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Abstract: Transposable elements are mobile sequences that can move and insert themselves into chro-
mosomes, activating under internal or external stimuli, giving the organism the ability to adapt to the
environment. Annotating transposable elements in genomic data is currently considered a crucial task to
understand key aspects of organisms such as phenotype variability, species evolution, and genome size,
among others. Because of the way they replicate, LTR retrotransposons are the most common transposable
elements in plants, accounting in some cases for up to 80% of all DNA information. To annotate these ele-
ments, a reference library is usually created, a curation process is performed, eliminating TE fragments and
false positives and then annotated in the genome using the homologymethod. However, the curation process
can take weeks, requires extensive manual work and the execution of multiple time-consuming bioinformat-
ics software. Here, we propose a machine learning-based approach to perform this process automatically on
plant genomes, obtaining up to 91.18% F1-score. This approach was tested with four plant species, obtaining
up to 93.6% F1-score (Oryza granulata) in only 22.61 s, where bioinformatics methods took approximately
6 h. This acceleration demonstrates that the ML-based approach is efficient and could be used in massive
sequencing projects.

Keywords: curation; deep neural networks; k-mer-based methods; LTR retrotransposons; machine learning;
nesting insertions.

1 Introduction
Due to the growing boom of massive sequencing projects [1], thanks to the reduction of sequencing costs, a
need has been created for a new generation of tools that can process a large amount of data efficiently and
automatically in short periods of time [2]. Particularly, the analysis of transposable elements that represent
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the vastmajority of plant genomes, require a special attention, considering their impact on genome structure,
dynamics and evolution [3]. Machine Learning (ML) algorithms have the ability to use this amount of data
and learn from it how to execute a given task fitting parameters of a model to a specific dataset [4]. Inside ML,
one of themost usedmodels currently are based on neural networks (also called Deep Learning or DL), which
uses nonparametric architectures with different types of neurons, activation functions and connections to fit
complex associations between input and output data [5]. ML and also DL have been implemented to solve
problems in biology and genomics [6, 7], and specially in transposable elements (TEs) [8, 9].

TEs are considered asmajor contributors to the genome evolution and adaptation [10], to have significant
relations to gene regulation and genome plasticity and evolution [11], having important impacts on the
generation of mutations, genetic polymorphisms [12], the generation of biodiversity, and during speciation
events [13]. They constitute the dynamic portion of the DNA since they are mobile genetic structures, which
have the ability to integrate into new positions in genomes and sometimes increase their copy number over
time [14]. Also, TEs is one of the contributors to the genome size, as the same as polyploidy events, and
segmental duplications [15].

Based on their transposition mechanism, TEs can be divided into Class I (or Retrotransposons), which
use as an “copy and paste” mechanism using as intermediate of replication the RNA molecule, and Class II
(or Transposons), which follow the “cut and paste” strategy, use as an intermediate the DNA molecule [16].
Among Class I elements, Long Terminal Repeats Retrotransposons (LTR-RTs) are the most abundant in copy
number and diversity in plants [17], constituting up to 75% of nuclear DNA [18], even 80% of angiosperms
[15]. In plants, LTR-RTs are sub classified into superfamilies (Gypsy and Copia), and in several lineages/
families [19].

To avoid harmful mutations, the host genome uses processes to silence or interrupt TEs life cycle [20].
Theseprocesses createmany fragmentornon-autonomouscopiesofTEsandbalance thecopynumberof those
elements inside thegenome.On theotherhand, thecomplexdynamicsofTEshaveshownburst of insertions in
specific sections of the genome [21], producing the presence of numerous insertions of transposable elements
into other TEs, with the direct consequence of inactivating the activity of the first element. Such insertions
are called nested insertions [22–24]. While multiple insertions of large transposable elements can have a
profound impact on the structure of the inserted element, insertion of smaller and non-coding elements
can go unnoticed by structural TE detection algorithms. As a consequence, these algorithms can predict the
presence of a complete element but whose sequence could be in fact nested by other type of transposable
elements. The direct use of these sequences as reference without curation can lead to misidentification
and misinterpretation of the TE composition in whole genome sequences. Thus, it is recommendable that
sequencesmustbecurated foruseas referenceTE libraries,which isaconsiderableworkwhendonemanually.

Within bioinformatics, there are different approaches for detecting nested elements, especially based on
their structure such as TE-greedy-nester [24] and TEnest [25]. Nevertheless, these software require complex
installation processes and have many dependencies such as BLAST [26], LTR_FINDER [27], GenomeTools
[28] which results in long run times and possible failures linked to one of the dependencies. Also, others TE
detection software, such as EDTA [29] employ a filter module, with the aim of avoid false positive discoveries
but does not integrate filters to remove nested inserts.

Here, aML-based approachwas developed to curate automatically libraries of LTR-RTs in plant genomes.
This model predicts in seconds (compared with conventional bioinformatics methods that take hours to
complete) which sequences must be filtered in order to create a reference library, thanks to neural network
performance and the utilization of graphic processing unit (GPU) [30]. The ML-based curator identifies LTR-
RTs sequences that present nested insertions or their overall length does not match the one stipulated in
the literature for each lineage/family. Additionally, this model can be re-trained regularly with new datasets
released in massive sequencing projects, improving each time its performance. This curator can be used as
additional module to existing LTR-RT predictor to filter and increase the quality of the library produced, as
well as reducing the manual work done by experts and the overall execution time.
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2 Methodology
To address the problemof curating sequences automatically, a dataset composed of sequences considered as intact and sequences
with different types of nested insertions was designed. Using this dataset, common ML algorithms were trained as two types of
neural networks, an FNN and a CNN. Finally, generalization and runtime tests were performed to observe the usability of the
proposed model.

2.1 Training dataset: complete LTR-RT sequences versus nested LTR-RT

The ML models were trained in a supervised manner. Thus, it was necessary to create a labelled dataset composed of LTR-RT
sequence belaying full LTR-RTs andnested inserted LTR-RTs. First, available libraries like Repbase [31], RepetDB [32] andPGSB [33]
were employed. To increase the number of sequences LTR_STRUC [34] and EDTA [29] were used in additional genomes that were
not present in the databases above mentioned. Next, a script was developed in order to apply the same filters used in InpactorDB
[35]. Sequences that successfully passed all InpactorDB’s filters were kept as putative complete and intact elements and labelled
as zero. Elements that were eliminated in each of the filters were taken as nested insertions of TEs in different ways and a label
(one to four) was given. These labels constituted four possible types of inserted sequences: 1) a nested LTR-RT element into the
predicted LTR-RT element with domains belonging to different superfamily between them (i.e. Gypsy versus Copia), 2) a nested
LTR-RT element into the predicted LTR-RT elements with domains belonging to different lineages/familly, 3) predicted LTR-RT
elements showing a length increase compared to the in the literature [17] with a tolerance of 20%and 4) predicted LTR-RT elements
showing Class II insertions. Then, we followed two workflows: the first one, using the sequences and all the labels, a multiclass
problem was defined with five classes, where zero are putative complete sequences and from one to four are the different types of
insertions. This dataset was called “five-label dataset”. The second one consisted in join nested insertions types (labels from one
to four) in one new label named class one. This dataset was called “two-label dataset”. In this way the problem became to binary
classification between non-nested versus nested elements.

To evaluate the dataset obtained, a Principal Component Analysis (PCA) and t-distributed stochastic neighbour embedding
(t-SNE) techniques was used, plotting in a figure the two main components of the datasets.

2.2 Feature extraction and pre-processing

The first step in designing and implementing a classifier based on machine learning is to perform a feature extraction process.
The goal is to obtain numerical data that represent as informatively as possible the samples contained in the training set. Due to
the categorical nature of genomic data, this activity is crucial to be able to use ML models [36]. K-mers frequencies were used as
features using 1 ≤ k ≤ 6 due to this approach seems to be useful for machine learning algorithms [37]. To this converted data set,
scaling and dimension reduction techniques were applied using principal component analysis (PCA) with an explained variance
of 96% (reduction of the initial number of features from 5460 to 2254). The resulting dataset was used to train conventional ML
models (not based on neural networks) and for experiments with the fully connected neural network architecture.

Although k-mers frequencies have proven to be very useful for training LTR retrotransposon classifiers, this form of repre-
sentation loses relevant information such as the positions of the original nucleotides. For this reason, it was decided to employ
another form of representation, but this time in two dimensions, through the one-hot coding scheme [38]. In this case, for each
sequence a 5-rowmatrix is constructed, equivalent to each of the nucleotides and the unidentified “N” withm number of columns
(length of the longest sequence in the dataset). Thus, for n sequences, amatrix with a dimensionality of 5×m× n is obtained. This
form of representation was used to train a convolutional neural network, with the objective of employing positional information
of the LTR retrotransposon sequences.

We took into account the F1-score metric, considering that the dataset is unbalanced, the F1-score metric was applied and
taken into account, since such metric contributes significantly to the knowledge of the behaviour and generalization of the used
model [36]. Finally, accuracy, precision and recall of the models with higher performance were calculated. It should be noted
that the data partition used was 80% for training, 10% for validation (validation dataset) and 10% for testing (test dataset). All
experiments were performed using Python 3.7 with the Scikit-Learn library version 0.24.0 and TensorFlow version 2.2.0.

2.3 Experiments using ML models

For the first experimental analysis, different ML algorithms [39] were used, including KNN (K-nearest neighbors), SVM (support
vector machine), linear models such as LR (logistic regression), LDA (linear discriminant analysis), NB (naive Bayesian classifier),
MLP (multi-layer perceptron) and models based on decision trees (DT) such as RF (random forest). The main difference with the
linear and non-linear ML-classifiers is that the results do not vary when having features at different scales. For this purpose,
parameters were adjusted, considering accuracy and F1-score performance. Table 1 shows the variation ranges established for
each of the model parameters.
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Table 1: Value ranges for the parameters based on [36].

Algorithm Parameter Step Range Description

KNN n_neighbors 1 1–100 Number of neighbors
SVC gamma = 1 × 10−6 C 10 10–100 Regularization parameter
LR C 0.1 0.1–1 Inverse regularization strength
LDA tol 0.0001 0.0001–0.001 Absolute threshold for a singular value of X to

tol be considered significant
NB var_smoothing 1 × 10−2 1 × 10−1–1 × 10−19 Portion of the largest variance of all features

that is added to variances for calculation stability
MLP Solver= ’lbfgs’, alpha

= 0.5, hidden_layer_sizes 50 50–500 Number of neurons in the hidden layers
DT max_depth 1–10 1 The maximum depth of the tree
RF n_estimators 10–100 10 The number of trees in the forest

2.4 Experiments using FNN

A hyper-parameter tuning process was carried out taking as initial model the fully connected network published by Nakano [40].
First, different numbers of layers and different quantity of neurons per layer were tested. Also, some values of dropouts and
Batch normalization were considered ranging from zero to one. Then, different activation functions such as ReLu, sigmoid and
hyperbolic tangent were tested. Finally, themodel was trained using the loss functions Categorical Cross entropy and Binary Cross
entropy. The combination that obtained the best performance was used for the rest of the experiments (Figure 1). For the training
process we used 200 epochs and a batch size of 128.

2.5 Experiments based on CNN

In order to increase the F1-score percentage initially obtained, experiments were performed using the TERL convolutional network
as a basis [9]. By identifying in the previous steps, a confusion between the class “0” (intact elements) with the classes “2”
(Superfamily filter), “3” (lineage filter) and “4” (TE class II filter), these experiments are performed for the two-label dataset.
Considering the computational expense required to use the complete dataset transformed into 2D representation, a random
extraction of 30,000 samples, 15,000 of class “0” (intact elements) and 15,000 of class “1” (the union of all filters) is applied.
Three convolutional layers were used with filters of 64, 32 and 32 respectively, varying the size of the kernel to obtain the best
performance. A Spatial Dropout of 0.2, a Batch Normalization and an average pooling were incorporated, changing the values, to
reduce the dimension, without any loss of information, necessary for the classification. Once this stage of feature extraction was
completed, the data obtained is entered into the FNN with the features described above, but now considering a dropout of 0.2,
since this is the one that provides the best performance in this case (Figure 2).

2.6 Generalization tests

Once the computationalmodelwith thehighest F1-Score andaccuracywasdefined, generalization testswere performedwithplant
species with different genome sizes such as: Coffea eugenioides (GCA_003713205.1, 678 Mb), Coffea humblotiana (407 Mb) [41],

Figure 1: FNN architecture based on Nakano et al. [40].
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Figure 2: Implementation of the proposed CNN based on TERL [41].

Oryza indica (GCA_011764405.2, 355 Mb) [42] and Oryza granulata (GCA_003991445.1, 752 Mb) [43]. Thus, LTR_STRUC [34] and
LTR_FINDER [27] software were first run to predict LTR-RTs for each genomes. Two workflows were performed, the first using
conventional bioinformatics methods with filters proposed in InpactorDB [35], and the second one using the computational
architecture with the highest F1-score and accuracy, identifying the accuracy percentages and execution time in each case.

2.7 Hardware specifications

All the analyses in this project were performed using the HPC clusters of the French Bioinformatics Institute
(https://www.france-bioinformatique.fr) and IRD (https://bioinfo.ird.fr/). For the DL experiments, the Google Collaboratory plat-
form [44] was used, which has a NVIDIA T4 GPU unit and a RAM of 16 GB. Also, a workstation with processor AMD Ryzen 3970X,
GPU Nvidia RTX 2080 super and 128 GB in ram was employed.

3 Results

3.1 Descriptive analysis of the dataset
Once the filters were applied on the dataset, we obtained 56,442 sequences for class 0 (curated sequences)
33,874 for class 1 (elements with domains belonging to two different superfamilies), 4734 for class 2 (elements
presenting domains from two or more lineages), 8568 for class 3 (elements with lengths different from those
reported in the literature) and 2039 for class 4 (elements that have TE Class II insertions). Then a graphical
representation of the two main components was made (Figure 3), in which an overlapping of the labels
is identified. The results obtained suggest that it might be necessary to use more complex computational
methods to achieve a good performance and generalization of the information.

3.2 A machine learning-based curator of nested inserted LTR retrotransposons in
plant genomes

ML models. Experiments were run varying the computational model, evaluating the F1-score metric with
the five-label (classes 0, 1, 2, 3, 4) and two-label dataset (class 0 and the union of classes 1, 2, 3 and 4;
Figure 4), in which a higher percentage is identified in the MLP and KNNmodels. With the five-label dataset,
the performance does not exceed 65% and with the two-label dataset the performance reaches a maximum
of 90% (Supplementary Material S1).

Performance with FNN. For each the dataset used, experiments were performed using NN based on the
FNN proposed in [40] (Figure 1) using dropout of 0.5 and Batch Normalization of 0.99 in the hidden layers.
Figure 5 shows the training curves for the five-label dataset, which presents a performance of 88.75% (test
dataset) for the F1-score metric and Figure 6 shows the confusion matrix obtained for this same dataset, with
the test data (Supplementary Material S2).

https://www.france-bioinformatique.fr/
https://bioinfo.ird.fr/


6 | S. Orozco-Arias et al.: Automatic curation of LTR retrotransposon libraries

Figure 3: Graph of the two main components of the LTR-RT dataset: (A) PCA with five labels 0: curated sequences, 1: elements
with domains belonging to two different superfamilies, 2: elements presenting domains from two or more lineages, 3: elements
with lengths different from those reported in the literature, 4: elements that have TE Class II insertions, (B) PCA with 2 labels 0:
curated sequences and 1: the union of classes 1, 2, 3 and 4, (C) t-SNE with the specifications of (A) and (D) t-SNE with the
specifications of (B).

ML models

F1
-s

co
re

A B

Figure 4: F1-score performance of the ML models used (A) using the five-label dataset and (B) using the two-label dataset. The
following algorithms were used: KNN (K-nearest neighbors), SVM (support vector machine), LR (logistic regression), LDA (linear
discriminant analysis), NB (naive Bayesian classifier), MLP (multi-layer perceptron), decision trees (DT), and RF (random forest).
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Figure 5: Training curves with FNN implemented for multiclass classification (A) and F1-score versus epochs (B) Loss versus
epochs.

Figure 6: Confusion matrix made with the test data pro-
duced by the FNN with multiclass classification. 0, 1, 2, 3
and 4 refer to the classes previously defined.

The results indicate a confusion of class "0" (intact sequences) with classes “2”, “3” and “4”, which
correspond to predicted LTR-RT elements that show domains from different superfamilies (Gypsy and Copia),
predicted LTR-RT elements with domains from two or more lineages/families, predicted LTR-RT elements
that shows lengths significantly different from those reported for each lineage/family in the literature, and
predicted LTR-RT elements showing nested transposon insertions, respectively (Supplementary Material S3).
Figure 7 and Table 2, using two-class dataset (intact elements vs all filters), show the training curve with a
performance of 91.18% (in the test dataset, a 10% of the whole data) and Figure 8 shows the confusionmatrix
obtained for dataset. The Receiver Operating Characteristic curves (ROC) and Precision-Recall Curve (PRC)
identified in Figure 9 were also plotted.

Performance with CNN. The corresponding experiments based on TERL model [9] were performed and
the results obtained for the training curve are shown in Figure 10, with which the F1-score of 80.09%
was obtained for the test data, and Figure 11 shows the confusion matrix obtained for the same data
(Supplementary Material S4).
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A B

Figure 7: Training curves with FNN implemented for binary classification (two-label dataset) (A) F1-score vs epochs (B) Loss vs
epochs.

Table 2: Results for each metrics.

Metrics Value

Precision 0.9140
F1-score 0.9121
Recall 0.9125
Accuracy 0.9125
Area under ROC curve (AUC) 0.963
Area under the precision recall curve (auPRC) 0.966
False positive rate 0.0355

Figure 8: Confusion matrix performed with the test
dataset produced by the FNN with binary classification
(two-label dataset).
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Figure 9: ROC curves and Precision-recall for the test data set. (A) ROC and (B) PRC curves for the test dataset.

Figure 10: Training curves with CNN implemented for binary classification (A) F1-score vs. epochs (B) Loss vs. epochs.

Figure 11: Confusion matrix made with the test dataset
produced by the CNN with binary classification.
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With these graphs it is identified that themodel that has generalizedbetter is the onemadeonlywithFNN,
considering de two-label dataset. In addition it implies less computational expense at the time of executing it.
With this model defined, we proceeded to test with genomes that have different size to verify its performance.

3.3 Test for the generalization of the implemented model
In order to analyse the performance of the implemented computational model, LTR retrotransposons were
predicted in four different plant species: O. indica, O. granulata, C. eugenioides and C. humblotiana, using
LTR_FINDER and LTR_STRUC software (Table 3).

The different datasets created for each genome, were further processed by two workflows. The first one
uses the filters implemented in InpactorDB, while the second one implement the model described above,
considering the pre-processing techniques necessary for the DNA sequences to be processed correctly.

Tables 4and5 show the comparisonof the execution times for the results of LTR_STRUCandLTR_FINDER,
respectively, considering theconventionalmethodandthecomputationalmodelperformed. It shouldbenoted
that the characteristics used by the model were obtained from the k-mers frequencies. Likewise, the number

Table 3: Number of predicted LTR-RTs with LTR_FINDER and LTR_STRUC software.

Genomes Genome size Accession number Number of LTR-RTs

LTR_FINDER LTR_STRUC

Oryza indica 355 Mb GCA_011764405.2, 355 923 854
Oryza granulata 752 Mb GCA_003991445.1 8597 5734
Coffea eugenioides 678 Mb GCA_003713205.1 6872 3590
Coffea humblotiana 407 Mb (42) 2659 2533

Table 4: Execution time of the conventional method and the model implemented for LTR_STRUC data.

Genomes Bioinformatics conventional method DNN model

K-mer counting FNN prediction

Oryza indica 00:40:12 00:00:30 00:00:3.73
Oryza granulata 06:04:53 00:03:13 00:00:22.61
Coffea eugenioides 03:03:52 00:02:01 00:00:20.59
Coffea humblotiana 02:07:07 00:01:27 00:00:8.5

The execution time is presented in hours:minutes:seconds.

Table 5: Execution time of the conventional method and the model implemented for LTR_FINDER data.

Species Bioinformatics conventional method DNN model

K-mer counting FNN prediction

Oryza indica 00:45:14 00:00:32 00:00:11.84
Oryza granulata 10:09:37 00:04:49 00:00:53.01
Coffea eugenioides 06:51:29 00:03:50 00:00:29.01
Coffea humblotiana 02:05:06 00:01:30 00:00:18.09

The execution time is presented in hours:minutes:seconds.
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Table 6: Number of sequences obtained by executing each of the methods for LTR_STRUC and LTR_FINDER data sets.

Species LTR_SCTRUC LTR_FINDER

Bioinformatics conventional Computational model Bioinformatics conventional Computational model
method method

Oryza indica 474 404 474 396
Oryza granulata 3266 3148 4777 4700
Coffea eugenioides 2436 2263 4596 4090
Coffea humblotiana 1630 1474 1721 1496

of sequences detected as non-intact elements can be seen in Table 6 for the LTR_STRUC and LTR_FINDER
datasets.

The results obtained can be seen in Supplementary Material S5, where the best results obtained for O.
granulata are presented in Table 7 with a F1-Score of 93.6%. Figure 12 shows the confusion matrix obtained
for this dataset.

Table 7:Metrics obtained for the
generalization test using LTR_STRUC
data of Oryza granulata.

Metrics Value

Run time 22.61 s
Number of filtered sequences 3148
TN (True Negative) 2302
FN (False Negative) 272
FP (False Positive) 132
TP (True Positive) 2994
Precision 0.956
Recall 0.916
Specificity/FP rate 0.704
F1-score 0.936
Accuracy 0.929

Figure 12: Confusion matrix performed with the gener-
alization test dataset for the LTR_STRUC datasets of O.
granulata.
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4 Discussion
Increasingly, machine learning is positioning itself as an effective alternative to the well-known problem of
analyzing the enormous amount of sequencing data that is published every day [45]. ML has been used in a
huge number of bioinformatics applications [6–8, 46, 47] demonstrating results that surpass conventional
strategies, accelerating analysis times and automating tasks.

Such approaches are particularly relevant for the identification, classification and subsequent analysis of
LTR retrotransposons elements inplant species [48]. In fact, this order of transposable elements represents the
majority of repeated sequences in plant genomes, being able to makes upmore than 50% of the genome size.
The propensity of these elements to increase their copy number in genomes is directly related to their mode
of transposition, that use messenger RNA in their replication mechanism [49]. Their number can be so large
that they accumulate and insert themselves into each other’s, creating nested structures that are particularly
difficult to identify and annotate in genome sequences [50]. Most of the tools for LTR-RT identification and
reference library creation do not include automatic curation tools for these insertions. This leaves the users
with a long manual curation process to identify and to remove nested insertions from LTR-RT references
sequences, indicating the importance of implementing a novel tool for the automatic curation of LTR-RTs
reference sequence libraries.

Currently, the most common techniques to perform this curation process is the sequence homology and
structure-based approaches. Those strategies are used in conventional bioinformatics tools, in which the
initial data are compared to references (proteins, domains, nucleotides) available in databases such as in
REXDB [17]. However, it has disadvantages, as it requires a lot of manual work, the execution time is quite
long. For this reason, despite the existence of software for the detection of nested structures [24, 25, 51] and
strategies such as EDTA [29], to create libraries of good quality, we proposed a new strategy based onmachine
learning to identify and to filter out nested sequences that could represent “low quality” sequence in LTR-RTs
reference libraries.

When running the testswith our initial dataset, itwas clear that the data overlappedbetween thedifferent
classes,making it difficult to separatewell (Figure 3). UsingML algorithms, the best F1-score percentageswere
obtained for MLP and KNN, for the five-label dataset with 64.8 and 63.9%, respectively, and for the two-label
dataset 89.7 and 90.3%, respectively (Figure 4). It should be noted that, at the time of obtaining the values for
the precision, accuracy and recall metrics of these MLmodels, percentages higher than 63% for the five-label
dataset and higher than 89% for the two-label dataset were obtained. These results have strongly oriented
the implementation towards DL architectures, since MLP is mainly based on layers of neurons.

Thus, amodel was implemented that achieved an F1-score of 88.75% to identify each filter separately and
91.18% for binary detection (using the two-label dataset), highlighting in the last one, the values obtained
for precision, accuracy and recall, which are 91.40, 91.25 and 91.25% respectively (Table 2), percentages that
were obtained from the implementation of a computational tool that runs in seconds. It is emphasized that
those non-intact sequences should be disregarded from the final dataset and stored in new files, because for
future studies these sequences are of great relevance, to observe the divergence and establish an evolutionary
scale of the analyzed species.

Finally, generalization tests were performed with four plants genomes: C. eugenioides (678 Mb),
C. humblotiana (407 Mb), O. indica (355 Mb) and O. granulata (752 Mb), which have a number of predicted
LTR-RTs of 3,590, 2,533, 854 and 5734 respectively (Table 3), according to the results of LTR_STRUC. A per-
centage higher than 85% was obtained in all cases. Interestingly, the execution time is greatly reduced from
hours to seconds with the implemented FNN when compared to conventional methods (Tables 4 and 5).

However, the results obtained for the LTR_FINDER dataset range between 54.8 and 59.2% for the F1-score
percentage. This significantly lower percentageswhen compared to LTR_STRUC, can be attributed to a highest
rate of false positives.

Altogetherour results indicate that the implementationofFNNmethod for curationofLTR-RTs sequence is
relevant, optimizing the execution time for the creation of better quality reference libraries for plant genomes.
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This model can be integrated into existing tools as an extra filter due to the short running time and low
computational resources needed to make the predictions. Due to the sequential behaviour of the data used in
thiswork, better results could be obtainedbyusing recurrent neural networks, since these have amemory that
allows storing key information. As a future work, wewill use themethodology proposed in this work (dataset,
pre-processing and feature extraction) but using recurrent networks such as LSTM (Long-Short termMemory)
or transformers in order to compare the performance against the FNN and CNN networks implemented in this
work.

5 Conclusions
With the sequencing and release of large amounts of genomes currently underway, the creation of more
efficient run-time methodology is a necessity. Neural networks can be used to solve bottlenecks in genomic
processes and the results proposed in this work demonstrate this once again. The FNN-basedmodel obtained
91.18% F1-Score for detecting LTR retrotransposon sequences with nested structures. In addition, curation of
an O. granulata library was achieved with an F1-score of 93.6% and an approximate network prediction time
of 22.61 s.

Acknowledgments: Wewould like to thank the following HPC bioinformatics platforms for their support: the
French Bioinformatics Institute (https://www.france-bioinformatique.fr), IRD (https://bioinfo.ird.fr/), Geno-
toul (http://bioinfo.genotoul.fr/), BiRD (https://pf-bird.univ-nantes.fr/) and Migale Bioinformatics facility
(http://migale.jouy.inra.fr/). We also thank to the R&D Center-Bioprocess and Agro-industry Plant from
Universidad de Caldas.
Author contribution: All authors have accepted responsibility for the entire content of this manuscript and
approved its submission.
Research funding: Simon Orozco-Arias is supported by a Ph.D. grant from the Ministry of Science, Technol-
ogy and Innovation (Minciencias) of Colombia, Grant Call 785/2017. The authors and publication fees were
supported by Universidad Autónoma de Manizales, Manizales, Colombia under project 752-115, and Univer-
sidad de Caldas under project 0319120 and 0277920. This work was supported by Minciencias-Ecos Nord No
C21MA01 and 285-2021 and STICAMSUD 21-STIC-13.
Conflict of interest statement: Authors state no conflict of interest.

References
1. Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract Ed 2013;98:236−8..
2. Guio L, González J. Evolutionary genomics: statistical and computational methods, 2nd ed., Anisimova M, editor. New

York: Humana Press; 2019:505−30 pp.
3. Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet 2008;9:397−405.
4. Shastry KA, Sanjay HA. Machine learning for bioinformatics. In: Statistical modelling and machine learning principles for

bioinformatics techniques, tools, and applications. New York: Springer; 2020:25−39 pp.
5. Montesinos-López OA, Montesinos-López A, Pérez-Rodríguez P, Barrón-López JA, Martini JWR, Fajardo-Flores SB, et al.

A review of deep learning applications for genomic selection. BMC Genom 2021;22:1−23..
6. Larrañaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, et al. Machine learning in bioinformatics. Briefings Bioinf

2006;7:86−112..
7. Yue T, Wang H. Deep Learning for genomics: a concise overview; 2018:1−40 pp. Available from: http://arxiv.org/abs/

1802.00810.
8. Orozco-Arias S, Isaza G, Guyot R, Tabares-Soto R. A systematic review of the application of machine learning in the

detection and classification of transposable elements. PeerJ 2019;7. https://doi.org/10.7717/peerj.8311.
9. da Cruz MHP, Domingues DS, Saito PTM, Paschoal AR, Bugatti PH. TERL: classification of transposable elements by

convolutional neural networks. Briefings Bioinf 2021;22. https://doi.org/10.1093/bib/bbaa185.
10. Schrader L, Schmitz J. The impact of transposable elements in adaptive evolution. Mol Ecol 2019;28:1537−49..

https://www.france-bioinformatique.fr
https://bioinfo.ird.fr/
http://bioinfo.genotoul.fr/
https://pf-bird.univ-nantes.fr/
http://migale.jouy.inra.fr/
http://arxiv.org/abs/1802.00810
http://arxiv.org/abs/1802.00810
https://doi.org/10.7717/peerj.8311
https://doi.org/10.1093/bib/bbaa185


14 | S. Orozco-Arias et al.: Automatic curation of LTR retrotransposon libraries

11. Cui X, Cao X. Epigenetic regulation and functional exaptation of transposable elements in higher plants. Curr Opin Plant
Biol 2014;21:83−8..

12. Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, et al. Ten things you should know about
transposable elements. Genome Biol 2018;19:199..

13. Boehne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff J-N. Transposable elements as drivers of genomic and biological
diversity in vertebrates. Chromosome Res 2008;16:203−15..

14. Lisch D. How important are transposons for plant evolution? Nat Rev Genet 2013;14:49−61..
15. Bennetzen JL. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev

2005;15:621−7..
16. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic

transposable elements. Nat Rev Genet 2007;8:973−82..
17. Neumann P, Novák P, Hoštáková N, MacAs J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic

relationships of their polyprotein domains and provides a reference for element classification. In: Mobile DNA. New York:
BioMed Central Ltd.; 2019, vol. 10:1 p.

18. Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, et al. Exceptional diversity, non-random
distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 2009;5. https://doi.org/10.1371/
journal.pgen.1000732.

19. Paz RC, Kozaczek ME, Rosli HG, Andino NP, Sanchez-Puerta MV, Cristina Paz R, et al. Diversity, distribution and dynamics
of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum. Genetica 2017;145:417−30..

20. Esposito S, Barteri F, Casacuberta J, Mirouze M, Carputo D, Aversano R. LTR-TEs abundance, timing and mobility in
Solanum commersonii and S. tuberosum genomes following cold-stress conditions. Planta 2019;250:1781−7..

21. Orozco-Arias S, Isaza G, Guyot R. Retrotransposons in plant genomes: structure, identification, and classification through
bioinformatics and machine learning. Int J Mol Sci 2019;20:1−29..

22. Devos KM, Brown JKM, Bennetzen JL. Genome size reduction through illegitimate recombination counteracts genome
expansion in Arabidopsis. Genome Res 2002;12:1075−9..

23. Ma J, Devos KM, Bennetzen JL. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in
rice. Genome Res 2004;14:860−9..

24. Lexa M, Jedlicka P, Vanat I, Cervenansky M, Kejnovsky E. TE-greedy-nester: structure-based detection of LTR
retrotransposons and their nesting. Bioinformatics 2021;36:4991−9.

25. Kronmiller BA, Wise RP. TEnest: automated chronological annotation and visualization of nested plant transposable
elements. Plant Physiol 2008;146:45−59..

26. McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res
2004;32:20−5..

27. Xu Z, Wang H. LTR-FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res
2007;35:265−8..

28. Gremme G, Steinbiss S, Kurtz S. Genome tools: a comprehensive software library for efficient processing of structured
genome annotations. IEEE ACM Trans Comput Biol Bioinf 2013;10:645−56..

29. Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, et al. Benchmarking transposable element annotation methods for
creation of a streamlined, comprehensive pipeline. Genome Biol 2019;20:275..

30. Huynh LN, Balan RK, Lee Y. DeepSense: a GPU-based deep convolutional neural network framework on commodity mobile
devices. In: Proceedings of the 2016 Workshop on Wearable Systems and Applications. Singapore: Workshop on
Wearable Systems and Applications; 2016:25−30 pp.

31. Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA
2015;6:4−9..

32. Amselem J, Cornut G, Choisne N, Alaux M, Alfama-Depauw F, Jamilloux V, et al. RepetDB: a unified resource for
transposable element references. Mobile DNA 2019;10:4−11..

33. Spannagl M, Nussbaumer T, Bader KC, Martis MM, Seidel M, Kugler KG, et al. PGSB plantsDB: updates to the database
framework for comparative plant genome research. Nucleic Acids Res 2016;44:D1141−7..

34. McCarthy EM, McDonald JF. LTR STRUC: a novel search and identification program for LTR retrotransposons.
Bioinformatics 2003;19:362−7..

35. Orozco-Arias S, Jaimes PA, Candamil MS, Jiménez-Varón CF, Tabares-soto R, Isaza G, et al. InpactorDB : a classified
lineage-level plant LTR retrotransposon reference library for free-alignment methods based on machine learning. MDPI
Genes 2021;12:17..

36. Orozco-Arias S, Piña JS, Tabares-soto R, Castillo-ossa LF, Guyot R, Isaza G. Measuring performance metrics of machine
learning algorithms for detecting and classifying transposable elements. Processes 2020;8:1−20.

37. Orozco-Arias S, Candamil-Cortés MS, Jaimes PA, Piña JS, Tabares-Soto R, Guyot R, et al. K-mer-based machine learning
method to classify LTR-retrotransposons in plant genomes. PeerJ 2021;9:e11456.

https://doi.org/10.1371/journal.pgen.1000732
https://doi.org/10.1371/journal.pgen.1000732


S. Orozco-Arias et al.: Automatic curation of LTR retrotransposon libraries | 15

38. da Cruz MHP, Saito PTM, Paschoal AR, Bugatti PH. Classification of transposable elements by convolutional neural
networks. In: Proceedings of the Lecture notes in computer science. New York: Springer International Publishing;
2019:157−68 pp.

39. Tabares-soto R, Orozco-Arias S, Romero-Cano V, Segovia Bucheli V, Rodríguez-Sotelo JL, Jiménez-Varón CF. A comparative
study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression.
PeerJ Comput Sci 2020;6:1−22..

40. Nakano FK, Mastelini SM, Barbon S, Cerri R. Improving hierarchical classification of transposable elements using deep
neural networks. In: Proceedings of the International Joint Conference on Neural Networks. Rio de Janeiro, Brazil: IEEE;
2018..

41. Raharimalala N, Rombauts S, McCarthy A, Garavito A, Orozco-Arias S, Bellanger L, et al. The absence of the caffeine
synthase gene is involved in the naturally decaffeinated status of Coffea humblotiana, a wild species from Comoro
archipelago. Sci Rep 2021;11:1−14..

42. Datta K, Datta SK. Indica rice (Oryza sativa, BR29 and IR64). In: Methods in molecular biology, vol. 343. Clifton, N.J.;
2006:201−12 pp.

43. Shi C, Li W, Zhang QJ, Zhang Y, Tong Y, Li K, et al. The draft genome sequence of an upland wild rice species Oryza
granulata. Sci Data 2020;7:1−12..

44. Bisong E. Google collaboratory BT - building machine learning and deep learning models on google cloud platform: a
comprehensive guide for beginners; 2019:59−64 pp..

45. Buermans HPJ, Den Dunnen JT. Next generation sequencing technology: advances and applications. Biochim Biophys Acta
2014;1842:1932−41..

46. Zou Q, Liu Q. Advanced machine learning techniques for bioinformatics. IEEE ACM Trans Comput Biol Bioinf
2019;16:1182−3..

47. Naresh E, Kumar BPV, Shankar SP, Others. Impact of machine learning in bioinformatics research. In: Statistical
modelling and machine learning principles for bioinformatics techniques, tools, and applications. Singapore: Springer;
2020:41−62 pp.

48. Yan H, Bombarely A, Li S. DeepTE: a computational method for de novo classification of transposons with convolutional
neural network. Bioinformatics 2020. https://doi.org/10.1093/bioinformatics/btaa519.

49. Kumar A, Bennetzen JL. Plant retrotransposons. Annu Rev Genet 1999;33:479−532..
50. Gao C, Xiao M, Ren X, Hayward A, Yin J, Wu L, et al. Characterization and functional annotation of nested transposable

elements in eukaryotic genomes. Genomics 2012;100:222−30..
51. Zeng F-C, Zhao Y-J, Zhang Q-J, Gao L-Z. LTRtype, an efficient tool to characterize structurally complex LTR retrotransposons

and nested insertions on genomes. Front Plant Sci 2017;8:402.

Supplementary Material: The online version of this article offers supplementary material (https://doi.org/10.1515/jib-2021-
0036).

https://doi.org/10.1093/bioinformatics/btaa519
https://doi.org/10.1515/jib-2021-0036
https://doi.org/10.1515/jib-2021-0036

	1 Introduction
	2 Methodology
	2.1 Training dataset: complete LTR-RT sequences versus nested LTR-RT
	2.2 Feature extraction and pre-processing
	2.3 Experiments using ML models
	2.4 Experiments using FNN
	2.5 Experiments based on CNN
	2.6 Generalization tests
	2.7 Hardware specifications

	3 Results
	3.1 Descriptive analysis of the dataset
	3.2 A machine learning-based curator of nested inserted LTR retrotransposons in plant genomes
	3.3 Test for the generalization of the implemented model

	4 Discussion
	5 Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


