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Abstract 

Objectives:  Carbon fixed during photosynthesis is exported from leaves towards sink organs as non-structural 
carbohydrates (NSC), that are a key energy source for metabolic processes in trees. In xylem, NSC are mostly stored 
as soluble sugars and starch in radial and axial parenchyma. The multi-functional nature of xylem means that cells 
possess several functions, including water transport, storage and mechanical support. Little is known about how NSC 
impacts xylem multi-functionality, nor how NSC vary among species and climates. We collected leaves, stem and root 
xylem from tree species growing in three climates and estimated NSC in each organ. We also measured xylem traits 
linked to hydraulic and mechanical functioning.

Data description:  The paper describes functional traits in leaves, stems and roots, including NSC, carbon, nitrogen, 
specific leaf area, stem and root wood density and xylem traits. Data are provided for up to 90 angiosperm spe‑
cies from temperate, Mediterranean and tropical climates. These data are useful for understanding the trade-offs in 
resource allocation from a whole-plant perspective, and to better quantify xylem structure and function related to 
water transportation, mechanical support and storage. Data will also give researchers keys to understanding the abil‑
ity of trees to adjust to a changing climate.
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Objective
Non-structural carbohydrates (NSC) are essential sub-
strates for metabolic processes in trees, including res-
piration, osmoregulation, growth, reproduction and 
defense [1–4], as well as having major consequences for 
downstream processes such as microbial activity in the 
rhizosphere [5]. NSC is a product of photosynthesis and 

comprises mainly soluble sugars involved in transport or 
immediate functions, and starch stored in different plant 
organs for future use and maintaining functionality when 
carbon demand is higher than supply (e.g., under severe 
drought stress) [6–9]. Therefore, understanding how pat-
terns of NSC vary in trees will enable us to better evalu-
ate the role of NSC in tree physiological processes and 
ecological strategies, especially across a broad range of 
species and climates [10].

The secondary xylem of angiosperms is generally com-
posed of three specialized cell types including paren-
chyma, vessels and fibers (tracheids and fiber-tracheids 
may also be present), that perform storage, hydraulic and 
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mechanical functions [11–13]. NSC are mainly stored in 
the live radial and axial parenchyma cells, therefore the 
size of the parenchyma fraction drives the capacity for 
NSC storage in trees [14–16]. In an attempt to disentan-
gle how NSC and xylem traits are linked to tree physi-
ological processes and ecological strategies, we collated 
data on stem and root NSC and xylem cell patterns, as 
well as leaf traits, from 90 tree species in temperate, 
Mediterranean and tropical climates. Our data will allow 
researchers to explore the direct relationships between 
leaf, stem and root NSC contents with patterns in xylem 
cell composition. To our knowledge, this dataset rep-
resents the largest freely available collection of data for 
NSC xylem and leaf traits measured simultaneously in 
adult trees from diverse climates. Detailed information 
on materials and methods can be found in the accompa-
nying Excel file (Table 1).

Data description
Study sites and species
This study was conducted in a temperate forest (Luz-
Saint-Sauveur, France), a Mediterranean forest (Mont-
pellier, France) and a tropical forest (Paracou, French 
Guiana). A total 90 angiosperm species were collected 
which are commonly found in local forests, with 20 spe-
cies in both temperate and Mediterranean climates and 
50 species in the tropical climate (Table  1, file 1). For 
each species, we chose three, healthy, adult trees that 
usually had a stem diameter of between 0.05 and 0.4 m 
at a height of 1.3 m. We collected leaf and stem samples 
for all trees, as well as coarse root samples for 60 spe-
cies (n = 20 in each climate). Samples were collected at 
the end of August and early September 2019 for Medi-
terranean and tropical species and September 2020 for 
temperate species, when NSC storage should be close 
to its seasonal maximum [17–19]. We sampled all trees 
between 7am and midday, to reduce variability linked 
to photosynthate production. At a height of 1.3 m, three 
0.05 m long cores were extracted from tree stems with a 
4.3 mm diameter increment borer. To collect samples of 
roots, we excavated a single lateral root (0.02–0.05 m in 
diameter) and at a distance of 0.3–0.5 m from the base of 
the tree and extracted three increment cores or removed 
three 0.02  m long segments of root. We also collected 
one stem core from each tree in temperate and Medi-
terranean climates in March 2021 (before bud burst). In 

total, 540 leaf samples, 930 stem cores and 540 root seg-
ments were collected.

Measurement of leaf and xylem functional traits
A total of 270 leaf samples, 390 stem samples and 180 
root samples were used to determine NSC, carbon (C) 
and nitrogen (N) measurements. For NSC content, a col-
orimetric method [20] was performed on all leaf samples, 
and a subsample of stems (n = 113) and roots (n = 140). C 
and N content were measured in a sub-sample of leaves 
(n = 110), stems (n = 113) and all root samples, using an 
elemental analyzer (CHN model EA 1108, Milan, Italy). 
Then, near infra-red spectroscopy (NIRS) [21] was per-
formed on all samples and calibration models developed 
using data obtained from the analytical methods to pre-
dict soluble sugars, starch, C and N in the three organs 
(Table 1, file 1).

Cross-sections of 15–20  µm thick for stem (n = 270) 
and root (n = 180) samples were cut with a sliding 
microtome and stained with a mixture of safranin and 
alcian blue. Microphotographs of transversal sections 
were taken where radial and axial parenchyma fractions, 
vessel fractions, mean vessel area, mean vessel diameter, 
vessel density, mean vessel hydraulic diameter and theo-
retical specific xylem hydraulic conductivity were deter-
mined [22] (Table 1, file 1).

Specific leaf area (n = 270) was determined using leaf 
area and dry mass. Stem wood density (n = 270) and root 
wood density (n = 180) were defined as oven-dry mass 
divided by fresh volume which measured by water dis-
placement method (Table 1, file 1).

Limitations
Root NSC data were only collected for 60 species (n = 20 
in each climate type). It was not possible to collect NSC 
in samples from tropical trees over two different seasons 
within a 12-month time period because of travel restric-
tions linked to the COVID pandemic. However, there is 
significantly less seasonal variability in NSC in tropical 
trees [10], compared to Mediterranean and temperate 
species, therefore we do not consider this limitation as 
detrimental to the quality of data.

Abbreviations
NSC: Non-structural carbohydrates; C: Carbon; N: Nitrogen; NIRS: Near infra-red 
spectroscopy.

Table 1  Overview of data files/data sets

Label Name of data file/data set File types (file extension) Data repository and identifier (DOI or accession number)

Data file 1 Xylem_Stem_Root_Leaf_Trait data MS Excel file (.xlsx) Portail Data INRAE https://​doi.​org/​10.​15454/​MU0HXX [23]
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