
www.thelancet.com/planetary-health   Vol 6   August 2022 e694

Review

Lancet Planet Health 2022; 
6: e694–705

Department of Applied 
Ecology, North Carolina State 
University, Raleigh, NC, USA 
(S R Hopkins PhD); National 
Center for Ecological Analysis 
and Synthesis, Santa Barbara, 
CA, USA (S R Hopkins); Western 
Ecological Research Center, 
US Geological Survey at Marine 
Science Institute 
(Prof K D Lafferty PhD), 
Department of Ecology, 
Evolution, and Marine Biology 
(Prof A M Kuris PhD, 
J L Fornberg PhD), Bren School 
of Environmental Science and 
Management 
(A J MacDonald PhD), 
and Department of Geography 
(Prof D Lopez Carr PhD), 
University of California, 
Santa Barbara, CA, USA; 
Division of Environmental 
Health Sciences, University of 
California, Berkeley, CA, USA 
(Prof J V Remais PhD); Scripps 
Institution of Oceanography, 
University of California, 
San Diego, CA, USA 
(D C G Metz MS); School of 
Aquatic and Fishery Sciences, 
University of Washington, 
Seattle, WA, USA 
(C L Wood PhD); Wildlife 
Conservation Society, Health 
Program, Bronx, NY, USA 
(S H Olson PhD); Department of 
Biology and Marine Biology, 
University of North Carolina 
Wilmington, Wilmington, NC, 
USA (J C Buck PhD); Hopkins 
Marine Station, Stanford 
University, Pacific Grove, CA, 
USA (Prof G A De Leo PhD, 
I J Jones PhD); Woods Institute 
for the Environment 
(S H Sokolow DVM, 
L H Kwong PhD, L Mandle PhD), 
Department of Epidemiology 
(C LeBoa MS), and Department 
of Biology (N Nova PhD, 
M E Howard MS), Stanford 
University, Stanford, CA, USA; 
Department of Population 
Medicine and Diagnostic 

Evidence gaps and diversity among potential win–win 
solutions for conservation and human infectious disease 
control 
Skylar R Hopkins, Kevin D Lafferty, Chelsea L Wood, Sarah H Olson, Julia C Buck, Giulio A De Leo, Kathryn J Fiorella, Johanna L Fornberg, 
Andres Garchitorena, Isabel J Jones, Armand M Kuris, Laura H Kwong, Christopher LeBoa, Ariel E Leon, Andrea J Lund, Andrew J MacDonald, 
Daniel C G Metz, Nicole Nova, Alison J Peel, Justin V Remais, Tara E Stewart Merrill, Maya Wilson, Matthew H Bonds, Andrew P Dobson, 
David Lopez Carr, Meghan E Howard, Lisa Mandle, Susanne H Sokolow

As sustainable development practitioners have worked to “ensure healthy lives and promote well-being for all” and 
“conserve life on land and below water”, what progress has been made with win–win interventions that reduce human 
infectious disease burdens while advancing conservation goals? Using a systematic literature review, we identified 
46 proposed solutions, which we then investigated individually using targeted literature reviews. The proposed 
solutions addressed diverse conservation threats and human infectious diseases, and thus, the proposed interventions 
varied in scale, costs, and impacts. Some potential solutions had medium-quality to high-quality evidence for previous 
success in achieving proposed impacts in one or both sectors. However, there were notable evidence gaps within and 
among solutions, highlighting opportunities for further research and adaptive implementation. Stakeholders seeking 
win–win interventions can explore this Review and an online database to find and tailor a relevant solution or 
brainstorm new solutions.

Introduction 
Ecosystem degradation can exacerbate infectious 
diseases that have long plagued humankind or cause 
novel pathogens to spillover from animals to humans.1–6 
By targeting connections between human infectious 
disease and the natural world, interventions might 
“ensure healthy lives and promote well-being for all” 
and “conserve life on land and below water”—
two Sustainable Development Goals (SDGs).7–17 For 
example, putting tick collars on free-ranging dogs might 
reduce transmission of ticks and tick-borne disease 
from dogs to people and wildlife.18 Indeed, sustainable 
development practitioners worldwide are urgently 
seeking safe and effective cross-sector interventions that 
might prevent the next pandemic.19

Of course, no single win–win intervention will work in 
all contexts or solve all problems within complex 
socioecological systems.20 Interventions that improve 
some outcomes for human health and ecosystems might 
even cause collateral impacts in other sectors, creating 
complex trade-offs among SDGs.16,21,22 Tasked with 
choosing an optimal intervention for any given problem 
and socioecological context, practitioners need to know 
about the available intervention options and how they 
can be compared. In the event that no existing 
intervention is suitable, practitioners will need to know 
how to identify and evaluate new intervention options.

Unfortunately, the information needed to identify, 
implement, and evaluate win–win interventions that 
prevent or control human infectious diseases tends to be 
scarce, inconsistent, and unconsolidated.23 For instance, 
among conservation intervention studies that reported 
human wellbeing benefits, fewer than 2% considered 
health-specific outcomes and only a subset of those 
considered emerging or endemic infectious diseases.24,25 

Furthermore, existing studies are scattered across siloed 
disciplines that use different research methodologies, 
measure different outcomes, and publish in different 
journals. Navigating this dispersed evidence landscape 
would be prohibitively time consuming for practitioners 
interested in implementing win–win interventions.

To facilitate timely, evidence-based decision making, 
we review existing evidence regarding win–win solutions 
that aim to simultaneously reduce human infectious 
disease burden and advance conservation goals. We use 
the terms intervention and solution interchangeably 
because there are growing policy initiatives for enacting 
nature-based solutions.8 To find, evaluate, and synthesise 
evidence from win–win solutions, we used a subject-
wide evidence synthesis (figure 1). This two-phase 
method uses a systematic literature review to identify a 
landscape of possible interventions and then each 
intervention is explored using an individual, targeted 
rapid review.26–29 This process allowed us to create a menu 
of 46 proposed solutions ranging from local to 
international scales, including individual information 
summaries (figure 2). Stakeholders can explore these 
examples to find and tailor potential solutions to meet 
their needs or brainstorm new solutions. Potentially 
viable solutions that achieve specific goals within 
resource constraints can be identified and evaluated 
using general criteria that we derived from synthesising 
information across the 46 solutions. Finally, we highlight 
evidence gaps within and among solutions that could be 
important targets for future research and implementation.

Widespread and diverse potential solutions 
The 46 potential solutions addressed diverse threats, 
collectively covering all continents (except Antarctica), 
most major pathogen groups (except fungi), and most 
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conservation threat classes defined by the International 
Union for Conservation of Nature (IUCN; except 
geological events and other; figures 3, 4).31 Most solutions 
addressed multiple threats for health and conservation 
(eg, multiple pathogen species and multiple IUCN threat 
classes). The 46 potential solutions also covered 
numerous intervention types and targets, ranging from 
vaccinating vampire bats against rabies in Peru32 to 
establishing sustainable harvesting programmes for 
medicinal plant species in Tanzania.33 Potential solutions 
were diverse because the problems that they addressed 
were diverse.

Most solutions addressed pathogens with environ-
mentally mediated transmission, such as vector-borne 
diseases and zoonotic diseases transmitted from animals 
to people (figure 4), mirroring the strong focus on these 
diseases in the One Health, Planetary Health, and 
EcoHealth fields.9,11,34 For example, WHO and other 
international organisations support the expansion of 
training for integrated pest and vector management 
globally, because these management techniques might 
reduce total pesticide use and control crop pests and 
disease vectors, such as mosquitoes. Environmentally 
mediated diseases such as these have probably been the 
easiest entry points for cross-sector solutions due to 
obvious underlying links between human health and 
ecosystems.

Only a few potential solutions addressed diseases 
without environmentally mediated transmission, such as 
HIV/AIDS and pneumonia. For example, people with 
poor health due to HIV/AIDS or other diseases are more 
likely to use easier and more destructive fishing practices 
in communities near Lake Victoria in Africa, so treatment 
and prevention programmes might support both human 

health and aquatic conservation.35 Focusing on these 
understudied links between ecosystems and directly 
transmitted and chronic human diseases might yield 
additional solutions for advancing conservation and 
health.

In addition to addressing diverse health threats, the 
potential solutions also addressed all IUCN conservation 
threats related to anthropogenic activities (figure 4C). 
Solutions related to land use change—agriculture and 
aquaculture (n=29 collective case studies) and urbanisation 
and development (n=22)—were most common, probably 
because land use change is a leading driver of biodiversity 
declines36 and disease spillover.6,11,37,38 Only a few solutions 
addressed transportation infra structure, energy and 
mining, and climate change, and these were never 
addressed as the primary threat.

We did not include a collective case study in which 
climate change was the primary conservation threat and 
global emission reduction was the solution (appendix 
pp 3–4) because the numerous health and conservation 
outcomes that could be achieved by global emission 
reduction9,10 have yet to be measured. Climate change is 
expected to become a more urgent threat over time,7 so 
there is a clear need for actionable targeted solutions 
related to climate change.

The conservation and health threats targeted by 
potential solutions spanned from subnational extents 
within single countries to multiple countries within a 
continent to global applicability (figure 4A). For example, 
vaccinating prairie dogs to reduce plague risk for 
endangered black-footed ferrets and humans applies 
subnationally in Wyoming, South Dakota, Montana, and 
Arizona (USA);39 whereas forest conservation to reduce 
human malaria might be relevant to multiple countries 
in Latin America, Africa, and Asia.40,41 The potential 
solutions included targets in low-income and middle-
income countries with high burden of environmentally 
mediated human infectious diseases and high-income 
countries with lower infectious disease burden and 
higher research efforts. Ultimately, one or more potential 
solutions probably exist for all countries, but the set of 
relevant solutions that apply to any country could be 
expanded by future efforts to scale or translate existing 
solutions to new locations.

There were 27 potential solutions that involved imple-
menting classic conservation interventions that have 
health benefits (ie, conservation levers for health; 
figure 2), which are sometimes called nature-based 
solutions or ecological levers for health.8,42,43 One common 
conservation intervention type was species management, 
including controlling or eradicating invasive honeysuckle 
to reduce negative impacts on native vertebrates and 
reduce vector populations44 and reintroducing native 
prawns extirpated by dams to help control snails that 
transmit human schistosomiasis.45 Another common 
conservation intervention type was land and water 
management or protection, such as conserving or 

Figure 1: Subject-wide evidence synthesis
The PRISMA diagram is shown in the appendix (p 14).

Systematic

Searched peer-reviewed literature for 
studies that hypothesised or measured 
outcomes for both conservation and 
human infectious diseases 
(n=12 270; PRISMA diagram).

1A: Search

Phase 1: systematic literature review Phase 2: 46 rapid reviews

Filtered literature to 383 studies with at 
least one proposed win–win solution 
using human classification and the 
colandr machine learning algorithm.

1B: Filter

Combined papers with similar levers 
or examples into collective case studies, 
creating a list of 46 proposed win–win 
solutions.

1C: Categorise

Targeted

Performed individual, targeted 
searches for peer-reviewed or grey 
literature relevant to each of the 46 
proposed win–win solutions.

2A: Search

Summarised information relevant to 20 
qualitative categories, iteratively 
returning to the search stage as needed. 
Summaries were peer-reviewed by an 
expert and revised accordingly.

2B: Summarise

Evaluated available information for each 
proposed win–win solution, classifying by 
threat type, evidence for previous success, 
and viability criteria.

2C: Evaluate
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Figure 2: A menu of 
46 potential solutions for 
advancing conservation 
goals and controlling human 
infectious diseases
N denotes none (defined as 
hypotheses and anecdotes), 
L denotes low (defined as 
some supporting studies with 
moderate to major gaps, 
inconsistency, or low 
applicability), M denotes 
medium (defined as several 
lines of evidence that are 
mostly consistent and 
applicable), and H denotes 
high (defined as diverse, 
consistent, and highly 
applicable evidence that leaves 
little to no uncertainty 
regarding the outcome).
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restoring wetlands to increase biodiversity and reduce 
water-borne diarrhoeal diseases.46 Together, these 
27 potential solutions are the most comprehensive list to 
date of conservation solutions that might reduce human 
infectious diseases, an important subsector within the 
global focus on conservation solutions that improve 
general human wellbeing.8,9,11,42

Six potential solutions involved public health inter-
ventions that have conservation benefits (ie, health 
levers for conservation). For example, health system 
strengthening or family planning and reproductive 
health programmes—including population, health, and 
environment programmes in many countries47—have 
reduced illegal logging and deforestation;48,49 improved 
coral and mangrove conditions in marine environ-
ments;50 and improved community participation in, or 
approval of, conservation initiatives.51 There were also 
several solutions that used insect vector control to 
reduce vector-borne disease risk for people and 
wildlife.52,53 These health interventions were often 
supported by scarce evidence, either because there were 
not enough resources dedicated to monitoring and 
evaluation or interventions implemented by the health 
sector did not quantify ecosystem or conservation 
outcomes. Therefore, we expect that more health 

interventions that advance conservation goals could be 
developed and evaluated through increased collaboration 
between conservation and health organisations.

Finally, 13 potential solutions acted through inter-
ventions that were not specific to public health or 
conservation, but affected both sectors (ie, levers for 
health and conservation). Many of these were policies 
regarding the food–energy–water nexus,54 such as 
regulating protozoan pollution,55 reducing antibiotic use 
in aquaculture,56 reducing nutrient pollution and 
eutrophication associated with agriculture,57 and imple-
menting ballast water treatment protocols to prevent 
invasive pathogens and wildlife from moving among 
ports.58 There were also outreach, education, or livelihood 
interventions such as teaching people how to live safely 
with bats that might be virus reservoirs,59 protecting tree 
sap collection pots from bat contamination using 
bamboo skirts,60,61 and replacing wood-burning stoves 
with cleaner cookstoves to reduce deforestation and 
smoke-related pneumonia.62 However, livelihood-focused 
interventions were rare, so future efforts might discover 
more interventions that primarily target poverty and 
inequalities (SDGs 1 and 10) and that have downstream 
benefits for health and conservation (SDGs 1, 14, and 15).

Examples of each lever type are illustrated in figure 3. 
The figure illustrates (1) health systems that provide 
affordable health care in the Indonesian portion of the 
island of Borneo reduce human disease burden and 
illegal logging done to pay for health care (health lever); 
(2) vector control is a public health intervention that 
might also benefit biodiversity, as in the case of 
North American birds susceptible to the West Nile virus 
(health lever); (3) law and policy interventions that ban 
importation of non-native wildlife reservoirs (eg, pouch 
rats) prevent spillover to humans and native wildlife 
(lever for health and conservation); (4) education and 
outreach empower people to live safely with bats, 
reducing zoonotic spillover risk (eg, Nipah virus; lever 
for health and conservation); (5) species management, 
such as vaccinating or sterilising free-ranging domestic 
dogs, reduces rabies transmission to humans and 
African carnivores (conservation lever); and (6) eco-
system management interventions, such as restoring 
wetland vegetation, reduce the survival of human and 
wildlife pathogens in the environment while restoring 
wildlife habitat (conservation lever).

The diversity among potential solutions is promising 
because “there is no one-size-fits-all approach for 
One Health implementation”.11 The 46 examples we 
described here cover many context-specific health and 
conservation threats; therefore, stakeholders might be 
able to adapt one of these solutions to meet their needs. 
In cases where none of the potential solutions are 
relevant, stakeholders could design new solutions to 
meet specific goals within their resource constraints. To 
determine whether any given solution will be viable for a 
given context, stakeholders can evaluate each solution 

Figure 3: Six lose–lose scenarios that could be improved with win–win solutions
This figure was commissioned from artist Hiram Henriquez, and all photographs were used under creative 
commons licences or purchased with commercial licences (ie, iStockphoto). Photographs of palms and sap 
collection pots were used with permission from Fernando Garcia and Nazmun Nahar.
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using the 11 viability criteria described below (harmless, 
contained, consistent, feasible, acceptable, impactful, 
effective, affordable, scalable, sustainable, and cost-
effective; figure 5; appendix pp 7–8).

Identifying and minimising trade-offs 
To evaluate potential trade-offs caused by a given 
intervention, we suggest considering three viability 
criteria (figure 5): (1) harmless solutions are not expected 
to harm non-target aspects of human wellbeing for some 

people while attempting to help others; (2) contained 
solutions are not expected to have negative, collateral 
effects on non-human targets, or else potential collateral 
effects could be avoided or fully mitigated; and 
(3) consistent solutions are expected to have only positive 
outcomes for their intended conservation and human 
infectious disease control targets in predictable contexts 
(ie, no known negative outcomes). Two investigators 
used these definitions and the available evidence to 
determine whether each potential solution met, did not 

Figure 4: Solutions are widespread and diverse
(A) The solutions covered all continents (except Antarctica), including countries with high and low burdens of infectious diseases, as measured by total DALYs and 
reported by WHO in 2018.30 (B) The solutions covered most pathogen taxa (except fungi) and transmission modes. (C) Seven International Union for Conservation of 
Nature threat classes were considered the primary conservation threat addressed by at least one solution, whereas transportation, climate change, and energy and 
mining were only secondary conservation threats addressed by any solution. DALYs=disability-adjusted life-years.
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meet, or was data deficient for the three criteria 
(appendix pp 6–7). Data limitations often made it difficult 
to decide whether a solution involved substantial trade-
offs, but existing evidence showed that 18 solutions could 
be harmless, contained, and consistent under some 
contexts (figure 5).

Context dependency was common among the 
46 potential solutions. For example, introducing invasive 
predators that consume larval mosquitoes to control 
malaria has often negatively impacted ecosystems 
(eg, violating the contained criterion),63 but at least in 
some contexts (eg, native predators), mosquito predators 
are expected to only have positive outcomes for 
ecosystems (ie, meeting the contained criterion). 
However, for other solutions, we could not identify a 
mediating context. For example, correlational studies 
suggest that forest cover and host biodiversity impact 
competent host abundance in ways that can reduce 
human Lyme disease risk in North America (also known 
as the dilution effect).64 Yet in this complex system, forest 
cover or host biodiversity have also been associated with 
unexpected amplification of Lyme disease risk;65 thus, 
how forest conservation or restoration interventions 
would impact human health remains unclear (ie, this 
solution violates the consistent criterion). Future 
research or innovation might identify specific scales and 
circumstances in which this solution does no harm, but 
at present, it risks causing unpredictable harm to some 
people in certain contexts.

Similarly to most solutions, those that address 
pathogen spillover from wildlife to humans had data 
gaps regarding trade-offs. For example, wildlife trade is a 
conservation threat and pathway for spillover from 
wildlife.66–69 However, in several African countries, past 
bans on all wildlife hunting and consumption sometimes 
created food insecurity, illegal markets, and distrust in 

health authorities.21,70–72 Bans developed in response to the 
COVID-19 pandemic might be similarly problematic.73,74 
This evidence shows that wildlife trade bans can cause 
harm when they affect subsistence hunting and 
consumption, but might be safe and feasible in other 
specific contexts. For example, many existing national 
and international wildlife pet trade restrictions aim to 
conserve wildlife (eg, the Convention on International 
Trade in Endangered Species), and there is increasing, 
but not universal, public support for bans or restrictions 
on luxury commercial wildlife trade in Asia due to the 
21st century coronavirus outbreaks.75 If successful, 
restrictions and bans that target the multibillion-dollar 
commercial wildlife trade could prevent multitrillion-
dollar pandemics.16,76 However, whether and when these 
policies will be successful is still unclear, including 
whether they will favour illegal markets or erode support 
for conservation. Efforts are urgently needed to identify 
contexts in which negative impacts are mediated, 
conservation is advanced, and spillover risks are reduced.

Achieving socially acceptable and feasible 
solutions 
Two criteria can be used to determine whether solutions 
are immediately achievable (ie, the feasible and 
acceptable criteria; figure 5). Feasible solutions could be 
successfully implemented given existing technology 
and sufficient resources, and socially acceptable 
solutions are supported by stakeholders who are affected 
by the intervention or could be made acceptable to 
stakeholders. For example, the livestock medication 
diclofenac caused substantial vulture population 
declines in India, which could have contributed to the 
increase in free-ranging dogs and human rabies risk.77 
Therefore, diclofenac was banned in India and the 
surrounding nations, an intervention that was 

Figure 5: Viable solutions can be identified and evaluated by 11 criteria
We evaluated five criteria to determine whether solutions were harmless, contained, consistent, feasible, and acceptable in predictable contexts given the currently 
available evidence or whether these evidence were data deficient for the specified criteria. Stakeholders can evaluate six other criteria on the basis of priorities and 
resource constraints (impactful, effective, affordable, scalable, sustainable, and cost-effective). *Three potential solutions had evidence for trade-offs that were 
unmitigable or unpredictable and were categorised as not harmless, not consistent, or both. All solutions were categorised as contained or data deficient for the 
contained criterion. †None of the potential solutions had evidence for unmediatable barriers to implementation (not feasible or not acceptable).
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Yes
(potential harm can be
predicted and mediated in
some contexts; n=18)

Data deficient
(n=25)

Yes 
(only positive outcomes
and intervention can be 
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achievable because there were acceptable alternative 
veterinary drugs that could replace diclofenac and these 
were not toxic to vultures.77 As this example illustrates, 
some of the 46 potential solutions have already been 
successfully implemented on national or multinational 
scales.

However, most potential solutions were data deficient 
for feasibility or social acceptability. For example, two 
potential solutions involve the effort to broadly re-wild 
North America with top carnivores to control infectious 
diseases in wild herbivores and possibly humans.78 These 
potential solutions face opposition from some stake-
holders (eg, ranchers and hunters), and whether these 
solutions would lead to net reductions in disease risk and 
whether they can be made socially acceptable in places in 
which the intervention would impact disease transmission 
the most remains unclear. Indeed, solutions that involved 
changing peoples’ lifestyles and cultures were often 
data deficient for acceptability, which highlights a clear 
need for social science and implementation research 
to evaluate cross-sector solution viability, as outlined 
by the Organisation for Economic Co-operation and 
Development.79

Impactful and effective solutions achieve 
stakeholders’ goals 
Whether a given solution meets stakeholders’ goals can 
be evaluated using two criteria (ie, the impactful and 
effective criteria). Impactful solutions have the potential 
to meet stakeholders’ quantitative goals (ie, effect 
magnitude and clinical relevance) and effective solutions 
can successfully achieve the desired outcomes. For 
example, building nest boxes to increase local predatory 
bird populations is proposed to control the rodent 
species that are reservoirs for hantaviruses.80 This 
solution is a proposed ecological lever for health.42 
However, there is no evidence that nesting sites are 
scarce so the intervention might only redistribute 
non-threatened wildlife populations in ways that benefit 
humans, creating little value for stakeholders with 
strong conservation priorities (ie, not impactful for 
conservation). There is also scarce evidence that this 
solution can successfully reduce human disease burdens 
(ie, might not be effective for human health). We did not 
quantify how impactful each potential solution was 
because there was no common system available to rank 
impacts given the diverse methods and metrics used 
across relevant literature. However, we did qualitatively 
assess how effective each solution was, as evidenced by 
previous success in achieving proposed goals (figure 6; 
appendix pp 5–7).

We categorised existing evidence quality for each 
potential solution using a modified Bridge Collaborative 
rubric81 with three categories (evidence types and 
diversity, evidence consistency, and evidence applicability; 
appendix pp 5–7, 15). We then combined these three 
categories into one composite score for overall evidence 

quality for health outcomes and one score for 
conservation outcomes (figures 2, 6). No evidence 
indicated that cases were supported only by hypotheses 
and anecdotes; low quality evidence indicated that there 
were few supporting studies with moderate to major 
evidence gaps, unexplained inconsistency, or low 
applicability; medium quality indicated that there were 
several lines of evidence that were mostly consistent and 
applicable, and inconsistency could be explained; and 
high quality indicated diverse evidence types, usually 
including an intervention study, that yielded consistent 
and applicable results and left little to no uncertainty 
regarding the outcome. The resulting composite evidence 
quality scores highlight which solutions have had 
demonstrable success for health and conservation 
outcomes and which still have evidence gaps.

There were seven solutions that already had medium to 
high evidence quality for conservation and human health 
success (figure 6). For example, vaccinating dogs and 
wild carnivores to reduce rabies transmission among 
dogs, wildlife, and people was supported by high evidence 
quality for both outcomes (including successful 
intervention programmes).82,83 Most solutions had higher 
evidence quality regarding effectiveness for conservation 
than for health. For example, controlling invasive rats, 
brushtail possums, and cats can conserve endemic 
species,84–86 especially on islands. There are also studies 
linking invasive species control and human infectious 
disease burden,87,88 but the evidence types and diversity 
are low. Similarly, although forest restoration and 
conservation have well established benefits to ecosystem 
structure and function89,90 and several correlational 
studies link upstream forest cover to reduced childhood 
diarrhoea risk downstream,91 none of these are 

Figure 6: Most solutions had evidence gaps
Each cell contains the number of solutions that had a given composite evidence 
quality score on the basis of evidence diversity, consistency, and applicability 
(none is defined as hypotheses and anecdotes; low quality evidence is defined as 
some supporting studies with moderate to major gaps, inconsistency, or low 
applicability; medium is defined as several lines of evidence that are mostly 
consistent and applicable; and high is defined as diverse, consistent, and highly 
applicable evidence that leaves little to no uncertainty regarding the outcome). 
The green colour is used to emphasise that most solutions were supported by 
low or medium evidence for conservation or health outcomes.
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intervention studies. Although evidence for these 
solutions could still be improved, these examples show 
that effective cross-sector solutions exist.

There were 17 potential solutions that had low overall 
evidence quality due to low evidence diversity, 
applicability, or consistency that was difficult to explain 
for one or both outcomes. For example, two observational 
studies92,93 (scarce evidence diversity) quantified high 
leopard predation rates on free-ranging domestic dogs, 
an important disease reservoir for rabies near Mumbai 
(India).92 Leopard conservation might reduce dog rabies, 
and thus human rabies risk, but predation or culling of 
dogs could also counterintuitively increase rabies in dog 
reservoir populations (ie, potentially not consistent).94 In 
another example, regulating drawdown rates for water 
reservoirs created by dams might restore aquatic 
communities and reduce larval mosquito survival, thus 
reducing human malaria risk near dams.95 However, the 
existing evidence did not come from countries with high 
malaria burden (ie, low applicability). Additionally, 
integrating wild grazing animals on land parcels used 
for grazing cattle (frequently treated for ticks) might 
increase forage availability for wildlife and reduce tick 
abundance on land parcels,96 which in turn might affect 
human disease risk, but tick-borne disease incidence in 
humans has never been measured for this solution 
(ie, low applicability). As these examples illustrate, many 
promising solutions had some supporting evidence, but 
most solutions had notable data gaps (figure 5).

Optimal solutions achieve goals within resource 
constraints 
In addition to goals (ie, impactful and effective criteria), 
stakeholders also have resource constraints. Resources 
determine which solutions can be implemented at the 
necessary scales and intensities to achieve the desired 
outcomes (eg, the affordable, scalable, and sustainable 
criteria) and how big the impact will be for a given 
resource budget (ie, the cost-effective criterion). Various 
stakeholders might evaluate these four criteria differently 
because of differing goals, priorities, and resources.

We note that resource costs and affordability are distinct; 
cost is the resource price tag whereas affordability is the 
ability to pay. For human infectious diseases, public health 
intervention cost-effectiveness is usually quantified in 
disability-adjusted life-years (DALYs) averted per US, 
Canadian, or Australian dollar but DALYs and cost were 
rarely reported for the 46 potential solutions. This 
omission highlights an important area for future research 
because for most stakeholders, and perhaps especially 
those interested in human health outcomes, cost-
effectiveness and affordability will be the most important 
considerations when choosing a solution.

For some of the proposed solutions, the potential 
conservation and health impacts would likely be too 
small for most stakeholders to justify the cost. For 
example, invasive python control in Florida reduces 

predation pressures on native vertebrates and might 
reduce human exposure to the vector-borne Everglades 
virus.97 However, python eradication is costly and has not 
been achieved using existing resources, and maintaining 
continuous python control efforts at current intensities 
might not be feasible indefinitely (ie, potentially not 
sustainable). From a public health perspective, a cheaper 
and more direct public health or medical intervention 
might be preferred to python control. However, local 
stakeholders in Florida might value the small human 
health co-benefits from python control, even if their 
main goal is a potentially large conservation impact. As 
this example illustrates, sometimes a small impact in 
one sector (health or conservation) can be valued because 
it accompanies a large impact in another sector or fully 
addresses a local problem.

Quantifying the net value associated with all positive 
impacts in all sectors for a given intervention is difficult. 
However, identifying these potential impacts explicitly 
can help stakeholders to compare multisector inter-
ventions.16,21,22 Ultimately, for any given cross-sector 
problem, collaborations among stakeholders, economists, 
social scientists, and implementation scientists might be 
needed to determine which solution is optimal.

Evidence-based management under uncertainty 
Data-limited solutions that appear safe and feasible could 
be ideal for immediate research and adaptive 
implementation. However, strict adaptive implementation 
requires that multiple interventions are implemented 
simultaneously and compared, and approaches are 
subsequently modified according to what works best.98 
This approach is often infeasible in conservation and 
public health programmes,98 and might be even more 
difficult for multisector solutions, leaving many data gaps 
unaddressed. When adaptive implementation is not 
possible, there might be other ways to fill in data gaps 
using safe implementation, such as by comparing 
different programmes that monitor, evaluate, and share 
outcomes. For example, multiple programmes are 
improving hygiene or health care for people who work or 
tour in great ape conservation areas, which could increase 
human health and reduce pathogen spillover from 
humans to apes.99 Comparing outcomes across these 
programmes might provide new insights for the Best 
Practice Guidelines for Health Monitoring and Disease 
Control in Great Ape Populations created by the IUCN.100 
As evidence accumulates for this solution and others, 
uncertainty will decline. Data gaps are still likely to 
remain prominent in the near future, but action despite 
uncertainty will already be familiar for most public health 
and conservation practitioners.9,10

Conclusions 
The growing Planetary Health field emphasises the links 
between human wellbeing and ecosystem integrity, but 
there has been scarce guidance for how to leverage these 
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relationships to implement viable win–win solutions that 
specifically reduce human infectious disease burden. 
Here, we identified 46 such potential solutions. We found 
that proposed solutions address diverse, context-
dependent, and dynamic threats with cross-sector inter-
ventions that are equally diverse. Numerous solutions 
had the potential to be safe and feasible under predictable 
contexts and some were supported by medium and high 
quality evidence of success. Some solutions had the 
potential for large human health or conservation impacts, 
such as forest conservation projects and health system 
strengthening initiatives. Others had small effects but 
might still be highly valued by local stakeholders. 
Synergies such as these might be pivotal for achieving the 
soon-to-be-revised Sustainable Development Goals.16,21,22,101

Although promising, all the proposed solutions had 
some evidence gaps and, collectively, they did not cover all 
possible health and conservation threats. Evidence 
regarding conservation and health impacts (quantitative 

outcomes) and intervention cost-effectiveness and 
affordability were especially scarce, highlighting priorities 
for future research. Currently, these data gaps within and 
among solutions complicate decision making. More 
evidence will accumulate when stakeholders invest in 
research, adaptive implementation, monitoring, and 
evaluation for existing approaches. New solutions will 
also be created, filling in existing gaps or addressing new 
problems. Until then, the viability criteria described here 
can be used to compare and update the evidence database 
for potential solutions, differentiating the solutions that 
do not work from those that successfully and cost-
effectively advance health and conservation.
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Search strategy and selection criteria 

To find and synthesise evidence among proposed solutions, 
we used a subject-wide evidence synthesis, a two-phase 
approach for identifying and assessing a broad suite of 
interventions supported by heterogeneous evidence 
(Shackelford and colleagues, 2019; Sutherland and 
colleagues, 2018). In the first phase, we performed a systematic 
literature review of peer-reviewed papers and book chapters, 
which we used to identify solutions that have been proposed to 
reduce human infectious disease burdens and advance 
conservation goals (appendix pp 2–4). In the second phase, 
we performed targeted rapid reviews of peer-reviewed and grey 
literature (Grant and Booth, 2009), iteratively revising evidence 
summaries for each proposed solution (appendix pp 4–5). Finally, 
we used these evidence summaries to categorise information for 
each solution, making it easier to synthesise and compare.

To create a list of proposed win–win solutions (phase 1), 
we systematically reviewed publications in Thomson Reuters 
Web of Science and PubMed (n=12 270 papers), including 
records published between database inception and 
March 14, 2018. We performed the search using 167 English 
terms regarding conservation, ecology, infectious disease, 
and human populations (adapted from McKinnon and 
colleagues, 2016; appendix pp 2–4, 14). We identified 
617 papers containing hypothesised or measured outcomes for 
conservation and human infectious diseases—excluding papers 
that did not discuss proposed outcomes for one or both 
sectors—by using a combination of researcher classification and 
machine learning to sort records by relevance (Cheng and 
colleagues, 2018). During subsequent full-text analysis, 
we removed any records that did not suggest at least one 
proposed win–win solution (eg, papers about trade-offs in 
which environmental degradation improves health). We then 
used full-text analysis of the final list of 383 records to group 
those pertaining to the same win–win solutions into collective 

case studies (appendix p 4), which resulted in a list of 
46 proposed solutions.

Each solution was then individually reviewed by one or 
two investigators (phase 2: targeted rapid reviews), who used 
keyword searches to find additional peer-reviewed publications 
and grey literature. These rapid reviews were not systematic 
because they did not examine all published literature—a task 
that would not be possible for 46 interventions. Instead, 
investigators specifically sought publications relevant to 
20 information categories, determined a priori, and 
summarised all information in a standardised format 
(appendix pp 4–5). A single lead investigator reviewed all 
collective case study summaries to ensure consistency and then 
each summary was reviewed by an external expert 
(appendix p 5). Based on feedback from external experts, 
investigators iteratively searched for more information and 
revised the collective case study summary until the investigator 
and lead investigator deemed the review complete.

After finishing the collective case study summary, 
each investigator used a list of qualitative variables defined a 
priori to categorise information consistently for comparison 
across case studies. Variables included geographical location, 
conservation threat, infectious disease threat, mechanism or lever 
type, evidence for conservation and human infectious disease 
outcomes, and 11 criteria that we identified as indicative of viable 
solutions (harmless, contained, consistent, feasible, acceptable, 
impactful, effective, affordable, scalable, sustainable, and cost-
effective; appendix pp 7–8). The investigators’ designations were 
confirmed by the lead and one or two other investigators to 
ensure consistency. Any discrepancies between how different 
people categorised information were discussed until consensus 
was reached. Finally, we synthesised information across the 
46 solutions to describe their diversity and evidence gaps.
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