
International Journal of Applied Earth Observations and Geoinformation 112 (2022) 102873

Available online 27 June 2022
1569-8432/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Recent expansion of artisanal gold mining along the Bandama River 
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A B S T R A C T   

Recent development of small-scale gold mining activities in Côte d’Ivoire is a serious threat to the environment 
because of deforestation, soil scrapping, pit mining, over-use of water resources and pollution of surface and 
ground waters by mercury, cyanides, and acids. The challenge for the governance of this activity is to resolve the 
tension between the desired development of a small-scale mining activity, which may benefit the local and 
national economy, and the impacts of this activity on the environment. The regulation of the exploration and 
exploitation of mining sites and the promotion of best practices was part of the National program for the 
rationalization of gold-panning in Côte d’Ivoire. The capacity of the government to monitor the expansion of 
numerous mining sites disseminated all over the country is one of the key aspects for successful implementation 
of these policies. This study explores the potential value of computer-assisted mapping of artisanal mining sites 
based on Sentinel-2 imagery. The detection method, using artificial intelligence and training data sets generated 
during field campaigns, was inspired from a previous experience in Senegal. It was applied to a region of about 
600 km2 in Central Côte d’Ivoire. Annual maps of areas affected by the mining activities were produced for the 
period 2018 – 2021. The areas affected by artisanal mining activities expanded from 3.39 km2 to 8.80 km2 in 
December 2021, corresponding to an average growth rate of 0.24 km2/month. The temporal and spatial reso-
lution of the Sentinel satellite imagery proved to be useful to map and quantify the expansion rate of artisanal 
mining sites in Côte d’Ivoire. Recommendations are made for the integration of these tools into plans for the 
development of small-scale mining activities in Côte d’Ivoire that would be more respectful of the environment 
and societies.   

1. Introduction 

In West Africa, the gold mining sector has seen an intense develop-
ment during the last three decades, propelled by the rise of gold prices. 
Gold is extracted at various scales, from small artisanal or semi- 
industrial mining sites, exploited by nationals or migrant workers 
from neighboring countries, to large permits exploited by mining com-
panies. Large-scale mining is a concession-based mining activity 
authorized by the government and considered as legal. On the other 
hand, most of artisanal and small-scale gold mining (ASGM) is consid-
ered as an informal and/or illegal activity due to lack of effective 

regulation. ASGM uses low-tech, labor intensive mineral processing and 
extraction (Hilson et al., 2017). It requires a combination of deforesta-
tion, soil scrapping, pit mining, use of water and chemicals products 
used to recover the precious metal, such as mercury, cyanides, and acids 
(Macháček, 2020; World Health Organization, 2017; Hentschel, 
Hruschka, and Priester, 2003; Gibb and O’Leary, 2014; Miserendino 
et al., 2013; Kinyondo and Huggins, 2021). These processes generate 
negative impacts on the environment and human health. Populations 
working in the mining areas and also living around the mining areas are 
directly concerned by these impacts (Niane et al., 2019; Boudou et al., 
2006; Ako et al., 2014; Bamba et al., 2013; Weinhouse et al., 2021; 
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Nyanza et al., 2019, 2021). In spite of these negative impacts, ASGM has 
the capacity to generate employment and income in rural areas and to 
enhance the standard of living (MacDonald, 2006). The socio-economic 
importance of artisanal mining characterizes it as a poverty driven ac-
tivity (Hilson 2009; 2008; Schwartz et al., 2021; Isung et al., 2021; Ofosu 
et al., 2020). 

In Sub-Saharan Africa, some governments have understood this 
economic importance and have tried to reorganize and regulate this 
activity. Thus, many laws and policy framework aimed at reforming, 
reorganizing and legalizing the ASGM sector have been introduced in 
countries such as Senegal (IGF, 2016), Ghana (Graphic, 2018), Côte 
d’Ivoire (Sauerwein, 2017), Niger (Hilson, 2011) and Congo (Singo and 
Seguin, 2018). However, many of these laws are poorly enforced and as 
a results of this, informal mining remains and expands in many countries 
(Ngom et al., 2020). A major challenge for the regulation of the artisanal 
mining sector is the constantly evolving nature of this activity, driven by 
the discoveries of new mining sites and the abandonment of less prof-
itable sites. First, the temporality of the artisanal mining activity appears 
to be somehow incompatible with, for instance, the frozen definition of 
authorized mining corridors, whose limits do not evolve regularly with 
the findings of viable ore deposits. Second, the spatial dispersion of 
mining sites precludes a ground-based monitoring of these activities on a 
regular basis. The government has therefore severe difficulties to 
determine if and when activities take place outside of these corridors. In 
this context, and considering previous experiences in west Africa and 
South America (Ngom et al., 2022), it is justified to explore the potential 
value space-based technologies to map in “real-time” the expansion of 
artisanal mining sites in Côte d’Ivoire. 

In this study, the recent expansion of ASGM in the area of Marahoué 
along the Bandama River in Côte d’Ivoire is analyzed during the 2018 – 
2021 period of time using Sentinel-2 images. Our mapping approach is 
based on an artificial intelligence (AI) method. The data processing 
pipeline is implemented on the Google Earth Engine (GEE), following 
the development made for the study in Senegal (Ngom et al., 2020). The 
main objective of this study is to document the recent expansion of 
artisanal mining on a section of the Bandama river. Given the lack of 
information about ASGM in this region, and its suspected recent 
expansion, the present study aims at filling existing gaps. Testing our 
approach in Senegal and Côte d’Ivoire may also offer validation in a 
wide range of climatic contexts, covering the Sahelian to tropical cli-
matic zones. If validated, this approach may then be applied more 
widely to other areas affected by ASGM in West Africa. 

2. Remote sensing observations of ASGM: Previous study and 
strategic choices for this study 

Over the last two decades, remote sensing imaging capabilities of 
satellites orbiting the Earth has prompted the monitoring of artisanal 
mining activity from space (see the bibliographic synthesis of Ngom 
et al., 2022). Taking advantage of the public access of satellite data 
disseminated by agencies such as the United States Geological Survey 
(USGS), and the European Space Agency (ESA), researchers have 
developed approaches to detect, map, monitor and analyze the expan-
sion with time of artisanal and small-scale mining in different regions of 
the world. These advances have enabled the governments of several 
countries to reduce the lack of information on the spatial and temporal 
characteristics of gold mining sites, including Brazil (Lobo, 2015; Lobo 
et al., 2018), French Guyana (Gond and Brognoly, 2005), Myanmar 
(LaJeunesse Connette et al., 2016), and Ghana (Forkuor et al., 2020; 
Snapir et al., 2017). The use of remote sensing data also provides a better 
assessment and understanding of the environmental consequences of 
ASGM such as deforestation (Adamek et al., 2020; Barenblitt et al., 

2021; Caballero Espejo et al., 2018; Swenson et al., 2011), land degra-
dation (Liman et al., 2021; Lobo et al., 2016; Souza-Filho et al., 2021; 
Telmer and Stapper 2007), acid mine drainage (Mielke et al., 2014; Seifi 
et al., 2019), and water pollution (Gallay et al., 2018; Lobo, 2015; Lobo 
et al., 2018). The main challenge for mapping and monitoring ASGM 
from satellite data is the fact that neither dedicated data nor universal 
method are available. The general principles are similar everywhere on 
Earth. The fundamental working hypothesis is that mining sites has 
physical properties (generally optical) that are distinct from other types 
of land use. However, the details of the approaches may differ from one 
study area to another and depend on the type of data (e.g., character-
istics of spectral channels for multi-spectral optical data). The method-
ological optimization often focuses on the choice of relevant 
combinations of properties (spectral indices or spectral bands), on the 
construction of time series, and on the consideration of the climatic 
context, vegetation cover, and diversity of land use of the area of study. 

The objective of automated or computer-assisted detection of mining 
sites is to produce maps of ASGM from remote sensing data, in areas that 
are not easily accessible, without the need to repeatedly validate the 
outlines of each mining site in the field. From the remote-sensing 
viewpoint, an ASGM site is defined as a continuous region that shares 
specific and distinct optical properties, as a consequence of gold 
exploration or extraction. The modification of optical properties with 
respect to unperturbed areas may result from one or several activities 
among those found on mining sites, including deforestation, removal 
and physical mixing or superficial layers of soil, regolith, crushing and 
processing of rocks (including use of chemical, and cyanidation areas), 
accumulation and weathering of mining waste. Considering this defi-
nition, the climate, the evolution of vegetated areas with seasons, the 
size and the typical extent of ASGM sites might influence the choice of 
the data (spectral bands, spectral, spatial and temporal resolutions) and 
mapping method (classification algorithms). 

The spatial resolution of the images is an important factor consid-
ering the commonly small dimension of mining sites in West Africa. 
ASGM sites have indeed generally small footprints that may be only tens 
of meters long, especially during the early stages of development. In this 
case, a higher resolution (=< 10 m) than Landsat data (most often used 
for site mapping in the past) is needed to map them. In addition, in case 
of mining sites located in tropical area or the rainiest region, the 
availability of cloud-free optical images area is not warranted. 
Furthermore, the most frequent optical signatures of ASGM are the 
consequences of mine waste and scraping of soil, and these signatures 
may be produced by other land uses such as habitations, and areas 
exploited for agriculture or agroforestry. The similarities of the spectral 
response may lead to misclassification (Isidro et al., 2017; Lobo et al., 
2018; Boakye et al., 2020). Considering these difficulties, the use of data 
with a high frequency of revisit, high spatial resolution and rich spectral 
characteristics is critical to overcome the problems of frequent cloud 
cover, small extent of ASGM areas and possible spectral similarity be-
tween different land use and land cover types. In particular, we have 
shown in Senegal that different types of land use may potentially show 
different temporalities, which could help to distinguish them at certain 
periods of the year, even if they show similar spectral properties at other 
times of the year (Ngom et al., 2020). Taking into account these different 
factors, the multi-spectral (visible and near-infrared) Sentinel-2 data 
with a resolution of 10 m/pixel, appears to be a suitable choice, which is 
also justified by the success of recent mapping gold mining sites con-
ducted in Senegal and Brazil with these data (Ngom et al., 2020; Lobo 
et al., 2018). With regard to the data processing, we will explore the 
value of spectral indices in addition to spectral bands and machine 
learning methods such as Support Vector Machine (SVM), object- 
oriented or decision tree, which are expected to produce satisfactory 
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classification of mining areas (Nyamekye et al., 2021). 
As for the processing aspects, we chose to use the Google Earth En-

gine Platform. Thanks to the data catalogue, that is continuously 
updated, end-users have access to a wide range of geospatial data from 
earth observation satellites and aerial imaging systems in optical and 
non-optical wavelengths, as well as environmental variables, weather 
and climate forecasting and hindcasting, land cover, topographic and 
socio-economic data sets. Furthermore, the GEE platform provides 
innovative data processing algorithms which help researchers to 
improve their capability to analyze and interpret Earth observation data. 
The platform is also aimed to facilitate the dissemination of their results 
making them accessible to other researchers or, in this case, to people in 

charge of management of the mining sectors in government to support 
management decisions, irrespective of the country of residence (Kumar 
and Mutanga 2018). Users can produce systematic data products or 
deploy interactive applications backed by Earth Engine’s resources 
(Gorelick et al., 2017). 

3. Formalizing artisanal gold mining in Côte d’Ivoire 

As many countries in West Africa, Côte d’Ivoire has also embarked on 
the process of formalizing artisanal gold mining sector. It is in this 
context that the National Plan of Rationalization of Gold-panning, 
(PNRO standing for “Plan National de Rationalisation de l’Orpaillage” in 

Fig. 1. Geological setting of the study area, overlayed on a shaded relief image built from the SRTM 1′ Digital Elevation Model.  
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French language), was elaborated in 2013 in Côte d’Ivoire (MIM, 2014). 
The PNRO was initially a three-year plan (2013–2016). Its general 
objective was to restrict the activities of the gold diggers in legal pe-
rimeters and to teach them how to use more environmentally friendly 
techniques. In details, the PNRO had the objectives to map at a given 
time all the artisanal mining sites of the country (phase 1–2), to classify 
them and decide those that will be permanently or temporarily closed 
and those that may continue to operate legally (phase 3). The PNRO had 

also the objectives to train artisanal miners with best practices (phase 4) 
and it was planned to mobilize relevant administrative service to handle 
the negative impact on the environment (phase 5) (Van Bockstael, 2019; 
Sauerwein, 2020). In order to avoid the opening of new illegal mining 
sites or the illegal re-opening of close mining sites, the implementation 
of a monitoring system was anticipated as one of the perspectives of the 
PNRO. The first activities carried out were the identification of 258 
artisanal mining sites, of which 158 were in the northern and central 

Fig. 2. Extract of the Sentinel-2B scene of 13 January 2020 covering the study area. The image is a color-composite for natural color, R = band 4, G = band 3, B =
band 2. The localization of artisanal mining sites visited during the field work in 2018 are indicated in a red font. The Sentinel-2 data was extracted and downloaded 
via the Google Earth Engine cloud. 
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regions and 100 in the east of the country (MIM, 2014). In 2015, 150 
mining sites were cleared and closed. Then artisanal mining permits 
were issued. Several artisanal miners have been arrested and chemical 
substances seized. While the program was aimed to end in 2016, the 
implementation of the process is still ongoing and considered to be 
ineffective. Authorizations have been handed out, but no geologically 
viable gold-mining corridors have been identified. About 185 illegal 
gold-mining sites were still operating in 2017, 142 of which are former 
recolonized sites and 47, new sites which opened in 2016 (Sauerwein, 
2017). Very quickly in 2017, this number grew to over 650 illegal sites 
(FES, 2018). The number of sites is still growing given the evolution of 
artisanal mining activity in recent years in this country and the gov-
ernment is increasingly lacking information on the location and spatial 
distribution of sites. Today, this activity is informally known in 24 of the 
31 regions in the country and is concentrated in the North and the South- 
western areas of Yaouré, Hire and Gaminia (Martin et al., 2017). 

4. Study area 

The Bandama River is an important part of the river system of Côte 
d’Ivoire. It extends from North to South over a length of 1 050 km and 
the basin of the river has a surface area of 97 500 km2. The river has 
three main tributaries: the Marahoué, commonly named the red Ban-
dama, the N’zi, and the white Bandama (Soro et al., 2017). The study 
area covers 610 km2 along the Bandama River. It is located at the south 
of the Kossou Lake. 

The climatic context of the study area is that of ecological zone 2 of 
Côte d’Ivoire (MINESUDD, 2014). This zone is characterized by a humid 
tropical climate (also called “climat Baouléen”) which makes the tran-
sition between the subtropical climate and the subequatorial climate. 
This climate is close to the sub-equatorial climate because of its 

abundant rainfall. The average annual rainfall varies between 1200 mm 
and 1600 mm. The dominant winds are the southwestern winds during 
the monsoon (April – November) and the northeastern winds during the 
harmattan (January – March). Maximum daily temperatures vary be-
tween 22̊C and 32̊C throughout the year. 

The study area is located around the Yaouré gold deposit in the area 
known as the “Bouaflé greenstone belt” in central Côte d’Ivoire. The 
gold deposit is hosted by Paleoproterozoic Birimian basaltic rocks with 
intrusions of granodiorite (Fig. 1). 

The Angovia mine (Fig. 2) is currently extracting ore from the Yaouré 
gold deposit. In the vicinity of the Angovia mine are many small arti-
sanal mines located on the bank of the Bandama River. The most known 
artisanal mining sites are Aleyaokro, Kaoukougnanou, Kavyessou, 
Bonzi, Alekran and Angovia (named after the villages) (Figs. 1 & 2). The 
study area encompasses several small villages. The main economic ac-
tivities of these communities are agriculture, fishing, and artisanal gold 
mining. 

These 6 sites were visited during a field campaign organized in 
November 2018. The exploitation involves extraction and washing ore 
on site (Fig. 3). According to field observations, gold is found in the form 
of nuggets in quantities that can be significant in certain areas. The 
exploitation is most often limited to the superficial levels of the river 
banks that’s form fluvio-deltaic formations which consists of sandstone, 
conglomerate, and argillite. There are rarely areas with wells. In the rare 
cases where the ore is extracted from wells, these do not reach great 
depths because of the upwelling of water. These observations lead us to 
characterize them as alluvial sites. Further to the west, at Bouaflé and 
Kavyessou, duricrust levels, also rich in gold, are found. This lateritic 
zone covers much of the area immediately surrounding the Yaouré de-
posits and consists of transported and in-situ regolith material covering 
saprolite (Abbott et al., 2017). (Fig. 3-d) 

Fig. 3. Artisanal mining sites visited during the field work. (a & b) women washing ore in Kaoukougnanou, (c) semi-industrial exploration in Angovia, (d) 
exploitation of duricrust levels rich in gold in Kavyessou, (e) extraction well, (f) the brown color of the water of the Bandama river illustrating its important 
sediment load. 
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These artisanal gold mining sites are frequented by the inhabitants of 
about twenty villages in the study area (Fig. 2). Referenced points (by 
GPS measurement) and georeferenced photos (photos associated with 
geographic coordinates) were taken during the field work. GPS points 
served first as recognition of mining site on satellites imagery and are 
used as learning and validation points for our classification algorithm. 
Georeferenced photos improved understanding of optical properties of 
ASGM sites on satellite images. 

5. Method 

As explained and justified in the section 2, Sentinel-2 data and the 
Google Earth Engine platform are used in this study. The Sentinel-2 data 
in Level-2A format (atmospherically corrected) were downloaded from 
the Scihub website (https://scihub.copernicus.eu/). Sen2cor was used 
for computing atmospheric correction and produce the level-2A data, as 
described in the Sentinel-2 users Handbook (ESA, 2015). It is a processor 
for Sentinel-2 Level-2A product generation and formatting provided by 
ESA/Sentinel mission; it performs the atmospheric, terrain and cirrus 
correction from Top-Of-Atmosphere Level-1C input data. Sen2Cor cre-
ates Bottom-Of-Atmosphere, optionally terrain- and cirrus corrected 
reflectance images; this algorithm creates in addition an Aerosol Optical 
Thickness (AOT) band, a Water Vapor band (WV), a Scene Classification 
Maps and a Quality Indicators map for cloud and snow probabilities. The 
Level-2A data are available on the study area since the end of 2018, 
whereas the data are still in Level-1C format for the previous period 
(2015–2017). The southern part of Côte d’Ivoire being one of the rain-
iest regions in West Africa, the cloud cover is a major obstacle to the use 
of optical imagery. With the high temporal repetitiveness of the data 
acquisition the probability of having images with minimal cloud cover is 
better. Applying a selection script on this database based on criteria of 
date (2018–2021), cloud percentage (less than 5%) study area bound-
aries, and band selection (all bands without B01, B09 and B10 generally 
used for atmospheric correction), we obtained 2 Sentinel-2 granules for 
2018, 15 for 2019, 7 for 2020 and 8 for 2021. Three images separated by 
approximately 12 months, and therefore acquired at the same period of 
year, were used for the analysis of the evolution of mining sites in the 
study area. 

The approach used here is inspired by the work of Ngom et al. 
(2020). In the previous study, the evolution over time of the spectral 
properties of artisanal mining sites in Senegal were studied using a 
Sentinel-2 image time series. In this study, due to important cloud 
coverage over most of the year, it is not possible to build time series of 

spectral properties to define the best season for mapping artisanal 
mining sites, as in Senegal. However, the availability of a few cloud-free 
images may be already considered as a definitive asset of Sentinel-2, 
with respect to previous imaging satellites. For instance, over the 
same period of time (2018 to 2021), only 6 almost cloud-free Landsat 
images would have been available, and at lower resolution (30 m/pixel). 
Furthermore, it is of note that there are less changes in the vegetation 
cover in this tropical climate (Osborne et al., 2004), in comparison with 
East Senegal, which has a more marked rainy and dry seasons. The 
question of defining the best season for mapping is less critical in Côte 
d’Ivoire than in Senegal, and the answer is more straightforward: it’s the 
time for which cloud coverage is minimal. The analysis of the satellite 
data is achieved here in four steps:  

a) Integration of field data and definition of training samples. GPS 
points collected during field work were integrated (loaded) as an 
asset in the GEE platform. These points are used for the site identi-
fication. On the basis of field observations, GPS points and Google 
Earth Imagery, the study area was divided into 5 types of land use: 
vegetation, settlements (urban), bare soil, water and artisanal mining 
sites. A set of samples or region of interest (ROI) comprising the 
different land use types was produced. A fraction of the GPS points 
collected during field work serves as a training sample for IA-based 
classification and the remaining fraction is used for validation  

b) Band sets definitions. This step includes selection of the imaging 
bands, calculation of spectral indices, and spectral analysis, in 
preparation for the classification algorithm. 

A series of spectral indices was calculated to better explore the 
benefits of the spectral richness of the Sentinel-2 data. These indices are 
sensitive to vegetation (Normalized Difference Vegetation Index 
(NDVI)), soil moisture (Normalized Difference Water Index (NDWI)), 
soil coloring and brightness (Color Index (CI), Redness Index (RI), 
Brightness Index (BI)), the presence of bare soils (Bare soil Index (BSI)), 
and the presence of builds (Normalized Difference Buildup Index (NDBI) 
and the Normalized Build-up Area Index (NBAI)). In the Table 1 are 
presented the equations used to generate these indices. 

The spectral values on the bands and indices for each ROI for each 
type of land use were extracted. The data were then statistically 
analyzed using the average value and standard deviation. To evaluate 
the relevance of band indices for the detection of artisanal mining site, 
the spectral properties of different land use, which can be potentially 
confused and misclassified are examined. Then, the most appropriate 
bands and indices for classification were determined by using the SEaTH 
(Separability and Threshold) algorithm. This step consists in estimating 
the probability of distribution for each class and to calculate the sepa-
rability between two classes of land use. As in the study of Ngom et al. 
(2020) the Bhattacharyya distance was computed for each class. This 
distance is defined for two classes by the Eq. (1). 

B =
1
8
(m1 − m2)

2 2
σ2

1 + σ2
2
+

1
2

ln
[

σ2
1 + σ2

2

2σ2
1σ2

2

]

(1) 

m1 and m2 are the respective average values of the chosen charac-
teristic for each class (reflectance value of bands and index values), σ1 
and σ2 are the corresponding standard deviations for each class. The 
Bhattacharyya distance is generally used to assess separability of land- 
cover classes and to prioritize features that most contribute to the 
discrimination among the land-cover classes of interest (Herold et al., 
2003). Considering the fact that the range of B falls in half-closed in-
terval [0,∞ ], it is possible to transform this range into a closed interval 
[0, 2] by using a simple transformation of B into a Jeffries Matusita (J) 
distance (Eq. (2)) (Adam et al., 2016). 

J = 2
(
1 − e− B) (2) 

A value of J near 2 indicates complete separability between the two 

Table 1 
Spectral indices, their acronyms, and the mathematical expressions used to 
compute them from Sentinel-2 bands.  

Index Formulas 

Normalized Difference Vegetation Index (NDVI) B8 − B4
B8 + B4 

Normalized Difference Water Index (NDWIa) B8 − B11
B8 + B11 

Normalized Difference Water Index (NDWIb) B3 − B8
B3 + B8 

Brightness Index (BIa) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B42 + B32

√

Brightness Index (BIb) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B42 + B32 + B82

√

Color Index (CI) B4 − B3
B4 + B3 

Redness Index (RI) B42

B32 

Normalized Difference Build-up Index (NDBI) B11 − B8
B11 + B8 

Bare Soil Index (BSI) (B11 + B4) − (B8+ B2)
(B11 + B4) + (B8 + B2)

Normalized Built-up Area Index (NBAI) (B12 − B8)/(B2)
(B12 + B8)/(B2)

Band Ration for Built-up Area (BRBA) B3
B8  
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classes and a value near 0 indicates that classes are not separable. The 
main result of this step is the definition of the most relevant bands and 
indices for the detection of ASGM with the minimum confusion possible. 
These bands and indices are used as input data for the classification 
(Carleer and Wolff, 2006). 

c) Image classification and accuracy assessment. The Support Vec-
tor Machine (SVM), a machine-learning approach, is used in this 
study. The SVM is one of the most widely used machine learning 
methods in remote sensing due to the high capacity in image 

recognition (Bruzzone et al., 2006; Foody and Mathur, 2004; Man-
tero et al., 2005). It is a non-parametric supervised classifier based on 
statistical learning theory and adapted in case where a limited 
amount of reference data is often provided. The SVM learns from the 
training dataset and attempts to generalize and make a correct pre-
diction on new datasets. The SVM algorithm is already implemented 
in the Google Earth Engine platform. Google Earth Engine proposes a 
library of SVM named LibSVM that helps users to perform their 
classification using different parameters. For this study we have 
varied the parameters of the SVM in order to have the most accurate 

Fig. 4. Average and standard deviation of Sentinel-2 spectral bands and Brightness indices of ASGM, habitations and bare soil.  

Fig. 5. Average and standard deviation of indices of ASGM, habitations and bare soil.  
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result possible. The final parameter used are: kernel = Radial Basis 
Function (RBF), C (cost) = 100 and y = 1. The Cost parameter C is the 
price for misclassified samples in the training set. This parameter is 
important to minimize classification errors. It allows to make a 
compromise between training errors and the complexity of the 
model. Large values of C help to minimize the training errors and 
lead to behavior similar to that of the hard-margin SVM (Kuhn and 
Johnson, 2013). The free parameter, y, influences the variance. If y is 
high the variance is low and vice versa. (Kranjčić et al., 2019). SVM 
classifier is applied on each image and validated by ground truth 
samples. Using the confusion matrix, an accuracy assessment (Kappa 
index) was performed. This confusion matrix includes commission 
and omission error based on validated samples. Commission’s errors 
are defined as pixels, which have been classified as belonging to a 
given class while they are not and errors of omission refer to pixels 
that were left out (or omitted) from the correct class in the classified 
map (Lewis and Brown, 2001). 

The final classification is therefore based on the use of the set of 
training samples defined on the study area. 70% of the samples were 
randomly selected for the training and the rest (30%) for validation. 
Bands and indices with high values of separability served as band sets for 
the classification. The classifier model developed with the training data 
acquired in 2018 is applied to Sentinel-2 image of 2019 and 2021.  

d) Map to map comparison to assess the recent expansion of ASGM. 
The raster result of the classification is exported on Google Drive. 
Note that none of the voluminous data sets are downloaded at any 
time of the process, and the download to local storage is limited to 
the raster containing the classification (total size: 517 Kb). This 
approach clearly puts local computing requirements at an affordable 
level, even if generalization to mapping at a national scale is 
considered. For each year, the result of the classification was 
exported in a tiff format into a Google Drive. Once exported, this file 
is opened in QGIS and the map is edited manually. The step of 

manual edition consists of an extraction for each result (2018, 2019 
and 2021) of the ASGM class using the module raster calculator of 
QGIS, transformation of raster into polygons and vector editing to 
eliminate misclassification of mining areas. For the vector editing in 
the villages, we assume that artisanal mining does not take place 
within the villages/habitations. A mask has been applied on the 
villages and the pixels contained in the villages classified as 
belonging to the gold panning class have not been taken into ac-
count. Concerning bare soil, the confusions concern a small number 
of pixels that have been classified as belonging to the mining class. 
These pixels can be either sites in early stages of exploration or er-
rors. Based on size criteria and Google earth imagery we have chosen 
to eliminate them. After vector editing, the surface exploited in the 
study area has been calculated for each year using the field calculator 
of QGIS and a map-to-map comparison is achieved to document the 
extension of mining sites. 

6. Results 

6.1. Spectral properties of artisanal mining sites 

Figs. 4 and 5 show the average and standard deviation of the spec-
trum (reflectance values for each band) and spectral indices for ASGM, 
bare soil and habitations (urban areas). Standard deviations are used to 
create envelopes of average curves. The curves are superimposed on 
bands and indices where there is a possibility of class confusion. For each 
of these figures, the x-axis corresponds to the Sentinel-2 bands and 
indices and the y-axis to the reflectance/spectral index values. These 
graphs show that the ASGM class is essentially distinguished from the 
bare soil class by its higher reflectance values in the visible domain (B02, 
B03, B04 and B05), and by the brightness and NDWI indices. This 
distinction is also possible using the Normalized Difference Vegetation 
Index (NDVI) which has lower values. On the other hand, the distinction 
between the ASGM class and habitations class is difficult, with only B11 
and B12, which are the mid-infrared bands, showing a higher reflectance 

Fig. 6. Separability measurements between the ASGM site versus bare soil and urban, estimated for all spectral bands and spectral indices for the image of December 
2018. The bars are ordered by decreasing values of J (Jeffries-Matusita distance) and therefore the following bands are retained for classification: B02, B03, B04, B05, 
B11, B12, BSI, NDVI, BIa and NDWIb). 
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value for habitations than for ASGM. This is because these bands are 
very sensitive to the presence of urban areas and are often used to 
differentiate them from other areas (Lefebvre et al; 2016). Fig. 6 presents 
the results of the calculation of separability measures between the ASGM 
class and the bare soil and habitations and confirm these results. All 
spectral bands and indices were included in this analysis and are rep-
resented on the x axis. The y axis represents the value of J. The top ten 
bands with high value of J were used for the classification (B02, B03, 
B04, B05, B11, B12, BSI, NDVI, BIa and NDWIb). 

6.2. Map of ASGM area in 2018 

For each image, the same sets of bands are used. The classification is 
achieved using the SVM with parameter as explained in section 3.3.c. By 
using the training sample designed for validation, an overall accuracy of 
94% is found for December 2018 s (Kappa = 0.92). Fig. 7 is a map which 
presents the result of classification applied on an extract of Sentinel-2 
granule covering the study area in December 2018, before vector edit-
ing. For the years 2019 and 2021 the results are presented in Appendices 
1 and 2. The confusion matrix table constructed with validation data is 
presented in Appendix 3. 

Misclassified pixels have been observed in the villages (habitations) 

Fig. 7. Results of classification derived by the application of the SVM on selected spectral bands in indices on Sentinel-2 granule of December 2018.  
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and some bare soil. This result confirms the spectral profile and sepa-
rability analyses which showed the possibility of confusion between 
artisanal gold mining class, habitation and bare soil. After this step, the 
total area occupied by artisanal gold mining is calculated. 

Fig. 8. Illustration of expansion of ASGM between December 2018 to December2021; a, c and e are respectively Sentinel-2 images acquired at December 2018, 
December 2019 and December 2021. Figures b, d and f represent detected and mapped artisanal mining area, respectively. 

Table 2 
Mining area in km2 mapped with Sentinel-2 images acquired in the period of 
2018 to 2021 in the study area.  

Date December 2018 December 2019 January 2021 

Mining area in km2  3.39  5.16  8.80  
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6.3. Expansion of ASGM 

Once we have applied and validated the approach on the 2018 data 
(the year for which we have ground observations), the 2019 and 2021 
data were processed in a similar way. It is then possible to explore the 
changes and expansion of the mining site from the comparison of the 
mapping results. Fig. 8 shows the result of the mapping of the recent 
extension of ASGM along a section of the Bandama River derived from 
three Sentinel-2 images acquired at December 2018 (a), December 2019 
(c) and December 2021 (e). The detected and mapped mining areas for 
each year are presented in Fig. 8 b, d and f, respectively. Table 2 shows 
the total mining area calculated for each year in the study area. Ac-
cording to Table 2, the total area exploited by artisanal gold mining for 
the year 2018 is 3.39 km2 and increases to 516 km2 for 2019, and 8.80 
km2 for 2021. These surfaces correspond to 0.55%, 0.84% and 1.44% of 
the area that have been processes by the classification algorithm (which 
corresponds to 0.2% of the surface area of Côte d’Ivoire). These figures 
show that this activity has more than tripled in three years and corre-
sponds to a growth rate of 0.24 km2/month. This expansion is much 
more marked in the western part of the study area, specifically in the 
villages of Kouassi Perita, Alekran and Kavyessou (see Appendix 3). 

7. Discussion 

7.1. Factors of expansion of artisanal gold mining in Côte d’Ivoire 

This expansion of artisanal gold mining in Côte d’Ivoire is due to 
several economic, political and social factors. On the economic level, the 
main factor is the current rise of gold prices, stimulated by strong de-
mand. Between 2000 and 2021, the price of an ounce of gold rose from 
$280 to $1,800, an increase of over 600%. This increase has led to the 
development of artisanal gold mining in many rural areas of Côte 
d’Ivoire, and in neighboring countries (Abass Saley et al., 2021). Indeed, 
due to great poverty, many communities practice this activity, which is 
much more lucrative than agriculture. This is accentuated by the ease of 
selling gold quickly (mostly) on the spot, unlike agricultural products 
(cocoa and coffee) which may be unsold due to lack of buyers. On the 
political level, the issue of mining in several countries has revealed that 
in most producing countries, populations do not benefit from the divi-
dends of industrial mining. This encourages the development of clan-
destine activities in the rural areas where the resource is available (Soko, 
2019). In addition, the development of gold mining can be explained by 
the lack of effective regulation despite the government’s efforts under 
the PNRO and the long administrative procedures that can discourage 
gold miners to enter the legal system (FES, 2018). 

7.2. An approach designed for low/middle income countries – advantage, 
risks and limitations 

Considering that until now, the only available geographical infor-
mation on artisanal mining is a map of localization of ASGM based on a 
census realized in 2016, this study opens the paths to address the lack of 
information related to the continuous growth of artisanal mining in Côte 
d’Ivoire. In this research, a cost-effective method in terms of time and 
resources is proposed for identification and analysis of the expansion of 
ASGM in Côte d’Ivoire. This methodology of detection and mapping is 
based on Ngom et al. (2020), and has been developed, at first, for 
Senegal. This approach is adapted for countries with a broad range of 
levels of economic development, as it relies on publicly available data 
(Sentinel-2), open access software (R and QGIS), and a cloud computing 
platform (GEE). Downloading and processing Sentinel-2 data that would 

take a long time and require fast internet connections, very large storage 
capacity and efficient computational power is now made easier by using 
GEE. Artisanal gold mining takes place in 24 of the 31 regions of Côte 
d’Ivoire, which corresponds to an area covered by about 30 Sentinel-2 
tiles. The volume of data to be processed (if we consider that the vol-
ume of each Sentinel-2 tile can measure 800 MB) may reach 24 GB for 
one date. Considering that the application of the model developed for 
the study area lasts about 30 s, the extrapolation to entire Côte d’Ivoire 
would take about 4 h of computation time, but much more time would 
be required for final manual vector editing. The efforts to reduce the 
time necessary for vector editing should be a priority, but this step 
cannot be entirely suppressed. The use of commercial software for data 
processing is avoided by the cloud computing GEE, though it is admitted 
that any change in the condition of utilization of the platform may affect 
the end-users, including potentially at the governmental level. However, 
the Is the case with any commercial platform of software and it is 
therefore a risk that is not specific to the GEE platform. 

7.3. Comparison Côte d’Ivoire – Senegal 

The first difference that arises is the use of time series and the defi-
nition of the ideal period for site identification and mapping in Senegal, 
which is not possible and relevant in Côte d’Ivoire. In Côte d’Ivoire the 
cloud cover is significant throughout the year and there are few images 
with a cloud cover rate of <10%. The only period with the fewest clouds 
is between December and January. The separability analysis has shown 
the relevance of the brightness index for the detection of artisanal 
mining sites; however, it should be noted that the most relevant spectral 
bands and indices may change from one study area to another. 

Despite the low J values found, the SVM is able to classify the 
different types of land use. This can be explained with the PCA results 
presented in Appendix 4. These results show that it is possible to mini-
mize the confusions between habitations, ASGM and bare soil classes. 
Concerning the classification errors that have been noted in Senegal 
(Ngom et al., 2020), the results are more precise in this study. The 
detection of artisanal gold mining sites in Côte d’Ivoire remains less 
difficult than in Senegal, where it is often confused with bare soils. In 
Côte d’Ivoire, the presence of dense vegetation throughout the year 
makes it easier to detect a landcover change. 

7.4. Perspectives of this study: A possible contribution for the regulation of 
artisanal and small-scale gold mining in cote d’Ivoire 

This study demonstrates the capacity of spatial data for monitoring 
artisanal mining activity in Côte d’Ivoire. Although the area covered in 
this study represents only 0.2% of the area of Côte d’Ivoire, it is 
important to emphasize that the method can be applied semi- 
automatically on a regional scale. Field campaigns in other sites are to 
be considered. It is important to note that additional training data will 
be needed to feed the model in order to make the result more accurate. 

Of the 2,300,000,000 FCFA budget that was allocated to the PNRO, a 
large portion was earmarked for the survey of gold panning sites (MIM, 
2014). Regular (annual) update of the location and extent of ASGM site 
could be achieved with reduced costs based on the initial inventory. This 
way, the country could maintain and share with the different actors of 
the mining sector a database on gold panning as done for the mining 
industry with the Mining Cadastre Portal of Côte d’Ivoire (https: 
//portals.landfolio.com/CoteDIvoire/FR/). 
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8. Conclusion 

This article presents an AI method based applied to Sentinel-2 data 
for the detection and mapping the extent of artisanal mining site along 
the Bandama River in Côte d’Ivoire. The proposed approach takes 
advantage of the regular availability of new images (5 days) provided by 
Sentinel-2a and 2b, which increases the chance of having optical images 
with a minimum of cloud cover in Côte d’Ivoire. This availability of 
images makes it possible to follow the yearly evolution of the gold 
mining sites but also the opening of new areas of exploitation. The 
analysis of Sentinel-2 data shows that the areas affected by artisanal 
mining activities expanded from 3.39 km2 to 8.80 km2 between 
December 2018 and December 2021, corresponding to an average 
growth rate of 0.24 km2/month. This study could represent a contri-
bution to the policies on artisanal gold mining to the extent since 
regulation requires regular monitoring of mining sites and objective 
documents on the impacts on the environment. This approach may 
represent an affordable alternative for regular updating of gold panning 
expansion as envisaged in the PNRO, given that the activity is evolving 

very rapidly, hence the need for governments to implement such tools. 
This method may also allow the exploration of gold panning sites in 
regions or areas that are difficult to access, such as the northern part of 
Côte d’Ivoire and in particular its borders with Burkina Faso and Mali. 
This approach is also based on public data and open access software, and 
shall promote the sharing of knowledge and information between all the 
actors involved. 
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Appendix A 

(see Fig. A1) 

Fig. A1. Results of classification derived by the application of the SVM on selected spectral bands in indices on Sentinel-2 granule of December 2019.  

N.M. Ngom et al.                                                                                                                                                                                                                               



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102873

13

Appendix B 

(see Fig. A2) 

Fig. A2. Results of classification derived by the application of the SVM on selected spectral bands in indices on Sentinel-2 granule of January 2021.  
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Appendix C 

(see Table A1) 

Appendix D 

(see Fig. A3) 
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Côte d’Ivoire, 294. 

Adam, H.E., Csaplovics, E., Elhaja, M.E., 2016. A comparison of pixel-based and object- 
based approaches for land use land cover classification in semi-arid Areas, Sudan. 
IOP Conf. Ser.: Earth Environ. Sci. 37 (June), 012061 https://doi.org/10.1088/ 
1755-1315/37/1/012061. 

Adamek, Katarzyna, Michał Lupa, and Mateusz Zawadzki. 2020. Remote Sensing 
Techniques for Tracking Changes Caused by Illegal Gold Mining in Madre de Dios, 
Peru. Miscellanea Geographica 0 (0): 000010247820200028. https://doi.org/ 
10.2478/mgrsd-2020-0028. 

Miserendino, A., Rebecca, B.A., Bergquist, S.E., Adler, J.R., Guimarães, D., Lees, P.S.J., 
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Kranjčić, N., Medak, D., Župan, R., Rezo, M., 2019. Support vector machine accuracy 
assessment for extracting green urban areas in towns. Remote Sensing 11 (6), 655. 
https://doi.org/10.3390/rs11060655. 

Kuhn, Max, Kjell Johnson. 2013. Applied Predictive Modeling. New York, NY: Springer 
New York. https://doi.org/10.1007/978-1-4614-6849-3. 

Kumar, L., Mutanga, O., 2018. Google Earth Engine Applications Since Inception: Usage, 
Trends, and Potential. Remote Sensing 10 (10), 1509. https://doi.org/10.3390/ 
rs10101509. 

Connette, LaJeunesse, Katherine, G.C., Bernd, A., Phyo, P., Aung, K., Tun, Y.e., Thein, Z., 
Horning, N., Leimgruber, P., Songer, M., 2016. Assessment of mining extent and 
expansion in Myanmar based on freely-available satellite imagery. Remote Sensing 8 
(11), 912. https://doi.org/10.3390/rs8110912. 

Lefebvre, A., Sannier, C., Corpetti, T., 2016. Monitoring Urban Areas with Sentinel-2A 
Data: Application to the Update of the Copernicus High Resolution Layer 
Imperviousness Degree. Remote Sensing 8 (7), 606. https://doi.org/10.3390/ 
rs8070606. 

Lewis, H.G., Brown, M., 2001. A Generalized Confusion Matrix for Assessing Area 
Estimates from Remotely Sensed Data. Int. J. Remote Sens. 22 (16), 3223–3235. 
https://doi.org/10.1080/01431160152558332. 

Liman, H., Obaje, N., Aliyu, A.S., Nwaerema, P., 2021. Impact evaluation of artisanal and 
small-scale mining on land use land cover: implication for sustainable mining 
environment in Niger State, Nigeria. J. Earth Sci. Geotech. Eng. https://doi.org/1 
0.47260/jesge/01133. 

Lobo, Felipe. 2015. Spatial and Temporal Analysis of Water Siltation Caused by Artisanal 
Small-Scale Gold Mining in the Tapajós Water Basin, Brazilian Amazon: An Optics 
and Remote Sensing Approach. Ph.D., University of Victoria. https://doi.org/ 
10.13140/RG.2.1.4455.6247. 

Lobo, F., Costa, M., Novo, E., Telmer, K., 2016. Distribution of Artisanal and Small-Scale 
Gold Mining in the Tapajós River Basin (Brazilian Amazon) over the Past 40 Years 
and Relationship with Water Siltation. Remote Sensing 8 (July), 579. https://doi. 
org/10.3390/rs8070579. 
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Opportunities and Oversights. Land Use Policy 91 (February), 104323. https://doi. 
org/10.1016/j.landusepol.2019.104323. 

Schwartz, F.W., Lee, S., Darrah, T.H., 2021. A Review of the Scope of Artisanal and 
Small-Scale Mining Worldwide, Poverty, and the Associated Health Impacts. 
GeoHealth 5 (1). https://doi.org/10.1029/2020GH000325. 

Seifi, A., Hosseinjanizadeh, M., Ranjbar, H., Honarmand, M., 2019. Identification of Acid 
Mine Drainage Potential Using Sentinel 2a Imagery and Field Data. Mine Water 
Environ. 38 (4), 707–717. https://doi.org/10.1007/s10230-019-00632-2. 

Singo, P., Seguin, K., 2018. Best Practices: Formalization and Due Diligence in Artisanal 
and Small-Scale Mining. Best Practices 24. 

Snapir, B., Simms, D.M., Waine, T.W., 2017. Mapping the Expansion of Galamsey Gold 
Mines in the Cocoa Growing Area of Ghana Using Optical Remote Sensing. Int. J. 

N.M. Ngom et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S1569-8432(22)00075-9/h0075
http://refhub.elsevier.com/S1569-8432(22)00075-9/h0075
http://refhub.elsevier.com/S1569-8432(22)00075-9/h0075
https://doi.org/10.1016/j.rse.2004.06.017
https://doi.org/10.3390/rs12060911
https://doi.org/10.1002/ldr.3150
https://doi.org/10.1289/ehp.1307864
http://refhub.elsevier.com/S1569-8432(22)00075-9/h0100
http://refhub.elsevier.com/S1569-8432(22)00075-9/h0100
http://refhub.elsevier.com/S1569-8432(22)00075-9/h0100
https://doi.org/10.1016/j.rse.2017.06.031
https://www.graphic.com.gh/news/general-news/ghana-news-govt-to-announce-new-policy-framework-on-small-scale-mining-friday.html
https://www.graphic.com.gh/news/general-news/ghana-news-govt-to-announce-new-policy-framework-on-small-scale-mining-friday.html
http://refhub.elsevier.com/S1569-8432(22)00075-9/h0115
http://refhub.elsevier.com/S1569-8432(22)00075-9/h0115
https://doi.org/10.1109/TGRS.2003.815238
https://doi.org/10.1109/TGRS.2003.815238
https://doi.org/10.1016/j.childyouth.2008.03.008
https://doi.org/10.1016/j.resourpol.2008.12.001
https://doi.org/10.1016/j.resourpol.2008.12.001
https://doi.org/10.1002/jid.1829
https://doi.org/10.1016/j.geoforum.2017.05.004
https://doi.org/10.1016/j.geoforum.2017.05.004
https://doi.org/10.3390/rs9090945
https://doi.org/10.4236/oalib.1107010
https://doi.org/10.1016/j.envsci.2021.02.017
https://doi.org/10.1016/j.envsci.2021.02.017
https://doi.org/10.3390/rs11060655
https://doi.org/10.3390/rs10101509
https://doi.org/10.3390/rs10101509
https://doi.org/10.3390/rs8110912
https://doi.org/10.3390/rs8070606
https://doi.org/10.3390/rs8070606
https://doi.org/10.1080/01431160152558332
https://doi.org/10.47260/jesge/01133
https://doi.org/10.47260/jesge/01133
https://doi.org/10.3390/rs8070579
https://doi.org/10.3390/rs8070579
https://doi.org/10.1109/TGRS.2004.842022
https://doi.org/10.1109/TGRS.2004.842022
https://doi.org/10.3390/rs6086790
https://doi.org/10.1029/2020GH000310
https://doi.org/10.1029/2020GH000310
https://doi.org/10.1016/j.scitotenv.2019.03.108
https://doi.org/10.1016/j.envc.2021.100053
https://doi.org/10.1016/j.envc.2021.100053
https://doi.org/10.1016/j.envres.2019.03.031
https://doi.org/10.1016/j.envres.2019.03.031
https://doi.org/10.1016/j.envint.2020.106104
https://doi.org/10.1016/j.envint.2020.106104
https://doi.org/10.1016/j.envsci.2020.02.005
https://doi.org/10.1016/j.envsci.2020.02.005
https://doi.org/10.1007/s00382-004-0421-1
https://doi.org/10.1007/s00382-004-0421-1
https://studenttheses.universiteitleiden.nl/handle/1887/52587
https://studenttheses.universiteitleiden.nl/handle/1887/52587
https://doi.org/10.1016/j.landusepol.2019.104323
https://doi.org/10.1016/j.landusepol.2019.104323
https://doi.org/10.1029/2020GH000325
https://doi.org/10.1007/s10230-019-00632-2
http://refhub.elsevier.com/S1569-8432(22)00075-9/h0315
http://refhub.elsevier.com/S1569-8432(22)00075-9/h0315


International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102873

16

Appl. Earth Obs. Geoinf. 58 (June), 225–233. https://doi.org/10.1016/j. 
jag.2017.02.009. 
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Resources in the Bandama Basin, Côte D’ivoire. Hydrology 4 (1), 18. https://doi. 
org/10.3390/hydrology4010018. 

Souza-Filho, P.W.M., Lobo, F., Cavalcante, R., Mota, J.A., Nascimento, W., Santos, D.C., 
Novo, E., Barbosa, C.C.F., Siqueira, J.O., 2021. Land-Use Intensity of Official Mineral 
Extraction in the Amazon Region: Linking Economic and Spatial Data. Land Degrad. 
Dev. 32 (4), 1706–1717. 

Swenson, Jennifer J., Catherine E. Carter, Jean-Christophe Domec, and Cesar I. Delgado. 
2011. “Gold Mining in the Peruvian Amazon: Global Prices, Deforestation, and 

Mercury Imports.” Edited by Guy J-P. Schumann. PLoS One 6 (4): e18875. https 
://doi.org/10.1371/journal.pone.0018875. 

Telmer, Kevin, and Daniel Stapper. 2007. “UNIDO PROJECT EG/GLO/01/G34 FINAL 
REPORT,” 49. 

Van Bockstael, Steven. 2019. Land Grabbing ‘from below’? Illicit Artisanal Gold Mining 
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