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A B S T R A C T   

Earth observation satellite imagery is increasingly accessible, and has become a key component for vegetation 
mapping and monitoring. Sentinel-2 satellites acquire optical images with five days’ revisit frequency, which is 
an important feature to increase the probability of acquisition with reasonable cloud cover in tropical regions. 
Regular and reliable satellite observations open perspectives for the monitoring of vegetation properties and 
biodiversity. Atmospheric correction methods (ACMs) producing bottom-of-atmosphere (BOA) reflectance are 
critical to ensure temporal consistency of higher-level products and optimal sensitivity to changes in vegetation 
properties. Still their application in tropical regions remains challenging due to complex atmospheric issues. This 
study aims at performing ACM inter-comparison in the context of tropical forest monitoring. We produced BOA 
reflectance for a set of Sentinel-2 acquisitions corresponding to a forested area in Cameroon, using four atmo-
spheric correction methods: Sen2cor, MAJA, Overland and LaSRC. We selected five successive acquisitions with 
moderate to no cloud cover, and computed a set of spectral indices and spectral diversity metrics in order to 
compare the consistency of these products through time, under the hypothesis that they should remain stable 
over a short period. We also assessed the agreement between atmospheric correction methods. Two spatial ex-
tents were used for the computation of spectral diversity metrics to assess the robustness of the data-driven 
processes applied to compute spectral diversity. We found that the choice of an ACM did have a significant 
impact on BOA reflectance and higher-level products. In the visible domain, Overland and LaSRC produced 
consistent BOA reflectance values, while MAJA and Sen2Cor showed strong variability which could not be 
explained by changes in surface properties. This directly influenced the temporal consistency of NDVI. Yet, the 
influence on the temporal consistency for EVI and NDWI was moderate. Spectral diversity metrics were 
consistent through time for all methods, but to a lesser degree than vegetation indices. When comparing the 
mean values over the period considered, vegetation indices were stable across methods, but not diversity metrics. 
Spatial context changes had an impact on the Shannon index, but not on Bray-Curtis dissimilarity. These results 
suggest that the choice of ACM has major potential implications for tropical forest monitoring.   

1. Introduction 

1.1. Improving our understanding of the biodiversity crisis with remote 
sensing 

The Biodiversity crisis calls for urgent actions (IPBES, 2019; Turney 
et al., 2020). The preservation of biodiversity has become a major 

challenge for sustainable development from local to global levels. To 
address these conservation goals, we need operational methods to 
improve monitoring of ecosystem conditions and to inform conservation 
planning and support restoration initiatives (Luque et al., 2018). Trop-
ical forests are particularly threatened, facing both direct destruction by 
human activities and climate change impacts (Barlow et al., 2016; 
Edwards et al., 2019). In order to coordinate scientific efforts and 
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articulate with decision makers, the Biodiversity Observation Network - 
which is part of the Group on earth Observation – focuses on the defi-
nition and implementation of Essential Biodiversity Variables (EBVs) 
(Pereira et al., 2013), designed to harmonize biodiversity monitoring. 
Global scale retrieval of such variables by the sole means of field surveys 
is costly and time consuming. Remote sensing has proven to be a strong 
lead towards the upscaling of biodiversity observation (Skidmore et al., 
2015; Pettorelli et al., 2016; Luque et al., 2018; Reddy et al., 2021). Free 
and open access remote sensing data open up new perspectives for 
operational biodiversity monitoring over a broad range of ecosystems, 
providing global coverage, fine spatial resolution, rich spectral infor-
mation and short revisit period. Original methods taking advantage of 
these improvements are being developed by the scientific community 
(Wang and Gamon, 2019). However, operationalization of such methods 
remains challenging (Portillo-Quintero et al., 2021). We need to ensure 
that the degree of precision and consistency needed for biodiversity 
monitoring matches the input remote sensing data. 

Sentinel-2 for biodiversity monitoring and caveat regarding atmospheric 
corrections 

The ambitious objective of large-scale remotely sensed biodiversity 
monitoring seems within reach (Tuomisto et al., 2019; Rocchini et al., 
2021; Aguirre-Gutiérrez et al., 2021). Many promising results regarding 
biodiversity mapping based on the multispectral missions Sentinel-2 and 
Landsat have been produced (Hościło and Lewandowska, 2019; Torre-
sani et al., 2019; Chraibi et al., 2021). As we aim at reducing the un-
certainty in the estimated vegetation properties, the requirements 
increase in terms of radiometric, spatial and temporal resolutions. Such 
information includes: i) properties from vegetation cover (Hansen et al., 
2013); ii) vegetation function and traits (Houborg et al., 2015; Aguirre- 
Gutiérrez et al., 2021); iii) biophysical parameters to support species 
distribution models (Randin et al., 2020). These products could be 
impacted by uncertainty in surface reflectance measurements acquired 
by spaceborne sensors. 

Atmospheric properties strongly influence top-of-atmosphere (TOA) 
reflectance measured by optical sensors, due to absorption and scat-
tering from gasses, aerosols and water vapour. These sources of varia-
tion of reflectance added to the signal reflected from Earth surface may 
increase complexity when estimating surface properties, and reduce the 
consistency of TOA reflectance through time. This is particularly true in 
tropical regions, where atmospheric corrections are complex due to the 
high aerosol content and nebulosity (Lonjou et al., 2016; Vermote et al., 
2018). Atmospheric correction methods (ACM) aim at accounting for 
the contribution of aerosol optical thickness (AOT) and water vapour 
content in the atmosphere, in order to produce bottom-of-atmosphere 
(BOA) reflectance, which are standard reflectance products processed 
to estimate surface properties. However, moderate uncertainty on the 
characterization of AOT, which particularly influences shorter wave-
lengths in the optical domain, i.e. the visible (VIS) domain, may prop-
agate to uncertainty in the estimated BOA reflectance, and higher-level 
products, such as spectral indices and biodiversity metrics. Therefore, 
the characterization of this uncertainty resulting from ACM, from BOA 
reflectance to higher-level products, appears as a crucial step to ensure 
the reproducibility and qualification of biodiversity monitoring 
frameworks. 

Comparing atmospheric correction products in the context of thematic 
studies 

The choice of one ACM among many may influence the uncertainty 
of remote sensing products computed from BOA reflectance. ACM val-
idations are usually based on the comparison between BOA reflectance 
products and reflectance simulated with radiative transfer models 
parameterized with ground-based remote sensing aerosol networks 
(AERONET) (Doxani et al., 2018; Marujo et al., 2021) or field reflectance 
(Sola et al., 2018). However, these benchmarking exercises do not focus 
on specific and localized applications. Assessing the temporal consis-
tency of higher-level products obtained from BOA image processing 
appears relevant when characterizing the potential for 

operationalization of specific applications. This criterion may highlight 
differences between methods that would not be so evident when 
comparing ACM validation alternatives (Martins et al., 2017; Kuhn 
et al., 2019). Disregard for the importance of the ACM choice could 
hamper the reproducibility of the analysis, leading to difficulties for the 
monitoring of vegetation or even producing flawed results. 

The main objective of our study is to substantiate the uncertainty 
induced by atmospheric correction when using Sentinel-2 data acquired 
over tropical forests, and to provide guidelines for optical data pre-
processing in the context of biodiversity monitoring. Our results will 
contribute to ensuring the comparability of tropical vegetation studies, 
and to assessing the reliability of spectral diversity metrics. To achieve 
this objective, we assessed the temporal stability of Sentinel-2 images 
and products obtained from four ACMs, and their pairwise agreement 
over a short period of time. We selected a region in Cameroon as a case 
study to test different ACM and to compare BOA reflectance, vegetation 
indices, and spectral diversity metrics over five acquisitions of Sentinel- 
2. 

2. Materials 

2.1. Study area 

The study area selected as a demonstrator is located in the eastern 
region of Cameroon, alongside the border with the Central African Re-
public (Fig. 1). It covers 8400 km2 at 14◦09E–15◦08E and 3◦53 N–4◦52 
N with an average altitude of 642 m. Slopes are present but not too steep: 
72% of the image exhibits slopes under 6◦. According to the Köppen- 
Geiger climate classification (Peel et al., 2007) this region is broadly 
classified as “Am: Tropical savanna climate”. The temperatures are 
stable throughout the year. The year is divided between a rainy season 
(March to November) and a dry season (December to February). The 
vegetation in this region is categorized as closed evergreen lowland 
forest (Onana, 2015). 

2.2. Satellite images 

Level-1C images (TOA reflectance) were downloaded from the 
Copernicus hub (https://scihub.copernicus.eu/) for the application of 
three of the four atmospheric correction algorithms tested here, while 
Level-2A images (BOA reflectance) corrected with the MAJA processing 
chain were directly downloaded from the Theia data hub (https://theia. 
cnes.fr/). 

Sentinel-2 acquisitions were selected based on visual analysis over 
the shortest possible time period in order to minimize cloud and haze 
cover, as well as changes in forest properties. We identified five Sentinel- 
2 images from tile 33NVE with low cloud cover acquired over a period of 
less than five weeks in the dry season, between January and February 
2018. 

3. Methods 

3.1. Overview 

We identified a set of atmospheric correction methods to assess the 
stability and agreement of remotely sensed products dedicated to trop-
ical forest functions and biodiversity monitoring. We computed vege-
tation indices (3.3) and spectral diversity metrics (3.4) from 
atmospherically corrected images produced from each ACM. We then 
assessed the temporal stability of reflectance and higher-level metrics 
for each ACM (4.1). We also measured the agreement between ACM for 
the computation of vegetation indices and spectral diversity metrics 
(4.2). Finally, we estimated the influence of the spatial scale of analysis 
of spectral diversity metrics, as their computation results from data 
driven analysis and may be sensitive to this factor (4.3). A flowchart 
providing an overview of the developed methodology to compare 
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temporal stability and consistency between ACMs is presented in Fig. 2. 

3.2. Atmospheric correction 

We selected four ACMS applicable to Sentinel-2 images, three of 
which (Sen2cor, MAJA, LaSRC) were featured in the Atmospheric Inter- 
comparison eXercise (ACIX, Doxani, 2018) and are widely used among 
the remote sensing community. 

3.2.1. MAJA 
The MACCS-ATCOR Joint Algorithm (MAJA) combines an algorithm 

for atmospheric correction and cloud screening (MACCS) developed by 

CNES, and an atmospheric correction software (ATCOR) developed by 
DLR (Lonjou et al., 2016). MAJA is based on a multitemporal approach 
requiring a digital elevation model (DEM) for topographic correction, 
Ground Image Processing Parameters (GIPP) provided by ESA for each 
Sentinel-2 tile, and meteorological data when available. The latest 
version of MAJA includes data from Copernicus Atmosphere Monitoring 
Service (CAMS) (Rouquié et al., 2017). 

3.2.2. Sen2cor 
Sen2cor (Main-Knorn et al., 2017) is the atmospheric correction 

processor developed by Telespazio VEGA Deutschland GmbH on behalf 
of ESA. It requires the Level-1C product, atmospheric radiative transfer 

Fig. 1. Tile 33NVE acquired on the 2018/01/01 shown with the four ACM compared in our study.  

Fig. 2. Flowchart of the developed methodology to compare temporal stability and consistency between ACMs.  

E. Chraibi et al.                                                                                                                                                                                                                                 



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102884

4

look-up tables, and an optional DEM for topographic corrections. 
Sen2Cor first produces a scene classification, followed by an atmo-
spheric correction based on look-up tables generated by the radiative 
transfer library LibRadtran (Emde et al., 2016). 

3.2.3. Overland 
The Overland processor is an optical processing suite developed by 

Airbus (Poilvé, 2010), which includes algorithms based on the model-
ling of all parameters contributing to the measured signal constrained by 
expert knowledge of the region. The physical models SAIL and PROS-
PECT (Jacquemoud et al., 2009) are used to model the vegetation 
reflectance, and LOWTRAN-MODTRAN (Kneizys, 1978) is used to model 
the atmosphere. It also includes topographic correction. Overland was 
initially developed for the estimation of vegetation biophysical proper-
ties, but the inversion of the models allows the retrieval of the top-of- 
canopy reflectance as a by-product. 

3.2.4. LaSRC 
The Land Surface Reflectance Code (LaSRC) was originally devel-

oped for atmospheric correction of Landsat 8 imagery (Vermote et al., 
2016), then extended to Sentinel-2 (Doxani et al., 2018). It is based on 
the 6S radiative transfer model (Kotchenova and Vermote, 2007) and 
takes advantage of data from MODIS, MISR and from the National 
Center for Environmental Prediction Global Data Assimilation System to 
account for the effects on the atmosphere in the model inversion 
(Claverie et al., 2018). 

3.3. Vegetation index 

Vegetation indices are the most common remote sensing products 
used to monitor vegetation in space and time (Huang et al., 2021). Used 
as time series (Silva et al., 2013) they allow for the wide scale study of 
vegetation properties. They are also used as inputs for methods esti-
mating spectral diversity indices, with the purpose of linking them to 
floristic diversity surveys (He et al., 2009; Rocchini et al., 2017; Wang 
and Gamon, 2019). 

The Normalized Difference Vegetation Index (NDVI) is the normal-
ized difference between reflectance in the near infrared (NIR) and the 
red band (Eq. (1)). It takes advantage of the contrast in vegetation op-
tical properties between these two spectral domains, with low reflec-
tance of vegetation in the red domain due to the absorption of light by 
chlorophylls, and the high reflectance in the NIR due to the absence of 
strong absorbers and multiple scattering related to leaf and canopy 
structure. 

The NDVI tends to saturate when applied to dense vegetation, as is 
the case in tropical forests (Huete et al., 1997; Van Der Meer et al., 
2001). The Enhanced Vegetation Index (EVI) (Huete et al., 1994); 
Equation (2)) was designed to avoid this issue. It was designed for 
MODIS (Huete et al., 1999) and makes use of coefficients to account for 
canopy background, and aerosol resistance (Eq. (2)). This index is now 
also used in Sentinel-2 applications for both temperate (Babcock et al., 
2021) and tropical forest situations (Vaglio Laurin et al., 2016). The 
coefficient values were kept unchanged (Arekhi et al., 2019; Somvanshi 
and Kumari, 2020). 

The Normalized Difference Water Index (NDWI) was designed to 
measure vegetation water content, by computing the normalized dif-
ference between spectral bands in the NIR and shortwave infrared 
(SWIR) domains (Eq. (3)). Vegetation absorption in the NIR domain is 
negligible, and increases in the SWIR. This index is also described as less 
sensitive to atmospheric effects than the NDVI (Gao, 1996). 

NDVI =
NIR − RED
NIR + RED

(1)  

EVI = G ×
(NIR − RED)

(NIR + C1 × RED − C2 × BLUE + L)
(2)  

NDWI =
NIRa − SWIR
NIRa + SWIR

(3) 

With BLUE, RED, NIR, NIRa, SWIR the reflectance corresponding to 
Sentinel-2 spectral bands B2, B4, B8, B8A, B11, respectively; L corre-
sponds to the canopy background; C1 and C2 are the coefficients of the 
aerosol resistance term; G is the scaling factor. We kept the commonly 
used values of L = 1, C1 = 6, C2 = 7.5, and G = 2.5. 

3.4. Spectral diversity metrics 

3.4.1. Diversity indices 
Biodiversity as a concept cannot be reduced to a single variable or 

aspect (DeLong, 1996), but the scientific community has progressively 
identified indices to study particular aspects of biodiversity. Species 
diversity can be described using alpha and beta diversity components 
(Whittaker, 1972). Alpha diversity representing the diversity measured 
within a sampling unit, and beta diversity highlighting the composi-
tional differences between two sampling units (Magurran, 1988). In the 
framework of this study, we used the Shannon index as alpha-diversity 
metric, hereafter named Shannon’s H’. Shannon’s H’ was quantified 
as follows (Eq. (4)) (MacArthur, 1965): 

Shannon’s H’ = −
∑N

i=1
pilnpi (4)  

where pi is the proportion of the i th species among N species inventoried 
in the sampling unit. 

Beta-diversity was computed using Bray-Curtis dissimilarity (BC) 
(Bray and Curtis, 1957). BC is a commonly used index that quantifies the 
dissimilarity in species composition between two assemblages weighted 
by species abundances (Eq. (5)): 

BCUV = 1 −
2
∑N

i=1min(Ui,Vi)
∑N

i=1(Ui + Vi)
(5)  

where for two assemblages U and V, Ui and Vi are the abundances of the 
species i, and min(Ui,Vi) is the lowest abundance of the species i, only 
taking into account species present in both assemblages(Bray and Curtis, 
1957; McCarthy and Magurran, 2004). BC ranges between 0 and 1, a 
value of 0 indicates that two sites are identical, and a value of 1 indicates 
that they do not share any common species. 

3.4.2. Spectral diversity 
The effort of the scientific community towards wide-scale biodiver-

sity monitoring has led to the production of several methods aiming at 
estimating ecological diversity from remotely sensed metrics (Féret and 
Asner, 2014; Torresani et al., 2019; Laliberté et al., 2020; Marzialetti 
et al., 2021). Most methods linking spectral reflectance to biodiversity 
stem from the Spectral Variation Hypothesis (SVH) (Palmer et al., 2002). 
Féret and Asner (2014) developed a method based on the discretization 
of the spectral space with an unsupervised clustering algorithm, fol-
lowed by a cluster inventory to produce diversity indices compatible 
with taxonomic diversity metrics derived from forest inventories. This 
method was adapted to Sentinel-2 images, and implemented in the R 
package biodivmapR (Féret and Boissieu, 2020). Our study applied this 
method to produce spectral diversity metrics from Sentinel-2 images. 
For each acquisition and for each BOA reflectance product obtained 
from an ACM, we first applied a filter to remove non-vegetated pixels 
(NDVI thresholding), shaded pixels (NIR thresholding) and cloudy pixels 
(Blue thresholding). Then we applied a standardized Principal Compo-
nents Analysis (PCA) on the spectral information. We performed visual 
interpretation to select two components enhancing relevant patterns 
related to vegetation types and discarded components showing noise or 
sensor artefacts. Finally, we applied k-means clustering on a subset of 
pixels in order to identify 50 cluster centroids, and associated each pixel 
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in the image to the nearest cluster centroid. 

3.5. Sampling strategy 

Our main focus is to study the temporal stability and agreement 
between ACM for the monitoring of dense tropical forests, and it is based 
on the hypothesis that dense forest should experience minor changes 
when analysing the Sentinel-2 acquisitions over less than five weeks, 
therefore BOA reflectance should show little variations overall. Pheno-
logical signal corresponding to leaf fall, leaf flushing, or flowering may 
influence canopy reflectance, but such effects should be minimal for the 
time considered, and appear for all ACMs. Local perturbations including 
forest degradation and logging may also occur, but these should repre-
sent a negligible surface when considering large forested extents. The 
interface between dense forest and other land cover types including bare 
soil, urban areas and agricultural lands may show strong differences in 
terms of temporal stability. Pixels including thin clouds, haze or mild 
atmospheric perturbations and not flagged as cloudy pixels may also 
lead to reduced temporal consistency and show unpredictable behaviour 
between methods. Therefore we produced a single mask using the 
combination of filters applied for each acquisition corrected with each 
ACM: we applied a NDVI thresholding, selecting only pixels with NDVI 
higher than 0.4 to discard non-vegetated pixels and low vegetation 
density areas; a blue thresholding, selecting only pixels with reflectance 
lower than 7% in the blue domain to discard hazy or cloudy pixels; a NIR 
thresholding, selecting only pixels with reflectance higher than 15% in 
the near infrared domain. The application of this mask resulted in an 
area of about 3 300 km2 available for the full tile analysis. 

Sentinel-2 acquisitions also show radiometric artefacts corrected 
when producing Level-1B reflectance data (Baillarin et al., 2012), which 
also impact Level-2A (BOA) reflectance data. These artefacts include 
spectral response non uniformity (SRNU), which is characterised by 
along-track soft-edged darker or brighter stripes near the detector 
boundaries (Fig. A1). The data quality is compliant with mission spec-
ifications. However, it may correspond to up to 2% reflectance in some 
cases. SRNU may therefore influence both temporal consistency analysis 
and ACM inter-comparison. In order to perform an analysis excluding 
these artefacts, we selected a subset of 225 km2 from the Sentinel-2 tile 
33NVE, avoiding SNRU identified after visual inspection. This subset 
was also selected far from clouds, hazy regions, and non-vegetated areas 
(Fig. 3). 

For both the full tile and the subset, the values of reflectance and 
vegetation indices from all clear pixels were extracted, while spectral 
diversity indices values were computed from evenly distributed sam-
pling areas corresponding to 100 m radius circular plots. This 

specific sampling design was performed in order to ease the comparison 
between BC dissimilarity matrices. This resulted in 223 areas of interest 
distant by 800 m in the subset, and 859 distant by 3000 m for the 
complete tile. The use of these two spatial extents, full tile and subset, 
also allows for analysis of the stability of spectral diversity metrics when 
computed over various spatial extents. The computation of these spec-
tral diversity metrics as performed here involves data-driven processing 
steps (e.g. PCA). Strong differences between a tile subset and a full tile in 
the contribution to spectral variance may lead to strong differences in 
terms of spectral species distribution, and corresponding spectral di-
versity metrics. 

3.6. Criteria for inter-comparison 

Statistics were produced to assess the consistency of the products 
obtained for each method, the agreement between the different methods 
at each date, and the difference between results computed for the subset 
and the whole tile. We assumed that neither reflectance nor spectral 
diversity metrics values should change during the period of observation 
of five weeks. Therefore, we computed the average value over the five 
acquisitions, for each pixel and each band, spectral index, or spectral 
diversity metric, and used it as a reference to assess temporal stability. 
We then computed the linear regression between this mean value and 
the value for each date. The coefficient of determination (R2) and the 
normalised root mean squared error (NRMSE) were used as statistical 
indicators of the temporal stability for each spectral band, vegetation 
index, and spectral diversity metric. We computed NRMSE as the RMSE 
normalised by the interquartile range of the variable in order to ensure 
comparability of results across variables with different ranges of 
variation. 

The Bray-Curtis dissimilarity was used to measure spectral beta- 
diversity. A dissimilarity matrix was computed from pairwise compari-
son of the distribution of spectral species between sampling areas. 

4. Results 

4.1. Temporal stability of spectral information and related products 

4.1.1. Reflectance 
The stability of reflectance was assessed through comparison be-

tween the values of pixelwise reflectance on each individual image and 
their mean value over the five acquisitions, for each spectral band and 
each ACM. Fig. 4 shows the NRMSE (%) and coefficient of determination 
(R2) resulting from this comparison. Spectral bands B2 to B5 – Blue, 
Green, Red and Red-Edge1– showed the larger differences between ACM 

Fig. 3. Sampling strategy applied on the full 
Sentinel-2 tile after application of a unique 
mask (left), and on a subset selected to mini-
mize the influence of artefacts and surface 
changes (right). The greyed out areas represent 
the mask obtained combining all non vegetated, 
cloudy or hazy areas observed at any date in the 
full tile. The square subset encloses the region 
of interest where no cloud or major artefact are 
observable during the period of study. This 
sampling strategy resulted in 859 regularly 
distributed sampling plots over the whole tile, 
and 223 inside the subset.   
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while for longer wavelengths (Fig. A2), bands B6 to B12, results were 
similar for all ACM. Among the ACMs, MAJA achieved the lowest tem-
poral consistency in the VIS and Red Edge (RE) domains. The temporal 
stability corresponding to images produced with Sen2cor was particu-
larly impacted by one acquisition (2018/01/26) which exhibited higher 
reflectance values in the VIS compared to other acquisitions. LaSRC 
showed overall better temporal consistency than the other ACMs, 

evidenced by lower NRMSE and higher R2. 

4.1.2. Vegetation indices 
The comparison of vegetation indices computed from individual 

acquisitions with the vegetation indices averaged over all acquisitions 
only evidenced strong differences in temporal stability between ACM for 
the NDVI (Fig. 5). For this index, MAJA showed significantly higher 

Fig. 4. NRMSE (% of interquartile range) and coefficient of determination computed between reflectance of the total of cloudless vegetated pixels from five in-
dividual acquisitions and the average reflectance, for five spectral bands from the VIS (B2, B3, B4) and red edge (B5, B6) domains and each atmospheric correction 
method over the full tile. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. NRMSE and coefficient of determination of vegetation indices NDVI, EVI and NDWI between individual acquisitions and the corresponding averaged value, 
for each vegetation index computed over a full Sentinel-2 tile. Different ranges of NRMSE were used to match the ranges of variation. 
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NRMSE and lower R2 values than other methods. Sen2Cor showed high 
NRMSE compared with Overland and LaSRC only for the acquisition 
from 2018/01/26. EVI and NDWI showed homogenous stability across 
ACMs. 

4.1.3. Spectral diversity metrics 
Shannon index 
Fig. 6 shows the NRMSE and coefficient of determination between 

the Shannon’s H’ obtained from each individual acquisition and the 
Shannon’s H’ averaged over the five acquisitions, for the full tile and for 
a subset of this tile including only dense forest. When considering the 
subset, the NRMSE ranged between 50% and 100%, with an average 
value of 61% for all methods. The range of NRMSE was similar over the 
full tile except for the 2018/01/26 corrected with Sen2Cor, which 
reached 121%. 

Overall, high R2 values (R2 > 0.6) were obtained between Shannon’s 
H’ obtained for each individual acquisition and its averaged value, for 
all ACM except for the 2018/01/01 corrected with Sen2cor (R2 = 0.46). 
LaSRC slightly outperformed other methods when comparing stability of 
computed Shannon’s H’ through time and consistency for both subset 
and full tile processing. 

Bray-Curtis dissimilarity 
Over the subset, values of Bray-Curtis dissimilarities compared with 

the mean showed similar tendencies for MAJA, Sen2cor and Overland 
(Fig. 7). For these three methods, R2 values ranged between 0.59 and 
0.85 except for Sen2cor on the 2018/01/01 with a minimum R2 value of 
0.35, while R2 values obtained from LaSRC systematically exceeded 
0.75. Over the full tile, R2 values decreased significantly and NRMSE 
increased for all methods except LaSRC. 

4.2. Consistency of vegetation and spectral diversity metrics across ACMs 

4.2.1. Vegetation indices 
NDVI 
The mean value of NDVI over the five acquisitions was computed for 

each ACM (Fig. 8). The pairwise comparison of this mean NDVI over the 
subset showed high consistency between methods, with a high coeffi-
cient of determination (R2min = 0.87). Coefficients of determination 
were overall lower when comparing the NDVI values over the full tile. 

The lowest value (R2 = 0.36) was obtained between MAJA and LaSRC 
even though the same combination of methods produces amongst the 
highest values for the coefficient of determination over the subset (R2 =

0.97). Both EVI and NDWI reached high values of correlations across 
methods at full tile scale (R2 > 0.90; Fig A5, A6). 

4.2.2. Spectral diversity metrics 
Shannon Index 
Pairwise comparison of the mean Shannon index between ACMs 

resulted in moderate to strong correlation for both subset and full tile 
analysis, with R2 ranging from 0.50 to 0.82 (Fig. 9). The coefficients of 
determination were consistently higher for the full tile analysis than for 
the subset analysis. 

Bray-Curtis dissimilarity 
The mean values of Bray-Curtis dissimilarities over the subset 

reached moderate to high correlation between ACM (0.43 < R2 < 0.81). 
R2 values decreased and NRMSE values increased for all pairs of ACMs 
compared over the full tile (0.19 < R2 < 0.54), except for the Overland- 
Sen2cor pair for which the results remained stable (Fig. 10). 

4.3. Impact of the upscaling of the study area on spectral diversity metrics 

4.3.1. Shannon index 
The coefficient of determination obtained when comparing the 

Shannon’s H’ computed from the subset and from the full tile was 
computed for each method at each date in order to assess the consistency 
of the diversity indices produced from different spatial extents 
(Table A7). This property is key to ensure scalability of diversity map-
ping. LaSRC consistently achieved the highest R2 values at around 0.50 
for all dates, and other methods punctually reached R2 values around 
0.30. Results for all methods were considerably improved when 
comparing the mean Shannon’s H’ over the whole period. 

4.3.2. Bray-Curtis dissimilarity 
Bray-Curtis dissimilarity values compared between the subset and 

full tile were consistent (0.51 < R2 < 0.98) for all ACMs except one 
image produced with Sen2cor (R2 = 0.09 on the 2018/01/01; Table 1). 
LaSRC exhibited values of R2 statistic over 0.90 for all acquisitions. 
MAJA and Overland punctually showed lower values, with R2 = 0.53 for 

Fig. 6. NRMSE and coefficient of determination between Shannon’s H’ on five individual acquisitions and the corresponding average over the full tile.  
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MAJA on the 2018/02/05, and R2 = 0.58 for Overland on the 2018/01/ 
01. 

4.4. Overall comparison of performances 

The capacity of ACMs to produce BOA reflectance, spectral indices 
and spectral diversity metrics showing temporal stability, and their ca-
pacity to produce consistent spectral diversity metrics when using 
different spatial extents of analysis for individual acquisitions is sum-
marized in Table 2. These results highlight that LaSRC outperforms 
other methods based on the criteria of our inter-comparison, showing 
good overall performances in most situations. They also show the reli-
ability of three products for all atmospheric correction methods: BOA 
reflectance for B6 to B12, EVI and NDWI. 

5. Discussion 

5.1. Temporal stability 

The TOA reflectance is increasingly influenced by atmospheric 
properties when moving towards shorter wavelengths in the VIS due to 
the increasing scattering. This makes atmospheric corrections more 
complex in the VIS, particularly in the context of forested ecosystems in 
the tropics, because of the presence of haze and bioaerosols (Martins 
et al., 2017). Here, ACM inter-comparison showed that all ACM pro-
duced consistent Sentinel-2 reflectance in time for the infrared domain 
(Table 3). Sen2cor and MAJA showed strong temporal variability of 
reflectance in the VIS and first part of the RE domain. This contrasts with 
the results reported from other studies for these methods over other 
landscapes (Sola et al., 2018), and confirms the good performance of 
LaSRC when compared with 6S radiative transfer and AERONET mea-
surements (Doxani et al., 2018; Marujo et al., 2021). The reflectance 
measured in the VIS is crucial for the monitoring of multiple properties 
of vegetation (Horler et al., 1983) and has been linked to taxonomic Beta 
diversity (Polley et al., 2019). 

Vegetation indices are commonly regarded as less sensitive to arte-
facts than the reflectance values. We evidenced strong variations in 
NDVI at pixel scale over a short period of time for MAJA, and identified 
one acquisition when the NDVI computed from Sen2cor data 

significantly differed from the other acquisitions. This supports results 
from Moravec et al. (2021) who evidenced the influence of ACM on 
NDVI. In comparison, EVI, NDWI and Shannon’s H’ values showed 
consistent behaviour over time. Bray-Curtis dissimilarity only remained 
stable in time when applied to LaSRC corrected images, pointing at the 
importance of the reflectance stability for spectral diversity metrics. 

While the results could suggest the use of one method over the other, 
it cannot conclude definitively on the quality of the considered ACMs 
without validation from field data. The chosen criteria of time stability 
of vegetation and diversity indices may also favour methods with stable 
but incorrect results in the considered time period. Further studies 
considering the stability of ACMs are recommended, with criteria rele-
vant to each considered field of application. Moreover, change detection 
and monitoring are regular goals of environmental studies. An over- 
smoothing caused by the ACM would not be adapted for that kind of 
applications. Therefore, a comparison of ACMs stability with field val-
idations from case studies in different conditions are needed to provide 
support on the ACM choice. Finally, the correction of directional 
reflectance (Roy et al. 2016) could further improve results by reducing 
artefacts that are particularly strong in the VIS (Flood, 2020) and close 
to the equator (Franch et al., 2019). However, such corrections are not 
yet widespread and standardized among related ecological studies. 

5.2. Agreement between methods 

The EVI remained stable across methods when comparing individual 
acquisitions (Fig. A4), while poor agreement was observed for the NDVI 
and NDWI (Fig. 7, Fig. A3). However, the agreement between methods 
was significantly improved when averaging spectral indices over the five 
acquisitions. The production of time series syntheses, such as monthly 
cloud-free syntheses may then contribute to reducing artefacts in cloudy 
regions (Fig. A5, Fig. A6). However, this may prevent from detecting 
subtle changes in vegetation properties induced, for example, by 
phenology (Misra et al., 2020). 

Atmospheric corrections were particularly challenging for two ac-
quisitions. The acquisition from 2018/01/26 (MAJA and Sen2cor), and 
the acquisition from 2018/02/05 (MAJA). No major clouds were left in 
the masked image, but their presence may have caused an offset in 
reflectance values overall, which greatly decreased correlation relations, 

Fig. 7. NRMSE and coefficient of determination between Bray-Curtis Dissimilarities on five individual acquisitions and the corresponding average over the full tile.  
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and increased the measured error. This could have major implications in 
the use of partially masked images, as even slight atmospheric pertur-
bations induced by haze that leave little to no visual evidence can impact 
the reflectance values for seemingly cloud free pixels. 

Shannon index consistency between methods was improved when 
comparing subset with full tile results (Fig. 9), as it contained a wider 
range of Shannon values, and the method used was able to effectively 
differentiate low and high diversity regions, but less so to distinguish 
small variations between regions of high diversity. The improvement of 
results can therefore be understood as statistical by-product of the 
increased spectral heterogeneity. BC results showed the opposite 

tendency: with a reduced heterogeneity in a considered area, the 
dissimilarity between two sites in this area was more consistent across 
ACM. 

5.3. Impact of the upscaling of the study area over spectral diversity 
metrics 

Working on the average value of spectral diversity over a limited set 
of (close to) successive Sentinel-2 acquisitions did ensure high stability 
of the spectral diversity metrics with different spatial contexts, partic-
ularly for Shannon’s H’ (Table 1). The PCA applied to Sentinel-2 image is 

Fig. 8. Comparison of Mean NDVI values between ACMs. The diagonal shows the distribution of mean NDVI values for each ACM, the lower left shows the density 
plots when comparing pairs of ACMs over the full tile, and the upper right the density plots between ACMs when comparing over the subset. 
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a data driven process. In this study, we prioritised reproducibility, 
therefore we chose only two components for each ACM at each date. 
Hence, disparities in components could have a large impact on the 
spectral diversity metrics obtained. Principal components may change 
from one Sentinel-2 acquisition to another covering the same spatial 
extent, as well as their selection based on visual analysis, with possible 
negative impact on the temporal consistency of spectral diversity met-
rics over short periods of time. PCA was used in this study as it is 
commonly used for spectral diversity metrics computation (Féret, 2014; 
Dahlin, 2016; Onyia et al., 2019; Laliberté et al., 2020). However other 

dimensionality reduction methods could be considered (Gholizadeh 
et al., 2018; Hauser et al., 2021; Jia et al., 2022), in combination with a 
standardized procedure for feature selection. The tasselled cap trans-
form (Shi and Xu, 2019) could potentially solve both the issue of 
dimensionality reduction and feature selection, as it produces three 
physically meaningful bands for which no subsequent selection would 
be needed. 

The results of this study show both the reliability of vegetation 
indices, and the possibility to keep improving spectral diversity metrics 
to ensure robust biodiversity monitoring from available remote sensing 

Fig. 9. Comparison of mean Shannon index produced with biodivMapR between ACM. The diagonal shows the distribution of mean Shannon index values for each 
ACM for the subset and the full tile. The lower left shows the density plots when comparing pairs of ACMs over the full tile, and the upper right the density plots 
between ACMs when comparing over the subset. 
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data. Thus, one possible way of improving diversity metrics could be to 
use vegetation indices as input for the calculation of spectral diversity, 
instead of using reflectance which may show lower temporal consistency 
depending on the ACM selected to produce BOA reflectance that is less 
reliable. 

6. Conclusion 

The application of the four different ACM resulted in contrasted 
temporal stability of the reflectance, in particular for the visible domain 

Fig. 10. Comparison of mean Bray-Curtis produced with biodivMapR between ACM. The diagonal shows the distribution of mean Bray-Curtis values for each ACM 
for the subset and the full tile. The lower left shows the density plots when comparing pairs of ACMs over the full tile, and the upper right the density scatterplots 
between ACMs when comparing over the subset. 

Table 1 
Coefficient of determination for Bray-Curtis dissimilarities computed between 
the subset and the full tile. Values in bold correspond to the highest value of R2 

for a given date.   

2018/ 
01/01 

2018/ 
01/06 

2018/ 
01/26 

2018/ 
01/31 

2018/ 
02/05 

Average 

MAJA  0.72  0.98  0.81  0.75  0.53  0.92 
Sen2Cor  0.09  0.62  0.55  0.91  0.51  0.78 
Overland  0.58  0.72  0.98  0.74  0.81  0.93 
LaSRC  0.98  0.91  0.96  0.97  0.97  0.99  
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and part of the red edge domain (400–710 nm). While MAJA and 
Sen2Cor showed strong temporal variability on this spectral domain, 
Overland and LaSRC presented significantly higher stability. These 
variations could explain the differences in the stability of spectral 
indices. NDVI computed from MAJA and Sen2cor BOA was less consis-
tent than LaSRC and Overland. NDWI and EVI were stable for all 
methods. 

When using the mean value over the whole period, NDWI showed 
very high consistency across all methods for both the subset and the full 
tile. NDVI presented a slightly lower degree of consistency, with only 
one pair of methods with differing results over the full tile (MAJA- 
LaSRC). The value of Shannon’s H’ was relatively comparable between 
ACMs when processing either the full Sentinel-2 tile or a subset. The 
value of the Bray-Curtis dissimilarity showed lower consistency between 
methods. For all methods and indices, the computation of a mean value 
from successive acquisitions resulted in improved consistency between 
ACMs. The spatial extent encompassed to compute spectral diversity 
metrics showed strong influence on the Shannon’s H’. This was observed 
to a lesser extent for Bray-Curtis dissimilarity, except for images cor-
rected with LaSRC, which showed consistent dissimilarity when 
computed either from a full tile or from an image subset. 

Our results highlight the importance of ACM in the context of trop-
ical forest monitoring, even for the computation of NDVI, which is 
certainly the most popular Sentinel-2 product. On the other hand, we 
also showed that wisely selected spectral indices should be suitable for 
forest monitoring despite the strong inconsistency of BOA reflectance in 
the VIS obtained for some of the ACMs studied here: even if EVI uses 
reflectance from VIS spectral bands, in particular the band B2, it showed 
higher consistency through time than NDVI. Finally, higher-level spec-
tral diversity products aiming at providing information on alpha and 
beta components of forest biodiversity showed contrasted consistency 
through time between ACM. LaSRC appeared as the most suitable ACM 
for the computation of spectral diversity metrics in tropical forests. 
Further investigations are now needed to validate these results with 
additional in situ information. 
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Soudzilovskaia, N.A., van Bodegom, P.M., 2021. Explaining discrepancies between 
spectral and in-situ plant diversity in multispectral satellite earth observation. 
Remote Sens. Environ. 265, 112684. https://doi.org/10.1016/j.rse.2021.112684. 

He, K.S., Zhang, J., Zhang, Q., 2009. Linking variability in species composition and 
MODIS NDVI based on beta diversity measurements. Acta Oecologica 35 (1), 14–21. 
https://doi.org/10.1016/j.actao.2008.07.006. 

Horler, D.N.H., Dockray, M., Barber, J., 1983. The red edge of plant leaf reflectance. Int. 
J. Remote Sens. 4 (2), 273–288. https://doi.org/10.1080/01431168308948546. 

Hościło, A., Lewandowska, A., 2019. Mapping Forest Type and Tree Species on a 
Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sensing 11, 929. 
https://doi.org/10.3390/rs11080929. 

Houborg, R., Fisher, J.B., Skidmore, A.K., 2015. Advances in remote sensing of 
vegetation function and traits. Int. J. Appl. Earth Obs. Geoinf. 43, 1–6. https://doi. 
org/10.1016/j.jag.2015.06.001. 

Huang, S., Tang, L., Hupy, J.P., Wang, Y., Shao, G., 2021. A commentary review on the 
use of normalized difference vegetation index (NDVI) in the era of popular remote 
sensing. J. For. Res. 32 (1), 1–6. https://doi.org/10.1007/s11676-020-01155-1. 

Huete, A., Justice, C., Liu, H., 1994. Development of vegetation and soil indices for 
MODIS-EOS. Remote Sens. Environ. 49 (3), 224–234. https://doi.org/10.1016/ 
0034-4257(94)90018-3. 

Huete, A.R., HuiQing Liu, van Leeuwen, W.J.D., 1997. The use of vegetation indices in 
forested regions: issues of linearity and saturation, in: IGARSS’97. 1997 IEEE 
International Geoscience and Remote Sensing Symposium Proceedings. Remote 
Sensing - A Scientific Vision for Sustainable Development. Presented at the 
IGARSS’97. 1997 IEEE International Geoscience and Remote Sensing Symposium 
Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development, 
IEEE, Singapore, pp. 1966–1968. https://doi.org/10.1109/IGARSS.1997.609169. 

Huete, A., Justice, C., Van Leeuwen, W., 1999. MODIS vegetation index (MOD13). 
Algorithm theoretical basis document 3. 

IPBES, 2019. Global assessment report on biodiversity and ecosystem services of the 
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 
E. S. Brondizio, J. Settele, S. Díaz, and H. T. Ngo (editors). IPBES secretariat, Bonn, 
Germany. 1148 pages. https://doi.org/10.5281/zenodo.3831673. 

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., 
François, C., Ustin, S.L., 2009. PROSPECT+SAIL models: A review of use for 
vegetation characterization. Remote Sens. Environ. 113, S56–S66. https://doi.org/ 
10.1016/j.rse.2008.01.026. 

Jia, W., Sun, M., Lian, J., Hou, S., 2022. Feature dimensionality reduction: a review. 
Complex Intell. Syst. 8 (3), 2663–2693. https://doi.org/10.1007/s40747-021- 
00637-x. 

Kneizys, F.X., 1978. Atmospheric Transmittance And Radiance: The Lowtran Code, in: 
Sepucha, R. (Ed.), . Presented at the 1978 Technical Symposium East, Washington, 
D.C., pp. 6–8. https://doi.org/10.1117/12.956522. 

Kotchenova, S.Y., Vermote, E.F., 2007. Validation of a vector version of the 6S radiative 
transfer code for atmospheric correction of satellite data Part II Homogeneous 
Lambertian and anisotropic surfaces. Appl. Opt. 46 (20), 4455. https://doi.org/ 
10.1364/AO.46.004455. 

Kuhn, C., de Matos Valerio, A., Ward, N., Loken, L., Sawakuchi, H.O., Kampel, M., 
Richey, J., Stadler, P., Crawford, J., Striegl, R., Vermote, E., Pahlevan, N., 
Butman, D., 2019. Performance of Landsat-8 and Sentinel-2 surface reflectance 
products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote 
Sens. Environ. 224, 104–118. https://doi.org/10.1016/j.rse.2019.01.023. 
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