
Vesga et al. BMC Medicine          (2022) 20:182  
https://doi.org/10.1186/s12916-022-02378-1

RESEARCH ARTICLE

Prioritising attributes for tuberculosis 
preventive treatment regimens: a modelling 
analysis
Juan F. Vesga1*  , Christian Lienhardt2, Placide Nsengiyumva3, Jonathon R. Campbell3, Olivia Oxlade3, 
Saskia den Boon4, Dennis Falzon4, Kevin Schwartzman3, Gavin Churchyard5,6 and Nimalan Arinaminpathy1 

Abstract 

Background: Recent years have seen important improvements in available preventive treatment regimens for tuber-
culosis (TB), and research is ongoing to develop these further. To assist with the formulation of target product profiles 
for future regimens, we examined which regimen properties would be most influential in the epidemiological impact 
of preventive treatment.

Methods: Following expert consultation, we identified 5 regimen properties relevant to the incidence-reducing 
impact of a future preventive treatment regimen: regimen duration, efficacy, ease-of-adherence (treatment comple-
tion rates in programmatic conditions), forgiveness to non-completion and the barrier to developing rifampicin resist-
ance during treatment. For each regimen property, we elicited expert input for minimally acceptable and optimal 
(ideal-but-feasible) performance scenarios for future regimens. Using mathematical modelling, we then examined 
how each regimen property would influence the TB incidence reduction arising from full uptake of future regimens 
according to current WHO guidelines, in four countries: South Africa, Kenya, India and Brazil.

Results: Of all regimen properties, efficacy is the single most important predictor of epidemiological impact, while 
ease-of-adherence plays an important secondary role. These results are qualitatively consistent across country set-
tings; sensitivity analyses show that these results are also qualitatively robust to a range of model assumptions, includ-
ing the mechanism of action of future preventive regimens.

Conclusions: As preventive treatment regimens against TB continue to improve, understanding the key drivers of 
epidemiological impact can assist in guiding further development. By meeting these key targets, future preventive 
treatment regimens could play a critical role in global efforts to end TB.
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Background
Tuberculosis (TB) is a preventable disease [1–3]. WHO 
guidelines for preventive treatment have undergone sev-
eral updates, most recently with the recommendation to 

include all household contacts of diagnosed TB cases, in 
addition to persons living with HIV [4]. However, there 
remain important challenges in reaching the expected 
population targets, particularly in expanding coverage 
amongst household contacts [5, 6]. In response to these 
challenges, recent years have seen important develop-
ments in the emergence of shorter, simpler regimens, 
with, for example, 6 months of daily isoniazid (6H) 
gradually being replaced by 3 months of once-weekly 
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rifapentine and isoniazid (3HP) [7]. More recently, 1 
month of isoniazid and rifapentine has been shown to be 
non-inferior to 9H [8], in adolescents and adults living 
with HIV (PLHIV).

In anticipation of continued research and development 
in this area, WHO recently published target product pro-
files (TPPs) for future preventive treatment regimens [9]. 
This document identified a series of essential and desir-
able attributes for future preventive treatment regimens, 
in order to optimize TB prevention worldwide. The need 
to prioritise systematically amongst these attributes 
raises some important questions: which would play the 
largest role in the epidemiological impact of a future pre-
ventive treatment regimen? How would these priorities 
vary in different countries and epidemiological contexts? 
In support of the WHO TPPs, we developed mathemati-
cal models of TB transmission dynamics to address these 
questions from a multi-country perspective.

Methods
We modelled the impact of future preventive treatment 
regimens in four countries: South Africa, Kenya, India, 
and Brazil. As shown in Table 1, South Africa and Kenya 
are high TB burden countries where HIV is a major driver 
of the TB epidemic; India is a high TB burden country 
where HIV does not play such a driving role; and Brazil 
is the country with the lowest incidence and mortality 
rates of the four. These countries also represent a range 
of socioeconomic settings, ranging from low-income to 
upper middle-income. For each country, we developed a 
deterministic, compartmental model of TB transmission 
dynamics, capturing HIV coinfection and the provision 
of antiretroviral therapy, as well as the implementation 
of preventive treatment amongst all-age household con-
tacts of notified TB cases (see Fig. 1 for model schematic 

and   Additional file  1: Fig. S1 and Table  S1 for further 
technical specifications, including model equations) The 
model incorporates the acquisition and transmission 
of rifampicin-resistant (RR) TB including multi-drug-
resistant TB. It also incorporates the accelerating effect 
of HIV coinfection on TB progression. For simplicity, 
the model does not incorporate age structure, nor does 
it distinguish different forms of TB (e.g., smear status or 
extrapulmonary vs pulmonary TB), instead assuming an 
average infectiousness over these forms. For natural his-
tory parameters relating to TB infection, we drew from 
recent systematic reviews and modelling studies that 
identified models consistent with available data for TB 
progression (see Additional file 2: Table S2) [4, 6, 10–21]. 
As described below, we accommodated a range of possi-
ble mechanisms by which a future preventive treatment 
regimen would alter these dynamics.

Despite their simplicity and transparency, compart-
mental models do not lend themselves readily to mod-
elling contacts of patients with TB disease. To address 
this challenge, our approach relies on recent data that 
suggests that the incidence rate in TB-infected house-
hold contacts of TB cases is 7–8 times greater than in 
the general population [22, 23]; this is because infections 
amongst contacts are more likely to have arisen from 
recent exposure than infections in the community. As 
described in Additional file 3 (Fig. S2, Table S3) [22, 24–
26], our strategy is to model explicitly this disproportion-
ate amount of recent infection in household contacts. An 
advantage of this approach, compared to previous mod-
elling analyses of preventive treatment [27, 28], is that it 
allows us to incorporate the mechanisms by which future 
preventive regimens may act (mechanisms discussed fur-
ther below).

Calibration
For each country, we calibrated the model to country-
specific estimates for TB incidence and mortality, inci-
dence of RR-TB; the proportion of incident TB associated 
with concomitant HIV infection and the coverage of 
antiretroviral therapy (ART) amongst those living with 
HIV (PLHIV), as well as the coverage of current preven-
tive treatment amongst those initiated on ART (Table 1). 
All of these estimates include uncertainty intervals: we 
used Bayesian melding [29, 30] to systematically propa-
gate this uncertainty to model projections, assuming 
uniform priors on model parameters. Drawing 1000 pos-
terior samples, we estimated Bayesian credible intervals 
(CrI) in model projections using 2.5th and 97.5th per-
centiles, and central estimates using the 50th percen-
tile. Further details of model calibration can be found in 
Additional file 4 [31, 32].

Table 1 Comparison of countries in analysis. Shown are 
estimates for total annual TB incidence rates, and TB incidence 
among HIV+ only in 2019, drawn from the WHO Global TB 
Report 2019 [5]. While these estimates are shown for comparison, 
we also calibrated each model to country-specific data for TB 
mortality, notifications, the burden of rifampicin-resistant TB, 
and the coverage of antiretroviral therapy (ART) amongst those 
with PLHIV. Full country data used for calibration are listed in 
Additional file 4: Table S4

Country TB Incidence per 100K 
(uncertainty range)

TB incidence per 100K 
(HIV+ only) (uncertainty 
range)

South Africa 615 (427–835) 357 (248–486)

Kenya 267 (163–396) 70 (43–104)

India 193 (121–384) 5.2 (3.6–7.2)

Brazil 46 (39–53) 5.1 (4.3–6)
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Modelling effects of preventive treatment
In each country, we modelled the potential impact of 
future preventive treatment regimens on TB incidence, 
assuming that the regimen is introduced in 2021 and 
scaled up in a linear way over the subsequent 3 years to 
cover all PLHIVs on ART (hereafter referred to simply as 
“PLHIV”) and all household contacts of notified TB cases 
(including both PLHIV and non-HIV population), with 
this coverage being maintained until 2035. To account for 
the overlap between household contacts and PLHIV, we 
assumed for simplicity that the proportion with HIV is 
the same in households as at the population level; thus, 
in the model, it is possible for PLHIV to be initiated on 
preventive therapy either through their HIV status, or 
through being identified as household contacts of diag-
nosed TB patients. Simulating epidemic trajectories to 
2035, we assessed the reduction in cumulative incidence 
as a result of preventive treatment in both risk groups.

To specify regimen properties, we drew from ongo-
ing expert and community consultations that were being 

conducted to inform the WHO TPPs [33]. In brief, these 
consultations aimed to identify key attributes for future 
regimens [9]. We summarised these attributes as 5 regi-
men properties that would be most relevant for epidemi-
ological impact: efficacy, ease-of-adherence, forgiveness 
to regimen non-completion, regimen duration and bar-
rier to developing rifampicin resistance (described in fur-
ther detail below). It is helpful here to make a distinction 
between regimen ‘properties’ (as employed in the present 
analysis) and regimen ‘attributes’ (as identified in the 
TPPs). Although the former is based on the latter, they 
do not necessarily have a one-to-one correspondence: 
for instance, ease-of-adherence represents an amalgam 
of different attributes in the TPPs, e.g., pill burden and 
tolerability. Forgiveness for non-completion, while not 
mentioned explicitly in the TPPs, is included in the cur-
rent analysis because of its potential impact on TB inci-
dence. Hereafter, we focus on regimen ‘properties’ as the 
basis for analysis. For simplicity, we assumed that regi-
men properties are unaffected by HIV status, motivated 

Fig. 1 Schematic illustration of the model structure. For clarity, the figure concentrates on model compartments relevant to latent TB infection, 
its progression to active disease, and the effect of preventive treatment on these dynamics; further information on the care cascade for active TB 
disease (shown in the dotted rectangle) is provided in the supporting information. Each compartment shown here is further stratified by the HIV 
status. Amongst compartments relating to the natural history of TB, U denotes ‘uninfected’; L(f)denotes latent infection with ‘fast’ progression (in 
the first 2 years following infection); L(s) denotes latent infection with ‘slow’ progression; and I denotes active, infectious TB. The modelled action 
of preventive treatment is as follows: S denotes individuals who are bacteriologically cured of infection as a result of the regimen; the parameter c 
governs the proportion cured in this way. Q denotes individuals with non-curative, post-regimen protection; the parameter e denotes the strength 
of non-curative protection, while g denotes its post-regimen durability. P1 and P2 represent individuals who are, respectively, undergoing the 
first and second halves of the regimen. Reinfection is possible for stages P1, P2, S, Q, at a reduced rate compared to R, given an assumed level of 
protection from preventive therapy. Reinfection is not shown for clarity, but is modelled by transitions from P1, P2, Q and R to their respective f 
states (e.g., P1(f)), and from S to Lf. We assume that ‘forgiveness to non-completion’ (one of the regimen properties listed in Table 2) applies only 
to the latter, with the parameter f being the proportion interrupting treatment who nonetheless have the same outcomes as those completing 
treatment. R denotes individuals who have reverted to their pre-regimen state of TB infection, following decay of any post-regimen protection. d 
denotes the per-capita hazard of regimen interruption and thus governs ease-of-adherence, b directly models the drug-resistance barrier and m 
governs the regimen duration. These and remaining model parameters are as listed in Additional file 2: Table S2
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by current preventive therapy regimens that show 60% 
efficacy in both HIV-positive and HIV-negative individu-
als [7, 34].

Table  2 lists these five regimen properties, together 
with scenarios—drawn from expert opinion—for ‘mini-
mal’ and ‘optimal’ values. Here, the ‘minimal’ scenario 
describes the lowest performance threshold that future 
regimens would need to fulfil in order to be licensed and 
recommended, while the ‘optimal’ scenario represents 
performance parameters deemed ideal but achievable. 
Values for these parameters were initially provided by a 
core group of technical and scientific experts amongst 
those who contributed to the TPPs and subsequently 
validated when presenting modelling assumptions and 
results to the full group of experts (see [33] for a descrip-
tion of the group of experts).

Some of these properties bear mention. First, efficacy 
is typically measured in trial conditions as the reduc-
tion in TB incidence over 2 or more years of longitudinal 
follow-up in a cohort receiving the regimen under study, 
compared to placebo in early trials, or more recently 
to standard of care using regimens of known efficacy 
[7, 8]. Due to its pharmacokinetic/pharmacodynamic 

properties, the effect of preventive treatment could range 
from partially clearing infection, allowing future reac-
tivation (although at a lower risk than in the absence of 
treatment) to fully sterilising infection (i.e., bacteriologi-
cal cure) [27, 35, 36]. Accordingly, we distinguished two 
types of protection: ‘non-curative’ protection as caus-
ing only partial reduction in incidence, and having finite 
duration; and ‘cure’ as a permanent, 100% reduction in 
incidence in the absence of reinfection. In the case of 
non-curative protection, the duration is expected to be 
longer than the duration of the regimen itself, owing to 
the bactericidal effect of the regimen, and its synergis-
tic interactions with host immunity-mediated control of 
infection [37]. Taken together, we thus characterised the 
pharmacokinetic/pharmacodynamic effect of any future 
regimen in terms of three mechanistic parameters: (i) 
amongst those completing the regimen, the proportion 
bacteriologically cured; (ii) amongst those not cured, the 
reduction in the risk of reactivation arising from non-
curative protection; (iii) the average duration, following 
completion of the regimen, during which non-curative 
protection acts (‘durability’). In practice, this duration 
would also depend on the risk of exogenous reinfection 

Table 2 Modelled regimen properties and their minimal and optimal scenarios. While the full-target product profile published by 
WHO [9] lists an extended series of regimen attributes, for the purpose of the current modelling analysis, we distilled these to the 
limited set of properties shown here, that would be most relevant to the transmission impact of a future regimen. ‘Minimal’ and 
‘Optimal’ values for regimen properties were identified through expert opinion from the experts involved in the WHO target product 
profiles: they represent the range between minimally acceptable performance parameters for a future preventive treatment regimen 
to be licensed and recommended, and on the other hand, ideal but achievable regimen properties. Footnotes: (i) In the main text, we 
assumed that regimens would have half the efficacy against rifampicin-resistant TB infection, compared to their efficacy against drug-
sensitive infection: in sensitivity analysis, we modified this assumption to 25% and 75%. (ii) 100% efficacy is likely to be infeasible to 
be achieved in practice, but is stated here as an aspirational target. (iii) Ease-of-adherence incorporates a range of regimen properties 
listed in the WHO target product profiles, including pill burden, dosing frequency, and safety and tolerability. As discussed in the main 
text, further evidence is needed to understand quantitatively how each of these regimen properties drives ease-of-adherence. (iv) 
To avoid an overly optimistic role of forgiveness, we assumed in the main analysis that forgiveness only applies to those completing 
at least 50% of the regimen (and that any less is associated with essentially zero forgiveness). In sensitivity analysis, we adjusted this 
threshold to 25% and 75% (see Additional file 7: Table S9, and Fig. S14)

Regimen property How it is quantified Future PT regimen

Minimal Optimal

Regimen duration Duration of administration of the regimen (months) 3 1

Efficacy against drug-sensitive TB (modelled as emergent 
property of ‘hidden’ mechanistic properties including propor-
tion bacteriologically cured, and strength and durability of 
non-curative protection)

Efficacy measured as reduction in incidence among those with 
TB infection that would be observed under trial conditions at 
two-year post-regimen follow-up, in a cohort receiving the regi-
men vs a hypothetical cohort receiving placebo (see Methods 
for further technical details of cohort modelling) (i)

70% 100% (ii)

Ease-of-adherence Proportion successfully completing the regimen under pro-
grammatic conditions (iii)

80% 90%

Forgiveness Amongst those completing at least half of the regimen before 
interrupting, the proportion that nonetheless have the same 
outcomes as those completing the full regimen (iv)

50% 80%

Barrier to resistance Amongst those having rifampicin-sensitive infection, the 
proportion that do not develop resistant infection as a result of 
preventive treatment

95% 100%
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in a given context [38], a factor accounted for indepen-
dently in our model through the range of country settings 
that we examined (Table 1).

While none of these parameters is directly measurable 
using current assays, the purpose of delineating them is 
to accommodate a range of mechanisms in simulating 
future preventive treatment; we developed a methodol-
ogy for translating any combination of these mechanisms 
into the efficacy that would be observed in clinical trials. 
In brief, we used a reduced form of the model equations 
to simulate a cohort of household contacts and PLHIV, 
in the absence of transmission and assuming full regi-
men adherence (the latter to simulate trial conditions). 
For a given set of mechanistic parameters, we simulated 
the incidence that would be observed in this cohort 
with and without preventive treatment at 2 years post-
regimen completion and thus calculated the simulated 
efficacy (further details in Additional file  5). In our pri-
mary analysis, we thus focused on efficacy as a predictor 
for incidence impact, while treating the above mechanis-
tic parameters as ‘hidden’ properties, to accommodate a 
range of possible scenarios for mechanisms of protection.

Second, we incorporated ‘ease-of-adherence’ to cap-
ture the ability of patients to complete the regimen under 
real-world programmatic conditions. Ease-of-adherence 
is influenced by a range of factors including pill burden, 
frequency of dosage and safety and tolerability. Regimen 
duration is also important: in practice, it is expected that 
shorter regimens would have higher completion rates, 
a key rationale for the development of recent 3- and 
1-month regimens [7, 8]. However, given a lack of sys-
tematic evidence quantifying the relationship between 
regimen duration and completion rates in programmatic 
conditions, for simplicity, we modelled ease-of-adher-
ence and regimen duration as playing separate roles.

Finally, we incorporated ‘forgiveness’ to capture the 
implications of regimen non-completion. We assumed 
that patients completing less than half of the regimen 
would not experience any preventive benefits. Amongst 
patients completing more than half of the regimen before 
interrupting, we defined ‘forgiveness’ as the proportion 
that would nonetheless have the same outcomes as those 
completing the regimen. This construction (subject to 
sensitivity analysis) serves to bar artificial scenarios in 
which patients who interrupt immediately after treat-
ment initiation might still benefit from forgiveness.

Assessing the role of each regimen property 
on epidemiologic impact
We drew 1000 realisations for possible future regimens, 
spanning the interval between minimal and optimal 
scenarios listed in Table  2. In particular, we first drew 
 104 latin hypercube samples for all regimen properties 

listed in Table  2, including mechanism parameters, and 
excluding efficacy in this first step. With each such sam-
ple representing a different regimen, we next determined 
the efficacy of each regimen using the cohort-modelling 
approach mentioned above and described in more detail 
in Additional file  5. We selected, at random, 1000 regi-
mens with efficacy between 70 and 100% (in agreement 
with Table 2).

Concatenating these regimen samples with the 1000 
parameter samples obtained from model calibration, 
we then projected the cumulative incidence averted by 
future preventive treatment between 2021 and 2035, 
when scaled up over the next 3 years, to cover all PLHIV 
and household contacts of notified cases (consistent with 
WHO guidelines). We evaluated ‘epidemiological impact’ 
as the cumulative incidence averted, relative to a ‘status 
quo’ comparator where current coverage of 6H, and cur-
rent TB services, were assumed to continue indefinitely. 
We finally evaluated the partial rank correlation coef-
ficient (PRCC) between each regimen property and the 
epidemiological impact. Thus, properties showing great-
est values of PRCC are most strongly associated with 
reduction in TB incidence and would afford higher pri-
ority in assessment of any future regimens. We repeated 
this analysis for each of the 4 countries listed in Table 1.

Secondary and sensitivity analyses
In the primary analysis described above, we translated 
mechanism parameters to efficacy because only the latter 
is observable. However, understanding the role of under-
lying mechanisms can also be helpful for regimen devel-
opment. We therefore conducted secondary analysis 
to assess the correlation between the three mechanism 
parameters (cure, suppression and waning) and efficacy.

We also performed the following sensitivity analyses: 
(i) whereas in the main analysis, we assumed ‘forgive-
ness’ would only apply for individuals completing at least 
50% of the regimen before interrupting, we repeated the 
analysis when assuming this threshold to be at 25% and 
75%. (ii) Model projections originate from the range of 
parameters listed in Table 2, which in turn were informed 
by expert consensus. To test model sensitivity to these 
ranges, we repeated the analysis with all parameter 
ranges widened by a twofold factor, relative to the mid-
points of the ranges (with upper limits capped at 100% 
for all percentage terms). (iii) Finally, while the main 
analysis above was based on a ‘status quo’ comparator 
assuming continued levels of current coverage of 6H, we 
repeated this analysis using an alternative comparator 
of 6H scale-up. We assumed that this expansion would 
happen in the same manner as assumed for future pre-
ventive treatment regimens: that is, being scaled up in a 
linear way over the next 3 years, to cover all PLHIV and 
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household contacts of TB cases, and with this coverage 
being maintained indefinitely thereafter.

Results
Additional file 4: Figs. S3 to S6 show the results of model 
calibration for each of the four countries in this analysis. 
Given these model calibrations, Additional file  6: Fig. 
S11 and Table  S6 illustrate the epidemiological impact 
of both minimal and optimal regimens, when deployed 
amongst all PLHIV and household contacts, in the four 
countries. Between 2020 and 2035, a regimen meeting 
minimal criteria would have a range of impacts in differ-
ent settings, ranging from 4.2% (95% CrI 2.6–5.1) reduc-
tion in cumulative incidence in Brazil to 18% (95% CrI 
14–21.3) reduction in South Africa, relative to a status 
quo comparator. A fully optimal regimen would increase 
this impact to 10.3% (95% CrI intervals 7–12) in Brazil, 
and 44.8% (95% CrI intervals 40.3–49) in South Africa, 
again relative to a status quo comparator. Table S6 lists 
these impacts by country for both types of regimens and 
when stratified by PLHIV and household contacts.

Next, to identify the regimen properties that are most 
influential in achieving this impact, Fig.  2 shows partial 
rank correlation coefficients (PRCCs) of incidence reduc-
tions against each of the five modelled regimen prop-
erties. In all countries, regimen efficacy (as would be 
measured at 2-year follow-up under trial conditions) is 

the single most important predictor of incidence reduc-
tion. However, ease-of-adherence also plays an important 
secondary role in each country. Remaining properties, 
i.e., forgiveness to non-completion, barrier to develop-
ing drug resistance, and regimen duration play only 
minor roles in regimen impact. Regimen duration is only 
slightly more impactful in Brazil. Additional file 5: Fig. S9 
shows the scatter plots of each property against epide-
miological impact, illustrating the univariate associations 
underlying these PRCC estimates. Additionally, while 
Fig. 2 shows PRCC estimates relative to a status quo com-
parator (indefinite continuation of current coverage of 
6H, see Additional file 7: Table S7), these model findings 
remain unchanged when assuming an alternative com-
parator of 6H scale-up, to the same levels being assumed 
for future regimens (Additional file 7: Fig. S12).

Figure  3 shows the incremental role of each regimen 
property in incidence-reducing impact. Starting from a 
regimen satisfying only minimal criteria (left-hand bars), 
the figure illustrates how impact increases with each 
regimen property being optimised in turn, beginning 
with the most influential. For example, in South Africa, 
optimising efficacy leads to an increase of 25 percentage 
points in impact, relative to a minimal regimen; addi-
tionally, optimising adherence leads to a further increase 
of 2 percentage points in impact. In practice, given the 
progress that has already occurred in developing shorter, 

Fig. 2 The influence of different regimen properties on potential incidence reductions from a future preventive treatment regimen. Shown are 
partial rank correlation coefficients (PRCCs) between each regimen property listed in Table 2, and the percent cases averted between 2020 and 
2035, of a regimen that is rolled out to cover all PLHIV on ART, as well as all household contacts of notified cases. Larger bars indicate regimen 
properties having greater influence on incidence reductions; error bars show 95% uncertainty intervals, estimated by bootstrapping. See Fig. S9 for 
scatter plots underlying these correlations
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simpler preventive therapy regimens [8, 39], it seems 
likely that ease-of-adherence would see further improve-
ments before regimens with improved efficacy emerge. 
Accordingly, Additional file  7: Fig. S13 in the support-
ing information shows the incremental role of each regi-
men property under a scenario where ease-of-adherence 
is optimised first. The figure illustrates how important 
gains could be achieved in impact, through this regimen 
attribute alone.

These results present efficacy as a key property of a 
regimen, based on ‘hidden’ mechanisms governing phar-
macokinetic and pharmacodynamic actions. Figure  4 
presents additional analyses for the influence of each 
of these mechanisms on efficacy, illustrating that, in all 
countries modelled, the proportion cured and the relative 
strength of non-curative protection play leading roles in 
determining efficacy: the post-regimen durability of non-
curative protection plays only a secondary role. Thus, 
even regimens that do not fully cure infection can meet 
the criteria for regimen efficacy, as long as their non-
curative protection is sufficiently strong. Additional file 5: 
Fig. S10 shows additional analysis for two-way parameter 

combinations in the example of Kenya, highlighting that 
a high proportion cure can compensate for a low strength 
of non-curative protection, and vice versa, but the high-
est-efficacy regimens are only possible with high values 
for both parameters. Again, in this analysis, the durability 
of non-curative protection only plays a secondary role.

Finally, Additional file  7: Figs. S14–S18 present further 
sensitivity analyses. While we have so far assumed that for-
giveness to non-completion applies only to those complet-
ing at least half of the regimen, Additional file 7: Fig. S14 and 
Table S9 show results when assuming alternative thresholds 
of 25% and 75%, illustrating results that remain qualitatively 
similar to those illustrated in Fig.  2. Another assumption 
in the main analysis is that a future regimen would be half 
as effective against rifampicin-resistant infection as against 
rifampicin-sensitive infection. Additional file  7: Table  S10 
shows results under alternative assumptions of 25% and 
75%, again showing qualitatively similar results to Fig.  2 
on the relative importance of the various regimen proper-
ties. Additional file  7: Fig. S15 and Table  S11 show addi-
tional sensitivity analysis when adopting a broader range 
of regimen properties than in Table  2, again illustrating 

Fig. 3 Contribution of regimen properties to epidemiological impact. While Fig. 2 shows regimen properties in order of decreasing influence on 
incidence reductions, this figure shows the quantitative effect of each on impact. In each panel, the leftmost bar shows the impact (cumulative 
cases averted) of a PT regimen with properties fulfilling only minimal criteria in Table 2. The remaining bars show the impact of successively 
optimising each single regimen property in turn, starting with the most influential properties shown in Fig. 2. For clarity, only the top four most 
influential properties are shown. The horizontal dashed line shows the impact arising from a fully optimised regimen, i.e., with all 5 properties 
assuming optimal values in Table 2). Error bars, and the gray shaded area, show 95% Bayesian credible intervals on respective estimates
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qualitatively similar findings to those shown in Fig. 2. Addi-
tionally, we examined the extent to which the apparent 
low importance of forgiveness in Fig. 2 is driven by model 
assumptions. We aimed to adjust the model parameters in 
order to increase the importance of forgiveness as a deter-
minant of overall impact, finding that two adjustments were 
needed: (i) to reduce the proportion of individuals complet-
ing the regimen (ease-of-adherence) and (ii) to reduce the 
assumed minimum amount of the regimen that needs to be 
taken, in order for forgiveness to apply. Additional file 7: Fig. 
S16 shows illustrative results where these parameters are 
reduced to 40 and 5%, respectively, showing the increased 
importance of forgiveness as a result. However, with pub-
lished findings for 3HP showing completion rates of over 
80% in practice [40], these parameter ranges are arguably 
too pessimistic for future regimens. Finally, we assumed that 
there is some protective effect during the course of preven-
tive treatment, raising the possibility that longer regimens 
may contribute to improved effectiveness. However, Addi-
tional file 7: Fig. S17 illustrates that any such effect is insig-
nificant relative to parametric uncertainty.

Discussion
In prioritising amongst desired attributes for future TB 
preventive treatment regimens, assessment of their 
potential epidemiological impact is a key consideration. 
Our results illustrate that efficacy—as would be meas-
ured over a 2-year follow-up in trial conditions—is the 
most important predictor of incidence reduction, with 
an important role also being played by ease-of-adherence 
(Fig. 2). Ease-of-adherence has already been reported by 
patients as being an important regimen property [41, 42], 
and our work complements this patient-centred perspec-
tive by highlighting the epidemiological importance of 
this regimen property. In practice, optimising both effi-
cacy and ease-of-adherence might not be achieved in a 
single step, but through a series of improvements in both; 
indeed, recent developments have shown important pro-
gress in promoting adherence through shorter, simpler 
regimens [7, 8]. In future, our results suggest that even 
interim progress in optimising either of these regimen 
properties would have important implications for inci-
dence reduction (Fig. 3).

Fig. 4 The influence of ‘mechanistic’ regimen parameters on regimen efficacy. As described in the main text, we define ‘efficacy’ as the incidence 
reductions that would result under trial conditions, over 2 years of follow-up. However, efficacy in the model accommodates a range of scenarios for 
the relative role of different, underlying mechanisms of protection. Shown are estimates for the strength of association between each mechanistic 
parameter, and efficacy (incidence reductions) that would be measured under trial conditions, upon 2-year follow-up. As in Fig. 2, larger bars 
indicate those parameters that are more influential for efficacy, and error bars show 95% uncertainty intervals, estimated through bootstrapping. 
See Additional file 5: Fig. S10 for further analysis on how parameters interact to yield efficacy
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Our results have implications for data gathering for 
future candidate regimens. First, while efficacy data are 
already a key focus of clinical trials, ease-of-adherence 
would require additional data collection on regimen 
completion rates that are achievable under program-
matic conditions, and on how these completion rates 
might feasibly be optimised through effective implemen-
tation approaches. Second, for simplicity, we have mod-
elled regimen duration and ease-of-adherence as separate 
properties, while recognising that in practice, shorter 
durations are likely to facilitate regimen completion. In 
future, data comparing regimen completion rates under 
programmatic conditions will be invaluable in extending 
the model to better capture associations between dura-
tion and ease of adherence. Third, multi-year follow-up in 
programmatic conditions (similar to those conducted in 
trial conditions) would be required to evaluate additional 
characteristics such as forgiveness to non-completion. 
Overall, further integrating evaluation under program-
matic conditions into the clinical development pathway 
of future candidate regimens, with a view to informing 
public health recommendations, would be an invaluable 
addition to their holistic assessment [43].

Notably, although the priority regimen attributes are 
consistent across countries (Fig.  2), the magnitude of 
epidemiological impact varies widely (Additional file 6: 
Fig. S11) with, for example, optimal regimens reducing 
cumulative incidence by 45% in South Africa between 
2020 and 2035, but only by 10% in Brazil. A key rea-
son for these differences is the extent to which the TB 
epidemic is driven by recent transmission vs the reac-
tivation of remote infection. In South Africa, where 
annual incidence exceeds 500 per 100,000, model 
calibrations suggest that recent infection accounts for 
75% of incidence and reactivation of remote infection 
for 16% (with the remainder arising from relapse). By 
contrast in Brazil, annual incidence rates are less than 
a tenth of those in South Africa, and rates of HIV/
TB coinfection are substantially lower than in South 
Africa. Model calibrations suggest that In Brazil, recent 
and remote infection account respectively for 53% and 
23% of annual incidence. Preventive therapy would be 
expected to have a stronger transmission impact in 
settings such as South Africa where recent transmis-
sion plays a dominant role, because its indirect effect is 
greater in such settings: that is, the number of onward 
transmissions that are averted by preventing one case 
of incident TB.

While our analysis is relevant for global recommen-
dations, it does not address subnational variations. A 
prominent example is in South African gold mines, 
where preventive treatment was found to have only a lim-
ited durability of post-regimen protection [38], hindered 

by exceptionally intense, local transmission, and the 
high prevalence of silicosis in the study population, an 
important risk factor for developing TB. Locally tailored 
preventive strategies may be necessary in such circum-
stances, for example using longer-duration, or repeated, 
preventive treatment [44]. As described in the final target 
product profiles [9], repeat treatment would be facilitated 
by shorter and safe regimens.

Our selection of four countries addresses a range of 
contexts for TB epidemiology but does not address coun-
tries with a high burden of rifampicin-resistant TB, such 
as those in Central and Eastern Europe, and countries 
of the former Soviet Union. A challenge with preventive 
treatment of rifampicin-resistant infection is that assays 
for TB infection do not provide information about drug 
resistance status; current WHO guidelines recommend 
the use of fluoroquinolone-based regimens amongst con-
tacts of TB patients known to have drug resistance [23]. 
Future preventive treatment regimens that are rifampicin 
or rifapentine sparing could be invaluable in allowing the 
use of a single regimen regardless of potential rifampicin 
resistance—our supplementary analysis (Additional file 7: 
Fig. S18) suggests that, for such regimens in future, pri-
ority regimen properties would be consistent with those 
presented in Fig. 2.

As with any modelling approach, we have had to incor-
porate a series of simplifications. Our model does not 
include age structure, motivated partly by model par-
simony, and partly by the fact that current preventive 
treatment guidelines do not distinguish by age, whether 
amongst PLHIV or household contacts [4]. However, this 
simplification ignores some pronounced age-specific fea-
tures of TB natural history, for example with (i) children 
having a higher risk of progressing to active disease than 
adults following exposure to TB, and (ii) upon developing 
disease, children being more likely to develop extrapul-
monary or disseminated disease [45, 46], and thus also 
being less infectious than adult disease. Our current 
approach ignores these variations, essentially modelling 
average rates of progression and infectivity. In so doing, 
our model also does not address the potential implica-
tions of demographic change over the next few decades, 
in countries such as India [47]. Future analysis refining 
this work should aim to address these factors. We have 
made simplifying assumptions for household composi-
tion, including that the average household size for TB 
patients is the same as the national average, and likewise 
for the prevalence of HIV in these households. In prac-
tice, to the extent that TB burden and household size are 
both linked with socioeconomic status, household sizes 
may be larger for TB patients than the national average: 
thus, our model is likely to be conservative with respect 
to the impact of preventive therapy in this risk group. 
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Amongst other simplifications, in modelling forgiveness, 
we have assumed a dichotomy in which forgiveness only 
applies to patients completing a certain threshold pro-
portion of the regimen. In practice, it is likely that there is 
a more continuous relationship between forgiveness and 
the proportion of the regimen completed, although our 
sensitivity analysis illustrates that our qualitative results 
are not substantially altered by the choice of threshold 
(Additional file  7: Fig. S14). Moreover, we have focused 
here on forgiveness to non-completion of the regimen. 
Recent analysis of trial data for the treatment of active 
TB suggests that missed doses—during the course of the 
regimen—are an important predictor of post-treatment 
outcomes [48], and similar challenges may apply to pre-
ventive treatment as well. Distinguishing these different 
types of ‘forgiveness’ is beyond the scope of our current 
work, but an important area for future analysis. Finally, 
our work assumes hypothetical scenarios where future 
regimens are scaled up to cover all eligible populations. 
How such coverage will be achieved is a critical question 
for implementation research, especially given current, 
low levels of coverage amongst adult household contacts. 
The feasibility of increasing coverage may well depend on 
future regimen characteristics, for example with shorter, 
simpler regimens posing less of an implementation chal-
lenge for TB programmes, than daily treatment for 6 
months.

With prevention taking on increasing importance 
in the TB response, as advocated in the WHO End TB 
Strategy [49], and while we await new, more efficacious 
and safe TB vaccines, future approaches to preventive 
treatment will play a critical role in global efforts to end 
TB. As innovations continue in the development of new 
preventive treatment regimens, crystallising priorities for 
these future preventive tools carries important implica-
tions for their evaluation and impact in the coming years 
and beyond.

Conclusions
As preventive therapy regimens continue to undergo 
development, there is a need to understand what regi-
men properties will be most important for epidemiologi-
cal impact. To our knowledge, ours is the first study to 
address this question. Using regimen properties distilled 
from the WHO target product profiles for future TB regi-
mens, we examined which of these properties would have 
the greatest influence on epidemiological impact in each 
of the four focal countries. For epidemiological impact, 
the most important characteristics for future preventive 
therapy regimens are consistent across a wide range of 
country settings: regimen efficacy is the strongest predic-
tor, followed by ease-of-adherence. Other regimen prop-
erties, such as barrier to developing drug resistance, play 

only minor roles in the projected epidemiological impact. 
Complementing previous, patient-centred studies of regi-
men preference, our analysis supports the importance of 
shorter, simpler regimens that facilitate ease-of-adher-
ence, while also emphasising the need for improved effi-
cacy in future regimen development.
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