
Vol.:(0123456789)1 3

Bulletin of Volcanology           (2022) 84:58  
https://doi.org/10.1007/s00445-022-01562-8

PERSPECTIVES

Impact of climate change on volcanic processes: current 
understanding and future challenges

Thomas J. Aubry1,2 · Jamie I. Farquharson3 · Colin R. Rowell4 · Sebastian F. L. Watt5 · Virginie Pinel6 · 
Frances Beckett7 · John Fasullo8 · Peter O. Hopcroft5 · David M. Pyle9 · Anja Schmidt1,10,11,12 · John Staunton Sykes10

Received: 7 October 2021 / Accepted: 29 March 2022 
© The Author(s) 2022

Abstract
The impacts of volcanic eruptions on climate are increasingly well understood, but the mirror question of how climate changes affect 
volcanic systems and processes, which we term “climate-volcano impacts”, remains understudied. Accelerating research on this 
topic is critical in view of rapid climate change driven by anthropogenic activities. Over the last two decades, we have improved our 
understanding of how mass distribution on the Earth’s surface, in particular changes in ice and water distribution linked to glacial 
cycles, affects mantle melting, crustal magmatic processing and eruption rates. New hypotheses on the impacts of climate change 
on eruption processes have also emerged, including how eruption style and volcanic plume rise are affected by changing surface 
and atmospheric conditions, and how volcanic sulfate aerosol lifecycle, radiative forcing and climate impacts are modulated by 
background climate conditions. Future improvements in past climate reconstructions and current climate observations, volcanic 
eruption records and volcano monitoring, and numerical models all have a role in advancing our understanding of climate-volcano 
impacts. Important mechanisms remain to be explored, such as how changes in atmospheric circulation and precipitation will affect 
the volcanic ash life cycle. Fostering a holistic and interdisciplinary approach to climate-volcano impacts is critical to gain a full 
picture of how ongoing climate changes may affect the environmental and societal impacts of volcanic activity.
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Abstract
Bien que l’impact climatique des éruptions volcaniques soit de mieux en mieux compris, la question de l’impact des change-
ment climatiques sur les processus volcaniques, ou “impacts climat-volcans”, reste largement inexplorée. Compte tenu de la 
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rapidité du changement climatique anthropique, il est critique d'améliorer la compréhension des impacts climat-volcans. Les 
vingt dernières années de recherche ont permis de mieux charactériser l’impact de la distribution surfacique de masse, par 
exemple liée aux glaciers et océans, sur les processus tels que la fonte du manteau, la cristallisation magmatiques et les taux 
éruptifs. De nouveaux mécanismes d’impacts climat-volcans ont aussi été suggérés, y compris l’influence des changements 
des conditions de surface et atmosphériques sur les styles éruptifs et la dynamique des panaches volcaniques. Le cycle de vie 
des aérosols volcaniques ainsi que leur forçage radiatif et impacts climatiques sont aussi nuancés par les conditions climatiques 
dans lesquelles une éruption se produit. Les progrès à venir sur les observations actuelles et reconstructions passées du climat 
et des éruptions historiques, sur les dispositifs de surveillance des volcans, ainsi que sur les modèles informatiques climatiques 
et volcaniques vont permettre de mieux comprendre les impacts climat-volcans. Certains mécanismes clés restent mécompris, 
par exemple l’impact des changements de circulation du vent et de précipitation sur le cycle de vie des cendres volcaniques. 
Une approche holistique et interdisciplinaire est critique pour établir une vision d’ensemble de l’effet du changement climatique 
sur les impacts environnementaux et sociaux des éruptions volcaniques.

Introduction

Volcanic eruptions shape Earth’s landscapes, have built up 
Earth’s atmosphere and are powerful drivers of environmen-
tal and climate change. It has long been known that large 
volcanic eruptions can affect climate, which we refer to as 
“volcano-climate impacts”, and this constitutes a major 
research topic (Marshall et al., 2022, this issue). The mir-
ror question, how climate change affects volcanic processes, 
which we refer to as “climate-volcano impacts”, is also not 
new. It was hypothesised decades ago that volcanic activity 
could be forced by deglaciation (Hall, 1982; Rampino et al., 
1979) or sea-level change (Matthews, 1968; Walcott, 1972). 
However, the various mechanisms by which climate change 
may affect volcanic processes remain largely unexplored, 
despite the topic becoming ever-more relevant in the face of 
rapid changes in the climate system driven by anthropogenic 
activities (IPCC, 2021). Improving our understanding of 
these complex interrelations will in turn improve prepared-
ness for future volcanic crises and enable us to quantify how 
climate-volcano feedbacks may amplify or dampen anthro-
pogenic climate change (NASEM 2017). This research area 
is also key to understanding how volcanic processes have 
been affected by past climate change and, in turn, to improv-
ing our understanding of Earth’s history.

In this perspective paper, we first highlight progress made 
over the last two decades in understanding climate-volcano 
impacts, and then discuss opportunities and challenges for 
the next decade. The paper is structured around three broad 
categories of volcanic and magmatic processes:

1)	 Pre-eruptive processes that take place before material 
is erupted through a vent and are generally associated 
with spatial scales ranging from the volcanic edifice to 
regional scale (Fig. 1).

2)	 Syn-eruptive processes that take place after an eruption has 
started on timescales shorter than or equal to that of the injec-
tion of eruptive material into the environment (atmosphere, 

ocean, or ice), and are generally associated with a spatial 
scale corresponding to that of the volcanic edifice (Fig. 2).

3)	 Post-eruptive processes that take place after an eruption 
has started and at timescales longer than that of injection 
of eruptive material into the environment, and are asso-
ciated with spatial scales larger than the edifice scale, 
and up to global scale (Fig. 3).

Owing to the complexities of volcanic systems, some 
of the processes we discuss are not exclusively associated 
with a single category proposed above, though an attempt 
has been made to categorise processes by their dominant 
association. Last, we assess the level of confidence of each 
climate-volcano impact mechanism discussed using the fol-
lowing classification:

•	 Well understood: the mechanisms are well defined and 
supported by robust evidence.

•	 Hypothesised: there is emerging evidence for the mecha-
nism but further research is needed.

•	 Uncertain: we do not know yet how climate change 
would impact the process, or the impact is highly depend-
ent on the volcanic system considered.

Owing to the emerging nature of the climate-volcano 
impact field, these qualitative confidence levels are based 
on our own judgement rather than on quantitative analy-
sis. We report them in square brackets and italics after each 
mechanism discussed.

Advances made in exploring climate‑volcano 
impacts over the last two decades

Climate‑volcano impacts affecting pre‑eruptive 
processes

Figure 1 gives an overview of climate-volcano impacts that 
affect pre-eruptive processes. Variations in load distribution at 
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the Earth’s surface may be brought about due to ice cap melt-
ing, sediment deposition and erosion, variations in precipitation 
intensity, surface water storage and/or sea-level change. Such 
variations modify the stress state in the underlying crust and 
potentially into the upper mantle—including pressure, devia-
toric stresses and stress orientation—and may thereby influence 
magma production, transport and eruption (e.g. Mason et al. 
2004; Sigmundsson et al., 2013; Watt et al., 2013).

The impacts of ice unloading are controlled by the spatial 
extent and thickness of ice, the magnitude of ice loss and 
lithospheric thickness, moderated by the rheology of the 
crust and mantle (Jull and McKenzie, 1996). In Iceland, 
volcanic eruption rates following deglaciation are estimated 
to have increased by as much as 30–50 times relative to 
the present day (e.g. Maclennan et al., 2002; Sinton et al., 
2005; Swindles et al., 2017; but see discussion in Hartley 
et al., 2016), attributable to temporarily enhanced man-
tle decompression melting driven by ice unloading. This 

has been demonstrated by thermo-mechanical modelling 
(e.g. Jull and McKenzie, 1996; Schmidt et al., 2013; Rees 
Jones and Rudge, 2020) [well understood], and comparable 
deglaciation-driven trends following the Last Glacial Maxi-
mum have been identified in regional and global eruption 
records (e.g. Nowell et al., 2006; Huybers and Langmuir, 
2009; Lin et al., 2022) [well understood]. The predicted 
decompression rates of glacial isostatic adjustment can 
be estimated as a function of depth in the melting region, 
allowing estimation of melt production rates due to degla-
ciation, which is currently expected to be of the same order 
of magnitude as tectonic melt production in Iceland (Sig-
mundsson et al. 2013; Schmidt et al. 2013). This phenom-
enon may be less pronounced for the thicker lithosphere and 
flux-melting regimes of arc systems (Watt et al, 2013), but 
there is evidence that arc volcanoes show temporary post-
glacial increases in eruption rate and the eruption of more 

Fig. 1   Schematics illustrating climate-volcano impacts associated with pre-eruptive processes (“Climate-volcano impacts affecting pre-eruptive 
processes” section) and how they are expected to unfold in the context of a warming climate
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evolved magmas (Rawson et al., 2016). This may be driven 
by crustal stress regimes that promote magma storage dur-
ing glaciation and subsequently enhanced ascent following 
ice retreat (Watt et al., 2013; cf. Jellinek et al., 2004). This is 
supported by mechanical models characterizing the effect of 
ice-related stress variations on magma transport towards the 
surface (Michaut and Pinel, 2018) [well understood], and 
the stability of crustal magma storage zones (Sigmundsson 
et al., 2010, 2013) [well understood]. As a counterpart to 
ice retreat, sea-level rise (Fasullo and Nerem, 2018) may 
also decrease mantle melting rates and carbon outgassing 
at mid-ocean ridges on glacial timescales (Crowley et al., 
2015; Tolstoy, 2015; Boulahanis et al., 2020) [hypothe-
sised]. More generally, eruptive records show periodicities 
consistent with orbital scale climatic cycles (Schindlbeck 
et al., 2018), supporting relationships between hydrospheric 
mass distribution and magmatism. On the scale of individ-
ual edifices, ice retreat and sea-level change may influence 
flank stability (Quidelleur et al., 2008; Coussens et al., 
2016) [hypothesised], magma migration (Hooper et  al, 
2011; Michaut et al. 2020) [hypothesised] and the eruptibil-
ity of magma (Satow et al., 2021) by changing ocean bottom 
pressure and crustal stress conditions [hypothesised]. More 
generally, surface load distributions influence the balance 
between crustal magma storage and ascent, but the direc-
tion of these changes is highly dependent on the storage 
zone size, depth and shape as well as on the magma com-
pressibility and lithospheric rheology (Albino et al, 2010; 
Sigmundsson et al, 2013) [uncertain].

Continued global warming is also projected to cause 
regional and global increases in extreme rainfall over the 
next century (Fischer et al. 2014; Pfahl et al. 2017). Extreme 
rainfall has been linked to induced volcanic activity in mul-
tiple case studies (e.g. McKee et al., 1981; Barclay et al., 
2006; Matthews et al., 2002, 2009). Theorised mechanisms 
operate from minutes to millennia, including shallow-seated 
processes (e.g. fuel–coolant interactions: Elsworth et al., 
2004; Simmons et al., 2004; Taron et al., 2007) [well under-
stood] associated with volumetric expansion of volatiles and 
steam-driven explosions, with pressurisation and weakening 
facilitated by thermal contraction (Mastin, 1994; Elsworth 
et al. 2004; Yamasato et al., 1998) [well understood]. Flank 
collapse can be promoted by precipitation-induced ero-
sion, failure plane weakening and hydrothermal alteration 
(e.g. Kerle et al. 2003; Capra, 2006; Tost and Cronin, 2016; 
Romero et al., 2021) [well understood]. We note that flank 
instability can be viewed as a pre-, syn- or post-eruptive pro-
cess (Fig. 2). Subsurface infiltration of meteoric water may 
foster deep-seated primary volcanic activity via variations in 
overburden stress, mechanical failure of the magma chamber 
wall and pore pressure–driven generation of magma path-
ways throughout the edifice (e.g. Violette et al. 2001; Albino 

et al., 2018; Farquharson and Amelung, 2020; Heap et al., 
2021) [hypothesised].

Climate‑volcano impacts affecting syn‑eruptive 
processes

Figure 2 gives an overview of climate-volcano impacts that 
affect syn-eruptive processes. The height at which volcanic 
columns inject ash and gas into the atmosphere governs 
ash-related hazard (Harvey et al., 2018) and sulfate aerosol 
climate impacts (Marshall et al., 2019). For tropical erup-
tions, the projected increase in tropospheric stratification 
and tropopause height may reduce the height of tropospheric 
volcanic plumes and volcanic stratospheric injections, but 
decreasing stratospheric stratification may increase the 
height of stratospheric volcanic plumes (Aubry et al., 2016; 
2019) [hypothesised]. Changes in wind speed will exert a 
greater influence on extratropical volcanic plumes relative to 
tropical ones (Aubry et al., 2016) [hypothesised].

Changes in the surface distribution of water and ice may 
also alter syn-eruptive processes and the SO2 life cycle in 
the volcanic column and cloud via direct magma-water 
interaction (i.e. hydrovolcanism) [hypothesised]. Hydro-
static pressure from overlying water and ice can suppress 
explosive behaviour and drive transitions towards effusive 
eruptions (Cas and Simmons, 2018) [well understood]. 
Incorporation of water into eruption columns alters plume 
heights, induces column collapse and increases the amount 
of fine ash and water injected into the atmosphere along 
with SO2 (Koyaguchi and Woods, 1996; Mastin 2007; Van 
Eaton et al., 2012; Rowell et al., in press). Increasing fine 
ash and water content, in turn, promotes conditions for 
scrubbing of SO2 by ash (Ayris et al., 2013; Schmauss 
and Keppler, 2014), modifies the life cycle of sulfate aero-
sols (LeGrande et al., 2016; Zhu et al., 2020) and directly 
impacts climate by stratospheric loading of water vapour 
(Forster and Shine, 2002; Joshi and Jones, 2009). Despite 
observations in unprecedented detail of hydrovolcanic 
processes from recent eruptions (e.g. Magnusson et al., 
2012; Prata et al., 2017; Gouhier and Paris, 2019; Lopez 
et al., 2020), a comprehensive assessment of links between 
observed hydrovolcanic events and the fate of volcanic 
SO2 remains to be completed. The Hunga Tonga-Hunga 
Ha’apai 2022 eruption may help achieve significant pro-
gress on this question.

Climate‑volcano impacts affecting post‑eruptive 
processes

Climate-volcano impacts affecting post-eruptive processes 
are summarised in Fig. 3. Existing studies have focused 
on the life cycle and climatic impacts of volcanic sulfate 
aerosols. Due to the current abundance of anthropogenic 
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tropospheric aerosol, the impact of tropospheric vol-
canic aerosol on radiative forcing is halved compared 
to pre-industrial climates (Schmidt et  al., 2012) [well 
understood]. This highlights a mechanism through which 
atmospheric aerosol pollution, not climate change, modu-
lates a volcanic process. Aubry et al. (2021a) showed that 
ongoing climate change could lead to an amplification 
of the radiative forcing of stratospheric sulfate aerosols 
from large-magnitude tropical eruptions [hypothesised]. 
This is a consequence of plume height increase (see sec-
tion on syn-eruptive processes) and the acceleration of 
the Brewer-Dobson circulation which decreases the res-
idence time of aerosol in the tropical reservoir leading 
to less coagulation and smaller aerosol particles which 
backscatter sunlight more efficiently. Fasullo et al. (2017) 
also showed that the surface cooling response to tropi-
cal eruptions is enhanced in a warmer climate because of 
the stronger ocean stratification and reduced penetration 
of volcanic cooling in the ocean, which in turn enhances 
the cooling of the atmosphere at the surface [hypoth-
esised]. Hopcroft et  al. (2018) showed that increased 
anthropogenic pollution resulted in an increase in trop-
ospheric albedo and a decrease of the effective radia-
tive forcing from stratospheric volcanic sulfate aerosols 

[hypothesised]. Last, solar radiation management via strat-
ospheric aerosol injection—one of the most discussed geo-
engineering strategies (Kravitz et al., 2015)—could cause 
volcanic aerosols to directly condense onto pre-existing 
geo-engineered particles, resulting in larger aerosol parti-
cles and in turn a decreased and faster-decaying radiative 
forcing (Laakso et al., 2016) [well understood].

Progress and challenges for the coming 
decade

Over the next decade, continuous improvement in both cli-
mate and volcanological observations and past records will 
advance our understanding of processes through which 
climate affects volcanic systems, as well as how climate-
volcano impacts unfolded in the past. Better spatio-tem-
poral coverage and resolution of spaceborne observations 
of precipitation and ice mass (e.g. Dussaillant et al., 2019; 
Velicogna et al., 2020; Kidd et al., 2021) will allow a shift 
towards holistic data-rich studies that examine the influ-
ence of rainfall patterns, glacial wastage and ice cap melt, 
and sea-level change on volcanic systems, from local to 
global scales. This information will potentially lead to an 

Fig. 2   Schematics illustrating climate-volcano impacts associated 
with pre-eruptive processes (“Climate-volcano impacts affecting pre-
eruptive processes” section) and how they are expected to unfold in 

the context of a warming climate. The same as Fig. 1 but for climate-
volcano impacts affecting syn-eruptive processes
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update of glacial isostatic adjustment and melt productiv-
ity models in volcanic areas (Schmidt et al., 2013). The 
advancement of spaceborne and in-situ volcanic gas and 
aerosol measurements (e.g. Carn et al. 2018; Theys et al. 
2019; Liu et al. 2020) will also help to rigorously quantify 
SO2 budgets during eruptions to assess the efficiency with 
which SO2, water and ash are dispersed to the atmosphere 
under different environmental conditions (e.g. Sigmarsson 
et al., 2013; Legrande et al., 2016; Lopez et al., 2020). 
Experimental studies should further explore how SO2 
interacts with ash and hydrometeors across a parameter 
space of temperature, pressure and humidity. Databases 
gathering both volcanological and climate information are 
also being developed (e.g. the IVESPA database, Aubry 
et al. 2021b) and will advance our understanding of, for 
example, how meteorological conditions affect plume 
rise. Beyond direct observations, volcanic records and 
climate proxy records are also improving (e.g. Baldini 
et al. 2015; Lin et al. 2022; Sigl et al. 2021; Büntgen et al. 
2021). A better time resolution of these records may for 
example help clarify the mechanisms and time lags associ-
ated with the impacts of changes in ice load or sea-level 
on magmatic processes. This would in turn promote an 

understanding of the mechanisms’ responses to climate 
change and the timescales on which those responses would 
act.

Improvements in numerical models will also be required 
to better understand climate-volcano impacts. Thermo-
mechanical models studying the effect of climate change 
on magma plumbing systems should integrate the complex 
rheology associated with the new vision of trans-crustal 
magmatic systems (Cashman et al, 2017). We also need 
3D simulations of eruption columns in future climates that 
incorporate physical transport, chemistry and microphys-
ics, assessing outcomes for vertical mass distribution and 
chemical fate of SO2, ash and water. An increasing num-
ber of aerosol-chemistry-climate models can interactively 
simulate the volcanic sulfate aerosol lifecycle (Timmreck, 
2012) and its interaction with volcanic water (LeGrande 
et al., 2016) and ash (Zhu et al., 2020). Beyond models 
themselves, the continuous improvement of high-perfor-
mance computing facilities and data storage and analysis 
will facilitate the investigation of climate-volcano impacts 
at centennial-millennial timescales and with multimodel 
ensembles. For example, multi-model approaches are 
required to assess whether currently hypothesised impacts 

Fig. 3   Schematics illustrating climate-volcano impacts associated 
with pre-eruptive processes (“Climate-volcano impacts affecting pre-
eruptive processes” section) and how they are expected to unfold in 

the context of a warming climate. The same as Fig. 1 but for climate-
volcano impacts affecting post-eruptive processes
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of climate change on volcanic aerosol forcing (Aubry 
et al., 2021a) and climatic impacts (Fasullo et al. 2017; 
Hopcroft et al. 2018) are robust. The Model Intercom-
parison Project on the climatic response to Volcanic forc-
ing (VolMIP, Zanchettin et al., 2016) has already begun 
to examine this but does not yet account for interactions 
related to plume dynamics and aerosol microphysics and 
chemistry.

Regardless of improvements in observations and mod-
els, some climate-induced changes in volcanic processes 
may be subtle compared to observational uncertainties and 
variability in eruption style and conditions. The low recur-
rence rate of large explosive eruptions (e.g. 50–100 years 
for Volcanic Explosivity Index 6, Newhall et al., 2018) also 
means that only a handful of large-magnitude eruptions 
have occurred during the observational period, making it 
even more challenging to support model-derived hypotheses 
on climate-volcano impacts with observational evidence. 
Methodologies employed for extreme event attribution 
in climate science (Otto, 2017) could be explored to test 
whether there is a detectable influence of climate change 
on future eruptions.

Lastly, a number of potential yet critical climate-volcano 
impacts remain unexplored, such as the impact of climate 
change on processes related to lava flows, non-sulfur gases 
(e.g. halogens) or ash. The ash question is particularly moti-
vated by implications for hazard management and by the fact 
that current atmospheric circulation patterns cannot account 
for the spatial distribution of tephra deposits during the 
Pliocene and Pleistocene glacial periods (Sigurdsson et al., 
1990; Lacasse, 2001; Lacasse and van den Bogaard, 2002). 
The dominant transport patterns of volcanic ash clouds and 
their residence time in the atmosphere may be altered by 
future changes in atmospheric circulation and precipitation. 
Aforementioned (see section on syn-eruptive processes) cli-
mate-induced changes in plume height (Aubry et al., 2016) 
and grain-size distribution (Osman et al., 2020) would also 
affect dispersion patterns. Lahars and airborne remobilisa-
tion of volcanic deposits are also dependent on extreme and 
seasonal rainfall (e.g. Kataoka et al., 2018; Paguican et al., 
2009; Jarvis et al., 2020) and could be affected by climate 
change.

Concluding remarks

The recently released Working Group I contribution to the 
Sixth Assessment Report of the Intergovernmental Panel 
on Climate Change (IPCC) states that depending on the 
amount of greenhouse gas emissions, the global surface 
temperature is very likely to be higher by 1.0 °C to 5.7 °C 
by 2100 compared to 1850–1900 (IPCC, 2021), and the 
committed warming may even be as high as 2.0 °C (Zhou 

et al. 2021). The IPCC report also highlights that with 
every increment of global warming, changes in climatic 
factors that directly impact volcanic processes get larger. 
This includes ice sheet melting, sea level rise, the accelera-
tion of the Brewer-Dobson circulation, or more frequent 
and intense extreme precipitation events. Such projections 
highlight the urgency to accelerate research on climate-
volcano impacts, which remain a relatively niche topic 
to date. Of critical importance is to quantify the extent to 
which magmatic and volcanic processes will be affected 
by climate change, and the spatial and temporal scale of 
these effects. This will in turn enable better preparedness 
for the potential consequences of climate-volcano impacts, 
including exacerbated volcanic hazards, societal impacts 
and economic repercussions, as well as climate-volcano 
feedback loops that could amplify or dampen climate 
change driven by anthropogenic activities.
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