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A B S T R A C T   

Large-scale coastal bathymetry is paramount to understand natural and human-induced coastal behaviour and 
plays a vital role in coastal research and governance. Here, we use a recently developed algorithm, S2Shores 
(Satellite to Shores), to invert coastal bathymetry from wave kinematics, based on the linear dispersion relation. 
Wave numbers and celerity are extracted from optical Sentinel-2 imagery, by exploiting the small temporal offset 
between the image bands of its Multi-Spectral Instrument. Inverted depths are output at 200 m resolution, and 
individual depth points are merged to create a composite bathymetry using a weighted average of images from 
10 different dates. The resulting bathymetry mosaic spans 4000 km along the West African coast. S2Shores is 
able to detect depths up to 35 m, depending on mean incident wave conditions and cloud cover, which varies by 
location. Underwater features are well reproduced by S2Shores, such as flow channels in Guinea, the St. Ann’s 
Shoal in Sierra Leone, and ebb delta lobes at several outlets along the Niger River Delta. S2Shores results match 
well (r2 = 0.76, RMSE = 4.9 m) with a bathymetry survey along the Senegalese coast. As a difference with 
traditional satellite-derived bathymetry methods based on water colour, a wave-based approach allows esti
mations in turbid areas and relatively deep waters, which suggest that the two approaches are complementary 
and should be used in combination to cover coastal environments in their diversity. The new possibility offered 
by this regional coastal atlas opens the door to increased research and planning capabilities and sets an example 
that can be applied to the rest of the world.   

1. Introduction 

Accurate, highly resolved coastal bathymetry is a vital dataset 
heavily needed in science, industry, governance, and military applica
tions, as the change of bathymetry provides fundamental understanding 
of the natural behaviour of coastlines and the impacts of engineering 
projects, and it serves as a boundary condition for numerical studies 
(Cesbron et al., 2021). Traditionally, acoustic (single-track and multi- 
beam echo sounders) methods have been used to collect bathymetry 
data; but even with the best efforts, it is not cost-effective for mapping 
coastal areas on a regional or even global scale, as only 18% of the 
world’s oceans and 50% of coastal areas have been surveyed at 1-min 
(1.852 km) resolution (Becker et al., 2009; GEBCO Compilation 

Group, 2019). As such, the hydrographic community has turned to 
remote sensing techniques to help fill gaps between sparse records of 
acoustically-measured depths. The General Bathymetric Chart of the 
Oceans (GEBCO, GEBCO Compilation Group (2019)), one of few pub
licly available global bathymetry datasets, is created by using the gravity 
anomaly from satellite altimetry data, which is related to variations in- 
depth, to interpolate depths between in-situ soundings (Smith and 
Sandwell, 1997, 2004). As most soundings are located in deep oceanic 
waters, coastal areas (< 100 m depth) are often poorly resolved, espe
cially where there are abrupt changes in the shelf-slope, resulting in 
unrealistic representation of shallow features such as deltas and atolls. 
The quality of GEBCO depth estimates is also limited by the sparsity of 
its source data, especially in data-poor regions such as West Africa. 
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Coastal bathymetric surveys in this area are 30 years old on average (as 
shown in GEBCO metadata1). The lack of detailed coastal bathymetric 
data leads to unacceptable uncertainties in coastal wave and flood 
models, in subsequent risk assessments and forecasts, and currently 
limits the best coastal management strategies for the region (Ndour 
et al., 2018). 

Additional methods of direct depth measurement using Earth 
Observation remote sensing techniques are therefore needed to produce 
large-scale (i.e. regional to global) bathymetries (Benveniste et al., 2019; 
Melet et al., 2020; Salameh et al., 2019; Almar et al., 2021b; Cesbron 
et al., 2021). This may be achieved using aircraft and satellite laser 
(LiDAR) (Saylam et al., 2018; Abdallah et al., 2013; Parrish et al., 2019; 
Thomas et al., 2021) or satellite-derived bathymetry (SDB), either using 
radar (Stewart et al., 2016; Bian et al., 2020) or optical missions. For the 
latter, the two most advanced techniques which allow direct measure
ment of depth by satellite are water colour (Stumpf et al., 2003; Lyzenga 
et al., 2006; Lee et al., 2010; Hodúl et al., 2018) and wave kinematics 
(Poupardin et al., 2016; Danilo and Melgani, 2016; Almar et al., 2019a; 
Bergsma et al., 2019b). SDB methods which rely on colour and light 
absorption as a proxy from which to estimate depth are limited to 
shallow water with on average maximum detectable depths of approx
imately 15 m (Pacheco et al., 2015; Chénier et al., 2018; Traganos et al., 
2018). These methods are sensitive to local environmental conditions 
which affect water clarity, such as turbidity and bottom vegetation, and 
light absorption in the atmosphere. Methods using wave kinematics, on 
the other hand, exploit timing differences between a sequence of satel
lite images (or image bands) of the sea surface taken in rapid succession 
to detect the movement of surface waves. For example, satellite images 
from the Pleiades satellite mission (Airbus/CNES) can collect a burst of 
up to 12 very high-resolution (0.5 m) images timed 8 s apart Almar et al. 
(2019a), while the Multi-Spectral Instrument (MSI) of the Sentinel-2 
mission (ESA), collects surface reflectance data with a maximum 
1.005 s interval between 10 m resolution bands. Various analytic tech
niques can then be used to extract wave celerity data from the image 
sequences, either in the temporal (Almar et al., 2019a) or spectral- 
domain (Bergsma et al., 2019a, 2021). 

At regional to global scale, new LiDAR for bathymetry from IceSat-2 
Parrish et al. (2019); Thomas et al. (2021) but also colour-based 
methods in optical for there high resolution and also radar missions 
(like Sentinel-1) for cloudy environments seem very promising. With the 
advantages and disadvantages of each method/technology, the future 
lies in merging the estimates into a combined composite Earth obser
vations approach. For example, IceSat2 bathymetry or the colour-based 
method that are more likely to be obstructed by turbidity can be used to 
calibrate/validate the wave-based method or used in combination or 
sequentially as the applicability is exactly complementary: wave/non- 
wave moments. 

Here, we use a recently developed method for estimating coastal 
bathymetry using multiple (at least two) optical images (Bergsma et al., 
2019a, 2019b, 2021), in this case two Sentinel-2 colour-bands. The 
method, called Satellite to Shores (hereafter S2Shores), exploits the time 
difference between the blue and red bands (2 frames taken 1.005 s apart) 
to track the movement of surface waves over time and space. A novel 
localized Radon Transform combined with a Discrete fast Fourier 
Transform (DFT) technique is used to determine the dominant wave 
direction and corresponding wavelength and celerity at the peak image 
intensity. Water depths can then be inverted using the linear dispersion 
relationship. Using wave kinematics as input allows maximum depths up 
to 100 m to be detected (theoretically) under optimal wave conditions (i. 
e. long swell) (Bergsma and Almar, 2020). This technique can therefore 
be used to estimate the depth in most coastal environments exposed to 
waves without dependence on water clarity or atmospheric light ab
sorption, with depth outputs at resolutions up to 50 m. The method 

relies on the presence of waves which occurs worldwide along the 
coasts, with different frequency and characteristics (Bergsma and Almar, 
2020). 

Here we present the first regional SDB atlas along the West African 
coast (West Coast and Gulf of Guinea, from Senegal to Gabon). In this 
region, 253,970 km2 of the continental shelf lies within a depth range of 
0–100 m (coastal zone), based on GEBCO data. Of this coastal zone, 18% 
(70,700 km2) lies between 0 and 15 m depth — the theoretical sensing 
range of most colour-based methods, which may be even less after ac
counting for water quality along coastal West Africa. On the other hand, 
70% (178,060 km2) of the target area lies between 2 and 50 m depth — 
the average sensing range of most wave-based methods for this region 
(Bergsma and Almar, 2020). As this article follows from the work of 
Bergsma et al. (2019a, 2019b) and Baba et al. (2021) with further 
development of the S2Shores algorithm and its numerical implementa
tion, this work primarily details a methodology for pre-selection and 
post-processing of Sentinel-2 imagery in order to produce depth 
composites. 

2. Area of interest 

The area of interest (AoI) spans the coastal area of West Africa and 
the Gulf of Guinea between Senegal and Gabon (Fig. 1). This 4000 km 
length of coastline, covered by 73 Sentinel-2 tiles, consists of a wide 
range of coastal features and types, including long sandy beaches, bar
rier islands, rocky capes, offshore islands, estuaries, and deltas. The 
width of the shallow coastal zone in the AoI varies considerably. It is 
widest (< 25 km) in the deltaic region spanning the Gambia, Guinea- 
Bissau, Guinea and Sierra Leone (the Guinea Terrace) (McMaster 
et al., 1970; Anthony, 2004), and along the Niger Delta. It is mildly 
sloping in Senegal (10–20 km wide), the Bight of Benin and Bonny, and 
most narrow (> 5 km) along the coast of Liberia, immediately north of 
Dakar and around Bioko Island, Equatorial Guinea. 

The West African coast from Senegal to Liberia generally faces 
westerly Atlantic swells, while Ivory Coast to Nigeria is exposed to south 
Atlantic swells (Almar et al., 2019b). Cameroon to Gabon, in the Bight of 
Bonny (Biafra), is relatively sheltered by offshore islands (e.g. Bioko, 
Equatorial Guinea). Seasonality in wave conditions is observed along the 
entire West African coast. The Volta and Niger rivers produce the two 
largest deltas along the coast. Sediment supply from these deltas is 
constantly moved alongshore by long swell waves which drive persistent 
eastward longshore transport between Ghana and Nigeria (Anthony 
et al., 2016; Almar et al., 2015; Giardino et al., 2018). As such, these 
areas are susceptible to ongoing erosion at the western side and accre
tion at the east (Dada et al., 2016; Anthony et al., 2019). 

Mean cloud cover varies over the AoI, with occasional cloud cover at 
Senegal (coastal area in close proximity to the Sahara Desert), with <
20% coverage 50% of the time, and increasingly persistent cloud cover 
further south in tropical equatorial regions, especially in the Bight of 
Bonny, with up to < 80% coverage 50% of the time (Bergsma and Almar, 
2020). 

3. Data and methods 

Three main steps are followed in the production of depth estimates at 
a particular Sentinel-2 tile location: 1) pre-selection of images from the 
Sentinel-2 database, 2) running the S2Shores algorithm for each image, 
and 3) post-processing of raw depths in order to minimise errors and 
produce a final depth composite. In minimizing errors, GEBCO data is 
used as a first-order proxy for depth at the scale of the image tile. These 
steps, shown schematically in Fig. 2, are explained in detail in the 
following sub-sections. 

1 https://maps.ngdc.noaa.gov/viewers/iho_dcdb 
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Fig. 1. Area of interest in West Africa and Gulf of Guinea, from Senegal in the north to Gabon in the south. GEBCO bathymetry contours shown at 0, 25, 100 and 
1000 m depths. The 73 red squares show the group of Sentinel 2 coastal tiles making up the study area, along 4000 km of coastline. Each tile is 109×109 km. The 
name of each tile is constructed by using the UTM zone corresponding to the coordinates of its lower left corner as a prefix (UTM zone grid shown in white) and a sub- 
UTM zone identifier as a suffix (shown at the center of each square, in red). For example, 28PBB is the tile where Dakar, Senegal (the westernmost point in Africa) is 
located. Background image: MODIS Blue Marble, NASA Earth Observatory. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 2. An overview of the methodology for the derivation of bathymetry composites at Sentinel-2 tile locations.  
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3.1. Pre-selection of Sentinel-2 images 

The recently launched Copernicus Sentinel-2 Mission2 captures 
multi-spectral satellite image data at least every 5 days at the equator. 
There are therefore approximately 6 images per month at a particular 
location which may potentially be used for depth estimation. Each 
Sentinel-2 satellite image has 13 spectral bands with a footprint of 
109.8×109.8 km. Of the 13 spectral bands, four are sampled at 10-m 
resolution, of which three represent visible colours blue, green and 
red (bands 2–3-4, respectively), while band 8 represents the near- 
infrared (NIR) part of the electromagnetic spectrum. Data from bands 
2 and 4 are used in the S2Shores algorithm Bergsma et al. (2019a). 

The Sentinel-2 image database currently spans a period of 6 years 
from 2015 to present, resulting in at least 250 images per tile (single 
orbit). With such a large number of observations, a global analysis 
including all images will be inefficient and time consuming. We there
fore pre-select the best images for analysis by short-listing those which 
are most likely to produce the best results, viz. images which are rela
tively cloud-free, which have observable wave-fields (the greater the 
wave height, the better) and which have waves that travel at sufficient 
speed such that changes in phase can be easily detected (the longer, the 
better). The combination of these criteria makes the wave power (∝ 
height2×period) an obvious and effective proxy for selecting the best 
times for carrying out the analysis. As such, hindcast wave data from the 
European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 
global dataset (Dee et al., 2011; Copernicus Climate Change Service 
(C3S), 2017) was used to determine the background wave conditions 
and cloud cover for each image of the 72 selected West Africa tiles be
tween September 2015 and February 2020. The data was sorted to 
minimise cloud cover (top 50 per tile) and, subsequently, maximise the 
wave power (top 30 per tile). Wave power was chosen as an appropriate 
parameter to pre-select images based on the results of a multiple linear 
regression model, detailed in Appendix A. 

For analysis in S2Shores, following Baba et al. (2021), each top-30 
image is broken down into 36 18.3×18.3 km sub-images for parallel 
computation on a multi-core processor high-performance computing 
server (HAL, CNES). Depth estimates are produced on a 200×200 m 
output grid, with therefore just over 300,000 depth estimates per image 
(if completely covered by water). A global land mask at 150 m resolu
tion, produced by the ESA Climate Change Initiative3 (Lamarche et al., 
2017), is used to identify land areas which are excluded from the 
computations. For a detailed explanation of the computational imple
mentation of S2Shores, the reader is directed to Baba et al. (2021). 

3.2. Depth estimation using the S2Shores algorithm 

Depth estimates are produced according to the method outlined in 
Bergsma et al. (2019b, 2021), which uses a combined Radon and 
discrete fast-Fourier transform method (hereafter, RT and DFT), also 
known as Fourier-Slicing, to detect wave signals within a sub-window of 
the satellite image. Depth estimation is repeated for each sub-window 
around a point where one wants to know the depth (h). The sub- 
window should be large enough to contain 1–2 wavelengths (λ). Thus, 
a minimum window size of 300 m is used at the shoreline, and increases 
incrementally – following the formulation in Bergsma et al. (2019b) – up 
to a maximum of 900 m in areas farther from land (10 km), where depths 
are expected to be greater and wavelengths longer. The RT of the wave 
signal in the sub-window produces a sinogram of integrated pixel in
tensities per direction. The wave direction is determined as the angle 
corresponding to the maximum variance in the RT-sinogram. The DFT of 
the RT enables the spectral phase of the waveforms to be determined per 
direction, the difference of which (ΔΦ) can be found between several 

pairs of detector bands. Presuming that the wavenumber (k) is constant 
or near-constant over the sub-window, ΔΦ can be seen as representative 
of ω(t), and given that the timing between the different detector bands 
(Δt) is constant, the wave celerity (c) can be determined as: 

c =
ΔΦ
kΔt

=
ΔΦλ
Δt

(1) 

For each wave-number or celerity pair, (2) can be solved for depth. 

c2 =
g
k
tanh(kh)⇔ h =

tanh− 1
(

c2k
g

)

k
(2) 

Estimates of water depth, wave celerity, wavenumber (wavelength) 
and direction are output by the S2Shores algorithm at each point on an 
output grid with a resolution of 200 m. This output data is further 
treated as outlined in the section following. 

3.3. Post-processing of bathymetry estimates 

3.3.1. Vertical referencing 
Water depth estimates from S2Shores are, firstly, vertically refer

enced to mean sea level. Tidal elevation relative to mean sea level is 
obtained using the FES 2014 model (Carrere et al. (2016)) for each 
Sentinel-2 tile. The expected tide elevation is extracted for each date and 
location, and subsequently uniformly subtracted from the S2Shores 
depth estimates. 

3.3.2. Masking 
Masks are applied to the S2Shores output to remove unreliable depth 

estimates, primarily associated with clouds. Cloud masks are created 
using a simple threshold on the NIR band, assuming the majority of NIR 
radiation is absorbed by water bodies and reflected by clouds. A 
threshold of 0.02 is used on the normalized NIR reflectance (c.f. Banks 
and Mélin (2015)) to identify cloudy pixels, and areas within 100 m of 
such pixels are also masked. This NIR cloud mask removes most dense/ 
opaque clouds; however, light cirrus clouds are not easily detected. 
Therefore, pre-made cloud masks from the Sentinel-2 database (Coper
nicus Data Access Portal, 2020) are also used to augment the NIR cloud 
mask. An example of the application of the NIR and Sentinel-2 cloud 
masks is shown in Fig. 3. 

Output data are also masked where unrealistic depth or celerity es
timates occur. Given that the expected maximum (minimum) wave 
period is 25 (4) s, S2Shores should ideally detect wave celerity between 
4 and 34 m/s (± 10%). Depth estimates should also range from a min
imum of 1 m to a maximum corresponding to a third of the deepwater 
wavelength. Areas, where depth, celerity or wave period estimates are 
greater or less than these expected detection ranges, are removed from 
the analysis. 

3.3.3. Composite and mosaic 
In order to obtain a final bathymetry estimate for each of the 73 West 

Africa tiles, multiple images have to be used to create a composite in 
order to fill in potential data gaps caused by masking (similar to how a 
cloud-free image is created). Furthermore, a bathymetry composite 
created from an ensemble average of data at each point in the output 
grid is more robust than a single estimate, as it helps to minimise 
localized errors due to imperfections in the masks (for example, we can 
see that not all cloudy spots are completely removed in Fig. 3h–i). The 
best 10 of the 30 pre-selected images are used to create a depth com
posite for each tile. Three criteria are used to short-list the best 10 
S2Shores results: 1) a depth range score, 2) usable data remaining after 
masking, and 3) correlation with GEBCO. 

In the first step, we rank S2Shores depth estimates according to a 
depth range score and remove the lowest 7 images. The depth range score is 
calculated by comparing the depth ranges in the S2Shores results with 
the expected depth range from GEBCO in the target area of the image tile 

2 https://sentinel.esa.int/web/sentinel/missions/sentinel-2  
3 http://maps.elie.ucl.ac.be/CCI/viewer 
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where GEBCO depths range from 1 to 35 m. In doing so, therefore, 
GEBCO represents a first-order estimate of the expected depth range at a 
large scale (order of 100 km), given that it is mainly based on gravim
etry. Small scale variations and features are not of interest at this stage. 

The depth range score is based on the depth range corresponding to 
the difference between the 15th and 85th percentile depths for S2Shores 
and GEBCO in the target area. It is the ratio between the S2Shores and 
GEBCO depth ranges (the depth range ratio) that is scored on a scale 
between 0 and 1. Depth range ratios between 0.66 and 1.5 are scored at 1. 
The depth range score decreases linearly toward zero both as the depth 
range ratio tends downward to 0.1 from 0.66, and as the depth range ratio 
tends upward to 10 from 1.5. The depth range score is 0 elsewhere. This 
therefore favours S2Shores estimates that have fairly similar depth 

ranges as GEBCO at large scale, and eliminates those that significantly 
over- or under-estimate the expected depth range. 

In the second step, we rank the S2Shores results according to most 
amount of data remaining after masking, and remove the lowest 7 im
ages. In doing so, we favour S2Shores estimates that have the lowest 
cloud cover and thus the least amount of data gaps. In the third and final 
step, we rank according to the correlation with GEBCO and remove the 
lowest 6 images, ensuring the best images are used to create the com
posite. The correlation is determined in the target depth area between 1 
and 35 m over the image tile. 

Once the best 10 S2Shores depth estimates have been short-listed, 
the weighted average of the depth at each point in the output grid is 
found. The weighted average is normalized by the correlation with 

Fig. 3. An example of raw data output from the S2Shores algorithm. True colour images are shown for tile 28PBA (southern Senegal) taken on 13 April 2016 (a), 20 
October 2017 (b) and 12 June 2018 (c). Image (a) is cloud-free, while (b–c) have mixed light and dense cloud cover. Raw output from S2Shores (panels d–f for each 
date, respectively) shows that depth estimates are degraded where there is cloud cover. Panels (g–i) show the result of applying cloud masks (also shown as while 
contour line in panels(d–f)). For reference, GEBCO depth contours (25, 50, 100 and 1000 m) are shown in (d–i) as shades from light pink (25 m) to red (1000 m). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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GEBCO, with more highly correlated depth estimates contributing more 
to the average. It should be noted that the weighted average is only 
computed once there are more than 3 valid data points after masking (if 
less, the depth is left blank). The final step in creating the composite is to 
smooth the (temporally) weighted depth at each output point with 
neighboring points in space (within 2 grid cells, or a 400 m radius) using 
a median filter in order to reduce the appearance of artifacts. The final 
73 depth composites are then tiled together to create a depth mosaic for 
the entire study area. 

3.4. Comparative bathymetry datasets 

S2Shores depth estimates have to be compared to measured data to 
determine its quality. Besides GEBCO, publicly available coastal ba
thymetry datasets are difficult to source for the study area and tend to be 
quite dated. Privately held data at the French Naval Hydrographic and 
Oceanographic Service (SHOM) was obtained for the Senegalese coast 
(hereafter referred to as the ‘available data’), but not for the remaining 
portions of the West African coast. Therefore, comparisons made with 
the available data at the Senegal hot-spot will help to show the accuracy 
of the S2Shores results, while more general comparisons with GEBCO 
are made elsewhere. The spatial resolution of GEBCO data is 0.0042◦

(approximately 460 m at the equator). This means that for comparison 
to S2shores output, GEBCO data is down-scaled to the S2Shores 200 m 
output grid by interpolation. 

4. Results 

4.1. Regional West African bathymetry 

S2Shores estimates of the regional West African bathymetry are 
shown as a mosaic for all 73 selected Sentinel-2 coastal tiles (Fig. 4). 
Depths are shown up to a distance of 15 km offshore, or to the extent of 
the 50 m contour line in GEBCO (whichever is greater). At this scale, it is 
possible to observe the extent of the upper, shallow portion of the shelf. 
It is widest between Guinea-Bissau and Sierra Leone, and at the Niger 
Delta, and most narrow between Liberia, Ivory Coast and Ghana. Deep 
features (> 30 m depth, such as submarine trenches) are not easily 
distinguished from the general background. However, more shallow 
features, such as ebb delta channels around the Bissagos Islands (Guinea- 
Bissau) and the St. Ann’s Shoal in Sierra Leone are captured very well. 

4.2. Illustrative zoom at hot-spots 

Six ‘hot-spots’ are identified within the AoI, covering a varied range 
of coastal types. They are, namely, Senegal, Guinea, Sierra Leone, Volta 
Delta, Niger Delta, and Cameroon. The hot-spots are excellent test sites 
for the S2Shores algorithm because of the diverse range of coastal fea
tures, wave exposure and cloud cover at each location. 

Fig. 5 shows close-ups of the S2Shores depth composites at the six 
hot-spots compared to GEBCO, highlighting the ability of the model to 
discern depth patterns at a sub-regional scale. Here, the data is shown at 
200 m resolution and (at least) out to the 50 m GEBCO depth contour. To 
highlight even more detail of the resulting S2Shores bathymetry esti
mates, Fig. 6 zooms in further to the scale of a single tile at each hot-spot, 
and then further to a local 15×15 km area to highlight significant 

Fig. 4. Mosaic of S2Shores bathymetry composites for the West Africa Region. Colour scale shows depths between 0 and 30 m, the black line shows the shoreline, and 
UTM zone boundaries shown in white. Red boxes outline the area of the six hot-spots. Background image: MODIS Blue Marble, NASA Earth Observatory. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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shallow water features. Some of these shallow water features between 1 
and 15 m are well detected by S2Shores, such as flow channels in 
Guinea, the St. Ann’s Shoal in Sierra Leone, and ebb delta lobes at 
several outlets along the Niger River Delta. 

The best comparison between GEBCO and S2Shores is at Senegal 
(Fig. 5 a–b). As mentioned in Section 3, this section of the West African 
coast is exposed to long-period Atlantic swell. This, coupled with low 
cloud cover on average, allows S2Shores to predict smooth transitions 
from deep to shallow water. The area immediately south of the Dakar 
peninsula is well-predicted, despite it causing some degree of wave 
shadowing for incident wave fields from the north. The shallow area of 
the remaining portion of the coast in the south broadens as expected, 
heading toward the deltaic region of Guinea-Bissau. Maximum depth 
estimates at this location are approximately 30 m. 

At the Sierra Leone and Guinea hot-spots (Fig. 5 c–d and g–h), 
shallow features present on the wide continental shelf are detected by 
S2Shores. Channel features at the Guinea hot-spot are more clearly 
resolved by S2Shores than GEBCO, although they appear deeper. GEBCO 
depths for the same area are spotty and irregular, with little semblance 
of natural flow channels. The defining shallow water feature at the Si
erra Leone hot-spot is the St. Ann’s shoal, located north-west of the 
Turtle and Sherbro Islands. Here, rhythmic underwater dune features 
are discernible in the S2Shores results, with heights between 8 and 12 m 
and wavelengths of 6–7 km. Predicted S2Shores depths on the wide 

continental shelf around the Guinea and Sierra-Leone hot-spots are 
limited by its inherent shallowness, with depth saturation around 26 m. 
However, the southern edge of the shelf in Sierra Leone is clearly shown 
down to depths of 33 m. 

Maximum depth estimates at the Cameroon hot-spot (Fig. 5 k–l), 
located in the Bight of Bonny, are around 30 m. This area generally has 
lower wave periods and a considerable reduction in usable data after 
cloud masking compared to other hot spots. However, despite the year- 
round high cloud cover, quite good estimates of shallow nearshore banks 
at the entrance to the Wouri estuary are obtained, as can also be seen in 
GEBCO (Fig. 6k). On the other hand, high cloud cover does affect depth 
estimates in other areas, enough to leave data gaps in certain spots after 
masking (e.g. Fig. 6k). Depths along the narrow shelf around Bioko Is
land (Equatorial Guinea) show a transition from deep to shallow on the 
eastern side of the island, but not on the western side where, in fact, they 
deep areas are predicted to be shallow. 

At the Volta Delta, S2Shores shows similar depth patterns as GEBCO 
around the offshore apex of the delta. The shelf is wider in the west, 
extending up to 20 km offshore, and is about 10 km in the east. S2Shores 
is able to sense depths down to around 30 m, and detects where there is a 
sharp change in depth at the shelf edge, which starts to drop steeply after 
25 m depth (Fig. 6g–h). The Niger Delta area is also nicely estimated by 
S2Shores, with deep channels seen at the mouth of the Niger river at 
Forcados, and crescent-shaped outer delta lobes at several other mouths 

Fig. 5. Comparison between S2Shores bathymetry composite and GEBCO for the six hot-spots. (a-b) Senegal (tiles 28PCC, 28PBB, 28PBA, 28PBC and 28PCA). (c-d) 
Sierra Leone (tiles 28PFQ, 28PGQ, 28NFP and 28NGP). (e-f) Volta Delta (tiles 30NBG and 30NCG). (g-h) Guinea (tiles 28PDS, 28PTS, 28PET and 28PDT). (i-j) Niger 
Delta (tiles 31NHE, 31NGE and 31NGF). (k-l) Cameroon (tiles 32NNK, 32NNJ, 32NMK and 32NMJ). Colour scale shows depths between 0 and 30 m, and the 
shoreline is traced in black. For reference, GEBCO depth contours (25, 50, 100 and 1000 m) are shown as shades from light pink (25 m) to red (1000 m). Background 
image: MODIS Blue Marble, NASA Earth Observatory. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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such as at Digatoro, Sangan, Nun and Brass (Fig. 6i–j). Shallow areas 
(down to 20 m) tend to be slightly over-predicted compared to GEBCO, 
and depths begin to saturate at around 33 m. 

4.3. Quantitative comparison with bathymetric data at Senegal 

The quality of the S2Shores results is assessed by comparing output 
at the Senegal hot-spot to the available independent bathymetric data. 
High correlation coefficients (r2) are obtained for depths between 1 and 
35 m, with a value of 0.76 when compared to the available data. For the 
same depth range, RMSE is 4.9 m and the linear best-fit has a gradient of 
0.62 and an intercept of 8.1 m. A scatter plot of the results in Fig. 7 show 
that S2Shores tends to overestimate very shallow depths < 10 m. 
Offshore depths in S2Shores also become saturated at around 30 m, 
beyond which it will largely underestimate the true depth. This response 
is expected, however, as ever longer waves are required to sense small 
changes in celerity in deeper water. Despite this, depths between 10 and 
30 m are fairly well predicted, where majority of the depth estimates lie 
close to the target depth. There, the absolute error is approximately 18% 

of the target value on average, with the RMSE and bias being 4.0 and 1.3 
m, respectively. 

4.4. Qualitative comparison with chart data 

Qualitative assessment of S2Shores results can be made by 
comparing it to the position of 10, 20 and 30 m depth contour lines from 
chart data.4 Available chart data only covers a very small portion of the 
area of interest, in parts of Gabon, Guinea, Nigeria, and Togo (Fig. 8). 
Given the limited coverage of the chart data, it does not give an overall 
view of the performance of S2Shores, but is still useful to note areas 
where it may or not perform well. 

For locations along the coast of Gabon, S2Shores depth estimates 
around 10 m (interface between green and yellow patches) correspond 
quite well with the 10 m chart data contour (Fig. 8a, b), where 

Fig. 6. Illustrative S2Shores bathymetry highlighting local features at each of the 6 hot-spots. Columns one and three (a, c, e, g, i and k) show composite depths 
results at tiles 28NGP, 28PBA, 28PDT, 31NBG, 31NHE and 32NNK, located at the Sierra Leone, Senegal, Guinea-Bissau, Volta Delta, Niger Delta and Cameroon hot- 
spots, respectively. The red squares indicate an area of 15×15 km, shown in further detail in columns two and four (b, d, f, h, j and l) for each hot-spot, respectively. 
For reference, GEBCO depth contours (25, 50, 100 and 1000 m) are shown in columns one and three as shades from light pink (25 m) to red (1000 m). The colour 
scale shows depths between 0 and 30 m for each image tile (columns one and three) and between 5 and 25 m at the local zoom (columns 2 and 4). The black line 
shows the shoreline and grey shaded areas are land. White areas indicate locations where there was insufficient data to generate a composite depth after masking. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

4 The authors have only obtained permission to reproduce small segments of 
the original charts. 
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horizontal offsets generally range between 0 and 5 km. Along 30 km of 
the coast at Lomé, Togo, the 10 m chart data contour line lies approxi
mately 5 km onshore of S2Shores predictions. S2Shores performs poorly 
in some sheltered areas, such as Iles de Los, Guinea (Fig. 8c). There, 
S2Shores largely overestimates shallow depths (<5 m) due to wave 
shadowing from the island archipelago. Along 110 km of the coast of the 
Niger Delta, Nigeria (Brass to Bonny River), the 10 m chart data contour 
lies within 2 km of S2Shores estimates (Fig. 8f), but in other areas 
(Pennington to Nun River), it is up to 10 km offshore (Fig. 8e). While 
these results therefore indicate mixed performance of S2Shores, it also 

highlights the need for greater availability of measured bathymetric 
data to further validate the performance of the S2Shores algorithm. 

5. Discussion 

5.1. Depth application range 

Our results show that S2Shores is able to detect depths down to 35 m 
(where we observe a deep water plateau), as is the case for Senegal 
which generally experiences long swell and generally low cloud cover 
for most of the year. Furthermore, the estimation of depth over such a 
large area for the West African coastal zone, O(100,000 km2), is quite 
unique for SDB methods, which are normally carried out in very local
ized areas O(1,000 km2). For the hot-spots, depths between 10 and 30 m 
are well estimated and many shallow underwater features are apparent. 
This limit goes beyond Lidar observed penetration over regional scale 
which extends up to 26 m Thomas et al. (2021) and with colour-based 
methods around 15 m for non-clear waters (Stumpf et al., 2003; 
Lyzenga et al., 2006; Lee et al., 2010; Hodúl et al., 2018). 

The deepwater limit of 35 m found here is less than the theoretical 
limit of approximately 55 m for West Africa, under ideal wave condi
tions (Bergsma and Almar (2020)). This reduction in the offshore limit is 
partly due to the small number of images used in creating the depth 
composite (only 10), but also the effect of masking out clouds, as shown 
in Bergsma and Almar (2020). If a larger number of observations were 
used in making the composite, the probability of retrieving better deep- 
water estimates under ideal wave conditions would be increased. This is 
an issue of limited computational resources rather than the method 
itself. 

In addition, the underestimation in deep water is also due to the fixed 
size of the average computational window, which automatically pre
vents capturing the longest waves. In addition, shorter waves have a 
stronger signature than longer, relatively flat waves, resulting in a 
higher weight in the wave spectrum, which may influence the peak 
frequency taken by our spectral method to invert the depth and thus the 
underestimation. All of these factors combined result in a plateau 
around 35 m in our data. In addition, any inaccuracy in the wave pa
rameters leads to large discrepancies in the estimate of deep water ba
thymetry. The overestimation of the shallowest areas is due to the 

Fig. 7. Scatter plot of S2Shores depth estimates against available data at 
Senegal. Black line indicates the target depth (1:1 comparison), the red line 
shows the mean trend of the S2Shores estimates in 5 m-wide bins, and the red 
circles show the standard deviation about the mean of each bin. Over the 1-35 
m range, r2 

= 0.76 and RMSE = 4.9 m. Colour scale indicates the density of 
points within a 1 m2 area of the plot. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 8. Comparisons between S2Shores results and available chart data for: (a) Port Gentil, Gabon; (b) Libreville, Gabon; (c) Iles de Los, Guinea; (d) Lomé, Togo; (e) 
Pennington to Nun River, Nigeria; and (f), Brass to Bonny River, Nigeria. S2Shores data is classified in colour bands (blue to red), while contour lines (10, 20 and 30 
m) shown from chart data for reference. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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optical artifact of the land and wave breaking which is similar to the 
actual incident waves but with a longer signal. 

As seen in the results, S2Shores tends to overestimate depth in very 
shallow water. This is caused by a number of factors, most importantly 
1) perturbations from the shoreline found within the computational sub- 
window (~1 km2), 2) varied pixel intensity maxima around areas of 
wave breaking, 3) limitations of the 10 m Sentinel-2 pixel footprint in 
determining changes in wave phase, especially in areas where waves 
travel at sub-pixel speeds. These factors tend to lead to false estimates of 
deep-water in areas that are shallow, and can affect neighboring points 
when spatial smoothing is done over a large area. This effect is seen in 
Fig. 6c–d at tile 28PBA, where depths get shallower moving onshore, 
then deeper again just around the shoreline. Additional techniques to 
account for these issues can be implemented, as are currently being 
studied by Bergsma et al. (2021). 

5.2. Comparison with colour-based methods 

Colour-based SDB methods are able to detect depths in shallow areas 
up to 15 m deep, and with exceptionally fine resolutions around 5 m. 
Absolute errors are generally 18% of the target value, with an average 
RMSE of 1.5 m (Pacheco et al., 2015; Ch́ enier et al., 2018; Traganos 
et al., 2018). On the other hand, the detectable depth range for S2Shores 
is 2.5 times greater than the typical range of colour-based SDB methods 
(Caballero and Stumpf, 2019); however, S2Shores currently largely 
overestimates depths in shallow water <10 m. These estimates largely 
improve in intermediate water (10–30 m), where absolute errors are 
within 18% of the target depth and RMSE is 4 m. S2Shores depth esti
mates can be output at resolutions down to 50 m, but would require 
significant computational effort when applied over a very large area. 

The real difference between the wave-based and colour-based SDB 
methods perhaps does not come from their error values, but rather on 
their application. The S2Shores algorithm works well in conditions 
where colour-based methods would fail, namely in turbid or optically 
deep water (which is most of the West Africa coastline). But at the same 
time S2Shores would fail in environments where colour-based methods 
work well; namely in archipelagos, behind reef crests, in narrow bays, 
fjords, and other closed environments sheltered from waves. The finer 
resolution of colour-based SDB data would allow sharp changes in depth 
to be better resolved, especially since wave-based methods are inher
ently physically limited by the wavelength and the time for waves to 
respond to a varying bottom. 

Given that both methods are fairly similar in terms of accuracy, they 
can be used in combination to detect bathymetry from very local to 
regional scales, since where one method may fail the other would work 
well. This would permit exceptional coverage of diverse coastal condi
tions from shallow to relatively deep waters. 

5.3. Dependency of quality on meteorological conditions 

The S2Shores algorithm produces useful estimates once a distinct 
wave-field can be observed. The mean period of swell waves, the wave 
power, directional spreading, and cloud cover are among the most 
influential parameters affecting the quality of the S2Shores estimates 
(see detailed analysis in Appendix A). Powerful swell waves (with large 
heights and long wavelengths/periods) travel faster than the back
ground wind waves and are more easily detected in the algorithm 
(Bergsma et al., 2019a). These waves also allow for deeper estimates of 
depth. Narrow banded swell reduces potential cross-sea patterns, which 
may create multiple peaks in the directional space of the pixel intensity. 
Furthermore, short steep waves (even if they are less energetic) may 
have a larger optical signature than longer, flatter waves, which can 
result in an under-estimation of the depth (Almar et al., 2021a). While 
opaque clouds block the view of the sea surface, light cirrus clouds, fog 
or atmospheric dust also obscure the field of view and lead to unreliable 
depth estimates. 

5.4. Perspectives 

The ability to frequently and accurately monitor bathymetric 
changes over large scales will significantly help to broaden our under
standing of dynamic coastal processes and their coupling to large-scale 
forcing conditions (Bergsma et al. (2022)). While we have currently 
used images taken within a 5-year period, S2Shores composites 
computed over shorter time periods will offer the possibility to create 
unique time series of bathymetry and thus observe dynamic changes of 
shallow water features, such as delta formations or underwater dune 
migration. As such, annual, seasonal or even monthly depth composites 
can be generated. 

Decreasing the period over which images are used to construct a 
composite would tend to reduce the signal to noise ratio, as the proba
bility of occurrence of successive high energy wave conditions (and 
jointly, low cloud cover) over a shorter space of time is reduced. The 
ability to detect bathymetric changes also depends on the local depth of 
closure (Bergsma and Almar (2020)), as such changes tend to be more 
rapid in shallow rather than deep water. Nonetheless, depth changes 
may still be detected over the entire water column at various timescales 
with adaptive windowing. 

Finally, the 73 Sentinel-2 tiles selected for the West Africa atlas 
represents 1% of the global list of Sentinel-2 coastal tiles with depths up 
to 100 m. With such promising results as shown, there is definite po
tential for the method to be further applied on a global scale Almar et al. 
(2021b). The spatial resolution of the estimates may also be decreased 
from the 200 m used for this study. For instance, initial tests were carried 
out on a 100 m grid. A lower limit of 50 m is possible, and would 
potentially permit the visualisation of bottom features such as sandbars. 
However, it would come at a much higher computational cost, and 
would therefore be more suited for generating datasets at a local level. 

6. Conclusion 

Most coastal areas in the world suffer from a lack of bathymetry data, 
with no or decades-old observations. Satellite Earth observation opens 
the new era of measuring coastal bathymetry from space. Commonly 
used colour-based depth inversion methods are often limited in turbid 
coastal areas. However, the recently developed S2Shores algorithm, 
based on extracting wave kinematics from within Sentinel-2 multi- 
spectral image bands, has been used to produce unprecedented fine 
resolution O(100 m) regional-scale coastal bathymetry from satellite 
along 4000 km of the West African coastline and almost 70% of the 
coastal zone of the continental shelf. The method is able to detect depths 
down to 35 m, and while shallow depths below 10 m tend to be over
estimated at present, intermediate waters between 10 and 30 m are 
fairly well estimated. Future work will investigate the potential of the 
method to monitor the dynamics of coastal features, such as deltas, 
shoals and underwater dunes. This new Coastal Atlas of West Africa 
opens the door to increased research and planning capabilities for the 
region, and sets an example that can be applied to the rest of the world, 
on a regular basis. 
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Appendix A 

As mentioned in §3.1, images are pre-selected from the Sentinel 2 image database based on minimizing cloud cover and maximising wave power. 
However, there are certain aspects of the (oceanic) wave field and (atmospheric) weather patterns that may (or not) contribute to providing good 
conditions for which bathymetry may be extracted. Here, we further assess which wave and weather (i.e. meteorological) parameters have discernible 
impacts on the quality of S2Shores results, and what are the best methods to describe the related depth errors.

Fig. A.9. Comparison of qualitative and quantitative error descriptors for 1 year’s worth of S2Shores depth estimates at the Senegal hot-spot. Panels a-d show bias 
(Ebias), root-mean-square error (Erms), linear regression slope (β), and correlation (r2) values, respectively, classified as ‘good’, ‘fair’ and ‘bad’. 

Firstly, one years’ worth of Sentinel-2 observations (January 2018 to January 2019) at the Senegal hot-spot were analysed (72 images tiles at 
28PCC). Quantitative errors for S2Shores depth estimates relative to available data were calculated using several descriptors, namely the bias (Ebias), 
root-mean-square error (Erms), coefficient of determination (r2), and slope of the linear regression (β). Cloud masks were applied to the input data and 
errors were computed in locations where S2Shores estimates were <100 m (i.e. the theoretical depth limit of the S2Shores method). A qualitative 
description of the error was also attached to each depth estimate to signify whether the S2Shores result was ‘good’, ‘fair’ or ‘bad’. ‘Good’ estimates had 
clear transitions of depth from shallow to deep, ‘fair’ results tended to be monotonous, and ‘bad’ results had significant depth artifacts (mainly as a 
result of high cloud cover coupled with imperfect cloud masks). Fig.A.9 shows that ‘good’ estimates tend to have lower Ebias and Erms values and higher 
β and r2 values compared to ‘fair’ or ‘bad’ estimates. 

Further, several meteorological parameters were defined from wave and weather data available from the ERA5 database (Dee et al., 2011; 
Copernicus Climate Change Service, 2017). Base parameters include the total significant wave height (Hs), peak wave period (Tp), mean wave period 
(Tm), zero-crossing wave period (Tz), wave energy (E), wave power (P), wave direction (D), directional spreading (Dspr), wave steepness (S), wind 
speed (W10), and wind direction (W10, dir). Base parameters related to waves were further separated into wind sea and swell components (denoted by 
subscripts w and s). Additional parameters were computed, namely the differences between wind and wave directions, and the ratios of E, P and Hs 
between wind sea and swell conditions. 

A total of 30 defined meteorological parameters were input in a multiple linear regression (MLR) model to determine the strength of their rela
tionship with each of the four defined quantitative S2Shores error parameters, and thus, to determine which are most influential. Results from the MLR 
analysis rank each of the defined meteorological parameters using correlation coefficients. r2 values above 0.25 indicate that a significant portion of 
the variance in the error parameter can be explained by a certain meteorological parameter. From this analysis, the only error descriptors which have 
associated meteorological parameters with r2 > 0.25 in the MLR model are Ebias and r2. The parameters recognised as contributing most to the 
S2Shores Ebias and r2 error estimates are Hs, s, Tz, Tm, s, E, Es, P, Ps, and Dspr (Fig.A.10). 
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Fig. A.10. Result of the MLR model between defined meteorological parameters and S2Shores error parameters r2 (panel a) and Ebias (panel b) at the Senegal hot- 
spot. Red bars indicate meteorological parameters which significantly contribute to the variance of the defined S2Shores error parameters. Only the top 15 mete
orological parameters are shown in each case. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

The MLR therefore indicates that the presence of energetic, swell type conditions with low directional spreading produce the best results in 
S2Shores. Furthermore, clear differences between the average values of estimates quantitatively classified as ‘good’ and ‘fair’ can be seen when the 8 
significant meteorological parameters are plot over time (Fig.A.11 a-h). Certain other parameters, such as W10, do not produce clear distinctions 
between the quality of the result (Fig.A.11 i). In conclusion, wave power was selected as the parameter to define appropriate wave conditions to be run 
in S2Shores (in addition to low cloud cover) for locations in our area of interest in West Africa, especially as it is strongly related to other important 
parameters such as wave energy, height and period. While the analysis is specific to the Senegalese coast, we assume that the findings also generally 
apply to the entire area of interest.

Fig. A.11. The top 8 meteorological conditions identified from the MLR model plot as a function of time (panels a-h, Dspr, Hs, s, E, Es, P, Ps, Tz, and Tm, s, respectively). 
Panel i shows W10. Blue and red circles represent times where the depth estimates were classified as ‘good’ and ‘fair’, respectively. The blue and red dashed lined 
indicate the mean value of the ‘good’ and ‘fair’ depth estimates, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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