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SUMMARY 
 

It is useful to complement more sophisticated stock status estimations based on stock assessment 

models with simpler approaches based on analyses of raw catch-effort data to maximize the 

probability of detecting overexploitation and hyperstability as early as possible. Here we develop 

a series of annual indices for the spatial distribution of catch over 1991-2019 by European purse 

seine vessels of the three major tropical tuna species as a function of ocean and fishing mode 

(floating object or free swimming fish schools). Time series of these indices are examined to 

identify temporal patterns with a focus on any long term trends that might be indicative of 

declining stock status or hyperstability. Spatial indices are also calculated for important bycatch 

species over 2011-2019 from observer data for French vessels. In general, results indicate a 

relative stability in the spatial distribution of catch over the last 30 years, though major 

perturbations, such as Somali piracy and major El Niño events, are identifiable. Nevertheless, 

recent decreasing trends in the presence of bigeye tuna and certain bycatch species merit further 

investigation. 

 

RÉSUMÉ 

 

Il est utile de compléter des estimations plus sophistiquées de l’état des stocks basées sur des 

modèles d’évaluation des stocks avec des approches plus simples basées sur des analyses de 

données brutes de capture-effort pour maximiser la probabilité de détecter la surexploitation et 

l’hyperstabilité le plus tôt possible. Nous développons ici une série d’indices annuels de la 

distribution spatiale des captures des trois principales espèces de thons tropicaux entre 1991 et 

2019 par les senneurs européens en fonction de l’océan et du mode de pêche (sous objet flottant 

ou sur bancs libres). Les séries temporelles de ces indices sont examinées afin d’identifier toute 

tendance à long terme qui pourrait indiquer un déclin de l’état du stock ou une hyperstabilité. 

Des indices spatiaux sont également calculés pour les espèces accessoires importantes sur la 

période 2011-2019 à partir des données des observateurs des navires français. En général, les 

résultats indiquent une relative stabilité de la distribution spatiale des captures au cours des 30 

dernières années, bien que des perturbations majeures, telles que la piraterie somalienne et les 

événements majeurs d’El Niño, soient identifiables. Néanmoins, les récentes tendances à la baisse 

de la présence de thon obèse et de certaines espèces de prises accessoires devraient faire l’objet 

d’une étude plus approfondie. 

 

RESUMEN 

 

Es útil complementar estimaciones más sofisticadas del estado de poblaciónes basadas en 

modelos de evaluación con métodos más simples basados en análisis de datos brutos de captura-

esfuerzo para maximizar la probabilidad de detectar la sobreexplotación y la hiperestabilidad lo 

antes posible. Aquí desarrollamos una serie de índices anuales de la distribución espacial de las 

capturas de las tres principales especies de atunes tropicales entre 1991 y 2019 por los barcos 

cerqueros europeos en función del océano y el modo de pesca (objetos flotantes o bancos libres). 

Las series de tiempo de estos índices se examinan para identificar patrones temporales con un 

enfoque particular en cualquier tendencia a largo plazo que pueda ser indicativa de 

sobreexplotación o hiperestabilidad. También se calculan índices espaciales para las especies 
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de captura incidental más importantes durante 2011-2019 a partir de datos de observadores de 

barcos franceses. En general, los resultados indican una estabilidad relativa en la distribución 

espacial de las capturas durante los últimos 30 años, aunque se pueden identificar 

perturbaciones importantes, como la piratería somalí y los grandes eventos de El Niño. No 

obstante, las recientes tendencias decrecientes en la presencia de patudo y ciertas especies de 

captura incidental merecen una mayor investigación 
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1. Introduction 

 
Catch per unit effort (CPUE) standardization (Maunder & Punt 2004) and model-based stock assessments (Methot & 

Wetzel 2013) are the gold standard for assessing the abundance and stock status of exploited species. However, 

these approaches are quite complex and at times it can be difficult to identify all pertinent covariants for 

estimating stock size while controlling for changes in fishing efficiency. If these approaches are not properly 

implemented, they can lead to hyperstability, wherein CPUE values remain constant despite stock decline (Walters 

2003, Ward et al. 2013). Hyperstability can in turn lead to overly positive assessments of stock status, threatening 

fisheries sustainability and impairing management decision making. 
 

Though there is currently no evidence that hyperstability is a problem in the tropical tuna purse-seine fisheries of 

the Atlantic and Indian Oceans, the subject of this study, it is important and consistent with the precautionary 

approach to fisheries management (de Bruyn et al. 2013) to use a multitude of complementary approaches to 

assessing fishery dynamics and stock status so as to maximize the probability of identifying problems as early as 

possible. In particular, though simpler spatial or temporal indices of fishing activity and catch cannot be used as 

direct indicators of stock abundance, they can highlight observed changes in fisheries and provide simple checks 

for more sophisticated approaches to stock status evaluation. For example, cases of hyperstability in the past have 

often been associated with increasing spatial concentration of fishing effort into the most productive areas without 

correction for this effect in CPUE standardization (Rose & Kulka 1999), thereby leading to the false impression 

that CPUE is remaining constant over all of space. Simple temporal characterizations of the spatial extent of 

fishing activity can be effective checks for this type of effort concentration, without using and independent of 

more sophisticated stock assessments. 
 

Here we present analyses of the spatial distribution of catch and effort for the European tropical tuna purse-seine 

fisheries of the Atlantic and Indian Oceans. In addition to presenting basic exploratory statistics of the data, we 

develop a series of annual spatial indices for the catch of the three major species of tropical tunas, yellowfin tuna, 

(Thunnus albacares), bigeye tuna (Thunnus obesus) and skipjack tuna (Katsuwonus pelamis), as a function of ocean 

and fishing mode (i.e., floating object school or free-swimming fish school). Time series of these indices are 

examined to identify temporal trends and/or unique events with a particular eye towards any long-term trends that 

might be indicative of declining stock status and hyperstability in stock status estimates. Similar analyses are also 

carried out for the most important purse-seine bycatch species based on data from observers aboard French purse-

seine vessels. Though the results are specific to the tropical tuna purse-seine fisheries examined, the spatial indices 

are generic and likely have wide applicability to other fisheries. 
 
 

2 Materials & methods 

 

This paper uses fine-scale (i.e., set level) logbook and observer catch-effort data from European tropical tuna 

fisheries of the Atlantic and Indian Oceans to assess temporal changes in the spatial distribution of the catch of 

major target and non-target species. First we present the data sources used for this study before presenting in 

detail the spatial statistics used to characterize these data. 

 

2.1 Data 

 
The data used for this study consist primarily of European tropical tuna purse-seine logbook observations of the catch 

of tropical tunas from 1991-2019. French data were provided by the French fleet via an agreement with 

ORTHONGEL, the French frozen tuna producers’ organization, to the IRD-Observatory of Exploited Tropical 

Pelagic Ecosystems (Ob7) based in the MARBEC research laboratory. Similarly, Spanish data come from an 
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agreement between the principal Spanish frozen tuna producers organizations (ANABAC and OPAGAC) and IEO-

CSIC (Spanish Institute of Oceangraphy). Logbook data include the name and unique identifier of the fishing 

vessel, the date and geographical coordinates of each fishing set, the type of fish school, and the catch in tonnes 

for each of the three main tropical tuna species. Fish schools type consist of schools associated with floating 

objects (i.e., FOB sets) and free swimming schools not associated with an object (i.e., FSC sets). Sets for which the 

school type was not noted were excluded from the data, as were null sets (i.e., sets for which the fishing vessel was 

unable to capture the associated fish school resulting in catch <1 tonne). The three major tropical tuna species 

with their abbreviations used in the text and figures are: yellowfin tuna (YFT), bigeye tuna (BET) and skipjack 

tuna (SKJ). Catch species composition data reported in logbooks were corrected based on port sampling using the 

T3 software (Pallarés & Petit 1998). 
 

Logbook catch-effort data for the major tuna species were complemented with observer data for bycatch species 

from French purse-seine vessels. Observations were derived from three observation programs: the European Union 

Data Collection Framework (DCF, EU regulation 199/2008), the Moratoria program of the International 

Commission for the Conservation of Atlantic Tunas (ICCAT), and the OCUP program (Observateur Commun 

Unique et Permanent) of the French producer organization ORTHONGEL (Cauquil et al. 2015). As observer 

coverage of fishing activities was limited before ~2011, we examine data from the period 2011-2019. Within this 

period, observer coverage (in terms of number of positive sets for tuna with observer data) was low in both oceans 

during 2011-2013 (Fig. 1). From 2014 onward, observer coverage is more stable in both oceans, being close to 

100% of the French fleet in the Atlantic Ocean (representing ~40-50% of the overall European logbook data used 

here) and approximately 40-50% of the French fleet in the Indian Ocean (representing ~20% of the European 

logbook data). As over 100 different species have been recorded in observer data, many of them being extremely 

rare, we focused analyses on just a few common or emblematic species and species groups: billfishes (multiple 

species from the Istiophoridae and Xiphiidae families), common dolphinfish (Coryphaena hippurus), rainbow 

runner (Elagatis bipinnulata), rays (individuals from the superorder Batoidea), silky shark (Carcharhinus 

falciformis) and wahoo (Acanthocybium solandri). Only landed or rejected-dead bycatch were included in our 

bycatch tabulations; live discards were not included. 

 
2.2 Definition of positive sets for individual species 

 
For some of the statistics presented in this paper (e.g., area of occupancy), it is necessary to decide if a given set 

is “positive” for a given species, i.e., whether the species can be considered to be present in the fish school. For the 

three major tropical tunas, a set will be considered “positive” for a species if the catch of that species exceeds 1 

tonne or 5% of the overall set catch. This definition is necessary as corrections to the species composition of catch 

induced by T3 (Pallarés & Petit 1998) often assign small fractions of the catch to each species even if the true 

catch was actually zero for a species. 5% was chosen so that it represents 1 tonne for a 20 tonne set (roughly the 

mean set size), but small amounts for smaller sets. 
 

For bycatch species, sets will be considered “positive” for a species if there is a non-zero observation of that 

species. This is appropriate for bycatch as bycatch levels are low with many absences, no corrections are applied to 

observer data for bycatch species, and observer data is generally quantified in terms of absolute numbers so that 

we have a true estimate of presence-absence. 

 

2.3 Statistical analyses 

 
Statistical analyses carried out can roughly be divided into three groups: (1) basic exploratory statistics, (2) spatial 

indices characterizing the area over which a species is observed (i.e., caught) by the fishery, and (3) indices of 

the spatial “inequality” or heterogeneity in catch. Basic exploratory statistics consisted of total catch per species, 

number of positive sets per species and the total area explored by the fishery, whereas the other two groups of 

statistics are developed below. 
 

The basic statistical units of all analyses are 1◦ × 1◦-year stratas. All data, including catches by species and 

number of positive sets by species, were first aggregated at this level before performing additional statistical 

analyses. 

 

2.3.1 Characterizing the spatial extent of species observations 
 

The spatial extent of species catch is assessed using two complementary statistics: area of occupancy (AO) and 

minimum area representing 90% of catch (D90). Whereas AO characterizes the total area over which a species is 

present, D90 characterizes the core area of catch for a given species. AO is calculated largely following Vidal et 
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al. (2020), except that we present both absolute AO (here referred to as aAO for clarity) values in units of area and 

relative AO (rAO), i.e., fractions of the total area explored by the fishery in a given year as presented in Vidal et 

al. (2020). aAO is the sum of the areas of the 1◦ × 1◦ cells explored by the fishery in a given year weighted by the 

fraction of sets in each cell and year that are positive for a given species: 

 

where xys is the number of sets in cell s and year y, xσys is the number of sets in cell s and year y that are 

positive for species σ, As is the area of cell s, and Sy represents the set of cells explored in year y. For total 

catch, this index just reduces to the total area explored by the fishery in a given year, whereas for individual 

species area will be weighted by the rate of presence of the species. 

 

Note that for simplicity, fish school type (i.e., FOB and FSC) and ocean indices are not shown in this and other 

equations in the paper as they apply implicitly to all variables. 
 

The equation for rAO is the same as that for aAO, except that it is divided by the total area explored by the 

fishery in a given year: 

 
As AO is sensitive to the number of outlier cells with small amounts of catch, D90 is also examined so as to assess 

the core area of species catch. D90 is calculated by first ordering the cells by the catch per unit area (CPUA): 

 

where Cσys is the total catch of species σ in year y and cell s. This ordering differs from that used in Vidal 

et al. (2020), where cells were ordered by catch per set. 
 

Once the 1◦ × 1◦ cells have been ordered, we then sum the areas of the cells starting from the cells with the 

highest CPUA and going towards those with the lowest CPUA until the total associated catch represents at least 

90% of the total catch for species σ in year y. The absolute area of these cells is referred to as the absolute D90 

(aD90), whereas the same area divided by the total area explored by the fishery in a given year is referred to as 

the relative D90 (rD90). 
 

For simplicity of interpretation, aAO and aD90 values are generally reported in units of the number of 1◦ × 1◦ 

cells at the equator. As tropical tuna fishing largely occurs within ±20◦ latitude of the equator, the area of 1◦ × 

1◦ cells is nearly constant and reported aAO and aD90 values can be considered roughly equivalent to the raw 

number of cells. A 1◦ × 1◦ cell at the equator has an area of 12,309 km2. 
 

2.3.2 Indices of spatial heterogeneity 
 

Spatial inequality or heterogeneity in catch value per species, ocean and fish school type were quantified using 

two related, but distinct, Gini statistics. The first is the standard Gini coefficient often used to quantify income 

inequality (Cowell 2000). This statistic is based on the Lorenz curve, which in our study context is a plot of 

the proportion of the total catch (of a given species, year and fish school type) as a function of the cumulative 

fraction of the all 1◦ × 1◦ cells that are taken into account starting from those cells with the smallest catch. The 

Gini coefficient is defined as the area between the diagonal 45◦ line and the Lorenz curve. Though it is non-

trivial to demonstrate, this area is mathematically equivalent to: 
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y 

where S is the total set of 1◦ × 1◦ cells explored by the fishery over the study time period. If catch is uniform 

among all cells (i.e., Gσys≡ Gσys), then the Gini coefficient will be zero, whereas if catch is all concentrated 

in a single cell for a given year (but not other) then the Gini coefficient is one. 
 

Given that tropical tuna purse seine fishing is primarily carried out close to the equator where 1◦ × 1◦ cells 

vary little in area (the maximum observed difference in cell area for our data is 11.8%), we will treat all cells 

as equivalent (i.e., as if they had the same area) when computing Gini coefficients. 
 

The second inequality statistic used is the Gini Segregation Index (GSI) (Duncan & Duncan 1955). This 

index is also an area between the diagonal and a Lorenz curve, but this time the Lorenz curve is based on 

the difference between the proportion of the total catch in a 1◦ × 1◦ cell that occurred in a given year and the 

proportion of the total catch that occurred in all other years. The GSI essentially compares the spatial 

distribution of catch in a given year to that of all other years and is close to zero if those distributions are 

similar in a relative sense, i.e., the absolute magnitude of catch does not matter, but the catch in the given 

year must be high and low in the same places as that of other years. On the other hand, the GSI will be close 

to one if, for example, catch in one year occurs in very different places than that of other years, even if the 

total spatial extent of catch (e.g., number of 1◦ × 1◦ cells explored) is similar across years. 
 

Mathematically, the GSI is calculated by first calculating the relative proportion of total catch in each year 

for each cell: 

 
 

These proportions and their complements are then cumulatively summed over cells: 

 

 

where S* is the set of all cells explored by the fishery over the entire study time period ordered from the cell 

with the lowest value of pσ to that with the highest value for target year y. Given these definitions, GSI is 

calculated as: 

 

 
 
Note that unlike the Gini coefficient, GSI is not sensitive to differences in catch due to differences in 1◦ × 1◦ 
cell area. All cells are treated as one statistical unit of measurement, and due to the normalization across years 
for each cell in Equ. (1), cell area does not enter into the calculation. 
 
2.4 Data processing & statistical tools 

 
All raw data were stored in a PostgreSQL database (version 10.14-1) with the PostGIS extension for geospatial 
data (version 2.4.8). Though initial data aggregation and filtering was carried out in the database, further 
statistical analyses were carried out using R version 4.1.1 (2021-08-10) (R Core Team 2021). Gini coefficients 
were calculated using the Gini function in the R package ineq (Zeileis 2014), whereas Gini segregation indices 
were calculated using code developed following Duncan & Duncan (1955). Data visualization was carried out 
using the ggplot2 package (Wickham 2016). 
 

Key R code for the functions used to calculate the indices discussed in this paper are provided in Appendix A. 

 

 

 

(1) 
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3. Results 

 
Results are first presented for the three major tuna species (YFT, SKJ and BET), before turning our attention 

to bycatch species. 

 

3.1 Basic statistical analyses 

 

Total catch varies in response to well-known changes in the tropical tuna purse-seine fisheries of the Indian and 

Atlantic Oceans (Figure 2). For example, the large increase in FSC catch in the Indian Ocean during the “golden 

years” (2003-2005) led to a shift in fishing vessels from the Atlantic Ocean to the Indian Ocean. This shift 

reversed itself after ~2007 due to the threat of piracy in the Indian Ocean. More recently, there has been an 

increase in FOB catch in both oceans, and in particular the Indian Ocean, both in absolute terms and at the 

expense of FSC catch. These changes are coincident with and likely driven by the advent of echosounder buoys 

(Wain et al. 2020) and the imposition of a YFT quota in the Indian Ocean since 2017. 
 

There has been a long-term increase in the fraction of FOB catch that is SKJ in the Atlantic Ocean to the 

detriment of YFT and BET catch (Figure 3). In the Indian Ocean, no such long-term trend in FOB SKJ catch 

is visible, but there was a considerable decrease (increase) in the proportion of SKJ (YFT) catch from 2009-

2013 that reversed itself after 2013. This reversal is coincident with the end of piracy in the Indian Ocean and 

the switch to echosounder buoys (Wain et al. 2020), though one would expect this latter change to impact both 

oceans. Also notable is the decline in FSC SKJ catch in both oceans, but particularly the Atlantic Ocean, after 

~2005-2007. FSC SKJ catch has dramatically increased over 2017-2019 in the Indian Ocean at the expense of 

YFT catch, undoubtedly in response to the YFT quota. These changes are also visible in the number (Figure 4) 

and fraction (Figure 5) of FSC sets that are positive for SKJ and YFT. The fraction of positive sets also 

highlights the drop in the prevalence of (juvenile) BET in FOB sets in both oceans, but particularly the Indian 

Ocean, since ~2012-2013. 
 

For the Atlantic Ocean, there has been a considerable increase in the catch of FSC BET in 2019. This agrees 

with anecdotal evidence from vessel captains who have noted a recent increase in the presence of BET in FSC 

sets. 
 

Total catch per set has remained relatively stable over the study time period for all oceans and fishing modes 

(Figure 6). The most notable changes are the large increase in catch per FSC set in the Indian Ocean during the 

gold years period (2003-2005) due exclusively to an increase in YFT catch. FSC catch per set in the Indian 

Ocean has increased steadily since its minimum in 2007, with a noticeable uptick since 2017 (the year the YFT 

quota was put in place) due to a dramatic increase in SKJ catch in FSC sets. FOB catch per set values in the 

Indian Ocean were above average for the period 1999-2006 due to above average SKJ catch per set, before 

decreasing to a somewhat lower and stable value until 2016. Since 2017, FOB catch per set in the Indian Ocean 

has again been higher due to increased SKJ catch. Variability is lower in the Atlantic Ocean, though FOB catch 

per set was in 2019 close to its lowest value for the entire time series and FSC catch per set values were 

marginally above average for the period 2003-2008. 

 

3.2 Indices   of  spatial  distribution: AO and D90 

 
aAO (Figure 7) and aD90 (Figure 8) for total catch show similar patterns, with values for FOB sets in the Indian 

Ocean being variable, but showing no clear trend, whereas the other series have clear jumps or trends. Areas for FSC 

catch show long term declines in both oceans since approximately the mid-2000’s. There is a clear drop in FSC 

fished area for the Indian Ocean 2007-2011, from which Indian Ocean FSC fishing never recovers. 
 

Perhaps the most noticeable temporal changes are the drop in Atlantic Ocean FOB fished area ~2005-2007 followed by 

a rapid rise in fished area ~2007-2010, after which FOB fished area more or less stabilizes at a new higher plateau 

than for the period preceding 2005. The drop 2005-2007 is seen in both FOB and FSC time series and is coincident 

with a period where numerous vessels moved from the Atlantic Ocean to the Indian Ocean in response to the “golden 

years” (2003-2005) in the Indian Ocean. The rise in FOB fished area 2007-2010 is coincident with the return of many 

vessels from the Indian Ocean to the Atlantic Ocean in response to Somali piracy, though other factors may also 

contribute: the increasing importance of FOB fishing over FSC fishing due to technological improvements and 

changes to the fishing fleet, changes in fishing agreements for access to coastal nation EEZs, and the effects of the 

3-month, November-January FOB fishing moratorium in place 2009-2011 (Perez et al. submitted). The effect of 

the moratorium can be examined by comparing fished areas during the moratorium period to that of other months. 

Results indicate that the net increase in FOB fishing area occurred predominantly during the months outside the 
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moratorium period (Figure 9), the opposite of what one would expect for a moratorium effect. Similarly, a 

comparison of fishing zones 2000-2004 and 2010-2014 indicates that increases in fished area occurred 

predominantly in large offshore areas south and west/north-west of the core fishing zone, suggesting that changes in 

fishing agreements are not the driving factor, though they may play a role in certain specific areas, such as the 

absence of fishing off Senegal after 2010 (Figure 10). 
 

rD90 for total catch, i.e., the ratio of aD90 to aAO, does not show a strong trend or variability for either ocean or 

school type (Figure 11). There is, however, a noticeable drop in rD90 for FOB fishing in the Atlantic during 

2012-2015 and a slight increase in rD90 for FOB fishing in the Indian Ocean since 2015, neither of which has an 

obvious explanation. In general, D90 represents between 40% and 60% of the AO. 
 

Areas of occupancy by species for the three major tropical tunas track each other much more closely for FOB 

catch than they do for FSC catch (Figure 12), highlighting the species specificity of FSC catch relative to FOB 

catch, though the relatively more important T3 corrections to FOB species composition cannot be ignored as a 

contributing factor. rAO values are also much closer to 1 for all three species for FOB catch than they are for 

FSC catch, confirming that FOB catches are generally mixed in terms of species compositions, whereas FSC 

sets are generally species-specific (with the exception of YFT that is generally present in FSC sets; Figure 13). 

The major trends include a decline in both oceans of BET presence in FOB catch since at least the early 2010’s 

(and to a lesser degree YFT in the Atlantic), and the decline in SKJ prevalence in FSC catch since the early 2000’s 

(though this decline has been eliminated since the imposition of the YFT quota in the Indian Ocean in 2017). 
 

Absolute D90 (aD90) by species has similar patterns of variability to aAO, though the differences between the species 

for FSC catch are less marked (Figure 14). Relative D90 (rD90) values are approximately stable, though there 

does appear to be a slight concentration of YFT and BET FOB catch in the Atlantic Ocean since ~2013, as well 

as a long term concentration of SKJ and BET FSC catch in Atlantic Ocean since ~2007 (Figure 15). 

 

 

4. Indices of spatial heterogeneity: Gini coefficient and GSI  

 

Gini coefficients applied to annual catch data in general show similar trends for all three tuna species (Figure 

16). Distinctions among species are more pronounced for FSC than FOB catch, and they are also more pronounced 

for the Atlantic Ocean than the Indian Ocean. Nevertheless, all three species track each other fairly closely and can 

be interpreted as an ensemble. 

 

Values are higher (closer to one) for FSC than FOB indicating greater spatial heterogeneity/concentration for FSC. 

There is an overall, long term decreasing trend for FOB Gini coefficients, likely driven by the expansion of FOB 

fishing associated with technological advances in FOB tracking technology. On the other hand, FSC Gini 

coefficients increase over time indicating greater spatial concentration of catch as already observed in aAO and 

aD90 values (Figures 12 & 14). Gini coefficients for FOB fishing do appear to pick out major events in the 

fishery, e.g., the perturbations in the Indian Ocean in 1998 due to the El Niño event, the expanding use of dFADs 

since ~2015 and the effects of the YFT quota in the Indian Ocean since 2017. 

 

Gini segregation index (GSI) results are more difficult to interpret, but generally show similar patterns and trends 

as do Gini coefficients (Figure 17). GSI does clearly pick up the unique distribution (leading to high GSI values) of 

FOB fishing in the Indian Ocean during the 1998 ENSO event, the 2003-2005 golden years period, the period 

impacted by Somali piracy (2007-2012) and the recent period impacted by the quota on YFT (2017-2019). The 

peak in the Atlantic for FOB fishing in 2007, followed by the dip around 2010 could be due to vessels moving back 

and forth between the two oceans in response to the golden years and Somali piracy. Surprisingly, the effect of 

Somali piracy is not particularly strong in the Indian Ocean and FSC GSI values only weakly reflect all these 

perturbations to the fisheries. 

 

4.1 Bycatch data 

 
As previously noted, observer coverage varied greatly over the period 2011-2014 (Figure 1). As such it makes 

little sense to look at absolute areas of occupancy for specific bycatch species as these primarily reflect changes 

in observer coverage itself for the early part of the time series.  Therefore, we present only relative indices of 

spatial presence for bycatch species. Furthermore, the changing coverage over years made it impossible to 

standardize Gini indices of inequality (both the Gini coefficient and GSI) in a meaningful way across years, so these 

indices are not calculated. 

 



 

530 

Low observer coverage for 2011-2013 and ongoing rules permitting purse seine vessels to exclude observers in the 

Indian Ocean if there is a risk of Somali piracy can also lead to spatial bias in observations. In 2011-2013, 

coverage is sparse, but there do not appear to be strong spatial biases in core fishing areas, with the possible exceptions 

of the area off western Africa in the Atlantic Ocean and off Kenya and Tanzania in the Indian Ocean (left-hand 

panels in Figure 18). Over 2014-2019, coverage is much higher, but there is a noticeable bias in the Indian Ocean 

towards lower coverage in the vicinity of Somalia (right-hand panels in Figure 18). As such, care should be taken 

in interpreting trends and variability in results given these spatial and temporal biases. 

 

4.1.1 Basic statistical analyses 

 

As has been previously demonstrated (Amandé et al. 2010, Kaplan et al. 2014), bycatch rates for FOB sets are 

much higher than those for FSC sets (Figures 19). Observed FOB bycatch appears to increase over the study 

period for a number of species, such as rainbow runner, common dolphinfish and wahoo. Though this is 

undoubtedly driven by changes in observer coverage for the early part of the time series, at least some of the increase 

would appear to occur after 2013. There is a large peak in FSC billfish bycatch in the Atlantic Ocean for 2019, the 

origins of which are not immediately clear, but may be due to the stochastic nature of FSC bycatch. 

 

The fraction of observed sets that are positive for each of the focus bycatch species, which should in principle 

be independent of changes in observer coverage provided that there is no spatial bias in coverage (which is not 

guaranteed), indicates that the prevalence of most species is roughly stable (Figure 20). Nevertheless, there are 

a few downward trends that merit future examination. For example, Indian Ocean FOB prevalence of common 

dolphinfish and wahoo appear to decline over the study period, as does Atlantic Ocean and Indian Ocean FSC 

prevalence of billfishes, rays and, to a lesser degree, silky sharks. However, much of these declines occur before 

2013, putting into question their statistical significance. Furthermore, these declines could also be due to the 

implementation after ~2013 of best practices by most tuna RFMOs for handling and live release of bycatch species, 

particularly large, charismatic species, such as sharks and rays (Grande et al. 2020). 

 

4.1.2 Indices of area of presence 

 

Relative AO (rAO; Figure 21) and relative D90 (rD90; Figure 22) values for bycatch species reflect many of the 

same tendencies observed based on rates of presence in fishing sets (Figure 20). A number of species appear to have 

modest declines in area of presence in both FOB and FSC catch, but these decreases are largely, but not always 

entirely, concentrated in the early part of the time series when observer coverage was low. 

 

 

5. Discussion 

 

This paper provides a simple set of spatio-temporal indices of catch and bycatch in European tropical tuna purse-

seine fisheries of the Atlantic and Indian Oceans. Overall, results show no major signs of spatial concentration 

of fishing effort that would be indicative of hyperstability. Though there are long term trends and inter-annual 

variability, most of this can be attributed to either the long term shift of purse seine fishing from FSC to FOB 

sets or major perturbations to fishing effort, such as the 1998 El Niño, the golden years of the Indian Ocean (2003-

2005), the impacts of Somali piracy (~2007-2012) and the imposition of a YFT quota for the Indian Ocean in 2017. 

Other potential sources of variability in the spatial distribution of fishing include the time-area FOB-fishing 

moratorium in the Atlantic Ocean and changes in the availability of fishing agreements giving access to the EEZs 

of certain countries (notably Senegal and Gabon in the Atlantic Ocean), though the analyses in this paper would 

suggest these are of lesser importance (Figures 9 & 10). Overall, these fishing strategy and effort distribution 

changes seem more plausible explanations of any observed trends than true changes in population size or 

distribution. 

 

Nevertheless, there are a few trends that merit further investigation and continued vigilance. The modest decline in 

the presence of (juvenile) BET in FOB sets in both oceans does not have an immediate explanation.   This 

could be related to technological changes in FOB fishing (e.g., the transition to echosounder buoys in ~2011-

2012) or a response to the total allowable catch for BET in the Atlantic Ocean, which has been in place for a long 

time, but was notably reduced in 2016 (ICCAT 2015). Nevertheless, overfishing of juvenile BET on FOBs cannot 

be eliminated as an explanation. The analyses carried out in this paper should be repeated in the future to assure 

that this observed decline does not continue and if so, to better understand its origins. 
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Similarly, there are some indications of declines in certain bycatch species, such as common dolphinfish, wahoo 

and billfishes. Nevertheless, the short temporal extent of observer data and its low coverage in the initial years 

of the time series put into doubt the robustness of these observed trends. Though bootstrapping approaches could 

be used to assess uncertainty in statistical indices and standardize across years, we suspect that these indices would 

simply tell us what we already know - that bycatch rates are highly stochastic and subject to considerable 

uncertainties. Furthermore, as our data do not include live discards, observed decreasing trends, particularly for 

larger bycatch species, could be in part or entirely explained by best handling practices for live release of certain 

species (e.g., sharks, rays and billfishes) put into place after ~2013 (Grande et al. 2020). Given these uncertainties, 

it is in our view best to continue to follow these trends into the future so as to have longer and more reliable time 

series with which to assess changes in the prevalence of bycatch species. Comparing trends including versus 

excluding live discards could also be informative. 

 

The statistical indices presented in this paper provide a standard set of tests that can be applied to data from a wide 

variety of fisheries to assess changes in the spatial distribution of catch of exploited species. Though not in and 

unto themselves useful as direct indicators of stock size or distribution, they can serve as red flags for changes that 

may be attributable to stock decline and hyperstability. As such, we believe that these simple statistical analyses 

should be a standard part of stock assessments both in tropical tuna fisheries and in many other fisheries worldwide. 
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Figure 1. Coverage of observer data in terms of number of positive (for tuna) sets, fraction of all positive sets 

in the fishery, area and fraction of the total area explored by the fishery over time by ocean and fish school 

type. Fractions are calculated with respect to all European positive sets even though observer bycatch data is 

derived exclusively from French purse-seine vessels. 

  



 

535 

 
Figure 2. Catch per species as a function of year, ocean, and school type. Note that vertical scales differ between 

the bottom and top row of panels. 

 
 

 
 

Figure 3. Fraction of catch by species as a function of year, ocean and school type. 
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Figure 4. Number of "positive" sets as a function of year, ocean, school type and species. Note that vertical scales 

differ between the bottom and top row of panels 

 

 

 
 

Figure 5. Fraction of sets in a given year that are positive for each species as a function of ocean and school type. 
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Figure 6. Catch of each species per set as a function of ocean and school type. Note that only non-null sets, i.e., those 

sets having a total catch >1 tonne, are included in the count of the number of sets. 
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Figure 7. Total area over which the European fleet had at least one positive fishing set as a function of ocean, school 

type and year. Note that area is in units of 1x1 grid cells at the equator. 
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Figure 8. Minimum area representing at least 90% of the total catch as a function of ocean, school type and year. 

Note that area is in units of 1x1 grid cells at the equator. 
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Figure 9. Total area over which the European fleet had at least one positive fishing set in the Atlantic Ocean as a 

function of period (moratorium or not), school type and year. Note that area is in units of 1x1 grid cells at the 

equator. The FOB-fishing moratorium from 2009-2011 corresponded to the months November-January 
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Figure 10. Differences in the distribution of European purse seine FOB fishing for the periods 2000-2004 and 2010-

2014. Light green corresponds to areas fished at some point during 2000-2004, but not in 2010-2014. Light yellow 

corresponds to areas fishing during 2010-2014, but not 2000-2004. All other areas within the black polygon were fished 

in both years. The red dashed line indicates the November-January FOB-fishing moratorium zone in vigor 2009-2011. 
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Figure 11. Ratio of aD90/aAO for total catch (i.e., rD90) as a function of ocean, school type and year. 
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Figure 12. Absolute area of occupancy (aAO) as a function of year, species, ocean and school type. 

 

 

 
Figure 13. Relative area of occupancy (rAO) as a function of year, species, ocean and school type.  
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Figure 14. Minimum area representing 90% of catch (aD90) as a function of year, species, ocean and school type. 

 

 

 
 

Figure 15. Minimum area representing 90% of catch relative to the total area explored by the fishery in a given year 

(rD90) as a function of year, species, ocean and school type. 
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Figure 16. Standard Gini coefficient of catch per cell as a function of year, species, ocean and school type. Values 

close to 1 indicate fishing that is highly concentrated or otherwise very heterogeneous over space 

 

 

 
Figure 17. The Gini segregation index (GSI) of catch per cell as a function of year, species, ocean and school type. 

Values close to 1 indicate years that the spatial distribution of catch is highly different from other years, either 

because of concentration or fishing being in unique spatial areas. 
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Figure 18. Spatial patterns of observer data coverage by ocean and period. Data is broken down into two periods: 

2011-2013 and 2014-2019, corresponding to periods of low and high observer coverage, respectively. Note that 

coverage values are colored by quartile of the data so as to better highlight spatial biases. 
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Figure 19. Total observer catch as a function of year, ocean, and species by school type. 

 

 

 
 

Figure 20. Fraction of sets with observer coverage in a given year that are positive for each bycatch species as a 

function of ocean and school type. 
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Figure 21. Relative area of occupancy (rAO) for bycatch species as a function of year, species, ocean and school 

type. 

 

 

 
 

Figure 22. Minimum area representing 90% of catch relative to total observed area (rD90) as a function of year, 

species, ocean and school type. 
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Appendix A 

Essential functions for calculating spatial indices 

 

 

 

 
 

# AO function - calculates both aAO and rAO 

area_occupancy = function(pos_sets,num_sets,area) { 

aao = sum( pos_sets / num_sets * area) 

rao = aao / sum(area) 

 
return(c(absolute.ao=aao,relative.ao=rao)) 

} 

 
# D90 function - calculates both aD90 and rD90 

d90 = function(catch,area) { 

I =  order(-catch/area) 
catch  =  catch[I] 

area  =  area[I] 

 
cs = cumsum(catch) / sum(catch) 

ad90 = cumsum(area)[min(which(cs>=0.9))] 

return(c(absolute.d90=ad90,relative.d90=ad90/sum(area))) 

} 

 
#  Standard  Gini  coefficient. Should  be  the  same  as  ineq::Gini 

my.gini.coefficient = function(x) { 
v1 = sum(outer(x,x,function(y1,y2) abs(y1-y2))) 

v2 = 2 * length(x) * sum(x) 

return(v1/v2) 

} 

 
# GSI following formulas in Duncan 1955 

my.gini.segregation.index = function(x) { 
#x  <-  OasisR::segdataclean(as.matrix(x))$x 

rs = rowSums(x) 

rs =  ifelse(rs==0,1,rs) 

x = x / rs 

x  =  apply(x,2,sort) 

myf = function(X) { 

s = sum(X) 
cumsum(X) / ifelse(s==0,NA,s) 

} 

 
y1  =  apply(x,2,myf) 

y2  =  apply(1-x,2,myf) 

 

n  =  nrow(y1) 

 
return(colSums(y1[-1,]*y2[-n,]-y1[-n,]*y2[-1,])) 

} 


