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Abstract: Snakebite envenomation is a neglected tropical disease that causes over 100,000 deaths each
year. The only effective treatment consists of antivenoms derived from animal sera, but these have
been deemed with highly variable potency and are usually inaccessible and too costly for victims.
The production of antivenoms by venom-independent techniques, such as the immunization with
multi-epitope constructs, could circumvent those drawbacks. Herein, we present a knowledge-based
pipeline to prioritize potential epitopes of therapeutic relevance from toxins of medically important
snakes in West Sub-Saharan Africa. It is mainly based on sequence conservation and protein structural
features. The ultimately selected 41 epitopes originate from 11 out of 16 snake species considered of
highest medical importance in the region and 3 out of 10 of those considered as secondary medical
importance. Echis ocellatus, responsible for the highest casualties in the area, would be covered by
12 different epitopes. Remarkably, this pipeline is versatile and customizable for the analysis of snake
venom sequences from any other region of the world.

Keywords: antivenom; snake bites; snake venoms; snakes; B-cell epitopes; Sub-Saharan Africa

Key Contribution: We present a list of snake venom epitopes that could be used as a base to generate
poly-specific antivenoms without the need to use raw snake venom.

1. Introduction

Snakebite envenomation is a deadly condition categorized as a neglected tropical
disease by the WHO since 2017 [1,2]. It disproportionately affects tropical countries in
Africa, Asia, Central and South America, and Oceania, yearly causing over 100,000 deaths
and permanently disabling ~400,000 people [3]. At present, the only effective therapeutic
treatment are antivenoms derived from immunized animal sera, a technique developed
more than a century ago [4]. However, a decades-long widespread antivenom crisis
prevents effective treatment for snakebite victims in poorly developed countries in terms
of both availability and quality of the products [5,6]. An important factor in this crisis is
that the current manufacturing process entails recurrent mild inoculations of large animals
with venom extracted from snakes kept in captivity. This involves high production and
distribution costs, in large part because the manufacturing processes and premises are often
unavailable in the regions in most need of the antivenoms [6].

As a result of predator–prey coevolution dynamics, snake venoms are cocktails of pep-
tides and proteins from different protein families, with each snake species having different
proportions of each protein family [7]. Even within the same species, venom composition
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varies in geographically unrelated animals [8,9]. Currently, the WHO guidelines for the
production, control and regulation of snake antivenom immunoglobulins recommend the
mixing of venom from different origins, ages and sexes to compensate for this (World
Health Organization, 2017). However, usually, it is just a few of the proteins in the cocktail
that are responsible for the majority of the envenomation symptoms, but antibodies in an-
tivenoms are generated against the whole range of molecules in it [10]. Venom-dependent
antivenom production does not compensate for this, which might result in less effective
products and higher dosages needed, with the associated higher risks of adverse effects and
increased treatment costs [6,11]. To bypass these shortcomings, several venom-independent
approaches are being evaluated [12], although no commercialized product has yet been
approved based on them. One of the most promising strategies stands on the use of genetic
immunization with constructs encoding the specific venom toxins of interest [12]. Instead
of using peptides or full-length recombinant proteins, which synthesis or expression is
highly costly, synthesis of DNA is comparably cheaper. Interestingly, previous studies have
demonstrated that sera produced upon plasmid DNA (pDNA) immunization can neutralize
snake venom deleterious effects, either using whole toxin cDNA as immunogen [10,13–15]
or genetic constructs carrying multiple epitopes from specific toxins [16,17].

Remarkably, multi-epitope genetic constructs may contain dozens of epitopes from mul-
tiple origins, which upon delivery would be able to elicit a targeted response against them.
Thanks to the availability of several bioinformatics tools, the selection of those epitopes can
be undertaken computationally at a low cost, for instance, guided by sequence conserva-
tion criteria and protein toxicity features. Indeed, a multi-epitope construct that takes into
account these requirements could, in theory, neutralize the venom from any given species, in-
dependently of their geographical origin. Not only that, considering that cross-neutralization
has been observed in previous experiments with pDNA immunization [13,15,17], if the cor-
rect selection of epitopes is achieved, a single construct would have the potential to provide
coverage against envenomation by several snake species.

In this study, we present a flexible and versatile computational pipeline that relies
on publicly available snake venom protein sequences and bioinformatics resources for
the analysis and selection of a series of peptides of interest to be carried on by a pDNA
construct. Such selection relies on a knowledge-based strategy encompassing evolutionary
conservation, protein annotation and lack of sequence identity with susceptible preclinical
evaluation models or antivenom-producing hosts. Furthermore, for the prediction of B-cell
epitopes, we concede major relevance to the availability of 3D structures or high-quality
models to follow a structure-based approach [18]. We use venom proteins from West
Sub-Saharan African medically important snakes as input for the pipeline as the first step
towards the hypothetical development of a novel epitope-based antivenom product. For
this, we ultimately provide a curated list of 41 B-cell epitopes found in 42 different proteins
from 14 distinct snake species, which, encompassed in a pDNA construct, could give rise
to protective antibodies against snake venom toxins from the studied region leading to a
poly-specific antivenom therapy.

2. Results

All medically relevant snake species from West Sub-Saharan Africa are summarized
in Table 1, and a general overview of the followed process is presented in Figure 1. A
total of 1629 snake protein sequences were downloaded, 154 from UniProt [19] and the
other 1475 from NCBI [20], 41 of which originated from the Protein Data Bank (PDB) [21].
Sequences were unequally distributed among the studied species, with the top three species
(Bitis arietans, Naja nigricollis and Echis ocellatus) providing more than 50% of the sequences
(Figure 2). Sequence clustering generated 155 protein clusters, which, once filtered to only
keep venom-containing sequences, left 86 of them. This drastically reduced the number of
available protein sequences in some species and even left out others from further analysis,
which is the case of N. nubiae, N. senegalensis, N. katiensis, T. kirtlandii, P. goldii and E. jogeri



Toxins 2022, 14, 418 3 of 16

(Figure 2). The mean depth of the clusters was 4.55 sequences (median 3 sequences) per
cluster, the minimum depth being 1 sequence and the maximum 22.

Table 1. West Sub-Saharan Africa snakes categorized by the WHO as medically important.

Species Common Name Taxid Family 1 Cat. 2

Bitis arietans Puff adder 8692 V 1
Bitis gabonica East African Gaboon viper 8694 V 1

Bitis nasicornis Rhinoceros viper 8695 V 1
Bitis rhinoceros West African Gaboon viper 715877 V 1
Cerastes cerastes Horned viper 8697 V 1

Dendroaspis jamesoni Jameson’s mamba 8623 E 1
Dendroaspis polylepis Black mamba 8624 E 1
Dendroaspis viridis Western green mamba 8621 E 1

Echis jogeri Joger’s carpet viper 696809 V 1
Echis leucogaster White-bellied carpet viper 504457 V 1
Echis ocellatus West African carpet viper 99586 V 1

Naja haje Egyptian cobra 8639 E 1
Naja katiensis West African brown spitting cobra 409859 E 1

Naja melanoleuca Forest cobra 8643 E 1
Naja nigricollis Black-necked spitting cobra 8654 E 1

Naja senegalensis Senegalese cobra 862238 E 1
Atheris broadleyi 3 Broadley’s bush viper NA V 2
Atheris chlorechis West African bush viper 110216 V 2

Atheris squamigera Variable bush viper 110225 V 2
Atractaspis irregularis Variable burrowing asp 512568 L 2

Dispholidus typus Boomslang 46295 C 2
Naja annulata Banded water cobra 8609 E 2
Naja nubiae Nubian spitting cobra 186441 E 2

Pseudohaje goldii Gold’s tree cobra 1545503 E 2
Pseudohaje nigra 3 Black tree cobra NA E 2

Thelotornis kirtlandii Forest vine or twig snake 292880 C 2
1 Taxonomic families: V—Viperidae; E—Elapidae; L—Lamprophiidae; C—Colubridae. 2 Category of medical
importance as stated in the WHO website. 3 These species did not have a taxonomy identifier and were thus
excluded from this study. NA—not available.

The outcome of a BLASTP [22] search against the PDB database using the retrieved
reference sequences from each cluster yielded 15 clusters with a PDB entry identity above
or equal to 90%; 42 with an identity between 90% and 50%; and 29 with identity below
50% (Supplementary Table S1). Those 42 reference sequences with identities between
90% and 50% were used to generate models by means of homology modeling using their
corresponding PDB template. As a result, 36 3D models with different degrees of reliability
were generated (Supplementary Table S1). The 86 venom clusters were split into 5599 totally
conserved regions, from which 16,460 8-mers, the minimum length we considered for the
B-cell epitope predictions, were generated and blasted against the organisms described in
the Methods Section 4.5. This resulted in 10,137 8-mers with an identity < 75%, a maximum
of six out of eight identical positions, to any protein sequences from those organisms.

Using features from both structure and sequence information, while keeping in mind
conservation as well as low identity with selected organisms, we predicted 695 epitopes in
the conserved fragments. Only 74 of the 86 clusters produced at least one epitope. These
were classified according to their characterization into seven tiers as described in Methods
Section 4.5. Looking at the best tier for each predicted epitope, it can be observed that most
were predicted by the sequence-only method (tier 7), and no epitopes with tiers 3 or 4 were
predicted at all (Figure 3).

Epitopes were merged and then scored using their protein and species origin, length
and substring identity with IEDB validated epitopes. The best epitope per cluster was
selected, and only clusters from relevant toxin families were considered, as described in
Methods. The final selection contained 41 peptide sequences (Supplementary Table S2),
which covered 42 out of 86 venom clusters. The selection also covered 53.9% of the snake
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species categorized by the WHO, 11 out of 16 of those considered of highest medical
importance and 3 out of 10 of those considered as class II (Figure 4). In particular, Echis
ocellatus, responsible for the largest casualties in West Sub-Saharan Africa, is covered by
12 epitopes. All epitopes were mapped to their corresponding structures and visualized
using PyMol [23] (Supplementary Figures S1 and S2). A DNA construct encompassing all
selected epitopes was designed as described in Methods (Figure 5, Supplementary File S1).
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3. Discussion

Snakebite envenoming is currently treated with antivenoms obtained from sera of
large animals inoculated with venoms, which must be milked from the corresponding
snakes [3,4]. Antivenom therapy is often too expensive for health systems or for the
snakebite victims most affected by this neglected disease [6]. Moreover, there is a trade-off
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between antivenom potency and its price. Usually, cheaper products are less potent, thus
translating into higher dosages needed or even products that are completely ineffective [6].
In addition, the poor quality of some antivenoms has also been evidenced by the appear-
ance of life-threatening adverse reactions upon administration, which very worryingly
undermines the trust of healthcare workers in snakebite medical treatment [6,11,24]. Thus,
it is fundamental to maintain high standards of production and quality control while trying
to keep prices as low as possible.

Herein, we present a versatile in silico pipeline from which to eventually achieve
cost-effective, toxin-targeted, potent, epitope-based antivenoms that would be obtained in
a venom-independent manner. Using a genetic construct to immunize the animals would
save the need for a herpetarium, sidestepping the periodical and risky procedure of extract-
ing the venoms, precluding the danger to handlers and likely reducing costs. Additionally,
taking into account that individual variability can affect venom composition [25,26], an-
tivenom production based on synthetic methods would contribute to the homogeneity of
batches. In terms of costs, using pDNA would also be advantageous, considering it is much
cheaper to synthesize than peptides or recombinant proteins to immunize the animals [12].
A major feature of adequately treating snakebite victims is the identification of the snake
responsible, but this is usually not possible. Therefore, the use of polyvalent antivenoms is
of utmost importance [27]. Such antivenoms should be raised against all snake species of
medical importance within a region or country [28]. For this, the diversity in toxins from
distinct protein families and from different snake species must be taken into consideration.
There stands the rationale of identifying evolutionarily conserved sequences among all
available venom protein toxins from a group of snake species of medical importance at
the regional/national level. Moreover, a polyvalent antivenom strategy should as well
contribute to saving costs due to the development and production of fewer products that
can be functional against numerous snakes.

An issue with some current antivenoms is lack of potency, mainly due to the fact that
the immune system of the venom-inoculated animal generates a response against the whole
venom protein cocktail. Ultimately, this “decoyed” potency entails that more antivenom
vials must be administered to treat envenomation resulting in the occurrence of intolerance
reactions or even anaphylactic shocks [29], and the use of more vials increases the cost
of treatment. Additionally, within the venom cocktail, there are high molecular weight
proteins that are more immunogenic by nature and would elicit a biased response towards
them. This means that, for species in which highly immunogenic proteins are not the
main source of toxicity, there will be a large number of ineffective immunoglobulins in the
final product [12,30–33]. This phenomenon is particularly relevant when developing poly-
specific antivenoms, given that some species might eclipse others, as it occurs with vipers
over elapid species. Neurotoxins of the latter have comparatively low molecular weights
versus vipers’ cyto- and hemotoxins [34]. An epitope-based approach could circumvent
these issues by focusing on the immune response towards specific epitopes of relevant
venom proteins.

From this perspective, we scored and selected the best potential epitopes of as many as
possible snakes of medical interest from West Sub-Saharan Africa, taking into consideration
the most relevant toxin protein families. Interestingly, our clustering and conservation
approach shows that some of the predicted epitopes are conserved in proteins from the
same family inside a given species and even in proteins from different species. Even though
this is somewhat expected at the genus level (e.g., Dendroaspis spp.), we also found epitopes
that would cover proteins from different genera, such as metalloproteinases from Bitis
arietans and Echis ocellatus. This would allow covering several toxins using a low number of
sequences. Additionally, with this methodology, it would be possible to generate antibodies
against protein families absent in current antivenoms, such as in the case of sarafotoxins in
Atractaspis spp., either due to difficulties milking the venom or because the toxins show
low immunogenicity. While experimental validation is pending, the peptide list presented
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here, the result of a bioinformatics analytical pipeline, is the first step in the development
of innovative epitope-based polyvalent snake antivenom for West Sub-Saharan Africa.

Like any other data analysis work, a limitation of the study is the inherent bias of
snake sequences in the repositories. This is especially true regarding African snakes, where
venom sequence availability is scarcer than for snakes from other continents. Resources
such as the UniProt Animal Toxin Annotation Project can provide a high level of detail on
venom protein composition, but our analysis would certainly benefit from larger proteomic
databases of snake venom sequences. Anyhow, luckily (and expectedly), the snakes with a
higher number of sequences in the databases were Echis ocellatus and Bitis arietans, which
have been estimated to be responsible for most of the casualties in Africa [3,35].

Remarkably, the substring IEDB legacy-experimentation approach found three matches
with already validated B-cell epitopes (VHQCNCGA and GMNHDGNQCNCG from
E. ocellatus and MAHDGNQCNCG from B. gabonica). A closer inspection of other pre-
dicted epitopes revealed that some short motifs within them are indeed part of other
already validated epitopes. For instance, it is interesting to find that motif ATCP, present in
the predicted epitopes ATCPKPTNVRETI and AATCPKVK that cover Dendroaspis species
and which have been predicted through 3D features, has been found in validated 3FTXs
epitopes from the Asian Bungarus multicinctus and the American Micrurus corallinus [36,37].
Nonetheless, a limitation of the study is that most of the epitope sequences identified were
predicted and yet await experimental validation of their biological function. While the
prediction of B-cell epitopes may not be as robust as that of T-cell epitopes (particularly
CD8+ T cell epitopes), our pipeline involves multiple parameters and a scoring system to
promote the best possible sequences. In this respect, some of the most important aspects
of B-cell epitopes are their accessibility to the protein surface and their flexibility [18,38],
and taking both into consideration would aid in better predictions. These parameters are
calculated through 3D protein structures, but only 15 protein clusters showed high identity
with PDB structures. Fortunately, about half of the clusters’ reference sequences blasted
with an identity between 50% and 90% to PDB hits, and for those, we used structure ho-
mology modeling. These thresholds are a trade-off between disposing of protein structures
and sequence accuracy. A threshold of 90% identity ensures that differences between a
reference sequence and its PDB hit can be reduced to a minimum, and in most cases, these
differences are given by one or two residues, usually in the termini. On the other hand, a
50% low-end cutoff is given because models with lower identities had increasing lower
quality using homology modeling. Each sequence was modeled five times, and their loops
were refined four extra times, generating a total of twenty models per sequence, from
which we kept the best one. Residue flexibility can be approximated using a PDB structure
B-factors [18,39], but these are lost in the modeling process. Accessibility, however, can still
be calculated from accurate models by computing the relative solvent accessibility. For
the tier classification of epitope sequences, these structural features were accompanied by
hydrophobicity and epitope propensity estimations, aimed at classifying the best peptides
on a consensus methodology. Yet it must be noted that it was not possible to model some
of the sequences, especially in the case of large metalloproteinases. For these, prediction
of epitopes solely relied on amino acid sequences and thus received a poorer scoring for
prioritization. This caused that selected peptides for some vipers, specifically for the highly
relevant E. ocellatus, have a higher proportion of lower quality (tier 7) epitopes. In future
studies, recent advances in 3D protein modeling such as AlphaFold2 might aid in the
structure-based prediction of epitopes from those large proteins [40]. All selected epitopes
predicted from 3D structures were mapped onto their corresponding structure and visu-
alized using PyMol (Supplementary Figures S1 and S2). While most appear to be clearly
accessible, there are examples in which a small part of the epitope sequence is buried, a
consequence of using the mean relative solvent accessibility in the epitope predictions.

Notably, the prioritization process included a step to deselect those sequences with
high identity to proteins from humans and animal hosts commonly used in antivenom
development or production. The purpose of this is two-fold: first, lower identity between
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foreign and host proteins is desired to decrease the chance of cross-reactivity against hosts’
own proteins [41,42]. Secondly, dissimilar sequences are more likely to be immunogenic
due to not being subjected to immune tolerance, as illustrated by the fact that lower immune
responses have been reported against bacteria from the human microbiome [43]. Ultimately,
the approach served to construct an “ideal” venom immunogen, composed of the main
antigens of relevant toxin families covering many dangerous species of this region, which
no “natural” venom can do. The next step would be to validate these epitopes in vivo,
and for this purpose, we designed a preliminary DNA construct that encompasses these
sequences and that has been optimized for mice codon usage. Upon validation, a refined
epitope construct can then be designed, and further computational analyses could be
carried out, such as molecular dynamics and peptide-protein interaction simulations [44].
Importantly, the pipeline was designed in a modular fashion so that it is flexible and
versatile and can be swiftly adapted to any region, number or type of venomous species.
This same procedure could be applied to study snake venoms from India, one of the most
afflicted countries by snakebite mortality in the world [45].

4. Methods
4.1. Collection of Protein Sequences from West Sub-Saharan Snakes

West Sub-Saharan Africa region, as established by the WHO, consists of Benin, Burkina
Faso, Cameroon, Côte d’Ivoire, The Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali,
Mauritania, The Niger, Nigeria, Sao Tome and Principe, Senegal, Sierra Leone, and Togo.
First of all, we obtained the list of snake species of medical importance from that region
with geographically driven searches in the WHO Snakebite database [last consulted on
6 October 2021] [46]. Snake species were categorized according to their medical importance
as highest (1) or secondary (2). In order to download the corresponding protein sequences,
the taxonomy identifier (taxid) for each species was retrieved. All species are summarized in
Table 1. Some of the species did not have any associated taxid, probably due to taxonomical
incongruences.

Protein sequences from identified species were retrieved from the UniProtKB/Swiss-
Prot Animal Toxin Annotation Project, a highly curated database that contains venom
and toxin protein sequences from many snake species, among other animals [47]. Each
species’ sequences were downloaded using the following query: “(keyword:toxin OR
annotation:(type: “tissue specificity” venom)) taxonomy: “{taxid}” AND reviewed: yes”,
where {taxid} is replaced by each taxid. The query was launched programmatically so
that the returned results were formatted as FASTA. All sequences downloaded from this
database were labeled as such. Additionally, the NCBI protein database [20] was queried to
obtain all protein sequences from a specific taxid, independently from their level of annota-
tion. The Entrez utilities [48] were used to access the database with the following query:
“txid{taxid}[Organism:exp]”, where {taxid} is again replaced by each taxid. Sequences
downloaded from NCBI contain entries from different databases, including UniProt, and
as such, any repeated entries were discarded. Special attention was paid to the sequences
that came from the Protein Data Bank (PDB) [21], as they have an associated 3D structure
and were labeled correspondingly.

4.2. Clustering, Filtering and Multiple Sequence Alignments (MSAs)

In order to reduce redundancy and analyze sequence conservation, all sequences were
clustered using CD-HIT [49]. Hierarchical clustering was performed from 0.95 to 0.70 identity
cutoffs with 0.05 increments. Word size was set to 2 (option -n 2), length cutoff to 0 (-s 0),
and each sequence was grouped into the most similar cluster that met the threshold (-g
1). Each cluster was then assessed to discern whether its members originated from venom
proteins or not. Any cluster that had at least one member from the UniProt Animal Toxin
Annotation Project passed automatically, including clusters with just one member. Oth-
erwise, two criteria were used to accept or discard clusters. First, any cluster with only
one member was automatically discarded. For the second criterion, sequence descriptions
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from cluster members were retrieved from NCBI. A keyword list with commonly found
words in venom proteins was composed, consisting of 3ftx, c-type lectin, crisp, cysteine-rich,
disintegrin, hyaluronidase, jerdostatin, kunitz, metalloprotease, metalloproteinase, oxidase,
phospholipase, pla, protease, snaclec, svmp, toxin, vascular endothelial growth factor, vegf
and venom. Another list with common words in proteins that were not from venom was
also composed: cmos, cytochrome, homeobox, nadh, neurotrophin, oocyte, opsin, periplakin,
prolactin, recombination and ubinuclein. The latter keywords were frequently found in
protein sequences of basic biological machinery that originated from phylogenetic studies,
and thus they were not suitable for this study. Any protein description that had at least one
keyword was tagged as accepted or rejected according to each list. Clusters with no rejected
members and at least one accepted member were selected. Similarly, clusters with at least
one rejected member and no accepted members were discarded. Notably, no cases were
reported where both accepted and rejected proteins were found within the same cluster.

All finally selected venom clusters were aligned using MUSCLE [50] with standard
settings and formatted as aligned FASTA files (Supplementary File S2). Some sequences
contained unknown residues, marked with “X”s, so any alignment position that only
contained “X” or “-”, hence causing an artificial gap, was deleted. A consensus sequence
for each alignment was obtained from the most common residue in each position. Every
sequence from the alignment was then scored by pairwise alignment with the consensus,
giving 1 point for each identical residue. That sequence with the highest score was selected
as the reference sequence for that cluster. In the case of a draw, priority was given to
sequences from PDB, the UniProt Animal Toxin Annotation Project, and the rest of the
NCBI sequences, in that order.

4.3. Conservation Analysis

Each aligned cluster was processed to analyze sequence conservation with the Shannon
entropy parameter (H) [51,52]. Each sequence was analyzed to set the actual alignment start
and end, discarding all “-” positions at both N- and C-terminal ends that appeared due to
short sequences. For each position, H was calculated only by taking into account residues
that did not correspond to terminal gaps. While any real gap was taken into account
in the entropy calculation, unknown residues (marked with “X”s) were not considered
(Supplementary Figure S3). The entropy value for each position was stored for later use.

4.4. PDB BLASTP and Modeling

A BLASTP [22] web search against the PDB database was launched programmatically
using the reference sequences from each cluster under default parameters (BLOSUM62
matrix, e-value of 10, word size of 3, gap open 11 and gap extend 1, with composition-
based score adjustment), and limited to returning only hits from the clade Serpentes using
the query: “txid8570[ORGN]”. The best 3D structure hit for each sequence was chosen
according to the highest identity percentage, calculated as the number of identities of a
hit divided by the total length of the queried sequence. Each reference sequence was then
classified into three separate categories depending on the identity of the PDB hit: (i) identity
higher or equal to 90%; (ii) identity between 90% and 50%; (iii) and identity below 50%.
PDB hits with high identity (≥90%) to clusters’ reference sequences were directly used for
further predictions without previous modeling, while clusters with no relevant PDB hits
(identity < 50%) were only used to predict epitopes via sequence-based methods.

Protein models were generated for the clusters with a 3D structure identity that fell
between 90% and 50% with the homology modeling software Modeller [53,54]. The refer-
ence sequence and the PDB sequence were aligned by the software so that overhangs from
the former that were not present in the PDB were edited out, leaving only three residues
on each side that were modeled ab initio. Five models were generated for each alignment,
keeping only those with a GA341 score [55], which ranges from 0 (worst) to 1 (native-like),
above 0.9. Each of these models underwent a loop refinement process that generated four
refined models. In total, twenty models were generated for each alignment. The best-
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refined model for each preliminary model was selected according to the lowest DOPE-HR
score [56], which has an arbitrary scale and can only be used to compare models from the
same alignment. Then, the best-refined model overall was selected according to the lowest
normalized DOPE scores and used for further analysis. Preliminary models that did not
contain loops, as detected by Modeller, were not refined and were selected only according
to the lowest DOPE-HR score.

4.5. B-Cell Epitopes Prediction and Features for Epitopes Characterization and Triage

BepiPred2 [57] was run over all the reference sequences with default parameters. Hy-
drophobicity of each position was calculated using a normalized hydrophobicity scale [58]
from 0 to 1, with a window size of 7 (precluding the first and last three residues having
their hydrophobicity calculated). For the 3D structures, both those from PDB and those
generated by homology modeling, the relative solvent accessibility (RSA) was calculated
using NACCESS [59] under default parameters. Finally, the B-values, or temperature factors,
of the PDB structures were also retrieved and standardized using the following formula:

ZB = (B − µB)/σB, (1)

in which ZB is the new standardized B-value, B is the raw B-value, and µB and σB are the mean
and standard deviation of all the B-values of the structure, respectively. These were used as a
measure of flexibility [18,39]. Since all these features were calculated from raw sequences or
3D structures, the results were realigned accordingly into each cluster using MUSCLE.

In this study, all peptide sequences selected were based on absolute conservation
within MSA, so we used H = 0 as a cutoff. Upon defining totally conserved peptide
sequences of all reference sequences, these were split into conserved fragments and consid-
ered separately. A minimum length of eight residues was established for any given epitope,
so shorter conserved fragments were automatically discarded. Then, all possible 8-mers
from a given fragment were calculated for all conserved fragments.

To identify potential cross-reactive peptides, this 8-mer database was locally blasted
against human (taxid 9606), chicken (taxid 9031), rabbit (taxid 9986), horse (taxid 9796),
donkey (taxid 9793), dromedary (taxid 9838), llama (taxid 9844), mouse (taxid 10090) and
sheep (taxid 9940) non-redundant sequences protein databases, in separate blast searches.
The blastp-short task was used because of the short length of the sequences. In addition,
these were blasted using the PAM30 matrix, a word size of 2, no composition-based
statistics, and gap penalties of open 9 and extend 1. An expect value (e-value) threshold
of 10,000 was used. The identity of each queried 8-mer to a given hit was calculated by
dividing by eight (the queried length) the number of identical positions, minus any gaps
that appeared. The hit with the lowest e-value was selected as the representative for each
8-mer. This meant that each 8-mer had seven hits associated, one for each blasted organism.

Epitopes were predicted by analyzing each conserved fragment 8-mer by 8-mer,
calculating the mean value for each feature from the eight positions. For any given 8-mer,
a tier value was selected according to the established thresholds of flexibility (≥1 in the
standardized B-value scale), RSA (≥50), hydrophobicity (≤0.45, the normalized value
for glycine), and BepiPred2 score (≥0.5) (Table 2). A new epitope started with the first
8-mer and appended new positions from the subsequent overlapping 8-mers. Since any
given position could be part of several 8-mers, the best tier was kept for a specific position.
This way, each position of a predicted epitope could show different levels of “quality”.
Any 8-mer that did not fill any tier requirements was discarded, and the newly predicted
epitope stopped at the previous 8-mer. Similarly, if it had a BLAST hit identity above
75% for any of the blasted organisms (a maximum of six positions out of eight), the 8-
mer was also discarded. This was done to limit the similarity with peptides found in
the blasted organisms in order to (1) lower chances of cross-reactivity and (2) improve
immunogenicity [51]. Any 8-mer remaining in the conserved fragment was considered for
a new epitope (Supplementary Figure S4).
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Table 2. Features considered for tier-ranking of the predicted epitopes. The presence of an X inside
a cell indicates whether that particular feature is fulfilled within the corresponding threshold in that
specific tier.

Tier BepiPred2 Hydrophobicity RSA Flexibility

Tier 1 X X X X
Tier 2 X X X
Tier 3 X X X
Tier 4 X X
Tier 5 X X X
Tier 6 X X
Tier 7 X X

4.6. Epitope Scoring and Selection

We queried the Immune Epitope DataBase [60] to download any positively found B-cell
epitopes that originated from the Serpentes clade (taxid 8570) (last search: 19 October 2021).
These were downloaded from the “assays tab” in order to keep information on specific assays.
Epitopes recorded in IEDB and predicted epitopes were matched as substrings of one or the
other, considering full sequences of both.

On the other hand, we classified each cluster, with its corresponding reference se-
quence, into one of ten venom protein families: three-finger toxins (3FTX), Cysteine-rich
secretory proteins (CRISP), disintegrins (DIS), Kunitz peptides (KUN), L-amino acid oxi-
dases (LAAO), natriuretic peptides (NP), phospholipase A2s (PLA2), snake C-type lectins
(SNACLEC), snake venom metalloproteinases (SVMP) and snake venom serine proteases
(SVSP). For this, the protein description and features data of each reference sequence were
consulted on the NCBI database, parsed, and compared to lists of keywords corresponding
to each family (Supplementary Table S3). If there was any keyword match, the protein
was classified accordingly. No instances of multiple families were found, and clusters
that could not be classified were labeled as “OTHER”. Additionally, a table with the
venom composition for each studied species was adapted from Tasoulis and Isbister [7]
(Supplementary Table S4). Mean proportions were calculated for individuals of the same
species originating from different regions. Species without annotated venom compositions
were assigned values according to the mean proportions of their snake family (Viperidae
and Elapidae). For Atractaspis irregularis (Lamprophiidae), the same proportions were
assigned to each protein family.

For the comparison and selection of the best epitopes, these were scored as follows:

1. For predicted epitopes in which their best tier value (Table 2) was between 1 and 4 inclusive,
three points; for tiers 5 and 6, two points; and for tier 7, one point.

2. If a predicted epitope covered two species, one extra point was given. If it covered
three or more, two extra points were given.

3. If the cluster depth (number of peptide sequences within a given cluster) was higher than
10, two extra points were given. If it was between 5 and 10, one extra point was given.

4. If any predicted epitope was found inside an IEDB epitope or the other way around,
three extra points were given.

This baseline score, which ranged from 1 to 10, was multiplied by the corresponding
proportion of each venom family in a particular snake species. If multiple species were
covered, the proportion was calculated as the mean between the covered species. Then,
the resulting epitope scores were normalized from 0 to 100 and rounded to the nearest
integer. Finally, any epitope found inside a bigger epitope was merged, keeping the best
score of the merged pair. To compose a final list of epitopes, the highest scored epitope for
each venom cluster was selected. Any predicted epitope that had a match with validated
epitopes from IEDB was automatically selected. Since the most toxic families are 3FTXs,
SVMPs, SVSPs and PLA2s [12], only epitopes from these families were considered for the
final list. In addition, epitopes that originated from Kunitz-type peptides of Dendroaspis
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spp. and sarafotoxins from Atractaspis spp. were also kept due to their relevance in these
particular species [7]. Noteworthy, a single predicted epitope might be capable of covering
several clusters due to the merging events mentioned above. In the case of a draw, longer
epitopes were prioritized over shorter ones.

4.7. Genetic Construct and Codon Optimization

We designed a genetic construct encoding the 41 selected B-cell epitopes shaped like a
“string-of-beads” [16]. AAY linkers were included to separate the epitopes as these should
promote epitope presentation and reduce the formation of junctional epitopes [61]. A
secretion signal from the murine erythropoietin (mEPO) was included upstream of the
epitopes “string-of-beads”, as secretion is required to reach a high antibody titer after
genetic immunization, and mEPO signal has proven very efficient in raising efficient
antibodies against a Plasmodium falciparum antigen [62].

Thinking of the next experimental proof-of-concept, the full peptide sequence of
this ensemble was then subjected to the Genscript GenSmart™ Codon Optimization Tool
(https://www.genscript.com/tools/gensmart-codon-optimization (accessed on 6 June
2022)) for codon optimization using Mus musculus as the host organism. The resulting
nucleic acid sequence was then inserted into a eukaryotic expression plasmid based on
the InVitrogen pVAX2 backbone. This plasmid backbone is commonly used as an in vivo
mammalian expression vector and is used in the first and only DNA vaccine approved
for human use against the SARS-Cov-2 coronavirus, ZyCov-D [63]. Briefly, this plasmid
contains upstream the coding sequence, a cytomegalovirus (CMV) promoter sequence that
governs its transcription, and a Kozak sequence that functions as a protein translation
initiation site and is located around the AUG start codon. At the 3’-end downstream of the
coding sequence, there is a bovine growth hormone (BGH) poly-adenylation (polyA) signal
to tag the growing mRNA molecule with a polyA tail.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxins14060418/s1. Supplementary Figure S1: Mapping of selected epitopes
from PDB. Epitope location is highlighted in orange. PDB structures in parenthesis. Supplementary Figure S2:
Mapping of selected epitopes from models. Epitope location is highlighted in orange. Reference sequence
accession number and PDB structures in parenthesis. Supplementary Figure S3: Illustration of an example
alignment depicting which residues were accounted for the entropy calculation. In blue, positions
that are taken into consideration. In orange, not considered positions. Hyphens indicate gaps in the
alignment, while X’s indicate unknown residues. Supplementary Figure S4: Illustration of epitope
prediction. Sequences are broken into conserved fragments (asterisks indicate non-conserved residues),
and each fragment is considered separately and analyzed 8-mer by 8-mer. Overlapping 8-mers are incor-
porated into the final epitopes if they fulfill any tier criteria. Struckthrough peptides represent discarded
fragments due to their short length. In grey. 8-mers discarded for not fulfilling any tier criteria. or having
a high blast identity. Bold peptides indicate the final predicted epitopes. Supplementary Table S1: Re-
sults of the PDB BLAST and protein modelling. Only clusters with a PDB hit identity between 90% and
50% were considered for modelling. N/A = not available. Supplementary Table S2: Selected epitopes
list. Species covered are represented with their taxonomic identifier (taxid). Reference sequences indicate
their NCBI id and description, and are classified as members of three-finger toxins (3FTX), phospholipase
A2s (PLA2), snake venom metalloproteinases (SVMP), snake venom serine proteases (SVSP), Kunitz
peptides (KUN), or other (OTHER). Species covered are indicated by their taxid for brevity. Epitopes
that originate from several reference sequences are due to merging events. Supplementary Table S3: List
of keywords used to identify the different protein families. Protein descriptions were compared with the
keywords, and each protein was classified accordingly. Proteins that did not fit into any family were
labeled as “OTHER”. Supplementary Table S4: Snake venom composition by species. Values adapted
from the review by Tasoulis and Isbister [7]. Numbers indicate protein family fraction of total venom,
distributed in Three-finger toxins (3FTX), Cysteine-rich secretory proteins (CRISP), disintegrins (DIS),
Kunitz peptides (KUN), L-amino acid oxidases (LAAO), natriuretic peptides (NP), phospholipase A2s
(PLA2), snake C-type lectins (SNACLEC), snake venom metalloproteinases (SVMP), snake venom serine
proteases (SVSP), or other (OTHER). Species not present in this table were assigned values according
to the mean proportions of their snake family (Viperidae and Elapidae). For Atractaspis irregularis

https://www.genscript.com/tools/gensmart-codon-optimization
https://www.mdpi.com/article/10.3390/toxins14060418/s1
https://www.mdpi.com/article/10.3390/toxins14060418/s1


Toxins 2022, 14, 418 14 of 16

(Lamprophiidae), the same proportions were assigned to each protein family. Supplementary File S1:
Fasta file containing the polyepitope sequence and its corresponding DNA sequence, optimized for mice
codon usage. Supplementary File S2: Multiple sequence alignments of clusters for the selected epitopes.
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