can track the moment released by earthquakes with final 
Mw above 8.6 with good accuracy (above 90%, Fig. 2a) and low errors 
(Mw error below 0.25, Fig. 2b), starting at about 40 s after origin time. 
For earthquakes with final Mw between 8.2 and 8.6, early tracking of 
the moment release is more difficult and only the final Mw can be 
estimated (with accuracy between 60% and 70% and errors above 
0.25) after 150 s from origin time. Any predicted Mw below 8.2 is poorly 
constrained by the data and we place a conservative lower limit on 
PEGSNet sensitivity to Mw at 8.3. However, this limit depends on the 
noise amplitudes across the seismic network. Under favourable noise 
conditions (standard deviation of the noise for the whole seismic 
network below around 0.5 nm s−2), it can be reduced to about 7.9 or 
8.0 (Extended Data Fig. 5).

To examine the time-dependent performance of PEGSNet more 
closely, Fig. 2c shows all the predictions (on the test set) associated 
with events with a final Mw of 9.0 ± 0.05. In the first 30–40 s after 
origin, predictions are strongly underestimated. This arises from a 
combination of two effects: the lack of sensitivity below 8.3 (in the 
first 30–40 s after origin the current magnitude is below 8.3 in our 
STF database) and the fact that, at stations located close to the source, 

P-waves can mask PEGS, owing to their small time separation. A test 
performed on noise-free synthetics shows that at least 15 s after ori-
gin are needed by the model to reliably predict Mw (Extended Data 
Fig. 6). Starting at about 40 s (when the true Mw is generally above 
8.2 in our STF database), PEGSNet can track the evolution of the 
moment release instantaneously, that is, without time shift between 
estimated and true Mw(t), as indicated by the mode of the distribu-
tion of the predictions. Our results show that PEGSNet can exploit 
the key features of PEGS: (1) PEGS sensitivity to magnitude for large 
earthquakes allows the model to distinguish, for example, between 
an Mw = 8 and an Mw = 9 earthquake and (2) the information about 
Mw is effectively propagated at the speed of light, which results in 
instantaneous tracking of the moment release, from about 40 s into 
the rupture until its end. Although P-wave triggering is needed at each 
station, the instantaneous information about the source carried by 
PEGS is readily available in the data that precede P-wave arrivals. This 
allows PEGSNet to estimate Mw(t) with zero delay once the magnitude 
exceeds approximately 8.3.

Playback of the Tohoku-Oki earthquake
We tested PEGSNet on real data from the 2011 Mw 9.0 Tohoku-Oki 
earthquake. The raw seismograms are processed as described in 
Methods and fed to PEGSNet. We simulated a data playback sce-
nario and made an Mw prediction at each second starting at the 
earthquake origin time and using only the previous 315 s of data 
(details in Methods). Figure 3 shows the results of this retrospec-
tive analysis compared with a ‘true’ STF calibrated against various 
different data types40, the historical JMA EEWS performance20, and 
the best-performing finite-fault EEWS based on seismic (FinDer2)41 
and GNSS data (BEFORES)24. Further comparisons with additional 
algorithms are shown in Extended Data Fig. 7. After around 55 s, 
PEGSNet is always closer to the ‘true’ STF than the other algorithms 
(Fig. 3a). The predicted Mw between 55 and 100 s is underestimated by 
about 0.3 magnitude units compared to the ground truth. PEGSNet 
reaches a correct prediction of the final Mw after about 120 s, when 
the rupture is almost over. Despite the slight underprediction, the 
predicted Mw(t) values between 55 and 100 s show a clear increasing 
trend and suggest that the rupture is still in progress. Therefore, we 
argue that PEGS can be used in real time to track the evolving rupture 
as it unfolds. Consistently with our synthetic tests (Fig. 2), our pre-
dictions after about 55 s (corresponding to the time the earthquake 
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reaches Mw ≈ 8.3) provide a snapshot of the evolution of the earth-
quake rupture at that exact time because PEGS carry information 
about the source at the speed of light. This is further corroborated 
by a test on synthetic data generated using the ‘true’ Tohoku-Oki 
earthquake STF and noise seismograms extracted from the test set 
(Extended Data Fig. 8).

Notably, PEGSNet does not suffer from the magnitude saturation 
issue that instead affects the seismic-based EEWS. Both in terms of 
latency and accuracy, the performance of the GNSS-based algorithm 
BEFORES is the closest to PEGSNet. However, the response of PEGSNet 
is faster: for an arbitrary threshold at Mw = 8.0, PEGSNet would issue 
an alert 53 s after origin, BEFORES about 8 s later. PEGSNet is more 
accurate: the difference with the ‘true’ STF is always equal to or less 
than 0.3 Mw units starting at 55 s, whereas BEFORES reaches that level 
of precision only after 100 s from origin (Fig. 3b). More importantly, 
in contrast to GNSS-based EEWS, PEGSNet does not require prior 
assumptions on the data, because it is trained to learn features from 
the entire network of stations regardless of their data quality. In addi-
tion, no-slip distributions are assumed or modelled in our approach as 
PEGS are only sensitive to smooth variations of the released moment 
and, therefore, less likely to be influenced by the spatial complexity 
of the rupture.

To further assess the robustness of PEGSNet predictions on the 
Tohoku data, we performed a test in which we keep the P-wave 
arrival information but substitute the actual recorded waveforms 
in the pre-P-wave time window with noise. The resulting prediction 
of Mw(t) never exceeds the lower sensitivity limit of PEGSNet (that 
is, 8.3) and remains constant at about 6.5, which provides a baseline 
value for noise (Extended Data Fig. 9). We also tested PEGSNet on all 
the subduction earthquakes (dip-slip mechanism within 40 km from 
the megathrust) with Mw ≥ 7 that have occurred since January 2003, 
without considering aftershocks (Methods and Extended Data Fig. 10). 
For Mw < 8 earthquakes, PEGSNet predictions converge toward the 
noise baseline, confirming that these events are essentially not dis-
tinguishable from noise.

Implications for early warning
We have demonstrated instantaneous tracking of moment release for 
large earthquakes (Fig. 3). Our results promote PEGS as a new class 
of observables, easily accessible from the recordings of currently 
deployed broadband seismometers worldwide, for practical applica-
tion in early warning systems that are currently limited by the speed 
of P-waves. In the context of EEWS, PEGSNet can complement any 
existing algorithm (either seismic- or GNSS-based), to improve Mw 
latency estimation and accuracy for Mw > 8.3 megathrust earthquakes. 
For example, PEGSNet could be combined with a recent deep learn-
ing model based on GNSS data29 to eliminate intrinsic latency due to 
P-wave speed.

At the same time, PEGSNet can immediately prove critical for tsunami 
early warning for which Mw estimation within a few minutes is vital. 
Continuous updates of current Mw can be fed to predictive models of 
tsunami waves height, helping mitigate the associated risk.

Our results suggest that PEGS can play a key part in the early charac-
terization of rupture evolution for large earthquakes. For such events, 
PEGS data represent a new and independent source of information to 
constrain the magnitude in real time.

PEGSNet requires only a few modifications to be implemented in 
real time. Once trained, PEGSNet predictions are quasi-instantaneous, 
although some latency could be introduced by the preprocessing step. 
Although tailored here to earthquakes from the Japanese subduction 
zone, PEGSNet can be easily adapted to other seismic networks and 
regions and source mechanisms. In particular, PEGSNet portability to 
other regions only requires the availability of noise recordings for the 
seismic network of interest.
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Methods

Construction of the training database
We train PEGSNet on a database of synthetic data augmented with 
empirical noise. For each example in the database, three-component 
waveforms at each station location are obtained as follows.

Source parameters. The event source location is randomly picked 
from 1,400 possible locations extracted from the Slab2.0 model of 
subduction geometry38 at two different depths (20 and 30 km). Given 
latitude, longitude and depth, strike and dip angles are determined by 
the subduction geometry and rake is randomly extracted from a normal 
distribution with mean = 90° and standard deviation of 10°. The event 
final Mw is drawn from a uniform distribution with min = 5.5 and 
max = 10.0. We deliberately choose not to use a Gutenberg–Richter 
distribution for Mw to avoid a sampling bias during training, by which 
the model might better estimate certain magnitude values simply be-
cause they are more represented in the training database. Finally, from 
Mw we compute the scalar moment M = 10 M

0
1.5 +9.1w .

Source time function. Given M0, a pseudo-empirical STF is computed 
using the STF model described in a previous work5, which includes a 
multiplicative error term and is valid for earthquakes with Mw > 7.0. 
In summary,

∫
t M

f t
f t t

STF( ) =
( )

( )d
, (1)0

with:

f t t λt N t( ) = exp{−0 . 5( ) } [1 + ( )] , (2a)2

λ = 10 , (2b)M ε(7.24−0.41log ( ) + )0

N t
n t

σ
( ) = 0 . 38

( )
, (2c)

where ε is drawn from a Gaussian distribution with zero mean and stand-
ard deviation of 0.15, n(t) is the time integral of a Gaussian noise time 
series with zero mean and σ is the standard deviation of n(t). The term ε 
accounts for variability in the STF duration for a given M0, whereas N(t) 
models the characteristics of noise observed in real STFs5. Examples 
of final STFs for different magnitude values are shown in Extended 
Data Fig. 1.

Computing synthetic waveforms. With the selected source param-
eters and STFs, we use the normal-mode approach described in a pre-
vious work14 to compute three-component synthetic waveforms in a 
spatial domain of about 20° around the source epicentre. The resulting 
seismometer responses are convolved with the STF of the correspond-
ing synthetic event and multiplied by the scalar moment to obtain 
synthetic traces of acceleration sampled at 1 Hz at each station location. 
Finally, traces are bandpass-filtered between 2.0 mHz (Butterworth, 
two poles, causal) and 30.0 mHz (Butterworth, six poles, causal). The 
final seismograms are 700 s long centred at the event origin time.

Noise database. The noise database consists of 259 days of three- 
component waveforms for two non-continuous time intervals: between 
January 2011 and October 2011 (excluding March 2011) and between 
January 2014 and April 2014. These intervals have been chosen to sam-
ple variable (seasonal) noise conditions. We note that the temporal 
range spanned by the noise database does not overlap with any of the 
earthquakes used for real data cases (Extended Data Fig. 10a). We first 
divide the daily recordings into 1-h-long traces and then apply limited 
preprocessing, removing the instrument response, the mean and the 

linear trend, converting to acceleration and decimating the original 
traces from 20 to 1 Hz. Finally, each trace is filtered using the same 
bandpass filter applied to the synthetic seismograms (see previous 
step) and stored. Note that no a priori assumptions on levels and char-
acteristics of the selected noise are made. On the contrary, we include 
all real noise conditions found in continuous seismic recordings in the 
specified period range. This is because, in principle, we want the model 
to be able to generalize well under a broad range of noise conditions.

Adding empirical noise to synthetics. From the noise database de-
scribed in the previous step, a realization of noise (700 s long) is ex-
tracted by randomly selecting a starting time point. In this process, 
we make sure to use different noise data in training, validation and test 
sets. To preserve spatial coherence of noise across the seismic network, 
the same time interval is used for all stations for a given event. The se-
lected noise traces are then added to the corresponding acceleration 
seismograms to produce the final input data for PEGSNet. If noise data 
are not available for one or more stations in the selected time window 
for a given event, we discard those stations by setting the correspond-
ing final trace amplitudes (noise and PEGS) to zero in the input data.

Preprocessing of input data. Before being fed to PEGSNet, we first sort 
the input waveform for each example based on station longitude. We 
found this approach to be effective, but we note that the problem of 
concatenating station waveforms in a meaningful way in deep learn-
ing is an active area of research35. Then, on the basis of the theoretical 
P-wave arrival time (TP) at each station for a given event, we set the 
amplitude of the seismograms to zero for t ≥ TP. Note that PEGSNet does 
not perform P-wave triggering itself. Instead, it relies on theoretical 
P-wave arrivals. In a real-time scenario, any existing P-wave triggering 
algorithm (whether based on machine learning or not) can be used to 
set the switch on the corresponding stations whose data can then be 
passed to PEGSNet.

To limit the influence of very noisy traces and to suppress high ampli-
tudes (possibly related to the background regional seismicity), we 
further clipped the resulting trace using a threshold of ±10 nm s−2. 
This threshold is chosen according to the maximum PEGS amplitude 
for an Mw = 10 earthquake at 315 s as found in the calculated database 
of noise-free synthetics. Amplitudes are finally scaled by 10 nm s−2 to 
facilitate convergence of the optimizer, and at the same time, to pre-
serve information about the relative amplitudes of the PEGS radiation 
pattern across the seismic network. Finally, to simulate missing data 
and/or problematic sensors, we randomly mute 5% of the stations 
for each event by setting to zero the amplitudes of the correspond-
ing traces.

Deep learning and PEGSNet
Previous work. Convolutional neural networks (CNNs) originated 
in neocognitron42 and became practical once it was found that the 
backpropagation procedure43 can be used to compute the gradient 
of an objective function with respect to the weights of the network. 
CNNs are a regularized form of neural networks, that is, the function 
space they represent is simpler and they are more sample-efficient than 
fully connected neural networks44. Deep CNNs have brought about 
a revolution in computer vision, and have had a role in almost every 
state-of-the-art approach for tasks related to recognition and detec-
tion in images45,46. In geoscience, machine learning has shown strong 
potential for data-driven discovery of previously unknown signals and 
physical processes hidden in large volumes of noisy data47,48.

We note, however, that our choice of a deep learning model over 
classical machine learning models offers an appealing framework to 
directly deal with raw seismograms. As a consequence, this choice ena-
bles us to explore a larger function space that is not limited by building 
an a priori set of features, which is a requirement for applying classical 
machine learning models on seismogram data.
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Successful applications of deep learning in seismology have provided 

new tools for pushing the detection limit of small seismic signals31,32 
and for the characterization of earthquake source parameters (magni-
tude and location)33–35 with EEWS applications29,36,37. We present a deep 
learning model, PEGSNet, trained to estimate earthquake location and 
track the time-dependent magnitude, Mw(t), from PEGS data, before 
P-wave arrivals.

Description of PEGSNet architecture. PEGSNet is a deep CNN that 
combines convolutional layers and fully connected layers in sequence 
(Extended Data Fig. 2a). The input of the network is a multi-channel im-
age of size (M, N, c) where M is 315 (corresponding to 315-s-long traces 
sampled at 1 Hz), N is the number of stations (74) and c is the number 
of seismogram components used (three: east, north and vertical).  
The outputs of the network are three values corresponding to mo-
ment magnitude (Mw), latitude (φ) and longitude (λ), where Mw is time 
dependent. The training strategy used to learn Mw(t) from the data is 
described below.

The first part of the model (the CNN) consists of eight convolutional 
blocks. Each block is made of one convolutional layer with a rectified 
linear unit (ReLU) activation function followed by a dropout layer.  
The number of filters in each convolutional layer increases from 32 
(blocks 1–5) to 64 (blocks 6–7) to 128 (block 8) to progressively extract 
more detailed features of the input data. A fixed kernel size of 3 × 3 is 
used in each convolutional layer. We use spatial dropout with a fixed 
rate of 4% to reduce overfitting of the training set. Maximum pooling 
layers are added starting from block 4 to reduce the overall dimension 
of the input features by a factor of 4. The output of the CNN is then 
flattened and fed to a sequence of two dense layers of size 512, and 256 
with a ReLU activation function and standard dropout with a 4% rate. 
Fully connected layers perform the high-level reasoning and map the 
learned features to the desired outputs. The output layer consists of 
three neurons that perform regression through a hyperbolic tangent 
activation function (tanh). The labelling strategy for Mw(t), φ and λ 
is discussed in detail below. The total number of parameters in the 
network is 1,479,427.

Learning strategy. The purpose of the model is to track the moment 
released by a given earthquake as it evolves from the origin time.  
A specific learning strategy has been developed to address this task 
(Extended Data Fig. 2).

Labelling. Labels are φ, λ and a time-dependent Mw. φ, λ simply cor-
respond to the true values for each event. Mw(t) is the time integration 
of the STF for each event. As detailed in the next section, the model is 
trained by randomly perturbing the ending time of the input seismo-
grams, so that for a given ending time the input data are associated with 
the value of Mw(t) at that time. To enforce the role of the tanh activation 
function in the output layer, we further scale all the labels to fall in the 
[−1, 1] interval through min/max normalization.

Learning the time-dependent moment release. In order for PEGSNet 
to learn Mw(t), we randomly perturb the starting time of the input data 
during training (Extended Data Fig. 2c). Every time that an example 
is extracted from the dataset, a value (T1) is drawn at random from a 
uniform distribution between −315 and 0 (s). T1 is the time relative to 
the earthquake origin time (T0) corresponding to the starting time 
of the selected seismograms for that example. In practice, from the 
700-s-long seismograms (centred on T0) in the database, we extract 
traces from T1 to T2 = T1 + 315 s: for T1 = −315 s the extracted traces end 
at T0; for T1 = 0 s the traces start at T0 and end 315 s after. Once a value 
for T1 is selected, the value of Mw(T2) is assigned as the corresponding 
label for this example (Extended Data Fig. 2d). This enables the model 
to learn patterns in the data as the STF evolves with time.

Training. The full database (500,000 examples of synthetic earth-
quakes) is split into training (350,000) validation (100,000) and test 
(50,000) sets, following a 70/20/10 strategy. The network is trained for 

200 epochs (using batches of size 512) on the training set by minimizing 
the Huber loss between the true values and the predicted earthquake 
source parameters using the Adam algorithm49, with its default param-
eters (β1 = 0.9 and β2 = 0.999) and a learning rate of 0.001. At the end 
of each epoch, the model is tested on the validation set to assess the 
learning performance and avoid overfitting (Extended Data Fig. 2b). 
After learning, the model that achieved the best performance (low-
est loss value) on the validation set is selected as the final model. The 
final model is then tested against the test set (therefore with data that 
has never been seen by PEGSNet during training) to assess its final 
performance.

Testing strategy. Once PEGSNet is trained, it can be used to estimate 
Mw(t) in a real-time scenario. We assess the latency performance of 
PEGSNet on the test set with the following procedure (Extended Data 
Fig. 4). For each example in the test set, we slide a 315-s-long window 
[T1, T2 = T1 + 315 s] through the data with a time step of 1 s. The start-
ing window ends at the earthquake origin time T0 (T2 = T0 and T1 = 
T0 − 315 s) and the final window starts at the earthquake origin time 
(T2 = T0 + 315 s and T1 = T0). We let PEGSNet predict Mw(T2) at each time 
step, thus progressively reconstructing the STF. Each Mw(t) estimate 
made by PEGSNet only makes use of information in the past 315 s. 
The same procedure is also applied to real data (Fig. 3 and Extended 
Data Fig. 10), to simulate a playback of the data as if they were fed to 
PEGSNet in real-time.

Test on noise-free synthetics. We investigate the performance of PEG-
SNet by using the same database described above but without including 
noise in the input data. Training and testing on noise-free synthetic 
data provides an upper limit of PEGSNet performance. Although this 
experiment represents a virtually impossible scenario for real-world 
applications, the results can reveal inherent limitations of our model 
or in the input data. Extended Data Fig. 6a shows the accuracy map for 
the test set. As expected, the model is able to determine the final Mw of 
the events with high accuracy and similar performance regardless of 
the actual Mw of the event, except at early times. To look at the latency 
performance more in detail, Extended Data Fig. 6b shows the density 
plot of the residuals as a function of time for the whole noise-free test 
set. Errors are mostly confined within ±0.1 but are relatively higher in 
the first 10–15 s after origin. We relate this observation to a combina-
tion of two factors: first, in the first 15 s after origin, very small PEGS 
amplitudes are expected at very few stations in the seismic network, 
partially owing to the cancelling effect between the direct and induced 
terms. This can lead to a situation in which little information is present 
in the input images and the model ends up predicting the mean value of 
the labels at these early times. Second, the seismic network geometry 
may not be optimal for recording PEGS amplitudes in this time win-
dow. Finally, we note that similar behaviour is observed for the results 
obtained on the noisy database (Fig. 2a, b) but with a higher latency 
(30–40 s). This highlights the role of noise in degrading the optimal 
performance of PEGSNet.

Preprocessing of real data
The preprocessing steps for real data closely follow the procedure 
detailed in previous work7. For each station and each component:

1. Select 1-h-long raw seismograms ending at the theoretical TP  
calculated using the source location from the United States Geological 
Survey (USGS) catalogue (Extended Data Fig. 10a);

2. Remove the mean;
3. Remove the instrument response and obtain acceleration signals;
4. Lowpass 30.0 mHz (Butterworth, six poles, causal);
5. Decimate to 1 Hz;
6. Highpass 2.0 mHz (Butterworth, two poles, causal);
7. Clip to ±10 nm s−2 and scale by the same value;
8. Pad with zeros for t ≥ TP and select 700-s-long trace centred on T0.



This procedure is the same as that used to generate the synthetic 
database, except that here, traces need to be cut at the P-wave arrival 
first to avoid contamination of PEGS by the P-wave during instrument 
response removal.

To speed up our testing procedure (see Methods subsection ‘Testing 
strategy’), the data are preprocessed once and then sliced into input 
for PEGSNet at each time step. In an online version of our model, this is 
unfeasible as all the preprocessing steps need to be applied each time 
that new packets of data are streamed in. We simulate the conditions 
of a real-time workflow on the Tohoku-Oki data to assess potential 
discrepancies with the simplified workflow in the results: at each time 
step, we apply the preprocessing steps described above, using 1-h-long 
trace ending at the current time step. We find that the resulting PEGSNet 
predictions obtained using the two workflows are essentially indistin-
guishable from each other (Extended Data Fig. 11).

Predictions on additional real data
We tested PEGSNet on all the subduction earthquakes (dip-slip mecha-
nism within 40 km from the megathrust) with Mw ≥ 7 that have occurred 
since January 2003, without considering aftershocks (Extended Data 
Fig. 10). Among them, the 2003 Mw = 8.2 Hokkaido earthquake is at the 
edge of PEGSNet’s lower sensitivity limit of 8.3. For this event, PEGSNet 
estimates the final Mw after about two minutes (Extended Data Fig. 10b), 
in agreement with what was previously observed on the test set for 
events with similar magnitude (Fig. 2a). However, given the expected 
lower accuracy and higher errors for this event, we consider these pre-
dictions less reliable. For lower-magnitude events, PEGSNet predic-
tions converge toward the noise baseline of 6.5 or never exceed its lower 
sensitivity limit, confirming that PEGS from Mw < 8.0 earthquakes are 
essentially indistinguishable from noise (Extended Data Fig. 10c–f). 
Deep learning denoising techniques for coherent noise removal50 might 
prove successful in enhancing PEGSNet performance and will be the 
subject of future work.

Data availability
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Extended Data Fig. 1 | STF database. a, STFs (moment rate) coloured by their final magnitude in the training database from a previous model5 (see description in 
Methods). Only STFs for events with final Mw between 7.0 and 9.5 are shown. b, The complete Mw(t) distribution is used for labelling the database.



Extended Data Fig. 2 | PEGSNet architecture and training strategy.  
a, The input data for one example consists of a three-channel image of shape 
M × N, where M is the number of time samples and N is the number of seismic 
stations. Only the vertical component of the input data is displayed for 
simplicity. Each convolutional block is composed of a convolutional layer 
(yellow) with a ReLu activation (orange), a spatial dropout layer (light blue). 
Max pooling layers (red) reduce each dimension of the input data by a factor of 
two. The number of filters used in each convolutional layer is indicated for 
clarity. The last convolutional block is connected to dense layers (purple) 
(using a ReLu activation function), with dropout (light blue). The output layer 
uses a tanh activation function to predict values of Mw, latitude (φ) and 
longitude (λ). b, The value of the Huber loss is plotted as a function of epochs 

for the training (Train.) and validation (Val.) sets. Each epoch corresponds to a 
full pass over the training set in batches of size 512. The red star indicates the 
epoch with the minimum value of the loss on the validation set. The 
corresponding model is used for predictions on the test set and real data.  
c, Data from one example from the training database (vertical component).  
The grey shaded area corresponds to the input data for PEGSNet shown in a. T1 
and T2 are the beginning and end of the selected input window. During training, 
T1 is selected at random and T2 = T1 + 315 s. d, Moment rate (blue) and Mw(t) (dark 
grey) for the selected event. Given the randomly selected value for T1 for this 
example, the corresponding label is Mw(T2), that is, at the end of the selected 
window. This is compared with the predicted Mw estimated by PEGSNet in a and 
used for training.
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Extended Data Fig. 3 | Results of predictions on the test set for location.  
a, b, Analysis of the residuals as a function of time (only the first 180 s from 
origin time are shown) for latitude (a) and longitude (b). Boxes correspond to 
the third to first (Q3–Q1) interquartile range, the black line within the boxes is 
the median and whiskers indicate the 5th and 95th percentiles. c, d, Density 

plot of true versus predicted latitude (c) and longitude (d) values at 180 s after 
origin (red boxes in a, b). e, f, Corresponding histogram of the residuals with 
reported mean and standard deviations for latitude (e) and longitude (f) at 
180 s after origin.



Extended Data Fig. 4 | Testing procedure. Each input example (top row) is 
parsed with a time window of length 315 s sliding with 1-s time step. At each time 
step, the data between T1 and T2 are passed to PEGSNet (middle row). For display 
purposes, only four specific time steps are shown here with their T1 and T2 
indicated for clarity. The window with T1 = −200 s and T2 = 115 s corresponds to 

the grey shaded area in the top row. At each time step, PEGSNet makes a 
prediction of Mw at the end of the input window, that is, Mw(T2) (blue circles in 
the bottom figure), to reconstruct the STF (yellow line) in a real-time scenario. 
Red dashed lines indicate the value of T2 of each input window.
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Extended Data Fig. 5 | Effect of noise on PEGSNet predictions. a, Frequency 
distribution of the mean standard deviation of the noise (σ) for the whole 
seismic network, in a pre-event time window of five minutes, for test set only. 
The solid red line is the median of the distribution (second quartile, Q2), dashed 
lines are the first (Q1) and third (Q3) quartiles. b–e, As in Fig. 2a, but computed 

on subsets of the test set for which σ < Q1 (b), Q1 < σ < Q2 (c), Q2 < σ < Q3 (d), and 
σ > Q3 (e). Note the high accuracy below 8.3 after 150 s from origin time for 
low-noise conditions (b). These maps give empirical limits on the noise levels 
that could potentially be useful to interpret the performance of our model in 
real time.



Extended Data Fig. 6 | Results on noise-free test set. a, As in Fig. 2a, but for a 
test set including only noise-free PEGS waveforms. b, Density plot of the 
residuals as a function of time for the same test set. The solid red line is the 

median, the dashed lines are the 5th and 95th percentiles of the distribution. 
Note that both in a and b, the predictions are obtained for a model that has been 
trained on a database of noise-free synthetics.
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Extended Data Fig. 7 | Comparison of PEGSNet with existing EEWS. a, b, As in 
Fig. 3, but with two additional EEWS algorithms included. The results for 
Tohoku of finite-fault GNSS-based G-larmS28 and seismic point-source ElarmS 

are taken from an earlier work28. In the main text, only the best-performing 
algorithm for each type (JMA, point-source; FinDer2, seismic finite-fault; and 
BEFORES, GNSS-based finite-fault) are shown.



Extended Data Fig. 8 | Synthetic test with Tohoku STF. Density plot of the 
predictions on 1,000 examples obtained by combining different noise 
recordings (randomly extracted from the test set) with PEGS waveforms, from a 
synthetic source that mimics that of the Tohoku-Oki earthquake. The median, 
Q1–Q3 interquartile range and the 5th–95th percentiles of the distribution are 
reported with solid, dotted and dashed red lines, respectively. The synthetic 
Tohoku-like source is obtained from the ‘true’ STF (orange line, same as in Fig. 3 
with ±0.3 Mw indicated by dashed lines), the hypocentre location (Extended 
Data Fig. 10a), and the following values for the strike, dip and rake: 193.0°, 8.9° 
and 78.4° (USGS catalogue). The workflow described in Methods is used to 

combine synthetics and noise. PEGSNet prediction for real Tohoku data is 
reported for comparison (blue line, same as in Fig. 3). Even if it has been trained 
on synthetic data plus noise, PEGSNet is able to generalize well to real data (the 
blue line is within the expected variability of the predictions obtained on 
synthetics). In the first 50 s after origin, the variability of the predictions is high 
and strongly affected by noise (similar to Fig. 2c), whereas after 50 s, 
predictions have similar Mw(t) values and therefore are more robust. Note that 
for the lowest noise conditions, faster PEGSNet response is virtually possible, 
as early as about 30 s after origin (as indicated by the 95th percentile of the 
distribution).
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Extended Data Fig. 9 | PEGSNet noise test. Density plot of the predictions 
obtained for 1,000 real noise recordings (the same used in Extended Data 
Fig. 8) assuming P-wave arrivals (but no PEGS) as in the real data for the 
Tohoku-Oki earthquake. The median, Q1–Q3 interquartile range and the 5th–
95th percentiles of the distribution are reported with solid, dotted and dashed 

red lines respectively. This test confirms that the results of Fig. 3 are indeed 
constrained by the data in the pre-P-wave time window (PEGS). The predicted 
Mw(t) tends towards a constant value of 6.5, which is considered as the baseline 
value when no information can be extracted from PEGS.



Extended Data Fig. 10 | PEGSNet predictions on real data. a, List of 
earthquakes used for the real data cases. All parameters are taken from the 
USGS catalogue. Earthquakes were selected according to the following criteria: 
Mw ≥ 7.0, dip-slip focal mechanism and located within 40 km from the source 
locations used for training (green lines in Fig. 1). b–f, PEGSNet Mw(t) predictions 
are indicated by the blue line. The integrated STFs (orange lines) are taken from 
the SCARDEC database with dashed lines representing ±0.3 magnitude units. 

The red horizontal line marks the empirical lower limit of PEGSNet sensitivity 
(8.3). Note that for the 2003 Mw 8.2 Hokkaido earthquake (b), this limit is 
crossed several times after 120 s from origin time. Out of four events with final 
Mw below 8 (c–f), three (d–f) show a predicted Mw(t) that is constant around the 
noise baseline (see Extended Data Fig. 9) indicating that no information can be 
extracted from the pre-P-wave time window.
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Extended Data Fig. 11 | PEGSNet predictions for two data workflows.  
The predictions for the Tohoku-Oki data obtained through the original 
workflow described in Methods (blue line, same as in Fig. 3) are compared with 
those obtained with a modified workflow (red line). Instead of preprocessing 
the data once and then slice them into input windows for PEGSNet (original 

workflow), the data are preprocessed and fed to PEGSNet at each time step 
(modified workflow, see details in Methods) to simulate an online scenario. The 
results of two workflows show negligible differences. Note that the blue line is 
twice as thick as the red line. For reference, the orange lines indicate the true 
STF (solid) and ±0.3 magnitude units (dashed).
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